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Abstract  39 

The tumour microenvironment and genetic alterations collectively influence drug efficacy in 40 

cancer, but current evidence is limited to small scale studies and systematic analyses are 41 

lacking. We chose Chronic Lymphocytic Leukaemia (CLL), the most common leukaemia in 42 

adults, as a model disease to study this complex interplay systematically. 43 

We performed a combinatorial assay using 12 drugs individually co-applied with each of 17 44 

microenvironmental stimuli in 192 primary CLL samples, generating a comprehensive map of 45 

drug-microenvironment interactions in CLL. This data was combined with whole-exome 46 

sequencing, DNA-methylation, RNA-sequencing and copy number variant annotation.  47 

Our assay identified four distinct CLL subgroups that differed in their responses to the panel 48 

of microenvironmental stimuli. These subgroups were characterized by distinct clinical 49 

outcomes independently of known prognostic markers. We investigated the effect of CLL-50 

specific recurrent genetic alterations on microenvironmental responses and identified trisomy 51 

12 as an amplifier of multiple microenvironmental stimuli. We further quantified the impact of 52 

microenvironmental stimuli on drug response, confirmed known interactions such as 53 

Interleukin (IL) 4 mediated resistance to B cell receptor (BCR) inhibitors, and identified new 54 

interactions such as Interferon-γ induced resistance to BCR inhibitors. Finally, we identified 55 

interactions which were limited to genetic subgroups. Resistance to chemotherapeutics, such 56 

as Fludarabine, induced by Toll-Like Receptor (TLR) agonists could be observed in IGHV 57 

unmutated patient samples and IGHV mutated samples with trisomy 12. In-vivo relevance was 58 

investigated in CLL-infiltrated lymph nodes, which showed increased IL4 and TLR signalling 59 

activity compared to healthy samples (p<0.001). High IL4 activity in lymph nodes correlated 60 

with faster disease progression (p=0.038).  61 

 62 

We provide a publicly available resource (www.dietrichlab.de/CLL_Microenvironment/) which 63 

uncovers tumour cell extrinsic influences on drug response and disease progression in CLL, 64 

and how these interactions are modulated by cell intrinsic molecular features. 65 
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Introduction  66 

CLL is a common B-cell malignancy, attributed to the accumulation of mature B-lymphocytes 67 

in the peripheral blood, bone marrow, and lymph nodes1. The disease course is 68 

heterogeneous, influenced by multiple factors including B cell receptor (BCR) signalling, 69 

genetic alterations, epigenetic effects, and the tumour microenvironment2. Despite significant 70 

improvements to CLL treatment, including the advent of BCR inhibitors3 and BH3-mimetics4, 71 

CLL remains incurable. There is a compelling need to better understand cell-intrinsic and 72 

extrinsic causes of therapy failure. 73 

 74 

The genetic landscape of CLL is well characterised. The most important features include 75 

del(17p), TP53-mutations, immunoglobulin heavy chain gene (IGHV) mutation status, 76 

del(13q) and trisomy 125,6. This list of recurrent genetic and structural alterations has 77 

expanded in the past years7. The predictive value of those alterations has however declined 78 

in the context of modern targeted therapies and resistance mechanisms are incompletely 79 

understood 8.  80 

 81 

Additionally to cell-intrinsic factors, CLL cell proliferation and survival is dependent on the 82 

lymph node microenvironment9, which is underlined by the observation that CLL cells undergo 83 

spontaneous apoptosis in vitro if deprived of protective microenvironmental signals10. 84 

Microenvironmental stimuli can induce drug resistance in vitro, for example the combination 85 

of IL2 and resiquimod, a Toll-Like Receptor (TLR) 7 / 8 stimulus, induces resistance to 86 

venetoclax11. The CLL microenvironment constitutes a complex network of stromal and 87 

immune cells that promote cell expansion12 via soluble factors and cell-cell contacts. 88 

