How clustered protocadherin binding specificity is tuned for neuronal self/non-self-recognition

Kerry M. Goodman ${ }^{1,7}$, Phinikoula S. Katsamba ${ }^{1,7}$, Rotem Rubinstein ${ }^{5,6}$ Göran Ahlsén ${ }^{1}$, Fabiana Bahna ${ }^{1}$, Seetha Mannepalli ${ }^{1}$, Hanbin Dan ${ }^{4}$, Rosemary Sampogna ${ }^{4}$, Lawrence Shapiro ${ }^{1,2^{*}}$, and Barry Honig ${ }^{1,2,3,4^{*}}$
${ }^{1}$ Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
${ }^{2}$ Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
${ }^{3}$ Department of Systems Biology, Columbia University, New York, NY 10032, USA
${ }^{4}$ Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032, USA
${ }^{5}$ School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Israel
${ }^{6}$ Sagol School of Neuroscience, Tel Aviv University, Israel
${ }^{7}$ Equal contribution
*Correspondence: 1ss8@columbia.edu (L.S.); bh6@cumc.columbia.edu (B.H.)

Abstract

(152 words)

The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides diverse identities to individual vertebrate neurons and a molecular basis for self/non-selfdiscrimination. cPcdhs form chains mediated by alternating cis and trans interactions between apposed membranes, which has been suggested to signal self-recognition. Such a mechanism requires that cPcdh cis dimers form promiscuously to generate diverse recognition units, and that trans interactions have precise specificity so that isoform mismatches terminate chain growth. However, the extent to which cPcdh interactions fulfill these requirements has not been definitively demonstrated. Here we report biophysical experiments showing that cPcdh cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans-homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs help explain their function in neuronal self/non-self-discrimination.

Introduction

Clustered protocadherins (cPcdhs) are a large family of cadherin-like proteins named for the clustered arrangement of their genes in vertebrate genomes (Wu and Maniatis, 1999; Wu et al., 2001). cPcdhs play roles in many facets of neural development (Peek et al., 2017), including circuit development, most notably neurite self-avoidance in vertebrates (Kostadinov and Sanes, 2015; Lefebvre et al., 2012; Mountoufaris et al., 2017), and tiling (Chen et al., 2017). In self-avoidance, neurites from the same neuron (sister neurites) actively avoid one another, whereas neurons from different neurons can freely interact. Tiling is similar to self-avoidance, but in tiling all neurons acquire the same identity, so that there is uniform repulsion among self- and non-self neurites (Chen et al., 2017). Self-avoidance among sister neurites leads to the characteristic arbor structures of dendritic trees, and prevents the formation of self-synapses (Kostadinov and Sanes, 2015; Lefebvre et al., 2012).

The molecular mechanisms through which neurons discriminate self from non-self, differ between vertebrate and most invertebrate animals. For arthropod invertebrates such as Drosophila melanogaster, self-avoidance is mediated by immunoglobulin superfamily Dscam1 cell surface proteins. The stochastic alternative splicing of Dscaml pre-mRNAs can, in principle, generate 19,008 distinct extracellular isoforms; the vast majority of which, based on ELISA-based binding assay, mediate homophilic recognition (Miura et al., 2013; Schmucker et al., 2000; Wojtowicz et al., 2004; Wojtowicz et al., 2007). Each neuron expresses a repertoire estimated at $10-50$ isoforms and the large number of Dscam1 isoforms ensures a low probability that any two contacting neurons will have an identical or even a similar isoform repertoire thus minimizing the chance of inappropriate avoidance between non-self neurons (Hattori et al., 2009).

In mammalian nervous systems cPcdh isoform expression is controlled by the unique organization of three tandem gene clusters, $P c d h \alpha, P c d h \beta$, and $P c d h \gamma$ (Wu and Maniatis, 1999), with each cluster containing multiple variable exons, which encode full cPcdh ectodomain regions with six extracellular cadherin (EC) domains, a single transmembrane region, and a short cytoplasmic extension (Figure 1A). The Pcdh α and Pcdh gene clusters also contain three 'constant' exons that encode cluster-specific intracellular domains. The last two variable exons in the Pcdh α gene
cluster and the last three variable exons of the $P c d h \gamma$ gene cluster diverge in sequence from other cPcdh isoforms and are referred to as 'C-type' cPcdhs (Wu and Maniatis, 1999; Wu et al., 2001). Sequence differences further subdivide Pcdh \quad genes into two subfamilies - Pcdh γA and $P c d h \gamma B$ (Wu and Maniatis, 1999). The full mouse cPcdh complement is comprised of 53 non-C-type cPcdhs, commonly known as alternate cPcdhs ($\alpha 1-12, \beta 1-22, \gamma \mathrm{~A} 1-12$, and $\gamma \mathrm{B} 1-7$), whose expression choices vary stochastically between cells through alternate promoter choice (Canzio and Maniatis, 2019); and 5 C -type cPcdhs ($\alpha \mathrm{C} 1, \alpha \mathrm{C} 2, \gamma \mathrm{C} 3, \gamma \mathrm{C} 4$, and $\gamma \mathrm{C} 5$), which are constitutively expressed. cPcdh expression, either stochastic or constitutive, varies between cell types: For example, olfactory sensory neurons express $\sim 5-10$ cPcdhs stochastically; Purkinje neurons express ~ 10 alternate cPcdhs stochastically and all five C-types constitutively (Esumi et al., 2005; Kaneko et al., 2006); and serotonergic neurons express just $\alpha \mathrm{C} 2$ constitutively (Canzio and Maniatis, 2019; Chen et al., 2017). While the cPcdh and Dscam1 systems bear striking similarities, the relatively small number of cPcdh isoforms - fewer than 60 - has presented a significant challenge to generation of sufficient diversity to provide mammalian neurons with functionally unique identities.

Solution biophysics and functional mutagenesis studies, have shown that cPcdhs interact in trans through antiparallel interactions between their EC1-EC4 regions (Rubinstein et al. 2015), and crystal structures of alternate α, β, and $\gamma \mathrm{cPcdh}$ trans-homodimers have revealed interfaces involving EC1 interacting with EC4 and EC2 with EC3 (Figure 1B) (Goodman et al., 2016a; Goodman et al., 2016b; Nicoludis et al., 2016; Rubinstein et al., 2015; Thu et al., 2014). cPcdhs also form cis dimers through their membrane-proximal EC5-EC6 regions, and are presented on cell surfaces as cis dimers (Goodman et al., 2017; Rubinstein et al., 2015; Thu et al., 2014). Crystal structures of cis-interacting protocadherin ectodomains (Brasch et al., 2019; Goodman et al., 2017) have revealed an asymmetrical interaction mode, where one molecule interacts through elements of EC5 and EC6, and the other interacts exclusively through EC6 (Figure 1C). To date, structural studies of C-type cPcdh interactions have not been available. Here we extend our molecular understanding of cPcdhs to C-type isoforms as well, with the goal of understanding the evolutionary design of the entire family.

In order to explain how about 60 cPcdh isoforms can provide a comparable or even greater level of neuronal diversity as 19,000 Dscam isoforms, Rubinstein et al. (2015) proposed that cPcdhs located on apposed membrane surfaces would form an extended zipper-like lattice through alternating cis and trans interactions (Figure 1D). In self-interactions - between two membranes with identical cPcdh repertoires - these chains would grow to form large structures, limited mainly by the number of molecules (Brasch et al., 2019; Rubinstein et al., 2015). However, in non-selfinteractions - between two membranes with differing cPcdh repertoires - such large linear assemblies would not form since even a single mismatch between expressed isoforms would terminate chain assembly (Brasch et al., 2019; Rubinstein et al., 2017; Rubinstein et al., 2015). This "isoform-mismatch chain-termination model" for the "barcoding" of vertebrate neurons envisions the assembly of long cPcdh chains between sites of neurite-neurite contact to represent the signature of "self", which is then translated by downstream signaling that leads to selfavoidance (Fan et al., 2018). X-ray crystallographic studies and cryo-electron tomography (cryoET) studies of the full-length cPcdh ectodomains bound between the surfaces of adherent liposomes revealed the existence of linear zippers thus providing strong evidence supporting the validity of the model (Brasch et al., 2019). However, crucial questions remain unanswered. Here, a number of them are addressed.

1) For the proposed mechanism to successfully explain neuronal barcoding, cis interactions must be promiscuous to generate diverse repertoires of cis-dimeric biantennary 'interaction units', while trans interactions must be highly specific so that mismatched isoforms do not inappropriately enable growth of the chain through heterophilic interactions. While cell aggregation assays have suggested trans homophilic specificity, these assays only reflect a competition between different cell populations and thus don't inform as to the strength of heterophilic interactions. Moreover, the results of cell aggregation assays depend critically on the relative strengths of homophilic and heterophilic interactions and thus do not inform as to actual binding affinities (Honig and Shapiro, 2020). It is thus necessary to establish the extent to which heterophilic trans interactions are truly disallowed.
2) The assumption that cis interactions are promiscuous is based in large part on the fact that α cPcdhs and $\gamma \mathrm{C} 4$ cannot reach the cell surface without binding in cis to another "carrier" isoform
(Bonn et al., 2007; Goodman et al., 2016b; Murata et al., 2004; Schreiner and Weiner, 2010; Thu et al., 2014). As is the case for trans interactions, the strength of cis interactions has only been probed quantitatively in a small number of cases so that the term "promiscuous" is qualitative at best. In fact, as compared to $\gamma \mathrm{B}$ and $\beta \mathrm{cPcdh}$ isoforms, most $\gamma \mathrm{A}-\mathrm{Pcdhs}$ do not form measurable cis homodimers in solution (Goodman et al., 2016b) (Figure 4-source data 1). Nevertheless, all $\gamma \mathrm{A}-$ Pcdhs are still able to reach the cell surface when expressed alone (Thu et al., 2014). This observation can be understood if the cis dimerization affinity of $\gamma \mathrm{A}-\mathrm{Pcdhs}$ is large enough to enable them to dimerize in the 2D membrane environment (Goodman et al., 2016b; Wu et al., 2013). Nevertheless, their weak dimerization affinities suggest, more generally, that cPcdhs may exhibit a range of cis dimerization affinities. We establish below that a wide range of affinities does in fact exist and, strikingly, most homophilic cis interactions are weaker than their heterophilic counterparts. We consider the functional implications of this novel observation in the discussion.
3) Structures have not yet been determined for complete C-type cPcdh ectodomains. Yet these isoforms play unique functional roles, some of which have no apparent connection to isoform diversity. For example, a single C-type isoform is sufficient for tiling which can be simply understood in terms of the formation of zippers containing identical homodimers so that all interacting neurons will avoid one another (Chen et al., 2017). Moreover, Garrett and coworkers discovered that neuronal survival and postnatal viability is controlled solely by $\gamma \mathrm{C} 4$ suggesting a function that is unique to this isoform (although it presumably requires β and/or other γ carriers to reach the cell surface) (Garrett et al., 2019). Additionally, a recent paper by Iqbal and coworkers has shown that genetic $\gamma \mathrm{C} 4$ variants cause a neurodevelopmental disorder which is potentially linked to $\gamma \mathrm{C} 4$'s role in programmed cell death of neuronal cells (Iqbal et al., 2021). Below we report extensive biophysical interaction studies of C-type isoform ectodomains and report the first crystal structure of a trans dimer formed by $\gamma \mathrm{C} 4$. Our findings reveal that the specialized functions of C-type cPcdhs probably do not involve unique structural or biophysical properties of their ectodomains.

Overall, in accordance with the requirements of the isoform-mismatch chain-termination model, we find that trans-homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different cPcdh isoforms. In contrast cPcdh cis interactions are
largely promiscuous but with relatively weak intra-subfamily and, especially, homophilic interactions. Possible implications of this somewhat surprising finding are considered in the discussion. Our study reveals how the extraordinary demands posed by the need to assign each neuron with a unique identity are met by an unprecedented level of protein-protein interaction specificity.

Results

cPcdh trans interactions are strictly homophilic

We generated biotinylated ectodomain fragments containing the trans-interacting EC1-4 regions (Nicoludis et al., 2015; Rubinstein et al., 2015) of six representative $\alpha, \beta, \gamma \mathrm{A}$, and $\gamma \mathrm{B}$ mouse cPcdh isoforms $-\alpha 7, \beta 6, \beta 8, \gamma \mathrm{~A} 8, \gamma \mathrm{~A} 9$ and $\gamma \mathrm{B} 2$ - which include the most closely related isoforms by sequence identity from the β and γ A subfamilies ($\beta 6 / 8$ and $\gamma \mathrm{A} 8 / 9$) (Rubinstein et al., 2015). These molecules were coupled over independent Neutravidin-immobilized flow cells and transinteracting ectodomain fragments of multiple members of each cPcdh subfamily, including the Ctypes ($\alpha 4, \alpha 7, \alpha 12, \beta 6, \beta 8, \gamma \mathrm{~A} 4, \gamma \mathrm{~A} 8, \gamma \mathrm{~A} 9, \gamma \mathrm{~B} 2, \gamma \mathrm{~B} 4, \gamma \mathrm{~B} 5, \alpha \mathrm{C} 2, \gamma \mathrm{C} 3, \gamma \mathrm{C} 4$, and $\gamma \mathrm{C} 5$), were then flowed over the six cPcdh surfaces to assess their binding. The surface plasmon resonance (SPR) binding profiles reveal strictly homophilic binding (Figure 2A). All ectodomain fragments used in these SPR experiments were confirmed to form homodimers in solution by sedimentation equilibrium analytical ultracentrifugation (AUC) (Figure 2-source data 1), validating that these proteins are well-behaved and active. Remarkably, no heterophilic binding was observed for any of the analytes over any of the six surfaces (Figure 2A). Even $\beta 6 / 8$ and $\gamma \mathrm{A} 8 / 9$ that have 92% and 82% sequence identities respectively in their trans-binding EC1-4 regions exhibit no heterophilic binding. We estimate that, for heterophilic trans-dimers, the lower limit for the dissociation constant $\left(\mathrm{K}_{\mathrm{D}}\right)$ would be $\sim 200 \mu \mathrm{M}$. Mutations designed to disrupt $\alpha 7, \beta 6$, and $\gamma \mathrm{A} 8$ trans interaction inhibited homophilic binding, demonstrating that the observed binding occurs via the trans interface (Figure 2-figure supplement 1A) (Goodman et al., 2016a; Goodman et al., 2016b; Rubinstein et al., 2015). This behavior is unlike that of other adhesion receptor families where, whether they display homophilic or heterophilic preferences, the signal is never as binary as the one shown in Figure 2 (Honig and Shapiro, 2020).

Much of the original evidence as to homophilic specificity was based on cell aggregation assays (Rubinstein et al., 2015; Schreiner and Weiner, 2010; Thu et al., 2014) and it is of interest to compare the results obtained from these assays to those obtained from SPR. We do this in the context of examining the heterophilic binding specificity between $\beta 6_{1-4}$ and $\beta 8_{1-4}$ trans fragments that share 92% sequence identity and differ at only five residues (Figure 2 -figure supplement 2A), within their respective binding interfaces (Goodman et al., 2016a). Each of these residues was mutated individually and in combination. Figure 2-figure supplement 2B and C display SPR profiles and cell aggregation images, respectively, for wild type $\beta 6$ and $\beta 8$ and for the various mutations. We first note that changing all five residues in $\beta 6$ to those of $\beta 8$ generates a mutant protein with essentially wild type $\beta 8$ properties; it binds strongly to $\beta 8$ but not to $\beta 6$ as seen in SPR and also forms mixed aggregates with $\beta 8$ but not $\beta 6$. In contrast, most of the single residue mutants retain $\beta 6$-like properties in both assays whereas double and triple mutants exhibit intermediate behavior between $\beta 6$ and $\beta 8$. These results demonstrate that despite the 92% sequence identity between $\beta 6$ and $\beta 8$, their highly specific homophilic properties can be attributed to five interfacial residues. Moreover, the cell aggregation assays are consistent with the heterophilic binding traces measured by SPR; cells expressing mutants that generate strong SPR signals with either wild type $\beta 6$ or $\beta 8$ also form mixed aggregates with cells expressing the same wild-type protein.

Of note, trans-interacting fragments of all four C-type cPcdhs tested showed no binding over the alternate cPcdh SPR surfaces (Figure 2A). To test whether C-type cPcdhs also show strict homophilic specificity with respect to each other we coupled biotinylated trans-interacting fragments of $\alpha \mathrm{C} 2, \gamma \mathrm{C} 3, \gamma \mathrm{C} 4$, and $\gamma \mathrm{C} 5$ to SPR chips and passed the same four fragments alongside alternate cPcdh trans fragments over these four surfaces. Only homophilic binding was observed, with each of the four C-type fragments binding to its cognate partner and no other isoform (Figure 2B). Disrupting the $\gamma \mathrm{C} 5$ trans interaction with the S116R mutation (Rubinstein et al., 2015), inhibited binding to the $\gamma \mathrm{C} 5$ surface, demonstrating that the observed binding occurs via the trans interface (Figure 2-figure supplement 1B).

In contrast to the other C-type isoforms, $\alpha \mathrm{C} 1$ does not mediate cell-cell interactions in cell aggregation assays even when co-expressed with cPcdhs that facilitate cell-surface delivery of $\gamma \mathrm{C} 4$ (Thu et al., 2014). Although we have been able to produce an $\alpha \mathrm{C} 1 \mathrm{EC} 1-4$ fragment the recombinant molecule forms disulfide-linked multimers which are likely non-native, precluding confident examination of $\alpha \mathrm{C} 1$'s potential trans interactions. Notably, the sequence of mouse $\alpha \mathrm{C} 1$ reveals the EC3:EC4 linker does not contain the full complement of calcium-coordinating residues, which may impact the structure and binding properties of this protein (Thu et al., 2014).

