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1 Abstract1

Modeling species interactions in diverse communities traditionally requires a prohibitively large number of2

species-interaction coefficients, especially when considering environmental dependence of parameters. We3

implemented Bayesian variable selection via sparsity-inducing priors on non-linear species abundance mod-4

els to determine which species-interactions should be retained and which can be represented as an average5

heterospecific interaction term, reducing the number of model parameters. We evaluated model performance6

using simulated communities, computing out-of-sample predictive accuracy and parameter recovery across7

different input sample sizes. We applied our method to a diverse empirical community, allowing us to dis-8

entangle the direct role of environmental gradients on species’ intrinsic growth rates from indirect effects9

via competitive interactions. We also identified a few neighboring species from the diverse community that10

had non-generic interactions with our focal species. This sparse modeling approach facilitates exploration11

of species-interactions in diverse communities while maintaining a manageable number of parameters.12
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2 Introduction13

Understanding what maintains the diversity of life—where and how species abundances change through14

time—has long fascinated and challenged ecologists. It is widely accepted that community composition in15

any given time and place is driven by the interplay of species interactions, responses to environmental con-16

ditions, and feedbacks between local and regional dynamics (Chesson, 2000; HilleRisLambers et al., 2012;17

Vellend, 2020). However, given the myriad of biotic interactions that may, themselves, be mediated by under-18

lying environmental conditions (Bulleri et al., 2016; Germain et al., 2018; Letten et al., 2018), feasibility and19

model overfitting concerns quickly arise when trying to incorporate observed levels of diversity. Arguably,20

the magnitude of this methodological limitation has even shaped our historical theoretical frameworks and21

empirical tests. For example, classic species trait trade-offs, such as the competition-colonization trade-off,22

apply for species pairs (Levins & Culver, 1971; Tilman, 1982). Similarly, while modern coexistence theory23

(Chesson, 2000) can be applied to any level of species richness (Spaak & De Laender, 2020), the vast ma-24

jority of empirical studies focus on pairwise species comparisons (e.g. Kraft et al. 2015; Wainwright et al.25

2019) and the effect of environmental variation on these comparisons (Bimler et al., 2018; Lanuza et al.,26

2018). Yet nonlinearity, higher-order interactions, and intransitivity in diverse systems may yield complex27

dynamics that dramatically alter population growth and coexistence dynamics (Allesina & Levine, 2011; Li28

et al., 2021; May & Leonard, 1975; Mayfield & Stouffer, 2017). The further development and empirical29

testing of these theories thus requires a statistical approach that is applicable in diverse communities and is30

capable of identifying and incorporating key species interactions and environmental covariates.31

To date, empirical studies of population dynamics and species coexistence frequently take one of two32

approaches for dealing with parameterization limitations that arise in diverse communities and varied envi-33

ronments. In the first approach, experimental studies focus on a few focal species. For example, Wainwright34

et al. (2019) examined coexistence based on pairwise interaction coefficients between four annual forbs in35

two locations and across two water availability treatments—a lofty number of species interaction coefficients36

to estimate—but still a relatively small subset of the community’s full diversity (10−14 species in 0.09 m2;37

Dwyer et al. 2015). Finer-scale environmental variation can further limit the number of species that can be38

feasibly incorporated: in a study of grass and forb coexistence under variable rainfall regimes, Hallett et39
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al. (2019) considered four rainfall conditions, requiring estimates of eight distinct species interaction coef-40

ficients even with only two species. Isolating species interactions across environmental conditions is a high41

barrier in species rich communities, even in laboratory and microcosm based studies (Letten et al., 2018).42

In the second approach, often used to interpret observational data, species are grouped into broad cat-43

egories. At the most extreme, a single interaction coefficient is then calculated between the focal species44

and all heterospecific individuals—regardless of their identity (Clark et al., 2020a; Uriarte et al., 2004).45

Heterospecifics may also be grouped more finely, for example, according to their taxonomic relationship46

(Uriarte et al., 2004) or their origin status and life form (e.g. native versus exotic and grasses versus forbs)47

(Martyn et al., 2020). Alternatively, functional groups can be created by grouping species according to their48

traits (e.g. specific leaf area, canopy height, seed number) (Kühner & Kleyer, 2008; Uriarte et al., 2004).49

However, this methodological approach often necessitates a priori knowledge of the system and makes an50

underlying assumption that species grouped together will interact similarly with each other and with the51

focal species. These assumptions are often not met (Mayfield & Levine, 2010), suggesting a need for a more52

parsimonious and robust methodology that would allow the data to inform species groupings.53

Various alternative statistical approaches have been proposed to assess species interactions using obser-54

vational data. For example, joint species distribution modeling has become a common approach to infer55

species interactions from co-occurrence patterns (Legendre & Gauthier, 2014; Ovaskainen et al., 2019,56

2017b). However, in addition to species interactions, patterns of co-occurrence may result from environ-57

mental sorting (Barner et al., 2018), or dispersal patterns (Schamp et al., 2015). Further, co-occurrence58

patterns are scale dependent and regional analyses are not suited to assessing local-scale species interactions59