Microenvironmental signalling is particularly important in protective niches, especially lymph 89 

nodes. Incomplete response to BCR inhibitors has been linked to persistent enlargement of 90 

lymph nodes13, which are the main site of CLL proliferation9.  91 

 92 
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Several studies have investigated individual components of the microenvironment in 93 

leukaemia14–18. However, systematic studies, particularly those exploring cell-extrinsic 94 

influences on drug response, are rare. Carey et al.19 have screened acute myeloid leukaemia 95 

samples with a panel of soluble factors and among them identified IL1ß as a mediator of 96 

cellular expansion in Acute Myeloid Leukaemia. This example highlights the value of systematic 97 

approaches to dissect tumour-microenvironment crosstalk.  98 

 99 

Taking this approach further, we screened a panel of microenvironmental stimuli in CLL, 100 

individually and in combination with drugs, and complemented our dataset with multi-omics 101 

data on the patient samples. In this study, we integrate genetic, epigenetic and 102 

microenvironmental modulators of drug response in CLL systematically in a large patient 103 

cohort that covers the clinical and molecular diversity of CLL. Due to the dependency on 104 

microenvironmental support, CLL is an important model system for the interaction between 105 

malignant and microenvironmental cells in general.  106 

  107 
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Methods  108 

Sample preparation and drug-stimulation profiling 109 

Sample preparation, cell-culture, drug-stimulation profiling, and genomic annotation was 110 

performed on 192 CLL patient samples as previously described20 with the following 111 

adjustments. Stimuli and drugs were mixed and preplated in the culture plates directly before 112 

adding the cell suspensions. RPMI-1640 and supplements were acquired from Gibco by Life 113 

Technologies, human serum was acquired from PAN Biotech (Cat.No. P40-2701, Lot.No:P-114 

020317). Viability was assessed by measuring ATP concentration using CellTiter-Glo 115 

(Promega) after 48h. Luminescence was measured on a Perkin Elmer EnVision.  116 

 117 

Compounds and Stimuli 118 

Compounds and stimulatory agents were dissolved, stored, and diluted according to 119 

manufacturer's protocol. HS-5 conditioned medium was produced by incubating HS-5 stromal 120 

cell line to >80% confluency and cell removal by centrifugation. For a detailed list of stimuli 121 

and drugs and associated concentrations, see Supp. Tables 1 and 2. Final DMSO concentration 122 

did not exceed 0.3%.  123 

 124 

Immunohistochemistry  125 

Lymph node biopsies of CLL-infiltrated and non-neoplastic samples were formalin fixed, 126 

paraffin embedded, arranged in Tissue Microarrays and stained for pSTAT6 (ab28829, Abcam) 127 

and pIRAK4 (ab216513, Abcam). The slides were analysed using Qupath21 and the 128 

recommended protocol.  129 

 130 

Data processing and statistical analysis 131 

To quantify the responses to drugs and stimuli, we used a measure of viability relative to the 132 

control, namely the natural logarithm of the ratio between CellTiter Glo luminescence readout 133 

of the respective treatment and the median of luminescence readouts of the DMSO control 134 
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wells on the same plate, excluding controls on the outer plate edges. Data analysis was 135 

performed using R version 4 and using packages including DESeq222, survival23, Glmnet24, 136 

ConsensusClusterPlus25, clusterProfiler26, ChIPseeker27, genomation28 and 137 

BloodCancerMultiOmics201729 to perform univariate association tests, multivariate regression 138 

with and without lasso penalization, Cox regression, generalised linear modelling and 139 

clustering. The complete analysis is described along with computer-executable transcripts at 140 

github.com/Huber-group-EMBL/CLLCytokineScreen2021.  141 

 142 

For Figure 2A, Clusters were determined by repeated hierarchical clustering over 10.000 143 

repetitions with randomly selected sample subsets of 80% with the Euclidean metric using 144 

ConsensusClusterPlus25. LDT was calculated as previously described30. For figure 2D 145 

Multinomial regression with lasso penalisation with a matrix of genetic features (p=39), and 146 

IGHV status (encoded as M = 1 and U = 0) was used to identify multivariate predictors of 147 

cluster assignment. Coefficients shown are mean coefficients from 50 bootstrapped repeats 148 

and error bars represent the mean ± standard deviation. Genetic features with >20% missing 149 

values were excluded, and only patients with complete annotation were included in the model 150 

(n=137).  151 

 152 

Significance testing for genetic determinants of microenvironmental response shown in Figure 153 

3A was performed for somatic mutations and copy number aberrations present in ≥3 patients, 154 

and IGHV status (n = 54). For multivariate modelling with L1 penalisation shown in Figure 3B, 155 

to generate the feature matrix genetic alterations with less than 20% missing values were 156 

considered, KRAS, BRAF and NRAS mutations were summarised as RAS/RAF alterations and 157 

only patient samples with complete genetic annotation were tested. In total, 39 genetic 158 

features as well as IGHV status (encoded as M = 1 and U = 0), and Methylation Cluster 159 