Since all the cPcdh trans fragment molecules used in these SPR experiments homodimerize our SPR data cannot be used to determine accurate binding affinities (Rich and Myszka, 2007). We therefore used AUC to measure the trans-homodimer $K_{D S}$ (Figure 2-source data 1) revealing a >200-fold range of binding affinities, from $2.9 \mu \mathrm{M}\left(\alpha 7_{1-5}\right)$ to $>500 \mu \mathrm{M}\left(\gamma \mathrm{C} 4_{1-4}\right)$. Regardless of their trans binding affinity, all cPcdhs (except $\alpha \mathrm{C} 1$) have previously been shown to effectively mediate cell-cell interactions in cell aggregation assays (Schreiner and Weiner, 2010; Thu et al., 2014).

Crystal structure of C-type cPcdh γ C4 reveals EC1-4-mediated head-to-tail trans dimer interaction

The biophysical properties of C-type cPcdhs pose a number of interesting questions: Despite their more divergent sequences compared with alternate cPcdhs, AUC data has confirmed that C-type cPcdhs $\alpha \mathrm{C} 2, \gamma \mathrm{C} 3$, and $\gamma \mathrm{C} 5$ form trans-dimers using their EC1-4 domains (Goodman et al., 2016b; Rubinstein et al., 2015). However, $\gamma \mathrm{C} 4_{1-4}$ behaved as a very weak dimer in AUC ($\mathrm{K}_{\mathrm{D}}>500 \mu \mathrm{M}$; Figure 2 -source data 1), nevertheless full-length $\gamma \mathrm{C} 4$ can mediate cell aggregation when delivered to the cell surface by co-expression with a 'carrier' cPcdh (Thu et al., 2014). In addition, C-type isoforms have unique expression profile and function compared to alternate cPcdhs (Canzio and Maniatis, 2019; Mountoufaris et al., 2016). However, there are no published crystal structures of C-type cPcdh trans dimers. We therefore sought to crystallize a C-type cPcdh engaged in a trans interaction and obtained two distinct crystal forms of $\gamma \mathrm{C} 4_{\mathrm{EC} 1-4}$, one at $2.4 \AA$ resolution (crystallized at pH 7.5) and the other with anisotropic diffraction at 4.6/3.9/3.5 \AA resolution (Figure 3A, Figure 3-figure supplement $1 \mathrm{~A}, \mathrm{~B}$, Figure 3-source data 1) (crystallized at pH 6.0). Both crystal structures revealed an EC1-4-mediated head-to-tail trans dimer: The 4.6/3.9/3.5 \AA crystal
structure appears to have a fully intact trans interface with a total buried surface area of $3800 \AA^{2}$, which is a similar size to other cPcdh trans dimer interfaces (Goodman et al., 2016a; Goodman et al., 2016b; Nicoludis et al., 2016) (Figure 3B, Figure 3-figure supplement 1B). However, the 2.4 \AA structure had an apparently partially disrupted EC2:EC3 interface resulting in a total buried surface area of just $2900 \AA^{2}$ (Figure 3B). The difference between the two structures may be due to differences in the pH of the crystallization and its effect on the ionization state of the three histidines present in the EC2:EC3 interface (Figure 3B). The differences could also reflect distinct states of a dynamic interaction, as has previously been observed crystallographically (Nicoludis et al., 2016; Goodman et al., 2016b) and explored computationally for other cPcdh trans interactions (Nicoludis et al., 2019).

Despite the $\gamma \mathrm{C} 4$ trans dimer sharing structural similarity and the interface having similar buried surface area as alternate $\alpha, \beta, \gamma \mathrm{A}$, and $\gamma \mathrm{B} \mathrm{cPcdhs}$ and $\delta 2$ non-clustered Pcdhs (Figure 3-source data 2) (Cooper et al., 2016; Goodman et al., 2016a; Goodman et al., 2016b; Harrison et al., 2020; Hudson et al., 2021; Nicoludis et al., 2016), its binding affinity is very weak. The two most structurally similar molecules to $\gamma \mathrm{C} 4$ over their trans interacting domains, $\mathrm{cPcdh} \gamma \mathrm{B} 2$ and nonclustered Pcdh19. $\gamma \mathrm{B} 2$ and Pcdh19 have trans dimer K_{D} of $21.8 \mu \mathrm{M}$ and $0.48 \mu \mathrm{M}$ respectively (Harrison et al., 2020), while that of $\gamma \mathrm{C} 4$ is $>500 \mu \mathrm{M}$. Comparison between the $\gamma \mathrm{B} 2$ and $\gamma \mathrm{C} 4$ dimer interfaces highlighted two buried charges in the $\gamma \mathrm{C} 4$ trans interface, E78 and D290, which could potentially contribute to the low interaction affinity (Figure 3C). To test this, we mutated these two residues to neutral amino acids and used AUC to determine whether the binding affinity increased: The two D290 mutations we tested, D290A and D290N, had no measurable impact on binding; but mutating E78 significantly increased the binding affinity with $\gamma \mathrm{C} 4_{\mathrm{EC} 1-4} \mathrm{E} 78 \mathrm{~A}$ showing a K_{D} of $58 \mu \mathrm{M}$ and $\gamma \mathrm{C} 4_{\mathrm{EC} 1-4} \mathrm{E} 78 \mathrm{Q}$, $83 \mu \mathrm{M}$ (Figure 3D, Figure 3-figure supplement 1C). The equivalent residue to E 78 in $\gamma \mathrm{B} 2$ is also charged (D77) and forms a salt bridge with K 340 in the $\gamma \mathrm{B} 2$ dimer (Figure 3C). To assess whether generating a similar salt bridge in $\gamma \mathrm{C} 4$ would compensate for the negative impact of E78 on dimer affinity we generated an S344R mutant. Similar to the E78 mutants, $\gamma \mathrm{C} 4_{\mathrm{EC} 1-4} \mathrm{~S} 344 \mathrm{R}$ also had a stronger binding affinity than wild type with a K_{D} of $112 \mu \mathrm{M}$ (Figure 3D, Figure 3-figure supplement 1C). It appears then that E78 plays
an important role in weakening cPcdh $\gamma \mathrm{C} 4$'s trans interaction although the functional reasons for $\gamma \mathrm{C} 4$'s weak trans interaction are unclear.

Clustered protocadherin cis interactions are promiscuous with a range of interaction strengths

To systematically investigate cPcdh cis interactions, we coupled cis-interacting fragments of $\beta 9$, $\gamma \mathrm{A} 4, \gamma \mathrm{~A} 9, \gamma \mathrm{~B} 2, \alpha \mathrm{C} 2, \gamma \mathrm{C} 3$, and $\gamma \mathrm{C} 5$ to SPR chip surfaces. Cis-interacting fragments of three members from each of the $\beta, \gamma \mathrm{A}$, and $\gamma \mathrm{B}$ subfamilies ($\beta 1, \beta 6, \beta 9, \gamma \mathrm{~A} 3, \gamma \mathrm{~A} 4, \gamma \mathrm{~A} 9, \gamma \mathrm{~B} 2, \gamma \mathrm{~B} 5, \gamma \mathrm{~B} 7$) alongside $\alpha \mathrm{C} 2, \gamma \mathrm{C} 3$, and $\gamma \mathrm{C} 5$ fragments were flowed over the seven surfaces to detect their heterophilic binding (Figure 4A). Alternate α-cPcdhs, and the C-types $\alpha \mathrm{C} 1$ and $\gamma \mathrm{C} 4$ were not included in this study since EC6-containing fragments of these molecules cannot be expressed, although an $\alpha 7_{\mathrm{EC} 1-5} / \gamma \mathrm{C} 3_{\mathrm{EC} 6}$ chimera was included among the analytes to assess the role of $\alpha 7 \mathrm{EC} 5$ (Figure 4-figure supplement 1C). Each of the analytes was also analyzed by AUC to determine their homophilic cis-interaction behavior (Figure 4—source data 1): Four analytes, $\beta 1_{3-6, \gamma \mathrm{~A} 4_{3-}}$ 6, $\gamma \mathrm{A} 9_{3-6}$, and $\gamma \mathrm{C} 3_{3-6}$, are monomeric in solution as measured by AUC, therefore their SPR binding profiles could be analyzed to determine their heterophilic binding affinities (Figure 4B, Figure 4figure supplement $1 \mathrm{~A}, \mathrm{~B})$. For the remaining analytes, due to the added complexity of their homophilic cis interactions in solution competing with their binding to the immobilized molecules, the SPR responses could not be analyzed to determine accurate $K_{D S}$ (Rich and Myszka, 2007).

The data clearly demonstrate a wide range of cis dimerization affinities with strong heterophilic binding signals (500-2000 RU), with much weaker homophilic binding responses typically between 100-140 RU. The strongest heterophilic cis interactions are in the sub-micromolar range; for example, $\gamma \mathrm{C} 3 / \beta 9$ can heterophilically cis-dimerize with a K_{D} of $0.22 \mu \mathrm{M}$, while $\beta 9_{3-6}, \gamma \mathrm{~B} 2_{3-6}$, $\alpha \mathrm{C} 2_{2-6}$ and $\gamma \mathrm{C}_{2-6}$ homodimerize with AUC-determined K_{D} of $9-80 \mu \mathrm{M}$. In addition to uniformly weak homophilic interactions, within-subfamily cis interactions were consistently among the weakest observed although a number of inter-subfamily interactions were also relatively weak (Figure 4A). For example, for the $\beta 9$ surface comparatively weak binding was observed for all tested β and $\gamma \mathrm{A}$ isoforms except $\gamma \mathrm{A} 3$, with the monomeric $\beta 1, \gamma \mathrm{~A} 4$ and $\gamma \mathrm{A} 9$ producing low responses that could not be fit to a binding isotherm to calculate accurate $K_{D S}$ (Figure 4B, Figure 4 -figure supplement 1B). In contrast, robust binding to the $\beta 9$ surface was observed for all $\gamma \mathrm{B}$
and C-type isoforms. These data are consistent with the binding responses when $\beta 9$ was used as an analyte over the other six surfaces, with weak to no binding observed over the $\gamma \mathrm{A} 4$ and $\gamma \mathrm{A} 9$ surfaces and robust responses over the $\gamma \mathrm{B} 2, \alpha \mathrm{C} 2, \gamma \mathrm{C} 3$, and $\gamma \mathrm{C} 5$ surfaces (Figure 4A). The $\gamma \mathrm{A} 4$ and $\gamma \mathrm{A} 9$ surfaces showed a similar pattern of binding behaviors, with weak to no binding observed for the $\gamma \mathrm{A}$ and $\alpha \mathrm{C} 2$ analytes, and robust binding for the $\gamma \mathrm{C}-\mathrm{cPcdhs}$ with K_{D} for $\gamma \mathrm{C} 3_{3-6}$ of 2.73 and $9.60 \mu \mathrm{M}$ respectively over each surface (Figure 4, Figure 4—figure supplement 1B).

Overall, these SPR data show that cPcdh cis binding is generally promiscuous, with measurable cis interactions observed for 86% of pairs tested (using a 40 RU threshold). However, the wide range of binding responses and homo- and hetero-dimeric $K_{D S}$ that span $0.2201 \mu \mathrm{M}$ to no measurable interaction in solution suggests certain cis dimers will form preferentially to others. For the heterophilic binding pairs for which $K_{D S}$ could be determined (Figure 4B, Figure 4-figure supplement 1, Figure 4-figure supplement 2), the alternate cPcdhs in particular, form markedly stronger cis heterodimers with members of different subfamilies, particularly $\gamma \mathrm{C} 3$ and/or $\gamma \mathrm{C} 5$, compared to their homodimeric and within-subfamily interactions. $\gamma \mathrm{C} 3$ also formed stronger heterodimers with $\alpha \mathrm{C} 2$ than with itself or $\gamma \mathrm{C} 5$. Of note, $\alpha \mathrm{C} 2$ and $\gamma \mathrm{C} 5$ both form strong cis homodimers with $K_{D S}$ of $8.9 \mu \mathrm{M}$ and $18.4 \mu \mathrm{M}$ respectively as determined from AUC experiments (Figure 4-source data 1), a magnitude similar to many of their heterodimeric interactions of 11.5 $\mu \mathrm{M}$ and $6.9-18.2 \mu \mathrm{M}$ respectively (Figure 4B).

In the next section we rationalize cis binding preferences in terms of the structural properties of cis dimers.

The asymmetric cis dimer interface and cis binding specificity

The crystal structure of the $\gamma \mathrm{B} 7$ cis dimer revealed an asymmetric interaction, with the dimer formed by one protomer engaging using surface of both EC5 and EC6 and one protomer engaging using only EC6 (Goodman et al., 2017) with regions of EC6 overlapping in both EC5-6 and the EC6-only interfaces for all cPcdh subfamilies (Thu et al., 2014; Goodman et al., 2017). The asymmetric nature of the cis interaction implies that for each dimer interaction there are two possible arrangements: one with protomer " 1 " forming the EC5-6 side and protomer " 2 " forming
the EC6-only side and the second where protomer " 1 " forms the EC6-only side and " 2 " the EC56 side. These two configurations are distinct with different residue:residue interactions. Alternate α-cPcdhs, which can only form the EC5-6 side of the cis dimer, require co-expression with a "carrier" cPcdh from another cPcdh subfamily, which can form the EC6-only side of the cis dimer, for robust delivery to the cell surface (Thu et al., 2014, Goodman et al., 2017). Although α-cPcdhs and $\gamma \mathrm{C} 4$, which also requires a carrier for delivery to the cell surface, are likely to be extreme cases, sequence analysis alongside the low homodimerization ability of many cPcdh isoforms suggests many cPcdhs will more readily form one side of the cis interface than the other (Goodman et al., 2017).

We previously suggested that $\gamma \mathrm{A}$-cPcdhs will prefer to form the EC6-only side of the interface since they have a poorly conserved EC5 interface and do not form strong homodimers in solution (Figure 4—source data 1) (Goodman et al., 2017). The C-type cPcdh $\gamma \mathrm{C} 3$ also does not form cis homodimers in solution. However, as shown in Figure 4, $\gamma \mathrm{A}-\mathrm{cPcdhs}$ form strong heterodimers with $\gamma \mathrm{C} 3$ with dissociation constants in the low-micromolar range (Figure 4B and Figure 4—figure supplement 1B). Structure-guided sequence analysis for the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ dimer in both EC6-only and EC5-6 possible orientations, using the available crystal structures of the $\gamma \mathrm{B} 7_{\mathrm{EC} 3-6}$ cis dimer and monomeric $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ (Figure 5A and Figure 5—figure supplement 1), suggests that $\gamma \mathrm{C} 3$ prefers to form the EC5-6 side: $\gamma \mathrm{C} 3$ has a number of residue differences in interface residues that are conserved among β, $\gamma \mathrm{A}$ and $\gamma \mathrm{B}$ cPcdhs (V/L555, R/K558, W/V562, and S/R595) that seem likely to disfavor the EC6-only side of the interface and favor the EC5-6 side (Figure 5-figure supplement 1B,C). Two of these residues, V555 and S595, result in a potential loss of EC6-only interface buried surface area and are shared with α-cPcdhs, which cannot occupy the EC6-only position (Goodman et al., 2017). Structural analysis further suggests that $\gamma \mathrm{C} 3$-specific residue R558 would not be well accommodated from the EC6-only side, potentially causing van der Waals clashes (Figure 5-figure supplement 1C). By contrast, from the EC5-6 side R558 is positioned to form an additional salt bridge with $\gamma \mathrm{A} 4$ residue E544 and a hydrogen bond with Y532, promoting dimer formation (Figure 5A; Figure 5-figure supplement 1B). $\gamma \mathrm{A} 4$ residue E544 is positioned to form this salt bridge due to the EC6 A/A' loop region adopting a different
arrangement in the $\gamma \mathrm{A} 4$ crystal structure to that observed for $\gamma \mathrm{B} 2$ and $\gamma \mathrm{B} 7$ in their respective crystal structures (Goodman et al., 2016c; Goodman et al., 2017).

Based on our analysis, we generated mutants of both $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ targeting the EC6-only side of the interface and used size exclusion-coupled multi-angle light scattering (SEC-MALS) to assess their preferred orientation on $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ heterodimerization. In SEC-MALS wild type $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ and $\gamma \mathrm{C}_{\mathrm{EC} 3-6}$ behave as monomers when run alone, and form a dimer when mixed in equimolar amounts (Figure 5B; Figure 5-figure supplement 2A). The V560R mutation ($\gamma \mathrm{B} 7$ numbering, see methods for sequence alignment) is based on EC6-only impaired α-cPcdhs, and has been previously shown to block γ B6's homophilic cis interaction in solution (Goodman et al., 2017). $\gamma \mathrm{A} 4$ V560R did not dimerize with wild-type $\gamma \mathrm{C} 3$, whereas $\gamma \mathrm{C} 3$ V560R could still dimerize with wild type γ A4 (Figure 5B). Therefore impairing γ A4's EC6-only interface blocks $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ dimer formation while impairing $\gamma \mathrm{C} 3$'s EC6-only interface does not (although the dimerization appears to be weaker compared to the wild type $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis interacting pairs). We also generated a $\gamma \mathrm{C} 3-$ like mutant of γ A4, K558R, which also targets the EC6-only interface. Like γ A4 V560R, γ A4 K558R also did not dimerize with wild type $\gamma \mathrm{C} 3$ in MALS and, when replicated, in SPR experiments (Figure 5B, Figure 5-figure supplement 2B). The reverse mutation in $\gamma \mathrm{C} 3$, R558K, inhibited dimerization with wild type γ A4 (Figure 5B). Therefore, like the α-specific R560 residue, $\gamma \mathrm{C} 3$-specific R558 has distinct effects on dimerization when in $\gamma \mathrm{A} 4$ or $\gamma \mathrm{C} 3$, inhibiting heterodimerization when mutated into $\gamma \mathrm{A} 4$ but promoting heterodimerization in $\gamma \mathrm{C} 3$. Together these data suggest that the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ dimer has a preferred orientation, with $\gamma \mathrm{A} 4$ predominantly occupying the EC6-only position and $\gamma \mathrm{C} 3$ the EC5-6 side. Our data also account for the fact that neither isoform homodimerizes in solution since the EC5-6 side would be impaired in the γ A4 homodimer while the EC6 side would be impaired in the $\gamma \mathrm{C} 3$ homodimer.