(König et al., 2021). Recognizing a need to directly estimate species interaction coefficients, recent work has60

expanded multivariate autoregressive models for use in more diverse communities (Picoche & Barraquand,61

2020), including examining which linear combinations of species abundances best predict future growth62

rates (Ovaskainen et al., 2017a). This approach is effective for binning species based on their competitive63

effects, but does not account for variation in the environment. Clark et al. (2020b) recently developed a64

state-space hierarchical Bayesian model to assess the effect of environmental gradients on nonlinear species65

abundance patterns, incorporating environment responses in species’ density-independent growth rates, but66

not in species interactions (Clark et al., 2020b). Lastly, Garcı́a-Callejas et al. (2020) developed a method to67
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incorporate environment responses in species’ density-dependent growth rates but without the flexibility of68

Bayesian approaches. Independently, these different methodological developments each address one of the69

largest hurdles for modeling species abundances in diverse communities: (1) identifying important species70

interactions and (2) accounting for the mediating effect of the environment (here referred to as species-71

environment interactions). Addressing these two aspects simultaneously would solidify a path forward for72

characterizing species interactions in diverse communities and across environmental gradients.73

Here, we present an approach for modeling dynamics in diverse communities and across environmental74

gradients. The approach balances realism and complexity without extensive experimental manipulation or75

a priori assumptions regarding species groupings. Our method is based on two innovations to standard76

population and community ecology models. First, we define heterospecific species interaction coefficients77

as linear combinations of the average interaction strength and species-specific deviations from this average.78

In parallel, we allow environmental covariates to modify species intrinsic growth rates and the strength79

of biotic interactions—both the average and species deviation terms. We implement this approach using80

a Beverton-Holt model of community dynamics (Beverton & Holt, 1957) within a single growing season,81

although the method can easily be adapted to other models of population abundance (e.g. Mayfield &82

Stouffer 2017; Ricker 1954) or incorporate additional dynamics such as seed banks or dispersal (Levine83

& HilleRisLambers, 2009; Thompson et al., 2020). Second, we extend Bayesian statistical methods for84

variable selection via sparsity-inducing priors in linear models (such as Lasso and Ridge regression; Hastie85

et al. 2015; Piironen et al. 2017) to our non-linear abundance model, thereby reducing the number of terms86

included in the final model fit, yielding a ‘sparse model.’ By coupling these two modeling approaches, we87

can identify heterospecific species that deviate in their interaction strength, and how environmental gradients88

alter species’ density-independent growth rates and biotic interactions. We explore model effectiveness89

using simulated data and apply the model to empirical data from a highly diverse (45 species) annual plant90

community.91
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3 Methods92

3.1 Deconstructing species interaction coefficients and fecundity93

Models of community dynamics incorporate species-specific interaction coefficients for each species pair,94

commonly denoted as αi, j, the effect of species j on species i, resulting in a large number of parameters95

required to model diverse communities or environmental relationships. To reduce the number of parameters96

required to model diverse communities and incorporate environmental variation, we start with a partitioning97

approach. We first define these interaction terms as98

ln(αe,i, j) = a0,i + â0,i, j +(ae,i + âe,i, j)Xe (1)

where αe,i, j is the effect of species j on species i in environment e with i 6= j. In Eqn. 1, a0,i is the effect99

of an average heterospecific individual on individuals of species i, â0,i, j is the deviation from this average100

effect associated with species j, ae,i is the average slope of species i’s interaction coefficients with environ-101

mental covariate Xe, and âe,i, j is the deviation from this slope associated with species j. Upon first glance,102

using Eqn. 1 may seem counter productive as it increases the number of parameters compared to traditional103

interaction coefficients. However, in the next section we describe how coupling this approach with spar-104

sity inducing priors in a Bayesian context can dramatically reduce the number of required parameters by105

identifying only the necessary species-specific terms (â0,i, j and âe,i, j) for accurately modeling population106

dynamics of species i.107

While intraspecific competition (αe,i,i) could in principle be modeled according to Eqn. 1, we instead108

define it separately as:109

ln(αe,i,i) = a0,i,i + ae,i,iXe (2)

where a0,i,i and ae,i,i are the intercept and slope for the effect of intraspecific individuals. As both theoretical110

expectations (Chesson, 2000) and empirical results (Adler et al., 2018) point to the importance of intraspe-111

cific competition, we use Eqn. 2 to explicitly exclude the intraspecific terms from the sparsity inducing112
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process defined in the next section. These terms, therefore, will always be included in the final model fit.113

Interaction coefficients (Eqns. 1 & 2) can be incorporated in many different models of community dy-114

namics. We use the Beverton-Holt model due to its legacy in studies of annual plant communities and115

coexistence theory (e.g. Godoy & Levine 2014; Kraft et al. 2015). We emphasize, however, that our general116

statistical approach can be adapted to other population models. In the Beverton-Holt model, the fecundity117