(encoded as 0, 0.5, 1) and 129 patients were included in this analysis.  160 

 161 
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For Figures 4C and D RNA-Seq data on matched samples belonging to clusters C3 and C4 were 162 

selected, Ig Genes were filtered out, differentially expressed genes were calculated with the 163 

design formula ~ IGHV + Cluster  using the Deseq2 package and ranked based on Wald 164 

statistics. GSEA was performed using the fgsea algorithm. For Fig 4E, we selected the raw 165 

sequencing files from Rendeiro et al. 201631 to include one sample per patient passing quality 166 

checks (n=52). We obtained bam files mapped to the hg19 genome and adjusted for CG bias 167 

as previously outlined32. As trisomy 12 status was not already annotated, we called trisomy 12 168 

in samples that contained > 1.4 times more reads per peak on average in chromosome 12, 169 

compared to peaks on other chromosomes. We used diffTf in permutation mode32 to infer the  170 

differential TF activity between trisomy 12 and non-trisomy 12 samples using HOCOMOCO 171 

v1033 with design formula: “~ sample_processing_batch + sex + IGHV status + trisomy 12”. 172 

For Figures 4E and H, change in TF activity is inferred using diffTF32, and measured as 173 

weighted mean difference. For Figure 4F, we used ChIPseq data from Care et al. 201434 to 174 

define TF targets as the closest gene to each significant ChIP peak (q value<0.05) and within 175 

±1kb of Transcription Start Site. Over-representation tests were run using clusterProfiler 176 

package26 and the method corresponds to one-sided version of Fisher’s exact test. For Figure 177 

4H, CLL cells have been treated for 6h hours with IBET-762 (1µM) or DMSO as solvent control 178 

before isolation and transposition of DNA for ATAC Seq. Raw ATACseq data generated from 179 

IBET-762 and DMSO treated CLL samples were processed as described in Berest et al. 201932, 180 

mapped to hg38. We then used analytical mode of diffTF with HOCOMOCO v11 database33 181 

using the following parameters: minOverlap = 2; design formula = “~Patient + treatment. 182 

The plot depicts weighted mean difference of different diffTF analyses (trisomy 12 vs. non-183 

trisomy 12 and IBET-762 treated cells vs. DMSO treated cells), absolute effect sizes should 184 

therefore not be directly compared. Significantly different TFs from the trisomy 12 vs. non-185 

trisomy 12 analysis are shown.  186 

 187 

To generate predictor profiles for Figure 6A, linear model in Eqn. (1) was fitted in a sample - 188 
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specific manner, to calculate drug stimulus interaction coefficients (βint) for each patient 189 

sample. Associations between the size of βint and genetic features were identified using 190 

multivariate regression with L1 (lasso) regularisation with gene mutations (p = 39) and IGHV 191 

status as predictors and selecting coefficients that were chosen in >90% of bootstrapped 192 

model fits.  193 

 194 

For Figure 7G+H pSTAT6 and pIRAK4 groups were defined using maximally selected rank 195 

statistics based on staining intensities. The same 64 CLL lymph node samples, for which 196 

survival data was available, were used for both Kaplan-Meier plots. 197 

 198 

Data Sharing Statement 199 

Screening data and patient annotation used in this study are available at github.com/Huber-200 

group-EMBL/CLLCytokineScreen2021. For original sequencing data and raw viability data 201 

please contact the corresponding authors. We obtained CLL ATACseq data31 from the EGA 202 

(EGAD00001002110) and ChIPseq data for Spi-B binding34 from the NCBI GEO database35 203 

(GSE56857, GSM1370276).   204 
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Results 205 

Ex-vivo cell viability assay demonstrates functional diversity of cytokine and 206 

microenvironmental signalling pathways  207 

We measured the effects of 17 cytokines and microenvironmental stimuli on cell viability in 208 

192 primary CLL samples and combined each with 12 drugs to investigate the influence on 209 

spontaneous and drug-induced apoptosis. (Fig 1A-C, Supp. Tables 1 -3). Viability was assessed 210 

by ATP measurement after 48h and normalised to untreated controls20.  211 

 212 

The patient samples were characterised by DNA sequencing, mapping of copy number 213 

variants, genome-wide DNA-methylation profiling, and RNA-Sequencing20. The distribution of 214 

genetic features in our cohort is comparable to other studies (Supp. Fig 1)6.  215 