Next, we sought to test whether $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ preferentially adopt these specific positions in cis interactions with a $\gamma \mathrm{B}$ isoform. To accomplish this we generated mutants of $\gamma \mathrm{B} 7$ individually targeting the EC6-only interaction surface, $\gamma \mathrm{B} 7$ Y532G, and the EC5-6 side, $\gamma \mathrm{B} 7$ A570R, respectively (Goodman et al., 2017) (Figure 4—source data 1). In SPR, γ B7 Y532G had only a
small impact on $\gamma \mathrm{A} 4$ binding, while $\gamma \mathrm{B} 7$ A570R abolished $\gamma \mathrm{A} 4$ binding (Figure 5C). In contrast, $\gamma \mathrm{B} 7$ Y532G prevented $\gamma \mathrm{C} 3$ binding while $\gamma \mathrm{B} 7$ A570R showed robust $\gamma \mathrm{C} 3$ binding (Figure 5C). These results suggest that $\gamma \mathrm{A} 4 / \gamma \mathrm{B} 7$ and $\gamma \mathrm{C} 3 / \gamma \mathrm{B} 7$ cis heterodimers also have preferred orientations with $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ maintaining their preferences for the EC6-only and EC5-6 positions respectively. Additionally, SPR data for the $\gamma \mathrm{B} 7$ mutants over the $\alpha \mathrm{C} 2$ surface suggests $\alpha \mathrm{C} 2$ preferentially occupies the EC6-only side in $\alpha \mathrm{C} 2 / \gamma \mathrm{B} 7$ dimers (Figure 5C). This is notable since $\alpha \mathrm{C} 2$ forms robust cis-homodimers and therefore, like $\gamma \mathrm{B} 7$, can presumably readily occupy both positions in its homophilic interactions, implying that the $\alpha \mathrm{C} 2 / \gamma \mathrm{B} 7$ orientation preference could be specific to the particular heterodimer pairing. However, since this interpretation is based on a single mutation further interrogation of $\alpha \mathrm{C} 2$'s interactions would be required to be conclusive. A broader examination of orientation preferences among cis dimer pairings beyond those of molecules with weak cis homodimer affinities, such as $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ examined here, could be instructive.

Discussion

Trans specificity - The results of this study add to our current understanding of cPcdhs in a number of ways. First, they reveal a remarkable level of specificity in trans homophilic interactions in the sense that in no case was a heterophilic trans interaction detected in our SPR measurements. Prior data has clearly indicated that cPcdhs exhibit a preference for homophilic trans interactions but the extent of this specificity was not established in quantitative terms but were, rather, based on cell aggregation experiments. The SPR experiments with cPcdhs reported here show no evidence of cross-interaction between non-identical cPcdh isoforms. This level of specificity is unusual for cell-cell recognition proteins, as significant intra-family interactions are evident in most other families examined to date including type I cadherins (Katsamba et al., 2009; Vendome et al., 2014), type II cadherins (Brasch et al., 2018), DIPs and Dprs (Cosmanescu et al., 2018), sidekicks (Goodman et al., 2016c), and nectins (Harrison et al., 2012). Even the non-clustered δ protocadherins, which are preferentially homophilic and utilize an antiparallel EC1-4 interface like the cPcdhs (Cooper et al., 2016; Harrison et al., 2020; Modak and Sotomayor, 2019), show
heterophilic intra-family trans interactions, though they show no cross-reactivity with cPcdhs (Harrison et al., 2020).

High fidelity homophilic interaction is a strict requirement of the chain termination model for the barcoding of vertebrate neurons and has been accomplished through the exploitation of a multidomain interface of almost $4000 \AA^{2}$ (Nicoludis et al., 2019) that enables the positioning of enough "negative constraints" (Sergeeva et al., 2020) to preclude the dimerization of about 1600 heterophilic pairs of 58 mouse cPcdh isoforms (Rubinstein et al., 2017). Dscams accomplish the same task for thousands of isoforms by exploiting the combinatorics made possible by a threedomain interface where each domain interacts largely independently with an identical domain on its interacting partner (see discussion in (Zipursky and Grueber, 2013)). Although it is likely that Dscams dimerize with a comparable level of homophilic specificity to that of cPcdhs , the evidence is based on a semi-quantitative ELISA-type assay of recombinant multimerized isoforms (Wojtowicz et al., 2007) and AUC experiments on a few select isoforms (Wu et al., 2012).

Cis interactions - Despite early evidence that cis interactions are promiscuous, the data reported here indicate that this generalization needs to be significantly refined. Functional mutagenesis studies have already established that alternate α cPcdhs and the C-type $\gamma \mathrm{C} 4$ do not form intrasubtype cis interactions and can only reach the cell surface when mediated by heterophilic cis interactions with members of other subtype families (Goodman et al., 2017; Thu et al., 2014). The data presented in Figure 4 indicate that this is an extreme example of quite general behavior: intrasubtype cis interactions are invariably weaker than inter-subtype interactions. However, unlike α cPcdhs, most cPcdhs can reach the cell surface on their own. This includes $\beta 1$, all $\gamma \mathrm{A}$-Pcdhs, and $\gamma \mathrm{C} 3$ which do not form measurable homodimeric cis interactions in our solution-based AUC experiments. We have attributed this to their presence on the restricted 2 D surface of membranes which can promote cis-dimerization (Wu et al., 2013) whereas biophysical experiments are carried out in a 3D solution environment (Goodman et al., 2016b). (There may of course be other, still undetermined, factors involved in cPcdh cell surface transport (Phillips et al., 2017).) Therefore, although our biophysical experiments demonstrate that intra-subtype cis interactions are comparatively weak and, in some cases undetectable in solution, intra-subtype cis dimers likely assemble when constrained in more native membrane environments. As such, while $\alpha \mathrm{cPcdhs}$ and
$\gamma \mathrm{C} 4$ are obligate participants in cis-heterodimers, at least in their cell surface transport, our data show that the remaining cPcdhs are preferentially, although not exclusively, participants in cisheterodimers.

The cis binding preferences indicated by our data can be largely understood in terms of the asymmetric interface discussed above. Specifically, different isoforms preferentially form one side of the cis dimer: for example, the EC6-only side for cPcdh- $\gamma \mathrm{A} 4$ and the EC5-6 side for cPcdh$\gamma \mathrm{C} 3$. Homodimerization requires participation of single isoform on both sides of an interface posing challenges in the optimization of binding affinities since, in some cases, the same residue must participate in different intermolecular interactions. Given significant sequence conservation in all members of an alternate cPcdh subfamily (Figure 4-figure supplement 3) even intrasubfamily heterophilic interactions are more difficult to optimize relative to inter-subfamily heterodimerization where there are no constraints on the two interacting surfaces. Additionally, the robust cell surface delivery of many cPcdhs in cells expressing only a single isoform also suggests that all carrier isoforms $-\beta$-, $\gamma \mathrm{A}$-, and $\gamma \mathrm{B}$-cPcdhs, plus C-types $\alpha \mathrm{C} 2, \gamma \mathrm{C} 3$, and $\gamma \mathrm{C} 5-$ can fill both the EC6 and EC5-6 roles, as cis-dimer formation is thought to be required for cell surface export (Goodman et al., 2017; Goodman et al., 2016b; Thu et al., 2014). Therefore side preferences are most likely not absolute for carrier cPcdh isoforms and may vary among individual isoform and/or subtype pairings.

Functional implications of cPcdh interactions - The functional role of precise trans homophilic specificity in ensuring high fidelity discrimination between neuron self and non-self has been discussed previously (Rubinstein et al., 2017; Rubinstein et al., 2015) and is summarized above. It is an essential feature of the chain termination model. The role of promiscuous cis interactions can also be understood in terms of this model in that cis promiscuity enables the formation of a large and diverse set of cis dimers that can only form long molecular zippers when all isoforms are matched. However, the results of this study reveal strong preferences for inter-subgroup heterophilic interactions whose biological rationale is uncertain. cPcdhs from the three subfamilies have been shown to act cooperatively in certain neuronal contexts although whether this relates to their cis interactions is unknown (Hasegawa et al., 2016; Ing-Esteves et al., 2018).

One possible advantage of weak homophilic cis interactions would be to ensure that once reaching the cell surface a diverse set of cis dimers forms. This explanation implicitly assumes that most isoforms (except for α-Pcdhs and $\gamma \mathrm{C} 4$) reach the surface as homodimers that must then quickly dissociate and form more stable heterodimers. Another explanation posits that homotypic zippers consisting solely of cis-homodimers are kinetically easier to form than heterotypic zippers since in a homotypic zipper, either "wing" of the new cis dimer can form trans interactions with the wing at the chain terminus. In contrast, in a hetero-dimeric zipper, only one wing can form homophilic interactions with the chain terminus (Figure 1D). A preference for homotypic zippers would then reduce the diversity required in the chain termination model since, in this model, it is essential that all isoforms be incorporated into a growing zipper. The formation of long homotypic zippers might lead to a repulsive phenotype even when mismatches are present.

However, these explanations would not fully account for interfamily heterophilic preferences. One possibility is suggested by the observation that C-types are often highly expressed compared to alternate cPcdhs, for example in Purkinje cells (Esumi et al., 2005; Kaneko et al., 2006). To ensure sufficient diversity in growing zippers, it would then be important to ensure that zippers that are formed are not overly enriched in C-type isoforms as would be accomplished through preferential heterophilic cis interactions. This same logic would also pertain to alternate cPcdhs in cases where one subfamily is more heavily expressed than another.

C-type cPcdhs have different functions than alternate cPcdhs and these are reflected in different expression patterns. For example, $\alpha \mathrm{C} 2$ can be alone responsible for tiling (Chen et al., 2017) (Of note, in the chain termination model, a completely homophilic zipper is sufficient to initiate selfavoidance facilitating tiling). On the other hand $\gamma \mathrm{C} 4$, which has a unique and crucial role in neuronal survival (Garrett et al., 2019), requires co-expression with another cPcdh isoform for robust cell surface expression and therefore is likely unable to act in isolation (Thu et al., 2014). Furthermore, as detailed above, $\gamma \mathrm{C} 4$ has a much weaker trans interaction affinity than any other cPcdh isoform measured to date, although it is still able to mediate cell aggregation when delivered to the cell surface (Thu et al., 2014). The presence of E78 appears in large part to be responsible for this weak affinity. It is unclear whether $\gamma \mathrm{C} 4$'s weak trans affinity plays any functional role, although a weak homodimer interaction may facilitate extracellular interactions with other,
currently unidentified, proteins. More generally, it seems likely that different intracellular interactions account for the specialized functions of C-type Pcdhs. The cytoplasmic domain plays an important role in the activation of Wnt, WAVE, and other signaling cascades (Chen et al., 2009; Fukuda et al., 2008; Keeler et al., 2015; Mah and Weiner, 2017; Onouchi et al., 2015; Pancho et al., 2020). In some cases, the cytoplasmic domains of a subset or even a single cPcdh isoform activates a specific signaling cascade. For example, $\mathrm{cPcdh} \gamma \mathrm{C} 3$ is the only isoform able to interact and inhibit Axin1, a Wnt pathway activator (Mah et al., 2016). Of note, γ-cPcdh intracellular domains consist of a C -terminal constant region common to all γ isoforms (including the three γ C-types) and a membrane-proximal variable region consisting of ~ 100 residues that could account for the unique intracellular interactions and signaling of individual isoforms. Additionally it is possible that extracellular interactions to molecules from other families, such as Neuroligins, may account for some distinctions in function (Molumby et al., 2017; Steffen et al., 2021).

Overall, the results of this study demonstrate the remarkable tuning of the interactions among clustered protocadherin family members: homophilic trans interactions are remarkably specific despite the high level of sequence identity among family members while cis interactions, though somewhat promiscuous, also appear designed to have binding preferences of still uncertain function. These binding properties match requirements of the "isoform-mismatch chaintermination model" for neuronal self-vs-non-self discrimination in which all expressed cPcdh isoforms assemble into intercellular zippers formed by alternating promiscuous cis and matched trans interactions with assembly size dictated by the presence or absence of mismatched isoforms. It remains to be seen whether such assemblies can be observed in vivo and how they control downstream signaling pathways.

Materials and Methods

Protein production and purification

cDNAs for cPcdh ectodomain fragments, excluding the predicted signal sequences, were cloned into a paSHP-H mammalian expression vector (a kind gift from Daniel J. Leahy, John Hopkins University) modified with the human Binding immunoglobulin protein (BiP; MKLSLVAAMLLLLSAARA) signal sequence and a C-terminal octa-histidine tag (Rubinstein et al., 2015). The signal sequences were predicted using the SignalP 4.0 server (Petersen et al., 2011). Point mutations were introduced into cDNA constructs using the KOD hot start polymerase (Novagen) following the standard Quikchange protocol (Stratagene).

Suspension-adapted HEK293 Freestyle cells (Invitrogen) in serum free media (Invitrogen) grown and maintained at $37^{\circ} \mathrm{C}$ and 10% carbon dioxide were used for protein expression. The plasmid constructs were transfected into cells using polyethyleneimine (Polysciences Inc.) (Baldi et al., 2012). Media was supplemented with $10 \mathrm{mM} \mathrm{CaCl}_{2} 4$ hours after transfection. Conditioned media was harvested ~ 6 days after transfection and the secreted proteins were purified using batch nickelnitrilotriacetic acid (Ni-NTA) affinity chromatography followed by size exclusion chromatography over Superdex 200 26/60 column (Cytiva) on an AKTA pure fast protein liquid chromatography system (Cytiva). Purified proteins were concentrated to $>2 \mathrm{mg} / \mathrm{ml}$ in 10 mM Tris$\mathrm{Cl} \mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{CaCl}_{2}$, and $100-250 \mathrm{mM}$ imidazole pH 8.0 and stored at $4^{\circ} \mathrm{C}$ for short-term use or flash frozen in liquid nitrogen for long-term storage at $-80^{\circ} \mathrm{C}$.

Constructs encoding biotinylated cPcdh fragments for immobilization in SPR experiments were prepared by insertion of an Avi-tag (GLNDIFEAQKIEWHE)-encoding sequence between the octa-histidine tag and stop codon. These were co-transfected with a plasmid encoding the biotinLigase BirA from E. coli (Lys2-Lys321) with a BiP signal sequence and a C-terminal endoplasmic reticulum-retention signal (DYKDEL) (Barat and Wu , 2007). The expression and BirA plasmids were mixed at a 9:1 ratio for transfection and $50 \mu \mathrm{M}$ Biotin (Sigma) was added to the media 4 h post-transfection. Purification was carried out exactly as for the non-biotinylated constructs and biotinylation was confirmed by western blot using NeutrAvidin-HRP (ThermoFisher).

Sedimentation equilibrium analytical ultracentrifugation（AUC）

Protein	$\begin{gathered} \text { Imidazole } \\ \text { pH } 8.0(\mathrm{mM}) \end{gathered}$	Spin speeds（rpm）
人4 EC1－5	100	9000，11000，13000， 15000
人7 EC1－5 L301R	100	9000，11000，13000， 15000
人12 EC1－5（poorly behaved）	200	11000，14000，17000， 20000
γ B4 EC1－5	200	11000，14000，17000， 20000
γ B5 EC1－4－AVI	200	11000，14000，17000， 20000
γ C5 EC1－5 S116R	200	11000，14000，17000， 20000
$\beta 6$ EC1－4	100	9000，11000，13000， 15000
$\beta 6$ EC1－4－AVI tag	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 R41N	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 S1171	200	11000，14000，17000， 20000
阝6 EC1－4 L125P	200	11000，14000，17000， 20000
$\beta 6 \mathrm{EC} 1-4 \mathrm{E} 369 \mathrm{~K}$	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 Y371F	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 R41N／S1171（precipitates）	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 R41N／E369K	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 S1171／L125P	200	11000，14000，17000， 20000
阝6 EC1－4 R41N／S117I／L125P	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 R41N／S117I／E369K	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 R41N／E369K／Y371F	200	11000，14000，17000， 20000
$\beta 6$ EC1－4 R41N／S117I／L125P／E369K／Y371F	200	11000，14000，17000， 20000
$\beta 1$ EC3－6	200	12000，16000，20000， 24000
$\beta 6$ EC1－6	250	9000，11000，13000， 15000
$\beta 9$ EC3－6	200	11000，14000，17000， 20000
γ A3 EC3－6	200	11000，14000，17000， 20000
γ A9 EC3－6	200	11000，14000，17000， 20000
γ B7 EC3－6 A570R	200	13000，17000，21000， 25000
α C2 EC3－6－AVI tag	200	11000，14000，17000， 20000
γ C5 EC2－6	250	9000，11000，13000， 15000
γ C4 EC1－4	250	11000，14000，17000， 20000
γ C4 EC1－4 D290A	250	11000，14000，17000， 20000
γ C4 EC1－4 D290N	250	11000，14000，17000， 20000
γ C4 EC1－4 E78A	250	11000，14000，17000， 20000
γ C4 EC1－4 E78Q	250	11000，14000，17000， 20000
γ C4 EC1－4 S344R	250	11000，14000，17000， 20000

Experiments were performed in a Beckman XL－A／I analytical ultracentrifuge（Beckman－Coulter， Palo Alto CA，USA），utilizing six－cell centerpieces with straight walls， 12 mm path length and sapphire windows．Protein samples were dialyzed overnight and then diluted in 10 mM Tris－ Cl $\mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{CaCl}_{2}$ with $100-250 \mathrm{mM}$ imidazole pH 8.0 ，as detailed in the above table．The samples were diluted to an absorbance of $0.65,0.43$ and 0.23 at 10 mm and 280 nm in channels A，B and C，respectively．For each sample，buffer was used as blank．The samples were run in duplicate at four speeds as detailed in the above table．The lowest speed was held for 20 h
then four scans were conducted with 1 h interval, the subsequent three speeds were each held for 10 h followed by four scans with 1 hour interval each. Measurements were taken at $25^{\circ} \mathrm{C}$, and detection was by UV at 280 nm or interference. Solvent density and protein v-bar at both temperatures were determined using the program SednTerp (Alliance Protein Laboratories, Corte Cancion, Thousand Oaks, CA, USA). The molecular weight of each protomer used in AUC experiments, was determined by MALDI mass spectrometry. For calculation of dimeric K_{D} and apparent molecular weight, all data were used in a global fit, using the program HeteroAnalysis, (www.biotech.uconn.edu/auf). Calculation of the tetramer $\mathrm{K}_{\mathrm{d}} \mathrm{S}$ was done with the program Sedphat (http://www.analyticalultracentrifugation.com/sedphat/index.htm).