Fe,i of a focal species i in environment e is modeled as:118

Fe,i =
λe,i

1+αe,i,iNe,i +∑
S
j 6=i αe,i, jNe, j

(3)

Fecundity depends on a species’ intrinsic growth rate (i.e. density-independent seed production; λe,i)119

and the competitive effects of all S species in the community (αe,i, j terms as defined by Eqns. 1 &2) scaled120

by each species’ abundance (Ne, j) (Levine & HilleRisLambers, 2009; Pérez-Ramos et al., 2019; Shoemaker121

& Melbourne, 2016). To incorporate environmental variation in intrinsic growth rates, we model λe,i as:122

ln(λe,i) = b0,i + be,iXe (4)

where b0,i is the intercept of the intrinsic growth rate and be,i its slope with environmental covariate Xe.123

We use Eqn. 3 to model observed fecundity within a single growing season of both simulated and empirical124

data.125

3.2 Incorporating sparsity-inducing priors126

By deconstructing interaction coefficients into a combination of species-specific and generic terms, we can127

determine which, if any, species-specific terms are necessary for the final model. Allowing only a subset of128

parameters to take non-zero values is referred to as ‘sparse modeling,’ and various techniques exist to induce129

sparsity in linear models (Hastie et al., 2015; O’Hara et al., 2009).130

To extend a sparse modeling approach to our non-linear model of fecundity (Eqn. 3), we employ sparsity-131

inducing priors which act to shrink all but a subset of parameters to 0, thus producing a sparsely parame-132

terized model. Specifically, we model â0,i, j and â0,i, j, the species-specific intercepts and slopes of the inter-133
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specific interaction coefficients (Eqn. 1), with regularized horseshoe priors which more accurately estimate134

large parameter values compared to other sparsity-inducing priors (Bhadra et al., 2019; Carvalho et al., 2009;135

Piironen et al., 2017; Van Erp et al., 2019). Parameters âi, j and âe,i, j, are given priors Normal(0,τβ̃0, j) and136

Normal(0,τβ̃e, j) respectively. (Note that since we fit the model for a single focal species, we drop the i137

subscript from the priors for simplicity.) In these priors, τ defines the global tendency towards sparsity138

through its effect on the priors’ standard deviations. In other words, with smaller values of τ , the priors for139

all âi, j and âe,i, j parameters become more tightly centered on 0. Conversely, the β̃ terms allow specific pa-140

rameters to escape this global trend towards sparsity. As an individual β̃ term becomes large, its associated141

prior becomes wider, and that species-specific term is more likely to be included in the final model. In the142

regularized horseshoe prior, these β̃ terms are defined as:143

β̃ j =
cβ j√

c2 + τβ 2
j

β j ∼ half-Cauchy(0,1) (5)

c2 ∼ inverse-gamma(
ν

2
,
νs2

2
)

Defining β̃ j as the combination of a half-Cauchy and inverse-gamma distribution causes large coefficients to144

be shrunk towards 0 by a Student’s t distribution with ν degrees of freedom and a scale of s2(Piironen et al.,145

2017; Van Erp et al., 2019). Following the recommendations of Piironen and Vehtari (2017), we set ν to 4146

and s2 to 2. Rather than setting the global shrinkage parameter τ to a fixed value, we give it a half-Cauchy147

prior with scale parameter equal to 1 (τ ∼ half-Cauchy(0,1)) and allow the data to inform the posterior148

distribution of τ (Piironen et al., 2017; Van Erp et al., 2019).149

We employ a hybrid approach in which we first fit the full model with regularized horseshoe priors to150

induce sparsity in the species-specific terms; we subsequently fit a final model using traditional, non-sparse151

methods. From the preliminary model fit, we identify which species-specific terms have sufficient evidence152

to be included in the final model fit. We calculate credible intervals (CIs) for each species-specific term in153

the preliminary model and include in the final model only those terms whose intervals do not overlap 0. By154
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using this approach, we can directly adjust how conservative we wish to be in including model parameters,155

balancing model prediction, the proportion of variance explained, and simplicity depending on modeling156

goals (Tredennick et al., 2021) (i.e. using a 50% CI will lead to models including more parameters than if157

we use a 95% CI). Then, for the final model fit, the included species-specific terms (â0,i, j and âe,i, j) are given158

standard normal priors (i.e. Normal(0,1)). In both preliminary and final model fits, the terms defining λe,i159

(b0,i and be,i; Eqn 4) are also given standard normal priors. The intercept and slope terms defining intraspe-160

cific competition (a0,i,i and ae,i,i; Eqn.2) and the generic intercept and slope defining interspecific competition161

(a0,i and ae,i; Eqn. 1) are both given weakly informative priors in each model fit, matching the expected scale162

of these interaction coefficients: a0,i,i ∼ Normal(−6,3), a0,i ∼ Normal(−6,3), ae,i,i ∼ Normal(0,0.5), and163

ae,i ∼ Normal(0,0.5). All models were fit using the stan language with the rstan package (version 2.18.2;164