 216 

To assess the heterogeneity of the response patterns, we calculated Pearson correlation 217 

coefficients for each pair of drugs and each pair of stimuli. For the drugs, high correlation 218 

coefficients (>0.75) were associated with identical target pathways. For example, drugs 219 

targeting the BCR pathway (ibrutinib, idelalisib, PRT062607 and selumetinib) were highly 220 

correlated, indicating that our data sensitively and specifically reflect inter-individual 221 

differences in pathway dependencies (Fig. 1D)20. 222 

In contrast, microenvironmental stimuli showed lower correlations, even where stimuli 223 

targeted similar pathways (Fig. 1E, Supp. Fig. 2). For example, lower correlations were 224 

observed between different stimuli of the JAK-STAT and NfκB pathways, indicating a low 225 

degree of redundancy between stimuli. High correlations (R>0.75) were only seen with the 226 

TLR stimuli resiquimod (TLR7/8) and CpG ODN (TLR9) as well as IL4 and IL4 + soluble CD40L 227 

(sCD40L), which target near identical receptors and downstream targets.  228 

Most stimuli increased CLL viability, underlining the supportive nature of the 229 

microenvironment. However, IL6, tumor growth factor β (TGFβ), and TLR7/8/9 agonists in 230 
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IGHV-mutated (IGHV-M) samples decreased viability (Supp. Fig. 3). The strongest responses 231 

were seen with IL4 and TLR7/8/9 agonists, highlighting the potency of these pathways in 232 

modulating CLL survival. All screening data can be explored manually (github.com/Huber-233 

group-EMBL/CLLCytokineScreen2021) and interactively, via the shiny app 234 

(www.dietrichlab.de/CLL_Microenvironment/).  235 

Patterns of responses to microenvironmental stimuli reveal two subgroups of 236 

IGHV-M CLL with differential aggressiveness  237 

To gain a global overview over the pattern of responses to our set of microenvironmental 238 

stimuli across patient samples, we clustered25 and visualised the response profiles (Fig. 2A).  239 

This analysis revealed four functionally defined subgroups with distinct response profiles. Two 240 

clusters (termed C1 and C2) were enriched in IGHV-Unmutated (IGHV-U), and two in IGHV-241 

M CLL (C3 and C4). C1 and C2 showed strong responses to IL4 and TLR7/8/9 agonists. C2 242 

was distinguished by stronger responses to the stimuli overall, in particular to NFκB agonists 243 

including IL1β and anti-IgM. C3 responded weakly to the majority of stimuli, while C4 was 244 

defined by a decreased viability upon TLR7/8/9 stimulation (Supp Fig. 4). 245 

Next, we investigated whether these clusters were associated with differential in vivo disease 246 

progression of the corresponding patients. We used lymphocyte doubling time and time to 247 

next treatment to quantify the proliferative capacity of CLL cells. In line with clinical 248 

observations36, the IGHV-U enriched C1 and C2 showed a shorter lymphocyte doubling time 249 

than the IGHV-M enriched C3 and C4. More strikingly, C3 showed a significantly shorter 250 

lymphocyte doubling time than C4, indicating a higher proliferative capacity (Fig. 2B).  251 

 252 

This observation was reflected in disease progression rates: The predominantly IGHV-M C3 253 

showed a progression dynamic similar to the IGHV-U enriched C1 and C2. C4, however showed 254 

a longer time to next treatment than C1, C2 and C3 (Cox proportional hazards model, p= 255 
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0.0014, <0.001, 0.005 respectively, Fig. 2C, Supp. Fig 5A&B). This points towards a subset of 256 

mostly IGHV-M patients with more aggressive disease, which is characterised by its differential 257 

response to microenvironmental stimuli. 258 

 259 

To characterise genetic differences between clusters, we calculated predictor profiles for 260 

cluster assignment, using multinomial regression with the sample mutation profiles (Fig. 2D). 261 

IGHV status was the main predictor of all clusters. Trisomy 12 and SF3B1 mutations were 262 

associated with C2, which showed enhanced responses to many stimuli. C4, which was 263 

associated with slow in vivo progression, showed depletion of TP53, ATM, RAS/RAF mutations 264 

and gain(8q).  265 

 266 

The observed difference in progression dynamics in vivo was not explained solely by the known 267 

prognostic markers IGHV, trisomy 12, and TP53. A multivariate Cox proportional hazards 268 

model accounting for these features showed an independent prognostic value of the cluster 269 

assignment between C3 and C4 (p=0.039, Supp. Table 4). 270 

 271 

To examine why C3 exhibited faster disease progression than C4, we compared baseline 272 

pathway activity at the time of sampling, using RNA-Sequencing (Supp. Fig. 6A). Gene set 273 

enrichment analysis revealed that key cytokine gene sets were upregulated in C3, including 274 