Surface plasmon resonance (SPR) binding experiments

SPR binding experiments were performed using a Biacore T100 biosensor equipped with a Series S CM4 sensor chip, immobilized with NeutrAvidin over all four flow cells. NeutrAvidin immobilization was performed in HBS-P buffer, pH 7.4 at $32{ }^{\circ} \mathrm{C}$, over all four surfaces using amine-coupling chemistry as described in Katsamba et al. (2009), resulting in approximately 10,000 RU of NeutrAvidin immobilized (Katsamba et al., 2009). Binding experiments were performed at $25^{\circ} \mathrm{C}$ in a running buffer containing 10 mM Tris- $\mathrm{Cl} \mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM}$ $\mathrm{CaCl}_{2}, 20 \mathrm{mM}$ imidazole, $0.25 \mathrm{mg} / \mathrm{mL}$ BSA and 0.005% (v / v) Tween 20 unless otherwise noted.

C-terminal biotinylated fragments were tethered over individual NeutrAvidin-immobilized flow cells (shown in the left column of each Figures 2, 4, 5C, Figure 2-figure supplement 1, Figure 2-figure supplement 2B, Figure 4-figure supplement 1 and Figure 5-figure supplement 2B) at $2300-3000 \mathrm{RU}$, depending on the experiment, using a flow rate of $20 \mu \mathrm{~L} / \mathrm{min}$. A NeutrAvidinimmobilized flow cell was used as a reference in each experiment to subtract bulk refractive index changes. The analytes tested in each experiment are listed at the top row. All analytes (with exceptions for the cis interacting pairs $\gamma \mathrm{C} 3_{3-6} / \beta 9_{3-6}$, in both orientations, and $\beta 6_{1-6} / \gamma \mathrm{C} 3_{3-6}$ in Figure 4 A , discussed below) were tested at six concentrations ranging between $24,8,2.667,0.889,0.296$, and $0.099 \mu \mathrm{M}$, prepared using a three-fold dilution series. $\gamma \mathrm{C} 3_{3-6}$ binding over $\beta 9_{3-6}$ (Figure 4 A) was tested at five concentrations from $8-0.099 \mu \mathrm{M}$.

For all experiments, analyte samples were injected over the captured surfaces at $50 \mu \mathrm{~L} / \mathrm{min}$ for 40 s, followed by 180 s of dissociation phase, a running buffer wash step and a buffer injection at 100 $\mu \mathrm{L} / \mathrm{min}$ for 60 s . Protein samples were tested in order of increasing concentration, and within the same experiment the entire concentration series was repeated to confirm reproducibility. Every three binding cycles, buffer was used as an analyte instead of a protein sample to double reference the binding responses by removing systematic noise and instrument drift. The resulting binding curves were normalized for molecular weight differences according to data provided by mass spec for each molecule. The data was processed using Scrubber 2.0 (BioLogic Software). To provide an estimate of the number of possible heterophilic binding pairs, we have used a cut-off of 40RU, which is the lowest signal that can be observed for a homodimeric cis fragment pair, $\gamma \mathrm{B} 2_{3-6}$.

In Figure 4A, $\beta 6_{1-6}$ and $\beta 9_{3-6}$ were tested over $\gamma \mathrm{C} 3_{3-6}$ at six concentrations ranging from 900 to 3.7 nM , which is 27 -fold lower than the other interactions, prepared using a three-fold dilution series in a running buffer containing increased concentrations of imidazole (100 mM) and BSA (0.5 $\mathrm{mg} / \mathrm{mL}$) to minimize nonspecific interactions. For these two interactions, although analyte samples were injected over the captured surfaces at $50 \mu \mathrm{~L} / \mathrm{min}$ for 40 s , the dissociation phase was monitored for 300s to provide additional time for complex dissociation. Nevertheless, higher analyte concentrations produced binding profiles that were not reproducible, most likely due to the fact that bound complexes could not dissociate completely at these higher concentrations.

For the calculation of heterophilic K_{D} for the monomeric cis fragments $\beta 1_{3-6, \gamma \mathrm{~A}} 4_{3-6}, \gamma \mathrm{~A} 9_{3-6}$ and $\gamma \mathrm{C} 3_{3-6}$ over each of the six surfaces, except $\beta 9_{3-6}$, the duplicate binding responses were fit globally, using an 1:1 interaction model and a single K_{D} was calculated as the analyte concentration that would yield $0.5 \mathrm{R}_{\max }$ and a fitting error, indicated in brackets. K_{D} lower than $24 \mu \mathrm{M}$ were calculated using an independent $\mathrm{R}_{\text {max }}$. For K_{D} greater $24 \mu \mathrm{M}$, the $\mathrm{R}_{\max }$ was fixed to a global value determined by the $\mathrm{R}_{\max }$ of a different cPcdh analyte tested over the same surface during the same experiment that showed binding above 50% and therefore produced a more accurate $\mathrm{R}_{\max }$. For K_{D} $>50 \mu \mathrm{M}$, a lower limit is listed since at the analyte concentrations used, ($0.098-24 \mu \mathrm{M}$), accurate $K_{D S}$ could not be determined, even when the $\mathrm{R}_{\max }$ is fixed. NB (No Binding) represents interactions that did not yield any binding signal. The binding curves of $\gamma \mathrm{C} 3_{3-6}$ over the $\beta 9_{3-6}$ did not come to equilibrium during the time-course of the experiment, so a kinetic analysis was
performed to calculate a K_{D} (Figure 4 -figure supplement 1A). Binding of $\gamma \mathrm{C}_{3}{ }_{3-6}$ was tested using a concentration range of $900-0.411 \mathrm{nM}$ prepared using a three-fold dilution series in a running buffer containing increased concentrations or imidazole (100 mM) and BSA $(0.5 \mathrm{mg} / \mathrm{mL})$ to minimize any nonspecific interactions. Protein samples were injected over the captured surfaces at $50 \mu \mathrm{~L} / \mathrm{min}$ for 90 s , followed by 420 s of dissociation phase, a running buffer wash step and a buffer injection at $100 \mu \mathrm{~L} / \mathrm{min}$ for 60 s . Protein samples were tested in order of increasing concentration in triplicate to confirm reproducibility. Every three binding cycles, buffer was used as an analyte instead of a protein sample to double reference the binding responses by removing systematic noise and instrument drift. The binding data was analyzed using an 1:1 interaction model to calculate the kinetic parameters and the K_{D}.

K562 cell aggregation assays

Full-length cPcdhs $\beta 6$ and $\beta 8 \mathrm{cDNAs}$ were cloned into the pMax expression vectors encoding Cterminal mCherry or mVenus tagged cPcdh proteins, then transfected into K562 cells (ATCC CCL243) as previously described (Goodman et al., 2017; Thu et al., 2014). Point mutants were generated using the QuikChange method (Stratagene). In brief, K562 cells were cultured at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ in DMEM with GlutaMAX (GIBCO) supplemented with $10 \% \mathrm{FBS}$ and 1% penicillin-streptomycin for two days. Next, cells were counted, centrifuged, and resuspended at a density of $\sim 1.5 \times 10^{4}$ cells $/ \mu \mathrm{L}$ in SF Cell Line 4D-Nucleofector Solution SF with supplement according to manufacturer instructions (Lonza). $2 \mu \mathrm{~g}$ of each Pcdh expression construct were transfected into $20 \mu \mathrm{~L}$ of the K 562 cell suspension by electroporation using an Amaxa 4DNucleofector (Lonza). Transfected cells were transferred to a 24 -well plate in $500 \mu \mathrm{~L}$ of medium per well and incubated overnight at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. Cells then were mixed, re-incubated with gentle rocking for 4 hours, then imaged with an Olympus IX73 fluorescent microscope to determine the extent of aggregation.

Size-exclusion coupled multi-angle light scattering (SEC-MALS)

SEC-MALS experiments were performed using a Superdex 200 Increase $3.2 / 300$ size exclusion column on an AKTA FPLC system (Cytiva) coupled to inline static light scattering (Dawn Heleos II, Wyatt Technology), differential refractive index (Optilab rEX, Wyatt Technology) and UV detection. Purified cPcdh proteins were diluted to $18 \mu \mathrm{M}$ in running buffer ($150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$

Tris-Cl $\mathrm{pH} 8,3 \mathrm{mM} \mathrm{CaCl}_{2}, 200 \mathrm{mM}$ Imidazole pH 8) and 50 or $100 \mu \mathrm{l}$ samples were run at a flow rate of $0.5 \mathrm{ml} / \mathrm{min}$ at room temperature. Mixtures of cPcdh fragments were prepared in the same buffer at final concentrations of $18 \mu \mathrm{M}$ for each protein and run under the same conditions. Data were analyzed using ASTRA software (Wyatt Technologies).

During SEC-MALS experiments, a dimer/monomer equilibrium is established as proteins move through the size exclusion chromatography column, which is influenced by the K_{D} of the interaction. The concentrations used in the current experiments ($18 \mu \mathrm{M}$ for each cPcdh fragment), although above the K_{D} of $3 \mu \mathrm{M}$ for the $\gamma \mathrm{C} 3 / \gamma \mathrm{A} 4$ cis interaction, are not sufficiently high for all the cis fragments to be bound into heterodimers, leaving a significant population of molecules as monomers, resulting in apparent molecular weights of $\sim 76 \mathrm{kDa}$ for the dimeric species compared to the predicted molecular weight for a dimer of $\sim 108 \mathrm{kDa}$. For the $\gamma \mathrm{A} 4+\gamma \mathrm{C} 3 \mathrm{~V} 560 \mathrm{R}$ mixture, a lower K_{D} allows for only a small proportion of molecules to assemble into heterodimers at $18 \mu \mathrm{M}$, therefore the dimer and monomer peaks elute at different volumes and are completely resolved.

X-ray crystallography

Crystallization screening of $\gamma \mathrm{C}_{1-4}$ using the vapor diffusion method yielded two protein crystal forms: The first crystal form crystals were grown using a protein concentration of $7 \mathrm{mg} / \mathrm{ml}$ in 10% (w/v) PEG8000, 20\% ethylene glycol, 10\% Morpheus Amino Acids (Molecular Dimensions), and 0.1 M Morpheus Buffer System 2 (Hepes/MOPS buffer; Molecular Dimensions) pH 7.5. No additional cryoprotection was required for this crystal form. The second crystal form crystals were grown using a protein concentration of $7 \mathrm{mg} / \mathrm{ml}$ in $1 \mathrm{M} \mathrm{LiCl}, 0.1 \mathrm{M}$ Mes pH 6.0 , and $10 \%(\mathrm{w} / \mathrm{v})$ PEG6000. The crystal used for data collection was cryo-protected in the crystallization condition plus 30% (w/v) glycerol. X-ray diffraction data for each crystal form were collected at 100 K from single crystals at Northeastern Collaborative Access Team (NE-CAT) beamline 24ID-E at the Advanced Photon Source, Argonne National Laboratory.

(C41-4 crystal form 1: Diffraction anisotropy and pseudosymmetry

The X-ray diffraction data for the first crystal form showed strong diffraction anisotropy, with relatively strong diffraction along c^{*} and much weaker diffraction along a^{*} and b^{*} (Figure 3figure supplement 1A). These data were therefore truncated using ellipsoidal limits with using a
3.0 F/sigma cut-off along each of the three principal crystal axes as implemented in the UCLA Diffraction Anisotropy Server (Strong et al., 2006) to 4.6/3.9/3.5 A. The completeness within the applied ellipsoidal resolution limits was 96.8% (Figure 3-source data 1).

γ C4 1_{1-4} crystal form 1: Crystal structure phasing and refinement

The $\gamma \mathrm{C}_{1-4}$ crystal structure was solved by molecular replacement using Phaser (McCoy et al., 2007), implemented in CCP4 (Winn et al., 2011). The $\gamma \mathrm{C}_{\mathrm{ECl} 1-3}$ crystal structure (PDB: 4ZPO) modified using a sequence alignment to $\gamma \mathrm{C} 4$ with Phenix's MRage program (Liebschner et al., 2019) was used as a search model. Following an initial round of rigid body refinement in Phenix (Liebschner et al., 2019) the EC domain 4 from the $\alpha 7_{\mathrm{EC} 1-5}$ crystal structure (PDB: 5DZV) was manually placed into the electron density map, using structural alignment to the EC1-3 regions as a guide. The resulting model was subjected to a further round of rigid body refinement. At this stage there was clear difference density for the interdomain calcium ions and covalently linked glycans not present in the models. Iterative model building using Coot (Emsley et al., 2010) and maximum-likelihood refinement using Phenix (Liebschner et al., 2019) was subsequently conducted. The higher resolution ($2.4 \AA$) crystal form 2 crystal structure (see below) was used as a reference model in later rounds of iterative model-building and refinement to guide the local geometry choices in this lower resolution structure. Final refinement statistics are given in Figure 3 -source data 1 .

$\gamma^{\text {C4 }} 1_{1-4}$ crystal form 2: data processing, phasing, and refinement

The $\gamma \mathrm{C} 4_{1-4}$ crystal form 2 dataset was indexed using XDS (Kabsch, 2010) and scaled using AIMLESS (Evans and Murshudov, 2013). The data was spherically truncated with high resolution limit of $2.4 \AA$. Data collection statistics are given in Figure 3-source data 1.

The $\gamma \mathrm{C} 4_{1-4}$ crystal form 2 crystal structure has two molecules in the asymmetric unit was solved by molecular replacement using Phaser (McCoy et al., 2007), implemented in Phenix (Liebschner et al., 2019), using the EC2-3 portion of the trans-dimer from the crystal form 1 crystal structure early in refinement as a search model. The molecular replacement solution was then subjected to an initial round of rigid body refinement using Phenix, followed by two rounds of model building
in Coot (Emsley et al., 2010) and maximum likelihood refinement in Phenix. The two EC4 domains were then manually placed in the electron density and subjected to rigid body refinement. Following a further two iterative rounds of model building and refinement the two EC1 domains were manually placed. Iterative model-building and refinement continued yielding the final crystal structure whose statistics are given in Figure 3-source data 1.

Structure analysis

Buried surface areas were calculated using 'Protein interfaces, surfaces and assemblies' service (PISA) at the European Bioinformatics Institute (http://www.ebi.ac.uk/pdbe/prot int/pistart.html) (Krissinel and Henrick, 2007) and are given as the change in accessible surface area over both protomers. Root mean square deviations over aligned $\mathrm{C} \alpha$ atoms (RMSDs) between structures were calculated using Pymol (Schrödinger, LLC). Crystal structure figures were made using Pymol (Schrödinger, LLC).

Sequence analysis

Multiple sequence alignments were generated using Clustal Omega (Sievers et al., 2011) and visualized using ESPript3.0 (Robert and Gouet, 2014). Sequence logos were generated from multiple sequence alignments using WebLogo3 (Crooks et al., 2004).

Amino acid sequence alignment of cPcdhs $\gamma B 7, \gamma 44$, and γ C3 EC1-6 regions

```
CLUSTAL O(1.2.4) multiple sequence alignment
\gammaB7 -QPVRYSIPEELDRGSVVGKLAKDLGLSVLEVSARKLRVS--AEKLHFSVDSESGDLLVK 57
\gammaA4 -EQIRYSVPEELERGSVVGNLAADLGLEPGKLAERGVRIVSRGKTQLFALNPRSGSLVTA 59
\gammaC3 STIIHYEILEERERGFPVGNVVTDLGLDLGSLSARRLRVVSGASRRFFEVNWETGEMFVN 60
\gammaB7 DRIDREQICKGRRKCELQLEAVLENPLNIFHVVVEIEDVNDHAPQFPKDEINLEISESDS }11
\gammaA4 GRVDREGLCDRSPKCTANLEILLEDKVRILAIEVEIIDVNDNAPSFGAQQREIKVAESEN }11
\gammaC3 DRLDREELCGTLPSCTVTLELVVENPLELFSAEVVVQDINDNNPSFPTGEMKLEISEALA }12
\gammaB7 PGARTILESAKDLDIGMNSLSKYQLSPNDYFLLLVKDNPDGSKYPELELQKMLDREAEST 
\gammaA4 PGTRFPLPEAFDLDIGVNALQGYQLSSNDHFSLDVQSGPDGIKYPELVLENALDREEEAV 179
\gammaC3 PGTRFPLESAHDPDVGSNSLQTYELSHNEYFALRVQTREDGTKYAELVLERALDWEREPS 180
\gammaB7 HHLMLTAVDGGDPPRTGTTQLRIRVVDANDNRPVFSQDVYRVRLPEDLPPGTTVLRLKAM
\gammaA4 HHLVLTAFDGGDPVRSGTATIQVTLVDTNDNAPVFTQPEYHISVKENLPVGTRLLTIKAT 239
\gammaC3 VQLVLTALDGGTPARSATLPIRITVLDANDNAPAFNQSLYRARVREDAPPGTRVAQVLAT 240
```


Structure-based sequence analysis of the $\boldsymbol{\gamma} \mathbf{A} 4 / \gamma \mathbf{C} 3$ interaction

Since both $\gamma \mathrm{A} 4_{3-6}$ and $\gamma \mathrm{C}_{3-6}$ are monomeric in solution but form a robust heterodimer when mixed (in SPR, AUC, and SEC-MALS) we hypothesized that these molecules might have opposing cis interaction side preferences. To facilitate hypothesis generation on the nature of their cis heterodimer interaction we modeled the two possible $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimers: one with $\gamma \mathrm{A} 4$ occupying the EC6-only position and $\gamma \mathrm{C} 3$ the EC5-6 position; and the second with $\gamma \mathrm{C} 3$ in the EC6-only position and $\gamma \mathrm{A} 4$ in the EC5-6 position. To do this the monomeric $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ crystal structure (PDB: 5SZQ) was structurally superimposed over EC6 domains with the EC6-only protomer from the γ B7 ${ }_{\text {EC3-6 }}$ cis-dimer crystal structure (PDB: 5V5X; RMSD $0.7 \AA$ over 91 aligned Cas) or over EC56 domains with the EC5-6 protomer (RMSD $1.0 \AA$ over 194 aligned C α s). Since γ A4 and γ B7 are
so structurally similar in their EC5-6 regions modeling $\gamma \mathrm{A} 4$'s cis interactions in this manner as a basis for hypothesis generation seemed reasonable. The only region of significant structural deviation within the EC5-6 regions between $\gamma \mathrm{A} 4$ and $\gamma \mathrm{B} 7$ is in the EC6 A-A' loop region which has a peripheral role in the EC6-only protomer interface. For modelling $\gamma \mathrm{C} 3$ we used computational mutagenesis of the $\gamma \mathrm{B} 7$ structure selecting the best-fit rotamer for each amino acid from the Dunbrack rotamer library (Shapovalov and Dunbrack, 2011), implemented in UCSF Chimera (Pettersen et al., 2004). No energy minimization was conducted and the models are intended only for use in hypothesis generation.