Stan Development Team 2018 in R (version 3.5.3; R Core Team 2019). All code for the analyses and165

simulations presented here can be found at https://github.com/tpweiss06/SparseInteractions.166

3.3 Simulation tests of model performance167

To test our ability to predict changes in population size and recover true parameter values, we first paired168

our Bayesian sparse modeling approach with simulated Beverton-Holt data using Eqns. 1-4. For the simu-169

lations, we generated communities of 15 species in different plots, where each plot was a unique run of the170

simulation for a given community with a given environmental condition Xe. We aimed to generate popula-171

tion growth rates comparable to those found in a community adapted to its environment. Each species was172

assigned an intrinsic growth rate λe,i following Eqn 4 (Table 1), pairwise species competitive interactions173

αe,i, j were composed of the generic competition term a0,i with small amounts of variation and a generic envi-174

ronmental response ae,i. Seven randomly selected species also had a non-generic competition term through175

species-specific deviations from a0,i (â0,i, j). Seven separately selected species had a non-generic environ-176

mental response through species-specific deviations âe,i, j. Intraspecific competition a0,i,i was set as a fixed177

value higher than interspecific competition to minimize extinction in the simulations (Table 1). Each plot178

simulation was run deterministically for 20 time steps with each time step Nt+1 = FtNt using Ft from equa-179

tion 3. This resulted in some subset of the 15 species remaining with populations greater than zero in each180
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plot. Then each population was perturbed by drawing from a normal distribution with mean and standard181

deviation equal to the previous population size, truncated at 0 to prevent negative population sizes. This per-182

turbed state and the following time step generated our simulated ‘full-community’ data. In addition to 500183

full-community plots, we simulated 500 ‘no-competition’ treatments with a single phytometer individual of184

the focal species per plot, running the Beverton-Holt function for one time step. This simulated treatment185

matches methods commonly used in experimental studies to parse intrinsic growth rates from competition186

parameters (Hallett et al., 2019; Wainwright et al., 2019). Simulation details are included in Supplement 1.187

We used these simulations to measure our sparse modeling approach’s ability to predict population188

growth in diverse communities and recover underlying parameters. We selected one focal species and tested189

our model’s performance using varying numbers of full-community and no-competition plots. We tested190

out-of-sample predictions on 200 full-community plots not used to fit the model. We then calculated the191

posterior distribution of the root-mean-square error (RMSE) of model predictions compared to true values192

for each model fit. This allowed us to quantify the gain in predictive accuracy resulting from including more193

data.194

3.4 Empirical application195

We additionally applied our model to species interactions and their environmental dependencies in the an-196

nual plant understory of the York gum (Eucalyptus loxophleba Benth) - jam (Acacia acuminata) woodlands197

of southwestern Western Australia. This community is highly diverse and heterogeneous, with local compo-198

sition of annual forbs and grasses influenced by gradients in soil nutrients and shade from York gum and jam199

trees (Dwyer et al., 2015; Lai et al., 2015). We focused on two York gum-jam woodland remnants: West200

Perenjori Nature Reserve (29◦47’S, 116◦20’E) and Bendering Nature Reserve (32◦23’S, 118◦22’E). Both201

sites experience a Mediterranean climate with mild winters and long, dry summers (Suppiah et al., 2007)202

and have high overlap in annual species composition, sharing several dominant species. Data used for this203

study were originally collected as part of a larger experiment described in full in Wainwright et al. (2019).204

We focus on two species used as focal species in the original study and common to both reserves: Waitzia205

acuminata, an abundant native annual forb, and Arctotheca calendula, a prevalent exotic annual forb.206
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We used data from 11 experimental blocks in Bendering Nature Reserve and 18 blocks in West Perenjori207

Nature Reserve. Each block was≈ 15 x 15 m, a size selected to account for previously identified soil-nutrient208

turn-over rates (Dwyer et al., 2015). Each block was split into 50 x 50 cm plots and each plot was further209

subdivided into four 25 x 25 cm quadrats. One individual of either focal species near the center of each210

quadrat was assigned as the focal individual for that quadrat. Which focal species were in a given quadrat211

depended on the natural distribution of individuals. This experiment employed five thinning treatments at212

the plot level to manipulate local community compositions (individual focal individuals with no competitors,213

native dominated competitors, exotic dominated competitors, monocultures with only conspecific competi-214

tors, and unmanipulated plots) (Wainwright et al., 2019). This ensured a range of observed densities of both215

species and the background communities to inform model estimates of competition coefficients and intrinsic216

growth rates. Across both reserves we used data from 129 focal individuals in 69 plots interacting with 45217

neighbouring species for W. acuminata and 95 focal individuals in 54 plots interacting with 40 species for218