TNFα signalling via NFκB, indicating higher pathway activity in vivo (Fig. 2E, Supp. Fig. 6B). 275 

In addition, pathways that indicate more aggressive disease relating to proliferation, 276 

metabolism and stress response were upregulated in C3 (Supp. Fig. 6 C-E).  277 

 278 

Taken together, the patterns of responses to our set of stimuli distinguish two subgroups of 279 

IGHV-M CLL (C3 and C4) that are characterised by distinct in vivo pathway activities and 280 

differential disease progression.  281 
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Microenvironmental signals and genetic features collectively determine malignant 282 

cell survival  283 

Having observed heterogeneous responses to stimulation, we performed univariate analyses 284 

of genetic determinants of stimulus response, including IGHV status, somatic gene mutations, 285 

and structural variants (Fig. 3A). At least one genetic feature determined stimulus response 286 

for 10/17 stimuli and at least two features for 6/17 stimuli (Student's t-tests, FDR = 10%), 287 

indicating that CLL viability is controlled both by cell-intrinsic mutations and the cells’ 288 

microenvironment. The most prominent factors were IGHV status and trisomy 12. Responses 289 

to microenvironmental stimuli were largely independent of receptor expression (Supp. Fig. 7). 290 

 291 

To address the possible interplay of multiple genetic factors, we applied linear regression with 292 

lasso regularisation to derive for each stimulus a multivariate predictor composed of genetic, 293 

IGHV and DNA methylation covariates (Fig. 3B). This revealed at least one genetic predictor 294 

for five of the 17 stimuli. Trisomy 12 and IGHV status were again the most common features. 295 

Stimulus responses stratified by mutations, along with regression model fits can be explored 296 

online (www.dietrichlab.de/CLL_Microenvironment/). 297 

 298 

Trisomy 12 is a key modulator of responses to stimuli  299 

Our survey of genetic determinants of stimuli response highlighted trisomy 12 as a modulator 300 

of responses to IL4, TGFβ, soluble CD40L + IL4 and TLR stimuli.  301 

 302 

TLR response has previously been shown to depend on the IGHV mutation status16; we 303 

identified trisomy 12 as a second major determinant of response to TLR stimulation. IGHV 304 

mutated CLL samples with trisomy 12 showed a strongly increased viability after TLR 305 

stimulation with resiquimod compared to those without trisomy 12. IGHV unmutated CLL cells 306 

showed a strong increase in viability upon TLR stimulation regardless of trisomy 12 status  307 

(Fig. 4A). In line with our previous findings, we found a trend towards higher toxicity of BCR 308 
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inhibition in trisomy 12 patients, indicating a dependency of the trisomy 12 effect on the BCR 309 

pathway (Fig. 4B)20. Further, we observed that the pro-survival effect of TLR stimulation, which 310 

is increased in IGHV-U and trisomy 12 CLL samples, could be reversed by BCR inhibition (Supp. 311 

Fig. 8) 312 

 313 

To investigate the incompletely understood role of trisomy 12 in CLL, we investigated how it 314 

might modulate responses to cell-extrinsic signals. We began by investigating the 315 

transcriptomic signature of trisomy 12 and performed a gene set enrichment analysis of 316 

trisomy 12 vs. non-trisomy 12 samples. Using  the hallmark gene sets we found multiple 317 

microenvironmental signalling cascades to be upregulated including TNFα and Interferon 318 

response pathways (Fig. 4C). Since important microenvironmental pathways are missing in 319 

the hallmark gene sets, we repeated this analysis for selected KEGG gene sets relating to 320 

microenvironmental signalling and found the BCR and chemokine signalling pathways to be 321 

upregulated (Fig. 4D). Overall, trisomy 12 CLL samples exhibit a higher activity of 322 

microenvironmental signalling pathways including BCR signalling.  323 

 324 

To investigate potential downstream effectors in trisomy 12 CLL, we visualised transcription 325 

factor (TF) activity profiles based on chromatin accessibility data derived from ATAC 326 