Cis interface mutants

Our studies of Pcdh cis interactions we have found that mutagenesis of the cis interface commonly has a deleterious impact on protein expression levels in our system (Goodman et al., 2017). We assume this is because cis interaction is required for robust cell-surface delivery/secretion (Thu et al., 2014), although this hasn't been specifically addressed in our HEK293 protein expression system.

To test our structure-guided hypotheses regarding $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3 \mathrm{~s}$ ' cis interactions and side preferences as we tried to make a number of different cis interface mutants and were able to obtain four different mutants (see table below). Since protein yields were generally too low for AUC and SPR, MALS was used to study the impact of these mutants on $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimer formation.

Mutant protein (γ B7 numbering given in parentheses)	Cis interface side targeted	Protein expression in $\mathbf{2 5} \mathbf{~ m L}$ test
γ C3 EC3-6 Y540G (Y532G equivalent)	EC6-only	No
γ C3 EC3-6 V560D (L555D equivalent)	EC6-only	No
γ C3 EC3-6 V565R (V560R equivalent)	EC6-only	Yes
γ C3 EC3-6 A575R (A570R equivalent)	EC5-6	No
γ C3 EC3-6 R563K (K558R equivalent)	Both	Yes
γ A4 EC3-6 Y536G (Y532G equivalent)	EC6-only	No
γ A4 EC3-6 L559D (L555D equivalent)	EC6-only	No
γ A4 EC3-6 V564R (V560R equivalent)	EC6-only	Yes
γ A4 EC3-6 A574R (A570R equivalent)	EC5-6	No
γ A4 EC3-6 K562R (K558R equivalent)	EC6-only	Yes
$\beta 1$ EC3-6 V563R (V560R equivalent)	EC6-only	No
$\beta 1$ EC3-6 S573R (A570R equivalent)	EC6-only	No
$\beta 1$ EC3-6 K561R (K558R equivalent)	EC5-6	No
$\beta 9$ EC3-6 V563R (V560R equivalent)	EC6-only	No
$\beta 9$ EC3-6 A573R (A570R equivalent)	EC6-only	No
$\beta 9$ EC3-6 K561R (K5588R equivalent)	EC5-6	No

Accession numbers

Atomic coordinates and structure factors for the $\gamma \mathrm{C} 4 \mathrm{EC} 1-4$ crystal structures are deposited in the protein data bank with accession codes PDB: 7JGZ and 7RGF.

Author contributions

K.M.G., B.H., and L.S. designed experiments and analyzed data. S.M., F.B., and K.M.G. cloned, expressed, purified and crystallized the proteins. K.M.G. determined the crystal structures and conducted the sequence and structural analysis. S.M. and F.B. performed the site-directed mutagenesis. P.S.K. performed and analyzed the surface plasmon resonance experiments. G.A. performed and analyzed the analytical ultracentrifugation and multi-angle light scattering experiments. H.D. and R.S. performed and analyzed the cell aggregation experiments. K.M.G. and P.S.K. produced the figures. K.M.G. and L.S. drafted the manuscript. K.M.G., P.S.K., R.R., B.H., and L.S. edited the manuscript.

Acknowledgements

We thank Surajit Banerjee for help with synchrotron data collection at the APS NE-CAT 24-IDC/E beamlines, supported by NIH P41GM103403. This work was supported by the NIH (grants R01MH1 14817 to L.S. and R01DK106548 to R.S.), the National Science Foundation (grant MCB1412472 to B.H.), the Israel Science Foundation (grant 1463/19 to R.R.) and the Israel Cancer Research Fund (grant ICRF 19-203-RCDA to R.R.).

Competing Interests

The authors declare no competing interests.

Supplementary Files

Figure 2-figure supplements 1-2 and source data 1
Figure 3-figure supplement 1 and source data 1-2
Figure 4-figure supplements 1-3 and source data 1
Figure 5-figure supplements 1-2

References

Baldi, L., Hacker, D.L., Meerschman, C., and Wurm, F.M. (2012). Large-Scale Transfection of Mammalian Cells. In Protein Expression in Mammalian Cells: Methods and Protocols, J.L. Hartley, ed. (Totowa, NJ: Humana Press), pp. 13-26.

Barat, B., and Wu, A.M. (2007). Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. Biomolecular Engineering 24, 283-291.

Bonn, S., Seeburg, P.H., and Schwarz, M.K. (2007). Combinatorial Expression of α - and γ-Protocadherins Alters Their Presenilin-Dependent Processing. Molecular and Cellular Biology 27, 4121-4132.

Brasch, J., Goodman, K.M., Noble, A.J., Rapp, M., Mannepalli, S., Bahna, F., Dandey, V.P., Bepler, T., Berger, B., Maniatis, T., et al. (2019). Visualization of clustered protocadherin neuronal self-recognition complexes. Nature 569, 280-283.

Brasch, J., Katsamba, P.S., Harrison, O.J., Ahlsén, G., Troyanovsky, R.B., Indra, I., Kaczynska, A., Kaeser, B., Troyanovsky, S., Honig, B., et al. (2018). Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior. Cell Reports 23, 1840-1852.

Canzio, D., and Maniatis, T. (2019). The generation of a protocadherin cell-surface recognition code for neural circuit assembly. Current Opinion in Neurobiology 59, 213-220.

Chen, J., Lu, Y., Meng, S., Han, M.-H., Lin, C., and Wang, X. (2009). α - and γ-Protocadherins Negatively Regulate PYK2. Journal of Biological Chemistry 284, 2880-2890.

Chen, W.V., Nwakeze, C.L., Denny, C.A., O’Keeffe, S., Rieger, M.A., Mountoufaris, G., Kirner, A., Dougherty, J.D., Hen, R., Wu, Q., et al. (2017). Pcdhac2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science 356, 406-411.

Cooper, S.R., Jontes, J.D., and Sotomayor, M. (2016). Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy. eLife 5, e18529.

Cosmanescu, F., Katsamba, P.S., Sergeeva, A.P., Ahlsen, G., Patel, S.D., Brewer, J.J., Tan, L., Xu, S., Xiao, Q., Nagarkar-Jaiswal, S., et al. (2018). Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins. Neuron 100, 1385-1400.e1386.

Crooks, G.E., Hon, G., Chandonia, J.-M., and Brenner, S.E. (2004). WebLogo: A Sequence Logo Generator. Genome Research 14, 1188-1190.

Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography 66, 486-501.

Esumi, S., Kakazu, N., Taguchi, Y., Hirayama, T., Sasaki, A., Hirabayashi, T., Koide, T., Kitsukawa, T., Hamada, S., and Yagi, T. (2005). Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nature Genetics 37, 171-176.

Evans, P.R., and Murshudov, G.N. (2013). How good are my data and what is the resolution? Acta Crystallographica Section D: Biological Crystallography 69, 1204-1214.

Fan, L., Lu, Y., Shen, X., Shao, H., Suo, L., and Wu, Q. (2018). Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice. eLife 7, e35242.

Fukuda, E., Hamada, S., Hasegawa, S., Katori, S., Sanbo, M., Miyakawa, T., Yamamoto, T., Yamamoto, H., Hirabayashi, T., and Yagi, T. (2008). Down-regulation of protocadherin- α A isoforms in mice changes contextual fear conditioning and spatial working memory. European Journal of Neuroscience 28, 13621376.

Garrett, A.M., Bosch, P.J., Steffen, D.M., Fuller, L.C., Marcucci, C.G., Koch, A.A., Bais, P., Weiner, J.A., and Burgess, R.W. (2019). CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4. PLOS Genetics 15, e1008554.

Goodman, K.M., Rubinstein, R., Dan, H., Bahna, F., Mannepalli, S., Ahlsén, G., Aye Thu, C., Sampogna, R.V., Maniatis, T., Honig, B., et al. (2017). Protocadherin cis-dimer architecture and recognition unit diversity. Proceedings of the National Academy of Sciences 114, E9829-E9837.

Goodman, K.M., Rubinstein, R., Thu, C.A., Bahna, F., Mannepalli, S., Ahlsen, G., Rittenhouse, C., Maniatis, T., Honig, B., and Shapiro, L. (2016a). Structural Basis of Diverse Homophilic Recognition by Clustered alpha- and beta-Protocadherins. Neuron 90, 709-723.

Goodman, K.M., Rubinstein, R., Thu, C.A., Mannepalli, S., Bahna, F., Ahlsén, G., Rittenhouse, C., Maniatis, T., Honig, B., and Shapiro, L. (2016b). γ-Protocadherin structural diversity and functional implications. eLife 5, e20930.

Goodman, K.M., Yamagata, M., Jin, X., Mannepalli, S., Katsamba, P.S., Ahlsén, G., Sergeeva, A.P., Honig, B., Sanes, J.R., and Shapiro, L. (2016c). Molecular basis of sidekick-mediated cell-cell adhesion and specificity. eLife 5 , e19058.

Harrison, O.J., Brasch, J., Katsamba, P.S., Ahlsen, G., Noble, A.J., Dan, H., Sampogna, R.V., Potter, C.S., Carragher, B., Honig, B., et al. (2020). Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Reports 30, 2655-2671.e2657.

Harrison, O.J., Vendome, J., Brasch, J., Jin, X., Hong, S., Katsamba, P.S., Ahlsen, G., Troyanovsky, R.B., Troyanovsky, S.M., Honig, B., et al. (2012). Nectin ectodomain structures reveal a canonical adhesive interface. Nature Structural \& Molecular Biology 19, 906-915.

Hasegawa, S., Kumagai, M., Hagihara, M., Nishimaru, H., Hirano, K., Kaneko, R., Okayama, A., Hirayama, T., Sanbo, M., and Hirabayashi, M. (2016). Distinct and Cooperative Functions for the

Protocadherin- $\alpha,-\beta$ and- γ Clusters in Neuronal Survival and Axon Targeting. Frontiers in Molecular Neuroscience 9, 155.

Hattori, D., Chen, Y., Matthews, B.J., Salwinski, L., Sabatti, C., Grueber, W.B., and Zipursky, S.L. (2009). Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 461, 644-U687.

Honig, B., and Shapiro, L. (2020). Adhesion Protein Structure, Molecular Affinities, and Principles of CellCell Recognition. Cell 181, 520-535.

Hudson, J.D., Tamilselvan, E., Sotomayor, M., and Cooper, S.R. (2021). A complete Protocadherin-19 ectodomain model for evaluating epilepsy-causing mutations and potential protein interaction sites. Structure.

Ing-Esteves, S., Kostadinov, D., Marocha, J., Sing, A.D., Joseph, K.S., Laboulaye, M.A., Sanes, J.R., and Lefebvre, J.L. (2018). Combinatorial Effects of Alpha- and Gamma-Protocadherins on Neuronal Survival and Dendritic Self-Avoidance. The Journal of Neuroscience 38, 2713-2729.

Iqbal, M., Maroofian, R., Çavdarlı, B., Riccardi, F., Field, M., Banka, S., Bubshait, D.K., Li, Y., Hertecant, J., Baig, S.M., et al. (2021). Biallelic variants in PCDHGC4 cause a novel neurodevelopmental syndrome with progressive microcephaly, seizures, and joint anomalies. Genetics in Medicine.

Kabsch, W. (2010). XDS. Acta Crystallographica Section D: Biological Crystallography 66, 125-132.
Kaneko, R., Kato, H., Kawamura, Y., Esumi, S., Hirayama, T., Hirabayashi, T., and Yagi, T. (2006). Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells. Journal of Biological Chemistry 281, 30551-30560.

Katsamba, P., Carroll, K., Ahlsen, G., Bahna, F., Vendome, J., Posy, S., Rajebhosale, M., Price, S., Jessell, T.M., Ben-Shaul, A., et al. (2009). Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proceedings of the National Academy of Sciences 106, 11594-11599.

Keeler, A.B., Schreiner, D., and Weiner, J.A. (2015). Protein Kinase C Phosphorylation of a γ Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization. Journal of Biological Chemistry 290, 20674-20686.

Kostadinov, D., and Sanes, J.R. (2015). Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. Elife 4.

Krissinel, E., and Henrick, K. (2007). Inference of Macromolecular Assemblies from Crystalline State. Journal of Molecular Biology 372, 774-797.

Lefebvre, J.L., Kostadinov, D., Chen, W.V., Maniatis, T., and Sanes, J.R. (2012). Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488, 517-521.

Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877.

Mah, K.M., Houston, D.W., and Weiner, J.A. (2016). The gamma-Protocadherin-C3 isoform inhibits canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Scientific Reports 6.

Mah, K.M., and Weiner, J.A. (2017). Regulation of Wnt signaling by protocadherins. Seminars in Cell \& Developmental Biology 69, 158-171.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. Journal of Applied Crystallography 40, 658-674.

Miura, S.K., Martins, A., Zhang, K.X., Graveley, B.R., and Zipursky, S.L. (2013). Probabilistic Splicing of Dscam1 Establishes Identity at the Level of Single Neurons. Cell 155, 1166-1177.

Modak, D., and Sotomayor, M. (2019). Identification of an adhesive interface for the non-clustered $\delta 1$ protocadherin-1 involved in respiratory diseases. Communications Biology 2, 354 .

Molumby, M.J., Anderson, R.M., Newbold, D.J., Koblesky, N.K., Garrett, A.M., Schreiner, D., Radley, J.J., and Weiner, J.A. (2017). γ-Protocadherins Interact with Neuroligin-1 and Negatively Regulate Dendritic Spine Morphogenesis. Cell Reports 18, 2702-2714.

Mountoufaris, G., Canzio, D., Nwakeze, C.L., Chen, W.V., and Maniatis, T. (2016). Writing, Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly. Annual Review of Cell and Developmental Biology 34, 471-493.

Mountoufaris, G., Chen, W.V., Hirabayashi, Y., O'Keeffe, S., Chevee, M., Nwakeze, C.L., Polleux, F., and Maniatis, T. (2017). Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science 356, 411-414.

Murata, Y., Hamada, S., Morishita, H., Mutoh, T., and Yagi, T. (2004). Interaction with Protocadherin- γ Regulates the Cell Surface Expression of Protocadherin- α. Journal of Biological Chemistry 279, 4950849516.

Nicoludis, J.M., Green, A.G., Walujkar, S., May, E.J., Sotomayor, M., Marks, D.S., and Gaudet, R. (2019). Interaction specificity of clustered protocadherins inferred from sequence covariation and structural analysis. Proceedings of the National Academy of Sciences 116, 17825-17830.

Nicoludis, J.M., Lau, S.-Y., Schaerfe, C.P.I., Marks, D.S., Weihofen, W.A., and Gaudet, R. (2015). Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity. Structure 23, 2087-2098.

Nicoludis, J.M., Vogt, B.E., Green, A.G., Scharfe, C.P.I., Marks, D.S., and Gaudet, R. (2016). Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4. eLife 5 .

Onouchi, T., Kishino-Kaneko, Y., Kameshita, I., Ishida, A., and Sueyoshi, N. (2015). Regulation of $\mathrm{Ca} 2+/$ calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) by protocadherin- $\gamma \mathrm{C} 5$ (Pcdh$\gamma \mathrm{C} 5$). Archives of Biochemistry and Biophysics 585, 109-120.

Pancho, A., Aerts, T., Mitsogiannis, M.D., and Seuntjens, E. (2020). Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 13, 117.

Peek, S.L., Mah, K.M., and Weiner, J.A. (2017). Regulation of neural circuit formation by protocadherins. Cellular and Molecular Life Sciences.

Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8, 785-786.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25, 1605-1612.

Phillips, G.R., LaMassa, N., and Nie, Y.M. (2017). Clustered protocadherin trafficking. Seminars in Cell \& Developmental Biology 69, 131-139.

Rich, R.L., and Myszka, D.G. (2007). Survey of the year 2006 commercial optical biosensor literature. Journal of Molecular Recognition 20, 300-366.

Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 42, W320-W324.

Rubinstein, R., Goodman, K.M., Maniatis, T., Shapiro, L., and Honig, B. (2017). Structural origins of clustered protocadherin-mediated neuronal barcoding. Seminars in Cell \& Developmental Biology 69, 140150.

Rubinstein, R., Thu, C.A., Goodman, K.M., Wolcott, H.N., Bahna, F., Mannepalli, S., Ahlsen, G., Chevee, M., Halim, A., Clausen, H., et al. (2015). Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions. Cell 163, 629-642.

Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671-684.

Schreiner, D., and Weiner, J.A. (2010). Combinatorial homophilic interaction between gammaprotocadherin multimers greatly expands the molecular diversity of cell adhesion. Proceedings of the National Academy of Sciences of the United States of America 107, 14893-14898.

Sergeeva, A.P., Katsamba, P.S., Cosmanescu, F., Brewer, J.J., Ahlsen, G., Mannepalli, S., Shapiro, L., and Honig, B. (2020). DIP/Dpr interactions and the evolutionary design of specificity in protein families. Nat Commun 11, 2125.

Shapovalov, M.V., and Dunbrack, R.L., Jr. (2011). A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844-858.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539-539.