A. calendula.219

We applied our sparse modeling framework to quantify the effect of the competitive environment on220

fecundity in W. acuminata and A. calendula under different environmental conditions. Fecundity Fe,i was221

measured as the number of flowers produced by each focal individual. The competitive environment was222

characterized as the number of individuals of each interacting species in the quadrat after the experimental223

treatment had been applied (Ne, j). We considered two aspects of the physical environment Xe: percent224

overhead tree canopy cover, measured at the plot scale, and soil Colwell P (mg/kg), measured at the block225

scale. Both environmental covariates were standardized for inclusion in the model. We ran a separate model226

for each focal species and environmental covariate, for a total of four model fits. To account for regional227

differences between the Bendering and Perenjori reserves, we incorporated a fixed effect for the two different228

reserves into our sparse modeling approach by allowing λi, λe,i, α̂ i, j, and α̂e,i, j to differ between reserves.229

Using this approach, we quantified λe,i and αe,i, j for both species across both environmental gradients in the230

York gum-jam woodland communities.231
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4 Results232

4.1 Simulations233

Our model accurately predicted growth rates for simulated communities even with relatively low sample234

sizes (Fig. 1) and across different model formalizations (Box 1). With only 10 full-community and 10235

no-competition plots, the model predicted growth rates with a root-mean-square error (RMSE) of 0.495236

(credible interval, CI: 0.353-0.665). While increasing sample size further increased model accuracy (RMSE237

of 0.315 (CI: 0.211-0.520) for 50 plots and 0.227 (CI 0.195-0.288) for 200 plots), these results indicate the238

model can accurately predict species’ realized growth rates using limited data. Furthermore, species’ growth239

rates can be accurately predicted using observed competitive communities paired with no-competition plots,240

rather than necessitating common manipulative experimental designs where each possible species combina-241

tion is paired across a gradient of densities (Hallett et al., 2019; Kraft et al., 2015).242

Our model was also able to accurately predict individual parameter estimates for simulated communities243

(Fig. 1). In particular, estimates of the intercept and slope parameters for intrinsic growth rate (b0, i and244

be, i respectively) dramatically increased in accuracy from 10 to 200 data points (Fig. 1a,e). The accuracy245

of the estimates for the slope and intercept of intraspecific competition (a0,i,i and ae,i,i respectively) also246

increased with more data, but less dramatically than the terms defining intrinsic growth rate. Parameters247

associated with interspecific competition (a0,i representing the intercept and ae,i for the slope) also increased248

in accuracy with increasing data, although there was more variance in this relationship. This is likely because249

the model correctly identified a larger number of species-specific terms with more data, which decreased the250

total number of species contributing to the estimation of a0,i and ae,i. When fit to only 10 simulated plots,251

the model did not identify any species-specific terms (â0,i, j or âe,i, j) and only used a0,i and ae,i. The model252

identified two species-specific terms within a single species when fit to 50 plots and eight species-specific253

terms across six species when fit to 200 plots. In general, the estimates of species-specific terms were highly254

accurate; only two out of the eight estimated species-specific interaction terms did not include the true value255

in their 95% credible intervals.256
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4.2 Empirical application257

Our method identified environmental dependencies in intrinsic growth rates (Fig. 3a,b; 4, a,b), relative258

strengths of intraspecific competition and average interspecific competition, along with competition-environment259

interactions (Fig. 3c,d; 4, c,d), all of which differed between our two focal species. Additionally, our model260

highlighted three species with deviations from the average interspecific effects on native W. acuminata, but261

no such species when fit to data on exotic A. calendula.262

W. acuminata and A. calendula’s intrinsic growth rates differed in their relationship with the environmen-263

tal gradients and reserves. The intrinsic growth rate of W. acuminata across both environmental gradients264

varied between the Bendering and Perenjori reserves (Fig. 3a,b). In contrast, λe,i for A. calendula was quite265

similar between the two reserves as it varied with both phosphorous and canopy cover (Fig. 4a,b). This266

could reflect local adaptation in regional populations of the native W. acuminata but not in the newly intro-267

duced A. calendula. Importantly, the intrinsic growth rate of W. acuminata declined with high phosphorous268

(marginally in Bendering, but substantially in Perenjori) while A. calendula’s intrinsic growth rate increased269

with phosphorous, potentially explaining the high prevalence of invasive species in areas with increased270

phosphorous (Dwyer et al., 2015).271

Relative effects of competition between conspecifics versus heterospecifics also differed between the two272

focal species. For W. acuminata, the relationship between intraspecific competition and average interspecific273

competition varied with the underlying environmental gradients. At low levels of phosphorous and high274

levels of canopy cover, intraspecific competition in W. acuminata was greater than average interspecific275

competition (Fig. 3c,d). However, at high levels of phosphorous and low levels of canopy cover, intra-276

and interspecific competition converged to similar values. On the other hand, intraspecific competition277

for A. calendula was similar to or lower than generic interspecific competition across both environmental278

gradients (Fig. 4c,d). This likely contributes to the invasive status of A. calendula in this ecosystem, whereas279