sequencing. We used the diffTF32 software to identify TFs with differential binding site 327 

accessibility between trisomy 12 and non-trisomy 12 CLL, using ATAC sequencing data for two 328 

non-trisomy 12 and two trisomy 12 CLL PBMC samples. The binding sites of 92 TFs respectively 329 

were more accessible (p<0.05) in the trisomy 12 samples (Supp. Fig. 9), reflecting a specific 330 

signalling signature in trisomy 12 CLL. The top hit was the hematopoietic regulator Spi-B, 331 

followed by PU.1, which share similar binding motifs and exhibit functional redundancy37. We 332 

validated this finding in a second independent dataset taken from Rendeiro et al.31, which 333 

included 43 WT and nine trisomy 12 samples.  The binding sites of nine TFs were more 334 

accessible (p<0.05) in the trisomy 12 samples (Fig. 4E), and Spi-B and PU.1 were again the 335 
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top hits. These TFs are known to be key regulators of healthy B-cell function38,39, controlling 336 

B-cell responses to environmental cues including CD40L, TLR ligands and IL440. 337 

We hypothesised that Spi-B might modulate proliferation by coordinating transcriptional 338 

response to microenvironmental signals. To identify Spi-B target genes, we reanalysed a 339 

ChIPseq dataset34, quantifying binding in lymphoma cell lines and tested functional enrichment 340 

of immune signalling pathways amongst Spi-B targets. Using selected KEGG and Reactome 341 

genesets, we found that TLR, BCR and TGFβ signalling genes were enriched (p<0.01) amongst 342 

Spi-B targets (Fig. 4F). 343 

We next investigated whether Spi-B activity and the trisomy 12 signalling signature might be 344 

targetable. Amongst the panel of drugs included in this screen, we noted that the 345 

bromodomain inhibitor IBET-762 demonstrated higher efficacy in trisomy 12 CLL cells (Fig. 346 

4G). We generated an additional ATACseq dataset consisting of four CLL PBMC samples each 347 

treated with IBET-762 and DMSO as control. Using diffTF, we quantified TF binding site 348 

accessibility and visualised inferred TF activity for trisomy 12 signature TFs. All nine TFs that 349 

showed higher accessibility in trisomy 12 exhibited decreased accessibility upon treatment 350 

with IBET-762  (Fig. 4H).  351 

Taken together, we highlight trisomy 12 as a modulator of response to microenvironmental 352 

signals, link these effects to differentially active BCR signalling and suggest bromodomain 353 

inhibition as a possible therapeutic target in trisomy 12 patients.  354 

Mapping drug-microenvironment interactions reveals drug resistance and 355 

sensitivity pathways  356 

Guided by the observation of reduced treatment efficacy in protective niches13, we examined 357 

the effects of the stimuli on drug response.  358 
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We fitted a linear model (Eqn 1) to quantify how each stimulus modulates drug efficacy beyond 359 

its individual effects, such as the impact of the stimuli on baseline viability and spontaneous 360 

apoptosis. 𝛽𝑖𝑛𝑡, termed the interaction factor, quantifies how the combined treatment effect 361 

differs from the sum of the individual treatment effects.  362 

 363 

㏒ 𝑉 = 𝛽𝑑𝑋𝑑  +  𝛽𝑠𝑋𝑠 +  𝛽𝑖𝑛𝑡𝑋𝑑𝑋𝑠 + 𝜀                Eqn 1 364 

 365 𝑉 represents the viability with a given treatment, 𝛽𝑑, 𝛽𝑠and 𝛽𝑖𝑛𝑡 are coefficients for the drug, 366 

stimulus, and combinatorial terms respectively, 𝑋𝑑and 𝑋𝑠are indicator variables (0 or 1) for 367 

the presence or absence of a drug/stimulus. 𝜀 is the vector of model residuals.  368 

 369 

45 out of 204 combinations had a 𝛽𝑖𝑛𝑡 with p<0.05. We classified these into four categories, 370 

based on the sign of 𝛽𝑖𝑛𝑡 and whether the combination effect was antagonistic or synergistic 371 

(Fig. 5A-C). 372 

 373 

Positive antagonistic interactions were the most common category, in which stimuli reversed 374 

drug action and increased viability. These interactions could lead to treatment resistance in 375 

vivo. They comprised known resistance mechanisms including the inactivation of ibrutinib by 376 