Steffen, D.M., Ferri, S.L., Marcucci, C.G., Blocklinger, K.L., Molumby, M.J., Abel, T., and Weiner, J.A. (2021). The γ-Protocadherins Interact Physically and Functionally with Neuroligin-2 to Negatively Regulate Inhibitory Synapse Density and Are Required for Normal Social Interaction. Molecular Neurobiology 58, 2574-2589.

Strong, M., Sawaya, M.R., Wang, S., Phillips, M., Cascio, D., and Eisenberg, D. (2006). Toward the structural genomics of complexes: Crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America 103, 80608065.

Thu, C.A., Chen, W.V., Rubinstein, R., Chevee, M., Wolcott, H.N., Felsovalyi, K.O., Tapia, J.C., Shapiro, L., Honig, B., and Maniatis, T. (2014). Single-Cell Identity Generated by Combinatorial Homophilic Interactions between alpha, beta, and gamma Protocadherins. Cell 158, 1045-1059.

Vendome, J., Felsovalyi, K., Song, H., Yang, Z., Jin, X., Brasch, J., Harrison, O.J., Ahlsen, G., Bahna, F., Kaczynska, A., et al. (2014). Structural and energetic determinants of adhesive binding specificity in type I cadherins. Proceedings of the National Academy of Sciences of the United States of America 111, E4175E4184.

Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallographica Section D 67, 235-242.

Wojtowicz, W.M., Flanagan, J.J., Millard, S.S., and Zipursky, S.L. (2004). Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619-633.

Wojtowicz, W.M., Wu, W., Andre, I., Qian, B., Baker, D., and Zipursky, S.L. (2007). A vast repertoire of Dscam binding Specificities arises from modular interactions of variable ig domains. Cell 130, 1134-1145.

Wu, Q., and Maniatis, T. (1999). A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779-790.

Wu, Q., Zhang, T., Cheng, J.F., Kim, Y., Grimwood, J., Schmutz, J., Dickson, M., Noonan, J.P., Zhang, M.Q., Myers, R.M., et al. (2001). Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Research 11, 389-404.

Wu, W., Ahlsen, G., Baker, D., Shapiro, L., and Zipursky, S.L. (2012). Complementary Chimeric Isoforms Reveal Dscam1 Binding Specificity In Vivo. Neuron 74, 261-268.

Wu, Y., Honig, B., and Ben-Shaul, A. (2013). Theory and Simulations of Adhesion Receptor Dimerization on Membrane Surfaces. Biophysical Journal 104, 1221-1229.

Zipursky, S.L., and Grueber, W.B. (2013). The Molecular Basis of Self-Avoidance. In Annual Review of Neuroscience, Vol 36, S.E. Hyman, ed., pp. 547-568.

Figure legends:

Figure 1: cPcdh domain organization and extracellular interactions
(A) Schematic depicting the domain organization of cPcdhs. EC, extracellular cadherin domain; TM, transmembrane domain; ECD, ectodomain; ICD, intracellular domain.
(B) Schematic of two cPcdhs interacting via the EC1-4 trans interface.
(C) Schematic of two cPcdhs interacting via the EC5-6/EC6 cis interface.
(D) Schematic depiction of the cis/trans cPcdh zipper comprising multiple cPcdh isoforms (various colors) engaged in homophilic trans interactions and promiscuous cis interactions as required for the proposed "isoform-mismatch chain-termination model" of cPcdh-mediated neuronal self-recognition and self-avoidance.

Figure 2: cPcdhs show strict homophilic specificity in their trans interactions

(A) SPR binding profiles of cPcdh trans fragment analytes from all cPcdh subfamilies (denoted in the top row) flowed over six surfaces coated with alternate cPcdh trans fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight.
(B) SPR binding profiles of cPcdh trans fragment analytes from all cPcdh subfamilies (shown in columns) flowed over individual surfaces coated with C-type and $\alpha 4$ cPcdh trans fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight.

Figure 3: C-type cPcdh $\gamma \mathbf{C 4}$ adopts an EC1-4-mediated head-to-tail trans dimer like alternate cPcdhs with a comparatively weak dimer affinity
(A) Ribbon diagrams of the $\gamma \mathrm{C}_{\mathrm{EC} 1-4}$ trans dimer crystal structures obtained from two different crystal forms. Bound calcium ions are shown as green spheres and glycans are shown in pale blue spheres.
(B) The two crystal structures have a markedly different trans interface buried surface area (BSA). Left, Surface views of the two trans dimer crystal structures highlight the difference, with a gap apparent in the EC2:EC3 region of the interface in crystal form 2 that is absent from crystal form 1. Surfaces are colored by atom type with the carbons colored orange for crystal form 1 and yellow for crystal form 2. Right, Close up view of the gap region in the crystal form 2 dimer with the side
chains depicted as sticks. The intact crystal form $1 \gamma \mathrm{C} 4$ dimer is similar overall to those of the published intact alternate $\alpha, \beta, \gamma \mathrm{A}$, and $\gamma \mathrm{B}$ cPcdhs and the published $\delta 2$ non-clustered (nc) Pcdh trans dimers (root mean square deviation over aligned Cas (RMSD) 2.4-4.5 Å; Figure 3-source data 2). The published crystal structures of $\gamma \mathrm{A} 8, \gamma \mathrm{~A} 1$, and $\gamma \mathrm{B} 3$ also show partially disrupted trans interfaces though in differing regions of the interface (Goodman et al., 2016b, Nicoludis et al., 2016).
(C) Comparison between the (i) EC1:EC4 and (ii) EC2:EC3 regions of the $\gamma \mathrm{C} 4$ (orange) and $\gamma \mathrm{B} 2$ (blue, PDB 5T9T) trans dimer interfaces. (i) Structural alignment of the EC1:EC4 portion of the $\gamma \mathrm{C} 4$ and $\gamma \mathrm{B} 2$ trans dimers highlights a possible destabilizing role for $\gamma \mathrm{C} 4$ residue E 78 since unlike its counterpart in $\gamma \mathrm{B} 2$ (D77) it is not juxtaposed with a basic residue. (ii) Similarly, an additional negatively charged residue (D290) which occupies a central position in the $\gamma \mathrm{C} 4 \mathrm{EC} 2$: EC3 interface may also contribute to $\gamma \mathrm{C} 4$'s comparatively weak trans dimer interaction. Distances between the D290 side chain and its nearest contacts are shown as dashed grey lines with distances given in Angstroms.
(D) Sedimentation equilibrium AUC experiments were conducted on $\gamma \mathrm{C} 4 \mathrm{EC} 1-4$ wild type (wt) and interface mutants to assess whether E78 and D290 negatively impact trans dimerization. Table details the oligomeric state and dissociation constants for each protein tested.

Figure 4: cPcdh cis interactions are promiscuous with a preference for interfamily heterodimers
(A) SPR binding profiles of cPcdh cis fragment analytes from all cPcdh subfamilies except alphas (shown in columns) flowed over individual surfaces coated with cPcdh cis fragments. Binding profiles for each surface are individually scaled and responses are normalized for molecular weight.
(B) Table of dissociation constants calculated from the SPR data for the four monomeric analytes. The number in brackets represents the error of the fit based on analysis of duplicate responses. Binding signals were not detected for interactions labeled NB (no binding) while >50, represents interactions with $\mathrm{K}_{\mathrm{D}} \mathrm{s}>50 \mu \mathrm{M}$, where an accurate K_{D} cannot be determined.

Figure 5: $\gamma \mathbf{A 4}$ preferentially forms the EC6-only side and $\gamma \mathbf{C} 3$ the EC5-6 side in cis dimers
(A) Structural model of $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimer based on $\gamma \mathrm{B} 7_{\mathrm{EC} 3-6}$ cis dimer and $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ crystal structures (PDBs: 5V5X and 5SZQ). $\gamma \mathrm{A} 4$ is shown adopting the EC6-only side (blue protomer) and $\gamma \mathrm{C} 3$ is shown adopting the EC5-6 side (yellow protomer). Left, schematic of the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ EC3-6 cis dimer. Right, close-up view of the EC6:EC6 interface from the modeled cis dimer showing interfacial residue side chains. Bound calcium ions are shown as green spheres. Residues which were mutated in the panel B are circled in red. $\gamma \mathrm{B} 7$ crystal structure numbering is used for both $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ residues. See methods for $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ alignment. Please note the model shown here is solely for hypothesis generation, since it is unlikely to be completely accurate. See methods for further details of structural modeling.
(B) Top, SEC-MALS data for an equimolar mixture of wild-type $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ and $\gamma \mathrm{C} 3_{\mathrm{EC} 3-6}$ showing dimer formation. Plot shows size exclusion absorbance at 280 nm trace (left axis), molecular weight of the eluant peaks (right axis), and the monomer molecular weights of $\gamma \mathrm{A} 4_{\mathrm{EC3}-6}$ and $\gamma \mathrm{C} 3_{\mathrm{EC} 3-6}$ measured by mass spectrometry -54.5 kDa and 56.5 kDa respectively - as dashed grey lines. Average molecular weight of the molecules in the dimer and monomer eluant peaks are labeled. Middle, SEC-MALS data for V560R mutants, which target the EC6-only side of the interface. Bottom, SEC-MALS data for residue 558 mutants. The γ C3-like K558R mutation in γ A4 inhibits heterodimer formation with wild-type $\gamma \mathrm{C} 3$. Similarly, the $\gamma \mathrm{A} 4$-like R 558 K in $\gamma \mathrm{C} 3$ inhibits dimerization with wild-type γ A4.
(C) SPR binding profiles for $\gamma \mathrm{B} 7_{\text {ECЗ-6 }}$ wild type and cis interface mutants flowed over three individual wild-type cis fragment surfaces. The two mutations specifically target one side of the cis interface.

Figure 2-figure supplement 1: Trans interface mutants demonstrate homophilic interactions observed in SPR are mediated by the trans dimer interface
(A) SPR binding curves for wild-type and trans mutant alternate cPcdhs flowed over their respective immobilized wild-type molecule.
(B) SPR binding curves for wild-type and trans mutant C-type cPcdh $\gamma \mathrm{C} 5$ flowed over immobilized wild-type $\gamma \mathrm{C} 5$.

Figure 2 -figure supplement 2: Mutagenesis experiments reveal role in trans specificity for the five interfacial residue differences between close pair $\boldsymbol{\beta 6}_{1-4}$ and $\boldsymbol{\beta 8} \mathbf{1 - 4}$
A. Structural superposition of the $\beta 6_{1-4}$ and $\beta 8_{1-4}$ trans dimer crystal structures (PDBs: 5DZX and 5DZY) shown in ribbon depiction above, with close-up views of the trans interfacial regions containing the five interfacial residues that vary between $\beta 6_{1-4}$ and $\beta 8_{1-4}$ shown below. The two protomers forming the $\beta 6_{1-4}$ dimer are colored green and pale green respectively. The $\beta 8_{1-4}$ dimer is colored magenta/light pink. Bound calcium ions are shown as green spheres. Interfacial residue side chains are shown in the close-up views. The five variable residues are labelled with the $\beta 6_{1-4}$ amino acid given in green and the $\beta 8_{1-4}$ amino acid in magenta: R/N41 is in EC1; E/K369 and Y/F371 are in EC4; S/I117 is in EC2 and self-interacts at the trans dimer center of symmetry; and L/P125 is also in EC2.
B. SPR binding profiles of b6 trans interface mutants converting $\beta 6_{1-4}$ to $\beta 8_{1-4}$ and the wild-type molecules (shown in columns) were flowed over surfaces coated with wild-type $\beta 6_{1-4}$ or wild-type $\beta 8_{1-4}$ (rows).
C. Results of the K562 co-aggregation assay where cells transfected with mCherry labeled $\beta 6$ and $\beta 8$ wild-types (WT) and the same trans-specificity mutants as in (B) were each mixed with cells transfected with mVenus labeled $\beta 6$ and $\beta 8$ wild-types (WT). Experiments where the red and green cells co-aggregate demonstrating interaction between the mCherry-labeled WT or mutant cPcdh and the mVenus-labeled WT cPcdh are labeled "mixed" and highlighted with magenta boxes. Scale bar, 100 mM .

Figure 3-figure supplement 1: $\gamma \mathbf{C} 4$ trans dimer crystal structures and trans interface analysis
(A) Our crystallization experiments with $\gamma \mathrm{C} 4_{\mathrm{EC} 1-4}$ yielded two distinct crystal forms the first of which showed significant X-ray diffraction anisotropy. (i) UCLA Diffraction Anisotropy Server (Strong et al., 2006) plot shows the F/sigma by resolution along the a^{*}, b^{*} and c^{*} axes. (ii) Synthetic precession photographs of the X-ray diffraction in the $\mathrm{k}=0$ plane (left) and the $\mathrm{h}=0$ plane (right) showing the comparatively stronger/weaker diffraction.
(B) Close up views of the EC1:EC4 and EC2:EC3 interfacial regions from the first crystal form. One protomer in the symmetric dimer is colored yellow the other orange. Interfacial residues are labeled, side chains are shown in stick representation and dashed black lines depict potential interfacial hydrogen bond interactions. The two charged residues, E78 and D290, we selected for mutagenesis experiments to see whether they play a destabilizing role in the $\gamma \mathrm{C} 4$ trans interaction are marked with red dashed boxes.
(C) Representative plot of AUC data for the wild type (wt) and mutant γ C4 EC1-4 molecules. Raw data are shown in black circles, and the non-linear fits to a monomer-to-dimer model are shown as blue lines. The residuals between the data and fits are shown in the plot below. Table detailing the oligomeric state and dissociation constants determined from the AUC data is shown in Figure 3.

Figure 4-figure supplement 1: Calculation of cis interaction dissociation constants and the impact of an a-Pcdh EC5 on family-wide cis interactions
(A) Kinetic binding analysis of $\gamma \mathrm{Cl}_{3-6}$ analyte binding over a $\beta 9_{3-6}$ covered surface. Data is shown in black, and the red traces represent the fit to an 1:1 binding model.
(B) Left, SPR binding profiles from Figure 4 for the four monomeric cis fragment analytes over all six cis fragment surfaces. Right, fit of the binding data for these four analytes to $1: 1$ binding isotherms to calculate $\mathrm{K}_{\mathrm{D}} \mathrm{s} . \gamma \mathrm{A} 4_{3-6}$ and $\gamma \mathrm{A} 9_{3-6}$ are monomeric and they are not included in the binding isotherms over their respective surface.
(C) SPR binding profiles for $\gamma \mathrm{C} 3_{3-6}$ (from Figure 4) and an $\alpha 7_{1-5} / \gamma \mathrm{C} 3_{6}$ chimera flowed over the immobilized cis fragment surfaces. Binding profiles for each surface are individually scaled as in Figure 4.

Figure 4-figure supplement 2: Range of $\mathbf{c P c d h}$ cis and trans Dissociation constants, $\mathbf{K}_{\mathrm{D}} \mathbf{s}$ Chart shows the cPcdh trans dimer, homophilic cis dimer, and heterophilic cis dimer interactions for which we have determined binding affinities divided into four subgroups based on their dissociation constant. The trans and homophilic cis dimer affinities were determined using AUC (Figure 2-source data 1 and Figure 4-source data 1) and the heterophilic cis dimer affinities were determined using SPR (Figure 4B). Of the interactions in the $>50 \mathrm{mM}$ group one trans interaction and four homophilic cis interactions are monomeric in solution ($>500 \mathrm{mM} \mathrm{K}_{\mathrm{D}}$ in AUC). Three of the 11 heterophilic cis interactions in the $>50 \mathrm{mM}$ group show no binding in our SPR experiments based on a 40 RU binding threshold.

Figure 4-figure supplement 3: Amino acid sequence alignment reveals conservation of cis interfacial residues within the alternate $\mathbf{c P c d h}$ subfamilies
(A) Amino acid sequence alignments of cis interfacial residues from the EC6-only and EC5-6 surfaces for all 58 mouse cPcdhs subdivided by subfamily. Completely conserved residues are highlighted in red with white lettering. Residues 540 and 541 are included in the EC6-only alignments since the crystal structure of $\gamma \mathrm{A} 4 \mathrm{EC} 3-6$ (PDB: 5SZQ) revealed a distinct EC6 AA'loop architecture to that observed in the $\gamma \mathrm{B} 2$, 4, and 7 (PDBs: 5SZR, 6E6B, and 5V5X) cis fragment crystal structures that would place these residues in the EC6-only interface if maintained in cis interactions.
(B) Sequence logos based on the sequence alignment shown in (A) for the EC6-only cis interfacial residues from each of the five cPcdh subfamilies highlighting the similarities and conserved differences between the subfamilies. Residues 540 and 541 are included for all isoforms but greyed out for the non-gA isoforms since their involvement may be gA-specific. NB: Previous studies have shown that a-Pcdhs have an impaired EC6-only interface (Thu et al., 2014; Goodman et al., 2017).
(C) Sequence logos for the EC5-6 cis interfacial residues from each of the five cPcdh subfamilies.