W. acuminata populations self-regulate under certain environmental conditions—a necessary component of280

stable coexistence.281

Our model highlighted multiple species with competitive effects on W. acuminata that differed from282

the generic interaction term. Across the observed gradient in phosphorous, Hyalosperma glutinosum had283
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a higher than average effect on W. acuminata in the Perenjori reserve while Schoenus nanus had a lower284

than average effect in the Bendering reserve (Fig. 3c). Across the observed gradient in canopy cover,285

Hypochaeris glabra had a much higher than average effect on W. acuminata in Bendering (Fig. 3d). In286

contrast, all heterospecific interactive effects on A. calendula remained grouped in the generic competition287

term. The lack of species with unique effects on A. calendula (Fig. 4c,d) could be due to its exotic status288

(Lai et al., 2015). With no shared evolutionary history with any other community members, A. calendula289

could be experiencing a form of competitive release, wherein the identity of competitor species matters less290

than simply the presence of additional individuals.291

5 Discussion292

Given the inherent complexity of ecological communities, ecologists are often forced to rely on simplify-293

ing assumptions in order to perform tractable analyses, such as limiting the number of species considered294

or ignoring environmental variation. The sparse modeling approach presented here provides an alternative295

method to analyze community data without requiring extensive additional data or sacrificing complexity.296

This approach enabled us to accurately predict population growth rates with limited data and identify how297

species’ demographic rates and competitive interactions depend on the environment. Our results identify en-298

vironment by species interactions that deviate from the species-averaged community effects without making299

a priori assumptions about species groupings (Figure 3c, d). This information and output from the sparse300

modeling approach generates concrete, testable hypotheses about species interactions and environmental301

conditions. We see broad potential for this method’s implementation in community ecology, from theory302

development to management applications.303

The sparse modeling approach’s flexibility in modeling populations and communities allows easy ad-304

justments for the best match between underlying model structure and the given study system and research305

questions. As we show in Box 1 and Fig. 2, these models can successfully be applied to different forms of306

species-environment interactions and be modified to be more or less complex based on underlying ecolog-307

ical questions and data availability. For example, the functional form of the relationship between intrinsic308

growth rate and the environment likely depends on a study’s spatial scale. For localized studies, a sim-309
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ple monotonic relationship (Figure 2a) might be appropriate to capture species’ expected responses across310

a small range of environmental variation. However, studies over larger spatial scales might require a func-311

tional form with optimal intrinsic growth reached at an intermediate environmental value and declining away312

from that value (Figure 2b), mimicking expected patterns of adaptation across species’ ranges (Angert et al.,313

2020). Additionally, while we used a Beverton-Holt framework in our examples (Beverton & Holt, 1957),314

the sparse approach is agnostic to the underlying ecological model. Thus, it could be used with different315

functional forms of competition (Garcı́a-Callejas et al., 2020) with models incorporating both competitive316

and facilitative interactions (Stachowicz, 2001) or different underlying demography such as seed banks.317

With this flexibility, sparse modeling has the potential to be a powerful tool to accelerate the develop-318

ment of community ecology theory and practice. It can provide important insights into the covariation of319

environmental conditions, species’ demographic rates, and competitive effects—critical aspects of modern320

coexistence theory (Chesson, 2000). This includes quantifying the relative strengths of intra- versus inter-321

specific competition, which is a key condition for stable coexistence (Adler et al., 2018; Chesson, 2000).322

Furthermore, the approach elucidates the effect of environmental conditions on species’ density-independent323

growth rates versus competitive interactions, potentially allowing for quantification of variation-dependent324

coexistence mechanisms, such as the storage effect, in diverse communities (Chesson, 2000). Similarly, out-325

put from our sparse modeling approach across environmental gradients can be used to quantify the relative326

importance of environmental (abiotic) filtering, biotic interactions, and the joint effect on species occurrence327

(Cadotte & Tucker, 2017). Applying such an approach is especially exciting for linking community theory328

to global change predictions, depending on the underlying environmental gradient of interest.329

In addition to expanding theory, we see exciting potential for sparse modeling to address questions in330

applied contexts and generate new hypotheses from existing datasets that inform management strategies.331

This includes quantifying how environmental modifications can be used in conjunction with community332

manipulations to control invasive species or promote native species. For example, our results from the York333

gum-jam woodlands of Western Australia suggest the native W. acuminata experiences declining fitness334

with increasing levels of phosphorous, particularly in the Perenjori reserve (Fig. 3a). At the same time,335

the model identified H. glutinosum as having a stronger than average competitive impact on W. acuminata336

in Perenjori (Fig. 3c). Taken together, these results suggest that reserve managers could help maintain or337
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expand populations of W. acuminata by mitigating phosphorous run-off while simultaneously removing H.338

glutinosum in key locals. In contrast, our results for the invasive A. calendula suggest that neighbor species339

identity is unimportant (Fig. 4c,d) and management strategies focusing solely on environmental factors340

would be most impactful.341

Beyond the implementation of the sparse modeling approach presented here, the underlying model struc-342

ture can be further adjusted to align the model with focal management questions. For example, if a manage-343

ment goal only requires knowledge of species interactions within a community, the model could be simplified344

to remove environmental covariates (Box 1). Alternatively, the global shrinkage parameter τ could be set at345

a fixed value to induce more or less sparsity in the final model results. Such a change could allow users to346

manually explore the trade-off between inclusion of species-specific terms and precision of parameter esti-347

mates, finding the balance that best suits their particular goals. For example, fixing τ to a higher value would348

yield more estimates of species-specific parameters, which could help to inform future research priorities,349

but those estimates would likely be less precise, limiting their utility in predicting community dynamics.350