IL4 signalling (Fig. 5D)18, and previously unknown resistance pathways, notably the effect of 377 

interferon-γ (IFNγ) signalling on ibrutinib response (Fig. 5E).  378 

 379 

6/45 interactions were categorised as negative antagonistic, in which drug action reversed the 380 

pro-survival effect of microenvironmental stimulation. These interactions point to strategies to 381 

overcome treatment resistance. For instance, Pan-JAK inhibition reduced the increase in 382 

viability from sCD40L + IL4 stimulation (Fig. 5F).  383 

 384 
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We observed a single positive synergistic case, whereby simultaneous treatment with IFNγ 385 

and ralimetinib, a p38 MAPK inhibitor, induced a synergistic increase in viability which was not 386 

observed with either single treatment (Fig. 5G), pointing towards an inhibitory effect of p38 387 

activity on IFNγ signalling. 388 

 389 

16 combinations showed negative synergistic interactions. For example, TLR9 agonist CpG 390 

ODN increased the efficacy of BCR inhibition (Fig. 5H). Interestingly, in samples where TLR 391 

stimulation increased viability, the addition of BCR inhibitors (ibrutinib and idelalisib) 392 

suppressed this effect, indicating that the increase of viability upon TLR stimulation is 393 

dependent on BCR activity. The efficacy of luminespib, a HSP90 inhibitor, increased with 394 

various stimuli, including soluble anti-IgM (Fig. 5I). 395 

 396 

Altogether, these results highlight the influence of the microenvironment on drug efficacy and 397 

underline the value of microenvironmental stimulation in ex vivo studies of drug efficacy.  398 

Genetic features affect drug-microenvironment interactions  399 

Next, to investigate to what extent genetic driver mutations modulated the interactions 400 

between stimuli and drugs, we fit the linear model in Eqn. (1) in a sample - specific manner. 401 

 402 

This resulted in a sample-specific 𝛽𝑖𝑛𝑡 interaction coefficient for each drug - stimulus 403 

combination. We looked for associations between the size of 𝛽𝑖𝑛𝑡 and genetic features using 404 

multivariate regression with L1 (lasso) regularisation, with gene mutations and IGHV status as 405 

predictors. We generated a predictor profile for each drug - stimulus combination, considering 406 

predictors that were selected in >90% of bootstrapped model fits. In total, we found genetic 407 

modulators for 60/204 interactions (Fig 6A, Supp Fig. 10). Trisomy 12 and IGHV status 408 

modulated the largest number of interactions.  409 

 410 
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For example, we found the value of 𝛽𝑖𝑛𝑡 for fludarabine and CpG ODN to be modulated by six 411 

genetic factors; most strongly by IGHV status, del(11q), and trisomy 12 (Fig. 6B). 412 

In IGHV-M non-trisomy 12 samples, fludarabine efficacy increased in the presence of TLR 413 

stimulation, whilst in the other subgroups TLR stimulation induced resistance to fludarabine 414 

(Fig. 6C).  415 

 416 

Our approach also identified interactions dependent on single treatment effects. IL4 induced 417 

complete resistance to ibrutinib regardless of higher ibrutinib efficacy in trisomy 12 and IGHV-418 

U samples. This highlights the breadth of IL4-induced resistance to ibrutinib in CLL across 419 

genetic backgrounds (Fig. 6D, Supp. Fig. 11).  420 

 421 

Overall, these findings illustrate how the presence of known genetic alterations determines 422 

how drugs and external stimuli interact with each other.  423 

The key resistance pathways IL4 and TLR show increased activity in CLL-infiltrated 424 

lymph nodes  425 

 426 

Microenvironmental signalling within lymph nodes has been implicated in treatment 427 

resistance9,41–43, though a clear understanding of the mechanisms involved remains missing. 428 

Since IL4 and TLR signalling were the most prominent modulators of drug response in our 429 

study, we assessed their activity within the lymph node niche. We stained paraffin embedded 430 

sections of 100 CLL-infiltrated and 100 non-neoplastic lymph nodes for pSTAT6, an essential 431 

downstream target of IL4 (Supp. Fig. 12), and pIRAK4, a downstream target of TLR7/8/9.  432 

 433 

The CLL-infiltrated lymph nodes showed higher levels of pSTAT6 (Fig. 7A) and pIRAK4 (Fig. 434 

7B). Examples are shown in Fig. 7C-F. 435 

 436 
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To investigate the influence of microenvironmental activity in lymph nodes on CLL disease 437 

progression, we correlated staining intensity to time to next treatment. High activity of pSTAT-438 