Figure 5-figure supplement 1: Structure-guided sequence analysis of $\gamma \mathbf{A 4}$ and $\gamma \mathbf{C} 3$ cis interactions
(A) (i) Schematic of the asymmetric $\gamma \mathrm{B} 7_{\mathrm{EC} 3-6}$ cis dimer crystal structure. (ii) Close-up view of the γ B7 cis interface: Interfacial residue side chains are shown in pink for the EC6-only protomer and purple for the EC5-6 protomer. Bound calcium ions are shown as green spheres.
(B) (i) Schematic of the $\gamma \mathrm{A} 4_{\mathrm{EC} 6} / \gamma \mathrm{C} 3_{\mathrm{EC} 5-6}$ cis dimer. (ii) Model of the $\gamma \mathrm{A} 4_{\mathrm{EC} 6} / \gamma \mathrm{C} 3_{\mathrm{EC} 5-6}$ cis dimer interaction generated using structural alignment of EC6 from the monomeric γ A4 EC3-6 crystal structure (PDB 5SZQ) to the $\gamma \mathrm{B} 7 \mathrm{EC} 3-6$ cis dimer structure for the EC6-only side and computational mutagenesis of $\gamma \mathrm{B} 7$ to $\gamma \mathrm{C} 3$ selecting the best-fit rotamer (without energy minimization) for the EC5-6 side. The model suggests that this will be the preferred orientation for the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimer interaction. Favorable residue differences between $\gamma \mathrm{B} 7$ from (A) and $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ in this orientation are noted in green. Please note the model shown here is only used for hypothesis generation, since it is unlikely to be completely accurate.
(C) (i) Schematic of the $\gamma \mathrm{C} 3_{\mathrm{EC} 6} / \gamma \mathrm{A} 4_{\mathrm{EC} 5-6}$ cis dimer. (ii) Model of the $\gamma \mathrm{C} 3_{\mathrm{EC} 6} / \gamma \mathrm{A} 4_{\mathrm{EC} 5-6}$ cis dimer generated using computational mutagenesis of $\gamma \mathrm{B} 7$ to $\gamma \mathrm{C} 3$ selecting the best-fit rotamer (without energy minimization) for the EC6-only side and structural alignment of EC5-6 from the γ A4 EC36 crystal structure to the $\gamma \mathrm{B} 7$ EC3-6 cis dimer structure for the EC5-6 side. The model suggests that this orientation for the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimer interaction will be disfavored. Unfavorable residue differences between $\gamma \mathrm{B} 7$ and $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ in this orientation are noted in red. Please note the model shown here is unlikely to be completely accurate and is simply for hypothesis generation.

Figure 5-figure supplement 2: $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ cis-fragments behave as monomers in SECMALS and mutating $\gamma \mathbf{A} 4$ to make it more like $\gamma \mathbf{C} 3$ prevents $\gamma \mathbf{A} 4 / \gamma \mathrm{C} 3$ cis-heterodimerization (A) SEC-MALS data for wild-type $\gamma \mathrm{A} 4_{3-6}$, wild-type $\gamma \mathrm{C}_{3-6}$, and $\gamma \mathrm{C}_{3-6}$ V560R showing all three molecules are monomeric in SEC-MALS, consistent with their behavior in sedimentation equilibrium AUC. Plots show size exclusion absorbance at 280 nm trace in blue (left axis), molecular weight of the eluant peak in black (right axis), and the monomer molecular weight of $\gamma \mathrm{A} 4_{3-6}$ or $\gamma \mathrm{C} 3_{3-6}$ measured by mass spectrometry -54.5 kDa and 56.5 kDa respectively - as dashed grey lines. Average molecular weight of the molecules in the eluant peaks are labeled.
(B) SPR binding profiles for $\gamma \mathrm{A} 4_{3-6}$ wild type and $\gamma \mathrm{A} 4_{3-6}$ with $\gamma \mathrm{C} 3$-like cis interface mutation K558R flowed over immobilized wild-type $\gamma \mathrm{C}_{3-6}$. Loss of $\gamma \mathrm{C} 3_{3-6}$ interaction in the presence of the K558R mutation is consistent with the SEC-MALS results shown in Figure 5.

Protein	Oligomeric State	$\begin{gathered} \hline \text { Dissociation Constant, } \\ K_{D}(\mu \mathrm{M}) \\ \hline \end{gathered}$
Trans-interacting fragments		
$\alpha 4_{1-5}$	Dimer	5.0 ± 0.80
$\alpha 7^{*}{ }_{1-5}$	Dimer	2.91 ± 0.55
$\alpha 12_{1-5}$	Dimer	34 ± 2.8
$\beta 6^{*}{ }_{1-4}$	Dimer	16.3 ± 2.1
$\beta 8^{*}{ }_{1-4}$	Dimer	24.0 ± 0.43
$\gamma \mathrm{A} 1^{*}{ }_{1-4}$	Dimer	13.3 ± 0.93
$\gamma \mathrm{A} 4^{*}{ }_{1-4}$	Dimer	45.3 ± 1.52
$\gamma \mathrm{A} 8^{*}{ }_{1-4}$	Dimer	30 ± 1.5
$\gamma \mathrm{A} 9^{*}{ }_{1-5}$	Dimer	8.61 ± 0.35
$\gamma \mathrm{B} 2^{*}{ }_{1-5}$	Dimer	21.8 ± 0.21
$\gamma \mathrm{B4} 1_{1-5}$	Dimer	38 ± 0.33
$\gamma \mathrm{B5} 5^{*} 1-4$	Dimer	79.1 ± 4.3
$\gamma \mathrm{B5} 1-4$-AVI	Dimer	50 ± 0.4
$\alpha \mathrm{C} 2 *{ }_{1-4}$	Dimer	20.6 ± 1.19
$\gamma \mathrm{C} 3^{*}{ }_{1-4}$	Dimer	$115 \pm 1.49\left(K_{i} / K_{D}=1.57\right)$
$\gamma \mathrm{C} 4_{1-4}$	Monomer / Very weak dimer	> 500^{+}
$\gamma C 5 *{ }_{1-5}$	Dimer	100 ± 4.33
Trans mutants		
$\alpha 7_{1-5}$ L301R	Weakly dimeric	490 ± 57
$\gamma \mathrm{A} 8_{1-4}$ I116R*	Monomer	N/A
$\alpha \mathrm{C} 2{ }^{*} 1-3$	Dimer	$242 \pm 0.1\left(\mathrm{~K}_{\mathrm{i}} / \mathrm{K}_{\mathrm{D}}=1.48\right)$
β_{1-4} R41N	Dimer	160 ± 0.38
β_{1-4} S1171	Dimer	72 ± 34
$\beta_{1-4} \mathrm{~L} 125 \mathrm{P}$	Dimer	150 ± 20
β_{1-4} E369K	Dimer	23 ± 2.8
$\beta_{1-4} \mathrm{Y} 371 \mathrm{~F}$	Dimer	39 ± 5.6
β_{1-4} R41N/S1171	Precipitate	N/A
β_{1-4} R41N/E369K	Dimer	41 ± 0.69
β_{1-4} S117I/L125P	Dimer	68 ± 5.1
β_{1-4} R41N/S117//L125P	Weak dimer	350 ± 11
β_{1-4} R41N/S117//E369K	Dimer	32 ± 0.95
β_{1-4} R41N/S1171/Y371F	Dimer	18 ± 0.11
$\beta_{1-4} \mathrm{R} 41 \mathrm{~N} / \mathrm{S} 117 \mathrm{I} / \mathrm{L} 125 \mathrm{P} / \mathrm{E} 369 \mathrm{~K} / \mathrm{Y} 371 \mathrm{~F}$	Dimer	63 ± 11

Figure 2-source data 1. Sedimentation equilibrium analytical ultracentrifugation data for trans SPR reagents

[^0]| | cPcdh $\mathrm{YC4} 4_{\text {EC1-4 }}$ crystal form 1 | | cPcdh $\mathrm{YC4} 4_{\mathrm{EC} 1-4}$ crystal form 2 |
| :---: | :---: | :---: | :---: |
| Data collection | | | |
| Date | | 017 | 03/04/2017 |
| Beamline | APS | D-E | APS 24-ID-E |
| Wavelength (\AA) | | | 0.97918 |
| Space group | | | $P 2{ }_{1} 1_{2}{ }_{1}$ |
| Cell dimensions | | | |
| a, b, c (A) | 75.220, 11 | 0, 194.480 | 51.944, 103.948, 200.592 |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | 90, 90, 90 | | 90, 90, 90 |
| | Spherical resolution limits | Ellipsoidal resolution limits | |
| Resolution (\AA) | 40.00-3.50 (3.83-3.50) | 40-4.6/3.9/3.5 (3.84-3.51) | 40.00-2.40 (2.49-2.40) |
| No. of reflections | 79877 (19206) | 53652 (2402) | 240907 (16849) |
| Unique reflections | 11071 (2608) | 7545 (340) | 42979 (4175) |
| $\mathrm{R}_{\text {merge }}$ | 0.381 (3.459) | 0.215 (0.830) | 0.060 (0.438) |
| $\mathrm{R}_{\text {meas }}$ | 0.411 (3.722) | 0.232 (0.896) | 0.073 (0.560) |
| $\mathrm{R}_{\text {pim }}$ | 0.152 (1.366) | 0.086 (0.335) | 0.040 (0.342) |
| CC(1/2) | 0.995 (0.533) | 0.997 (0.829) | 0.999 (0.924) |
| I/ $/ 1$ | 5.7 (0.8) | 8.3 (2.9) | 13.3 (2.5) |
| Spherical completeness (\%) | 99.9 (100.0) | 67.6 (12.5) | 98.9 (92.6) |
| Ellipsoidal completeness (\%) | N/A | 96.8 | N/A |
| Redundancy | 7.2 (7.4) | 7.1 (7.1) | 5.6 (4.0) |
| Refinement | | | |
| Resolution (\AA) | 40-4 | 9/3.5 | 40.00-2.40 |
| Unique reflections | | | 42815 |
| Completeness in diffracting sphere or ellipsoid* (\%) | | | 98.5 |
| $\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$ (\%) | | | 19.6 / 24.1 |
| Molecules in A.S.U. | | | 2 |
| Number of atoms | | | 6736 |
| Protein | | | 6327 |
| Ligand/Ion | | | 284 |
| Water | | | 125 |
| B-factors | | | 73.39 |
| Protein | | | 72.99 |
| Ligand/Ion | | | 88.54 |
| Water | | | 59.26 |
| R.m.s. deviations | | | |
| Bond lengths (\AA) | | | 0.003 |
| Bond angles (${ }^{\circ}$) | | | 0.653 |
| Ramachandran | | | |
| Favored (\%) | | | 98.92 |
| Allowed (\%) | | | 1.08 |
| Outliers (\%) | | | 0.00 |
| Rotamer outliers (\%) | | | 0.57 |
| Wilson B | | | 51.79 |
| PDB ID | | | 7RGF |

Figure 3-source data 1. X-ray crystallography data collection and refinement statistics
Values in parentheses are for the outer shell. APS, Advanced Photon Source, Argonne National Lab; A.S.U., asymmetric unit; R.m.s., Root mean square. See Figure 4 -figure supplement 1 and Methods for further details on the ellipsoidal resolution limits.

| RMSDs over trans dimers and individual
 interacting domains | $\gamma \mathrm{C} 4$ crystal form 1 (intact interface) | |
| :--- | :---: | :---: | :---: |

Figure 3-source data 2. Overall structural similarity between $\gamma \mathbf{C 4}$, alternate cPcdhs, and nonclustered Pcdhs trans dimer structures
Table lists the pairwise root mean square deviations over aligned C α 's (RMSDs) between the intact $\gamma \mathrm{C} 4_{\mathrm{ECl}-4}$ trans dimer (crystal form 1) and a representative selection of available cPcdh and ncPcdh trans dimer structures. RMSDs between the complete EC1-4:EC1-4 trans dimers are given in column 2. RMSDs between individual interacting EC1:EC4 and EC2:EC3 regions of Pcdh trans-dimer structures are given in columns 3 and 4 . The number of aligned $C \alpha$'s for each pairwise alignment is given in
 $5 \mathrm{DZX} ; \beta 8_{\mathrm{EC} 1-4,} 5 \mathrm{SZL} ; \gamma \mathrm{B} 2_{\mathrm{EC} 1-5}, 5 \mathrm{~T} 9 \mathrm{~T} ; \alpha \mathrm{C} 2_{\mathrm{EC} 1-3}, 4 \mathrm{ZPM} ; \gamma \mathrm{C} 3_{\mathrm{EC} 1-3}, 4 \mathrm{ZI} 8 ; \gamma \mathrm{C} 5_{\mathrm{EC} 1-3}, 4 \mathrm{ZPO} ; \mathrm{ncPcdh} 1_{\mathrm{ECL} 1-4}$,
 zebrafish ncPcdh19 ${ }_{\mathrm{ECl} 1-4,} 5$ IU9 (Goodman et al., 2016a; Goodman et al., 2016b; Rubinstein et al., 2015; Nicoludis et al., 2015; Modak and Sotomayor, 2019; Harrison et al., 2020; Cooper et al., 2016)

Protein	Oligomeric State	Dissociation Constant, $\mathrm{K}_{\mathrm{D}}(\mu \mathrm{M})$
Cis-interacting fragments		
$\beta 1_{3-6}$	Monomer	N/A
$\beta 61-6$	Tetramer	$1.7 / 12.1^{\dagger}$
$\beta 9_{3-6}$	Dimer	35 ± 3.1
$\gamma \mathrm{A}_{3-6}$	Dimer	110 ± 7.3
$\gamma \mathrm{A} 4^{*}{ }_{3-6}$	Monomer	N/A
$\gamma \mathrm{A9}_{3-6}$	Monomer	N/A
$\gamma \mathrm{B} 2^{*}{ }_{3-6}$	Dimer	80.1 ± 12.8
$\gamma \mathrm{B} 5^{*}{ }_{3-6}$	Dimer	32.6 ± 4.6
$\gamma \mathrm{B} 7^{*}{ }_{3-6}$	Dimer	59.0 ± 3.4
$\alpha \mathrm{C} 23-6-\mathrm{AVI}$	Dimer	7.2 ± 1.2
$\alpha \mathrm{C} 2 *{ }_{2-6}$	Dimer	8.92 ± 0.28
$\alpha 7_{1-5 / \gamma \mathrm{C}}^{6}$ chimera*	Tetramer	3.0 / 3.9^{\dagger}
$\gamma \mathrm{C} 3^{*}{ }_{3-6}$	Monomer	N/A
$\gamma \mathrm{C} 52-6$	Dimer	18.4 ± 0.24
Cis mutants		
$\gamma \mathrm{B} 7_{3-6} \mathrm{Y} 532 \mathrm{G}^{*}$	Monomer	N/A
$\gamma \mathrm{B} 7_{3-6} \mathrm{~A} 570 \mathrm{R}$	Monomer	N/A

Figure 4-source data 1. Sedimentation equilibrium analytical ultracentrifugation data for cis SPR reagents

* Previously published data (Rubinstein et al., 2015; Goodman et al., 2016b; Goodman et al., 2017)
${ }^{\dagger} \mathrm{K}_{\mathrm{D}}$ S of monomer-to-dimer / dimer-to-tetramer transitions from fitting the data to a tetramer model.

Figure 1: cPcdh domain organization and extracellular interactions
(A) Schematic depicting the domain organization of cPcdhs. EC, extracellular cadherin domain; TM, transmembrane domain; ECD, ectodomain; ICD, intracellular domain.
(B) Schematic of two cPcdhs interacting via the EC1-4 trans interface.
(C) Schematic of two cPcdhs interacting via the EC5-6/EC6 cis interface.
(D) Schematic depiction of the cis/trans cPcdh zipper comprising multiple cPcdh isoforms (various colors) engaged in homophilic trans interactions and promiscuous cis interactions as required for the proposed "isoform-mismatch chaintermination model" of cPcdh-mediated neuronal self-recognition and self-avoidance.

Figure 2

B

Figure 2: cPcdhs show strict homophilic specificity in their trans interactions
(A) SPR binding profiles of cPcdh trans fragment analytes from all cPcdh subfamilies (denoted in the top row) flowed over six surfaces coated with alternate cPcdh trans fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight.
(B) SPR binding profiles of cPcdh trans fragment analytes from all cPcdh subfamilies (shown in columns) flowed over individual surfaces coated with C-type and $\alpha 4$ cPcdh trans fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight.

A

B Interfacial differences between the $\gamma \mathrm{C}_{\underline{1-4}}$ structures

C Comparison between specific regions of the $\gamma \mathrm{C} 4$ and $\gamma \mathrm{B} 2$ trans dimer interfaces

D

Protein	Oligomeric State	Dissociation Constant, $\mathbf{K}_{\mathrm{D}}(\mu \mathrm{M})$
$\gamma \mathrm{C} 4_{1-4} \mathrm{wt}$	Monomer / Very weak dimer	>500
$\gamma \mathrm{C} 4_{1-4} \mathrm{E} 78 \mathrm{~A}$	Dimer	58 ± 0.60
$\gamma \mathrm{C} 4_{1-4} \mathrm{E} 78 \mathrm{Q}$	Dimer	83 ± 2.6
$\gamma \mathrm{C} 4_{1-4}$ S344R	Dimer	112 ± 14
$\gamma \mathrm{C} 4_{1-4}$ D290A	Monomer	N/A
$\gamma \mathrm{C} 4_{1-4}$ D290N	Monomer	N/A

Figure 3: C-type cPcdh $\gamma \mathbf{C} 4$ adopts an EC1-4-mediated head-to-tail trans dimer like alternate $\mathbf{c P c d h s}$ with a comparatively weak dimer affinity
(A) Ribbon diagrams of the $\gamma \mathrm{C}_{\mathrm{EC} 1-4}$ trans dimer crystal structures obtained from two different crystal forms. Bound calcium ions are shown as green spheres and glycans are shown in pale blue spheres.
(B) The two crystal structures have a markedly different trans interface buried surface area (BSA). Left, Surface views of the two trans dimer crystal structures highlight the difference, with a gap apparent in the EC2:EC3 region of the interface in crystal form 2 that is absent from crystal form 1. Surfaces are colored by atom type with the carbons colored orange for crystal form 1 and yellow for crystal form 2. Right, Close up view of the gap region in the crystal form 2 dimer with the side chains depicted as sticks. The intact crystal form $1 \gamma \mathrm{C} 4$ dimer is similar overall to those of the published intact alternate $\alpha, \beta, \gamma \mathrm{A}$, and $\gamma \mathrm{B} \mathrm{cPcdhs}$ and the published $\delta 2$ non-clustered (nc) Pcdh trans dimers (root mean square deviation over aligned Cas (RMSD) 2.4$4.5 \AA$; Figure 3-source data 2). The published crystal structures of $\gamma \mathrm{A} 8, \gamma \mathrm{~A} 1$, and $\gamma \mathrm{B} 3$ also show partially disrupted trans interfaces though in differing regions of the interface (Goodman et al., 2016b, Nicoludis et al., 2016).
(C) Comparison between the (i) $\mathrm{EC} 1: \mathrm{EC} 4$ and (ii) $\mathrm{EC} 2: \mathrm{EC} 3$ regions of the $\gamma \mathrm{C} 4$ (orange) and $\gamma \mathrm{B} 2$ (blue, PDB 5T9T) trans dimer interfaces. (i) Structural alignment of the EC1:EC4 portion of the $\gamma \mathrm{C} 4$ and $\gamma \mathrm{B} 2$ trans dimers highlights a possible destabilizing role for $\gamma \mathrm{C} 4$ residue E78 since unlike its counterpart in $\gamma \mathrm{B} 2$ (D77) it is not juxtaposed with a basic residue. (ii) Similarly, an additional negatively charged residue (D290) which occupies a central position in the $\gamma \mathrm{C} 4 \mathrm{EC} 2$: EC3 interface may also contribute to $\gamma \mathrm{C} 4$'s comparatively weak trans dimer interaction. Distances between the D290 side chain and its nearest contacts are shown as dashed grey lines with distances given in Angstroms.
(D) Sedimentation equilibrium AUC experiments were conducted on $\gamma \mathrm{C} 4 \mathrm{EC} 1-4$ wild type (wt) and interface mutants to assess whether E78 and D290 negatively impact trans dimerization. Table details the oligomeric state and dissociation constants for each protein tested.