Small adjustments such as these empower ecologists and managers to match the tool to their questions and351

aims.352

In its current structure, the sparse modeling framework is most useful when applied to high-diversity353

communities with limited available data. As we observed when analyzing simulated data, the number of354

non-generic terms does not necessarily increase with sample size, and is limited by τ at higher sample sizes355

(Figure 2d). As described above, there may be cases where manual adjustments to τ would be beneficial356

depending on the available data and questions of interest. However, a traditional, non-sparse model in357

which every interaction term is included may still be preferable in situations with abundant data, lower-358

diversity communities, or when answering questions requiring individual estimates of all potential species359

interactions. In contrast, the sparse approach is particularly helpful with limited data and in cases where360

traditional models often struggle to converge or provide overly broad parameter estimates.361

The model we present here is currently analyzed for a single growing season and for use with traditional362

population dynamic models (e.g. Beverton-Holt or Lotka-Voltera models). Given the importance of temporal363

stochasticity to community dynamics (Shoemaker et al., 2020) and the need to predict community responses364

to changing anthropogenic pressures (Ma et al., 2017), sparse modeling with time series could provide365
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invaluable insight into the importance of species-specific interactions through time as well as space. Further,366

extending the approach to a wider range of input data beyond individual counts (e.g. percent cover or367

biomass) would allow for future uses across observational datasets and especially for perennial-dominated368

systems.369

Sparse modeling approaches have proved immensely valuable in fields as diverse as genomics (Gianola370

& Fernando, 2020) to economics (Fan et al., 2011). By dramatically reducing the parameter load required371

to model diverse communities across environmental gradients, we show these sparse modeling approaches372

can provide both theoretical and applied insights in community ecology as well. We demonstrate the flex-373

ibility of this approach across different ecological models and underlying biological assumptions, and are374

excited to see it expanded and applied to a variety of ecological questions and applications. Although the375

implementation of the sparse method requires an initial conceptual investment, the output results are easily376

interpretable—a quality that is particularly important for linking models to practice. The sparse modeling377

approach eliminates the need for a priori assumptions regarding species’ groupings or the exclusion of all378

but a handful of focal species, providing a critical method and step forward in expanding ecological theory379

and linking models to observational and experimental datasets of diverse communities.380
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Parameter Distribution Unique to

S regional species pool 15 species single value for
community

Ni,0 initial population Gaussian (mean 80, sd 50)
truncated at 0

species, plot

Xe plot environment Gaussian (mean 0, sd 1) plot

λe,i intrinsic growth with mono-
tonic environmental response

eb0,i+be,iXe species

b0,i environmentally-independent
growth rate

uniform (0 to 1.5) species

be,i environmental response in λ Gaussian (mean 0, sd 0.5) species, plot

αe,i, j competitive interactions with
environmental effects

ea0,i+â0,i, j+(ae,i+âe,i, j)Xe species pair, plot

a0,i generic interspecific competi-
tion

Gaussian (mean -7, sd 0.1) species pair

â0,i, j deviation in competition uniform ±(1.5 to 3.2) 7 species j

a0,i,i intraspecific competition -3.5 constant

ae,i generic environmental varia-
tion in competition

Gaussian (mean 0, sd 0.3) single value for
community

âe,i, j specific environmental varia-
tion in competition

uniform ±(0.5 to 1.5) 7 species j

Table 1: Parameter components and distributions used in simulations
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Figure 1: Fitted model parameter estimates and predicted growth rates. We fit the model to simulated data
with 10 (a and b), 50 (c and d), and 200 (e and f) full-community and no-competition plots. The left column
(a, c, and e) shows the deviation of parameter values from the true value used in the simulations (points are
posterior means and lines are 95% credible intervals). The right column (b, d, and f) shows model accuracy
of the focal species’ growth rate for 200 simulated full-community plots not included in the model fitting.
Growth rates were calculated as ln(Nt+1

Nt
. The dashed line is the 1-1 line indicating a perfect match. Points

show mean estimates and lines are 95% CIs.
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Figure 2: Estimates for λe,i for simulated data with (A) a monotonic response to the environment and (B) an
environmental optimum, with the true values as a solid red line, model means as a dashed black line, and
individual model posterior draws as thin grey lines. Both models were run with 50 full community plots and
50 no-competition plots. All growth rate parameters fell within the 95% credible intervals for parameters in
both models. (C) Simulated contexts with only αi, j species pair intercepts compared to contexts with αe,i, j
species pair by environment slopes. Performance of sparse models matching these simulation contexts was
measured as RMSE between the model predictions and the true value of 200 out-of-sample data points. Both
models predict true growth rates similarly well at low sample sizes (10 samples) but the model of the simpler
simulation converges closer to the true values. (D) Number of non-generic terms identified by models on
the different α contexts, which is constrained at larger sample sizes by the global shrinkage parameter τ .
The model of the species pair intercept only simulation identifies more non-generic αi, j pairs at all sample
sizes. The model of the simulation with both non-generic species pair α0,i, j intercepts and species pair by
environment αe,i, j slopes requires more data to identify non-generic terms, and those are split between the
intercept and slope terms.
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Figure 3: Model estimates for W. acuminata. Means (solid lines) and 95% CIs (dashed lines) are shown
for λe,i across a gradient of phosphorous (a) and canopy cover (b). Colors indicate the Bendering and
Perenjori reserves. The mean (black line) and 95% CI for generic interspecific competition are shown
across a phosphorous (c) and canopy cover (d) gradient. In both c and d, the mean intraspecific competition
coefficient is shown in green and different species identified by the model as non-generic in each reserve are
shown with other colors as indicated in the legends.
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Figure 4: Model estimates for A. calendula. Means (solid lines) and 95% CIs (dashed lines) are shown
for λe,i across a gradient of phosphorous (a) and canopy cover (b). Colors indicate the Bendering and
Perenjori reserves. The mean (black line) and 95% CI for generic interspecific competition are shown
across a phosphorous (c) and canopy cover (d) gradient. In both c and d, the mean intraspecific competition
coefficient is shown in green with dashed lines indicating the CI. The model did not identify any interspecific
competitors in either reserve that impacted A. calendula differently from a generic competition coefficient.
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Box 1: Adapting the sparse modeling method to different ecological524

questions525

This sparse modeling method is generalizable to a variety of underlying ecological models. The method’s526

flexibility allows researchers to pick and choose which parameters to include and how to specify them as527

best fits with their study system and questions of interest.528

For example, the relationship between species’ growth rates and the environment can be modeled in529

multiple ways. A monotonic relationship would be appropriate for a study concentrated within a small spatial530

scale, while a humped-shape relationship would match expectations for a study over a broad environmental531

gradient. To demonstrate how our method can be modified for different underlying ecological models, we532

simulated environmental responses in growth rate two ways: with a monotonic relationship between species533

and the environmental conditions λe,i and with a curved environmental optimum with a defined niche breadth534

for each species λ ∗e,i. This resulted in two model formulations:535

λe,i = eb0,i+be,iXe (6)

in which b0,i is the mean intrinsic growth rate and be,i is the slope of the environmental response, and536

λ
∗
e,i = bmax,ie

−
(

zi−Xe
2σi

)2

(7)

in which bmax,i is the maximum intrinsic growth rate, zi is the environmental optimum, and σi is the environ-537

mental niche breadth (following the parameterization in Thompson et al. (2020)). We tested these models538

using samples of 50 full community plots and 50 no-competition plots.539

All growth rate parameters fell within the 95% credible intervals for parameters in both models. In the540

monotonic λe,i model, both the intercept b0,i and the slope be,i deviated from the true values by 3%. In the541

optimum λ ∗e,i model, the maximum bmax,i deviated from the true value by 6%, the niche breadth σi deviated542

by 1%, and the location of the environmental optimum zi deviated by 13%, which is an absolute difference543

of 0.04 (Fig. 2a and b).544

As a further example, the species interaction components of the model can be adjusted depending on the545

30

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453227


main research questions of interest. For questions focused on species interactions, modeling interaction co-546

efficients independent of environmental conditions would optimize the number of non-generic species pairs547

identified from a given sample size of data. We compared a simple simulation with competitive interac-548

tions independent of environmental conditions αi, j to a more complex model with competitive interactions549

dependent on the environmental conditions αe,i, j, and modeled each accordingly. We tested these models550

using different sample sizes of full community data points and focal individuals. Both models predicted true551

out-of-sample growth rates with average RMSE of ≈ 0.4 with only 10 full-community and no-competition552

plots. With 80 or more full-community and no-competition plots the simpler model had a RMSE of ≈ 0.2553

and the model of the more complex simulation had a RMSE of≈ 0.25 (Figure 2c). The simpler model with-554

out species-environment interactions highlighted five non-generic â0,i, j species pair interactions with just 50555

full-community and no-competition plots. The more complex model highlighted only two non-generic terms556

with 50 full-community and no-competition plots. At higher sample sizes the number of non-generic terms557

was constrained by the global shrinkage parameter τ (Figure 2d)558

We present these options as launching-off points for researchers to adapt the sparse modeling approach559

to their study systems and questions. Even more extensive modifications are possible; for example, replacing560

the Beverton-Holt community framework with a different underlying ecological model.561
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