Figure 4
A

B

	K_{D} for heterophilic cis interactions $(\mu \mathrm{M})$			
Cis dimer	$\beta 1_{3-6}$	$\gamma \mathrm{~A} 4_{3-6}$	$\gamma \mathrm{~A} 9_{3-6}$	$\gamma \mathrm{C} 3_{3-6}$
$\beta 9_{3-6}$	NB	NB	NB	$0.2201(2)$
$\gamma \mathrm{A} 4_{3-6}$	>50		>50	$2.73(1)$
$\gamma \mathrm{A} 9_{3-6}$	>50	>50		$9.60(3)$
$\gamma \mathrm{B} 2_{3-6}$	$25.69(8)$	$44.0(6)$	>50	$20.00(7)$
$\alpha \mathrm{C} 2_{3-6}$	>50	>50	>50	$11.51(1)$
$\gamma \mathrm{C} 3_{3-6}$	$1.116(4)$	$3.47(2)$	$14.5(2)$	
$\gamma \mathrm{C} 5_{2-6}$	$6.91(3)$	$7.74(4)$	$18.2(2)$	>50

Figure 4: cPcdh cis interactions are promiscuous with a preference for interfamily heterodimers
(A) SPR binding profiles of cPcdh cis fragment analytes from all cPcdh subfamilies except alphas (shown in columns) flowed over individual surfaces coated with cPcdh cis fragments. Binding profiles for each surface are individually scaled and responses are normalized for molecular weight.
(B) Table of dissociation constants calculated from the SPR data for the four monomeric analytes. The number in brackets represents the error of the fit based on analysis of duplicate responses. Binding signals were not detected for interactions labeled NB , while >50, represents interactions with $\mathrm{K}_{\mathrm{D}} \mathrm{S}>50 \mu \mathrm{M}$, where an accurate K_{D} cannot be determined.

Figure 5: $\gamma \mathrm{A} 4$ preferentially forms the EC6-only side and $\gamma \mathbf{\gamma} \mathbf{C}$ the EC5-6 side in cis dimers
(A) Structural model of $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimer based on $\gamma \mathrm{B} 7_{\mathrm{EC} 3-6}$ cis dimer and $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ crystal structures (PDBs: 5V5X and 5 SZQ). $\gamma \mathrm{A} 4$ is shown adopting the EC6-only side (blue protomer) and $\gamma \mathrm{C} 3$ is shown adopting the EC5-6 side (yellow protomer). Left, schematic of the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3 \mathrm{EC} 3-6$ cis dimer. Right, close-up view of the EC6:EC6 interface from the modeled cis dimer showing interfacial residue side chains. Bound calcium ions are shown as green spheres. Residues which were mutated in the panel B are circled in red. $\gamma \mathrm{B} 7$ crystal structure numbering is used for both $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ residues. See methods for $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ alignment. Please note the model shown here is solely for hypothesis generation, since it is unlikely to be completely accurate. See methods for further details of structural modeling.
(B) Top, SEC-MALS data for an equimolar mixture of wild-type $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ and $\gamma \mathrm{C} 3_{\mathrm{EC} 3-6}$ showing dimer formation. Plot shows size exclusion absorbance at 280 nm trace (left axis), molecular weight of the eluant peaks (right axis), and the monomer molecular weights of $\gamma \mathrm{A} 4_{\mathrm{EC} 3-6}$ and $\gamma \mathrm{C} 3_{\mathrm{EC} 3-6}$ measured by mass spectrometry -54.5 kDa and 56.5 kDa respectively - as dashed grey lines. Average molecular weight of the molecules in the dimer and monomer eluant peaks are labeled. Middle, SEC-MALS data for V560R mutants, which target the EC6-only side of the interface. Bottom, SEC-MALS data for residue 558 mutants. The γ C3-like K558R mutation in $\gamma \mathrm{A} 4$ inhibits heterodimer formation with wild-type $\gamma \mathrm{C} 3$. Similarly, the $\gamma \mathrm{A} 4$-like R558K in $\gamma \mathrm{C} 3$ inhibits dimerization with wild-type $\gamma \mathrm{A} 4$.
(C) SPR binding profiles for $\gamma \mathrm{B} 7_{\mathrm{EC} 3-6}$ wild type and cis interface mutants flowed over three individual wild-type cis fragment surfaces. The two mutations specifically target one side of the cis interface.

Figure 2—figure supplement 1

Figure 2-figure supplement 1: Trans interface mutants demonstrate homophilic interactions observed in SPR are mediated by the trans dimer interface
(A) SPR binding curves for wild-type and trans mutant alternate cPcdhs flowed over their respective immobilized wild-type molecule.
(B) SPR binding curves for wild-type and trans mutant C-type $\operatorname{cPcdh} \gamma \mathrm{C} 5$ flowed over immobilized wild-type $\gamma \mathrm{C} 5$.

Figure 2 -figure supplement 2: Mutagenesis experiments reveal role in trans specificity for the five interfacial residue differences between close pair $\boldsymbol{\beta 6}_{1-4}$ and $\boldsymbol{\beta 8} \mathbf{1}_{1-4}$
A. Structural superposition of the $\beta 6_{1-4}$ and $\beta 8_{1-4}$ trans dimer crystal structures (PDBs: 5DZX and 5DZY) shown in ribbon depiction above, with close-up views of the trans interfacial regions containing the five interfacial residues that vary between $\beta 6_{1-4}$ and $\beta 8_{1-4}$ shown below. The two protomers forming the $\beta 6_{1-4}$ dimer are colored green and pale green respectively. The $\beta 8_{1-4}$ dimer is colored magenta/light pink. Bound calcium ions are shown as green spheres. Interfacial residue side chains are shown in the close-up views. The five variable residues are labelled with the $\beta 6_{1-4}$ amino acid given in green and the $\beta 8_{1_{-4}}$ amino acid in magenta: $\mathrm{R} / \mathrm{N} 41$ is in $\mathrm{EC} 1 ; \mathrm{E} / \mathrm{K} 369$ and Y/F371 are in EC4; S/I117 is in EC2 and self-interacts at the trans dimer center of symmetry; and L/P125 is also in EC2.
B. SPR binding profiles of $\beta 6$ trans interface mutants converting $\beta 6_{1-4}$ to $\beta 8_{1-4}$ and the wild-type molecules (shown in columns) were flowed over surfaces coated with wild-type $\beta 6_{1-4}$ or wild-type $\beta 8_{1-4}$ (rows).
C. Results of the K562 co-aggregation assay where cells transfected with mCherry labeled $\beta 6$ and $\beta 8$ wild-types (WT) and the same trans-specificity mutants as in (B) were each mixed with cells transfected with mVenus labeled $\beta 6$ and $\beta 8$ wild-types (WT). Experiments where the red and green cells co-aggregate demonstrating interaction between the mCherry-labeled WT or mutant cPcdh and the mVenus-labeled WT cPcdh are labeled "mixed" and highlighted with magenta boxes. Scale bar, $100 \mu \mathrm{M}$.

C AUC curves for $\gamma C 4$ wild type and trans interface mutants

Figure 3-figure supplement 1: $\gamma \mathbf{C 4}$ trans dimer crystal structures and trans interface analysis
(A) Our crystallization experiments with $\gamma \mathrm{C} 4_{\mathrm{EC} 1-4}$ yielded two distinct crystal forms the first of which showed significant Xray diffraction anisotropy. (i) UCLA Diffraction Anisotropy Server (Strong et al., 2006) plot shows the F/sigma by resolution along the a^{*}, b^{*} and c^{*} axes. (ii) Synthetic precession photographs of the X-ray diffraction in the $\mathrm{k}=0$ plane (left) and the $\mathrm{h}=0$ plane (right) showing the comparatively stronger/weaker diffraction.
(B) Close up views of the EC1:EC4 and EC2:EC3 interfacial regions from the first crystal form. One protomer in the symmetric dimer is colored yellow the other orange. Interfacial residues are labeled, side chains are shown in stick representation and dashed black lines depict potential interfacial hydrogen bond interactions. The two charged residues, E78 and D290, we selected for mutagenesis experiments to see whether they play a destabilizing role in the $\gamma \mathrm{C} 4$ trans interaction are marked with red dashed boxes.
(C) Representative plot of AUC data for the wild type (wt) and mutant $\gamma \mathrm{C} 4 \mathrm{EC} 1-4$ molecules. Raw data are shown in black circles, and the non-linear fits to a monomer-to-dimer model are shown as blue lines. The residuals between the data and fits are shown in the plot below. Table detailing the oligomeric state and dissociation constants determined from the AUC data is shown in Figure 3.

Figure 4-figure supplement 1

Figure 4-figure supplement 1: Calculation of cis interaction dissociation constants and the impact of an α Pcdh EC5 on family-wide cis interactions
(A) Kinetic binding analysis of $\gamma \mathrm{C3}_{3-6}$ analyte binding over a $\beta 9_{3-6}$ covered surface. Data is shown in black, and the red traces represent the fit to an 1:1 binding model.
(B) Left, SPR binding profiles from Figure 4 for the four monomeric cis fragment analytes over all six cis fragment surfaces. Right, fit of the binding data for these four analytes to $1: 1$ binding isotherms to calculate $\mathrm{K}_{\mathrm{D}} \mathrm{S} . \gamma \mathrm{A} 4_{3-6}$ and $\gamma \mathrm{A} 9_{3-6}$ are monomeric and they are not included in the binding isotherms over their respective surface.
(C) SPR binding profiles for $\gamma \mathrm{C}_{3-6}$ (from Figure 4) and an $\alpha 7_{1-5} / \gamma \mathrm{C}_{6}$ chimera flowed over the immobilized cis fragment surfaces. Binding profiles for each surface are individually scaled as in Figure 4.

Figure 4—figure supplement 2

Figure 4-figure supplement 2: Range of $\mathbf{c P c d h}$ cis and trans Dissociation constants, $\mathrm{K}_{\mathrm{D}} \mathbf{s}$
Chart shows the cPcdh trans dimer, homophilic cis dimer, and heterophilic cis dimer interactions for which we have determined binding affinities divided into four subgroups based on their dissociation constant. The trans and homophilic cis dimer affinities were determined using AUC (Figure 2-source data 1 and Figure 4-source data 1) and the heterophilic cis dimer affinities were determined using SPR (Figure 4B). Of the interactions in the $>50 \mu \mathrm{M}$ group one trans interaction and four homophilic cis interactions are monomeric in solution ($>500 \mu \mathrm{M}$ K_{D} in AUC). Three of the 11 heterophilic cis interactions in the $>50 \mu \mathrm{M}$ group show no binding in our SPR experiments based on a 40 RU binding threshold.

Figure 4-figure supplement 3

Figure 4-figure supplement 3: Amino acid sequence alignment reveals conservation of cis interfacial residues within the alternate cPcdh subfamilies
(A) Amino acid sequence alignments of cis interfacial residues from the EC6-only and EC5-6 surfaces for all 58 mouse cPcdhs subdivided by subfamily. Completely conserved residues are highlighted in red with white lettering. Residues 540 and 541 are included in the EC6-only alignments since the crystal structure of γ A4 EC36 (PDB: 5SZQ) revealed a distinct EC6 A-A'loop architecture to that observed in the $\gamma \mathrm{B} 2,4$, and 7 (PDBs: $5 \mathrm{SZR}, 6 \mathrm{E} 6 \mathrm{~B}$, and 5 V 5 X) cis fragment crystal structures that would place these residues in the EC6-only interface if maintained in cis interactions.
(B) Sequence logos based on the sequence alignment shown in (A) for the EC6-only cis interfacial residues from each of the five cPcdh subfamilies highlighting the similarities and conserved differences between the subfamilies. Residues 540 and 541 are included for all isoforms but greyed out for the non- $\gamma \mathrm{A}$ isoforms since their involvement may be γ A-specific. NB: Previous studies have shown that α-Pcdhs have an impaired EC6only interface (Thu et al., 2014; Goodman et al., 2017).
(C) Sequence logos for the EC5-6 cis interfacial residues from each of the five cPcdh subfamilies

Figure 5—figure supplement 1
A γ B7 cis dimer interface

B Modeled $\gamma \mathrm{A} 4^{E C 6}{ }_{6} \underline{\mathrm{CO}_{3}}{ }_{\text {EC5-6 }}$ Cis dimer interface

C Modeled $\gamma \mathrm{Cl}_{\underline{E C 6}}{ }_{\underline{l} \gamma \mathrm{~A} 4^{\text {EC5-6 }}}$ Cis dimer interface

Figure 5-figure supplement 1: Structure-guided sequence analysis of $\gamma \mathbf{A 4}$ and $\gamma \mathbf{C 3}$ cis interactions
(A) (i) Schematic of the asymmetric $\gamma \mathrm{B} 7_{\text {EC3-6 }}$ cis dimer crystal structure. (ii) Close-up view of the $\gamma \mathrm{B} 7$ cis interface: Interfacial residue side chains are shown in pink for the EC6-only protomer and purple for the EC5-6 protomer. Bound calcium ions are shown as green spheres.
(B) (i) Schematic of the $\gamma \mathrm{A}_{\mathrm{EC} 6} / \gamma \mathrm{C}_{\mathrm{ECC} 5-6}$ cis dimer. (ii) Model of the $\gamma \mathrm{A} 4_{\mathrm{EC} 6} / \gamma \mathrm{C}_{\mathrm{EC} 5-6}$ cis dimer interaction generated using structural alignment of EC6 from the monomeric $\gamma \mathrm{A} 4$ EC3-6 crystal structure (PDB 5SZQ) to the γ B7 EC3-6 cis dimer structure for the EC6only side and computational mutagenesis of $\gamma \mathrm{B} 7$ to $\gamma \mathrm{C} 3$ selecting the best-fit rotamer (without energy minimization) for the EC5-6 side. The model suggests that this will be the preferred orientation for the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimer interaction. Favorable residue differences between $\gamma \mathrm{B} 7$ from (A) and $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ in this orientation are noted in green. Please note the model shown here is only used for hypothesis generation, since it is unlikely to be completely accurate.
(C) (i) Schematic of the $\gamma \mathrm{C}_{\mathrm{EC} 6} / \gamma \mathrm{A} 4_{\mathrm{EC} 5-6}$ cis dimer. (ii) Model of the $\gamma \mathrm{C}_{\mathrm{EC} 6} / \gamma \mathrm{A} 4_{\mathrm{EC} 5-6}$ cis dimer generated using computational mutagenesis of $\gamma \mathrm{B} 7$ to $\gamma \mathrm{C} 3$ selecting the best-fit rotamer (without energy minimization) for the EC6-only side and structural alignment of EC5-6 from the γ A4 EC3-6 crystal structure to the γ B7 EC3-6 cis dimer structure for the EC5-6 side. The model suggests that this orientation for the $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ cis dimer interaction will be disfavored. Unfavorable residue differences between $\gamma \mathrm{B} 7$ and $\gamma \mathrm{A} 4 / \gamma \mathrm{C} 3$ in this orientation are noted in red. Please note the model shown here is unlikely to be completely accurate and is simply for hypothesis generation.

Figure 5—figure supplement 2

Figure 5-figure supplement 2: $\gamma \mathrm{A} 4$ and $\gamma \mathrm{C} 3$ cis-fragments behave as monomers in SEC-MALS and mutating $\gamma \mathbf{A} 4$ to make it more like $\gamma \mathbf{C} 3$ prevents $\gamma \mathbf{A} 4 / \gamma \mathrm{C} 3$ cis-heterodimerization
(A) SEC-MALS data for wild-type $\gamma \mathrm{AA}_{3-6}$, wild-type $\gamma \mathrm{C3}_{3-6}$, and $\gamma \mathrm{C}_{3-6} \mathrm{~V} 560 \mathrm{R}$ showing all three molecules are monomeric in SEC-MALS, consistent with their behavior in sedimentation equilibrium AUC. Plots show size exclusion absorbance at 280 nm trace in blue (left axis), molecular weight of the eluant peak in black (right axis), and the monomer molecular weight of $\gamma \mathrm{A}_{3-6}$ or $\gamma \mathrm{C}_{3-6}$ measured by mass spectrometry - 54.5 kDa and 56.5 kDa respectively - as dashed grey lines. Average molecular weight of the molecules in the eluant peaks are labeled.
(B) SPR binding profiles for $\gamma \mathrm{A} 4_{3-6}$ wild type and $\gamma \mathrm{A} 4_{3-6}$ with $\gamma \mathrm{C} 3$-like cis interface mutation K558R flowed over immobilized wild-type $\gamma \mathrm{C}_{3-6}$. Loss of $\gamma \mathrm{C} 3_{3-6}$ interaction in the presence of the K 558 R mutation is consistent with the SEC-MALS results shown in Figure 5.

[^0]: * Previously published data (Rubinstein et al., 2015; Goodman et al., 2016a; Goodman et al., 2016b)
 † Dissociation constants larger than $500 \mu \mathrm{M}$ cannot be accurately determined.