6 correlated with shorter time to next treatment (Fig. 7G), the same trend could be observed 439 

with higher pIRAK4 (Fig. 7H). Higher IL4 activity within the lymph node appeared to relate to 440 

shorter time to next treatment, and may provide further evidence to the hypothesis that 441 

microenvironmental activity promotes treatment resistance within the lymph node, eventually 442 

leading to relapse.   443 
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Discussion  444 

Our work maps the effects of microenvironmental stimuli in the presence of drugs and links 445 

these to underlying molecular properties across 192 primary CLL samples. We employ all 446 

combinations of 17 stimuli with 12 drugs as a reductionist model of microenvironmental 447 

signalling. We account for the confounding effects of spontaneous apoptosis ex vivo and 448 

dissect the effect of individual microenvironmental stimuli on baseline viability and drug 449 

toxicity. The results may serve as building blocks for a more holistic understanding of the 450 

interactions of tumour genetics, microenvironment, and drug response in complex in vivo 451 

situations. 452 

We discover that CLL subgroups can be extracted from microenvironmental response 453 

phenotypes and that this classification is linked to distinct molecular profiles and clinical 454 

outcomes. IGHV-M samples with weaker responses to microenvironmental stimuli showed 455 

faster disease progression, highlighting the important role microenvironmental signalling may 456 

play in CLL pathophysiology.  457 

The sensitivity afforded by our approach enabled us to identify drug-stimulus interactions, 458 

meaning instances where the effect of a drug on the tumour cells is modulated by a 459 

microenvironmental stimulus. Our assay recapitulated known drug-resistance phenomena, 460 

such as the impact of IL4 stimulation on ibrutinib and idelalisib18 and identified new ones, 461 

including IFNγ-induced resistance to BCR inhibition. Systematic mapping of drug-stimulus 462 

interactions, such as generated in this study, can be used to inform biology-based 463 

combinatorial treatments across different entities.  464 

We demonstrated the breadth of IL4-induced resistance against kinase inhibitors and 465 

chemotherapeutics across a range of genetic backgrounds. IL4 induced complete resistance 466 

to BCR inhibitors across genetic subgroups, despite greater BCR inhibitor efficacy in IGHV-U 467 

CLL. Further, we observed increased IL4 activity within CLL-infiltrated lymph nodes and the 468 

association of higher activity with faster disease progression. Our work highlights the 469 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.07.23.453514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453514


21 

significance of IL4 within the lymph node niche, especially since proliferation9 and resistance 470 

to BCR inhibition13 is linked to lymph nodes and our recent work suggests T follicular helper 471 

cells as a source of IL444. Targeting pathways downstream of IL4, via JAK inhibition, has been 472 

reported to improve BCR response in non-responding CLL patients45. 473 

Underneath cell-extrinsic factors that control the apoptotic and proliferative activity of tumour 474 

cells in response to drugs there lies the network of cell-intrinsic molecular components. We 475 

used multivariate modelling to capture the impact of molecular features on responses to stimuli 476 

and drugs. For instance, the response to TLR stimulation depended on IGHV status, trisomy 477 

12, del11q, del13q and ATM, reflecting the multiple layers of biology involved. Most strikingly, 478 

we observed that TLR stimulation increased fludarabine toxicity in the subgroup of IGHV-M 479 

non-trisomy 12 patient samples, while it led to fludarabine resistance in all other backgrounds. 480 

This finding combined with our observation that TLR signalling is highly active in CLL-infiltrated 481 

lymph nodes might help explain the heterogeneous effects of chemotherapy in CLL, in 482 

particular that fludarabine therapy can achieve lasting remission in IGHV-M but not in IGHV-483 

U patients.  484 

 485 

Beyond TLR, trisomy 12 modulated a broad range of stimulus responses and drug-stimulus 486 

interactions, comparable to the impact of IGHV status. Molecularly, we link the observed 487 

trisomy 12 phenotype to upregulated microenvironmental signalling and higher activity of Spi-488 

B, an essential regulator of environmental sensing in B-cells40. The TF signature associated 489 

with trisomy 12 can be reversed by bromodomain inhibition and trisomy 12 samples exhibit 490 

increased sensitivity to bromodomain inhibition, indicating this as potential therapeutic 491 

strategy in trisomy 12 CLL.  492 

 493 

We present a data resource for the study of drug response in the context of cell-intrinsic and 494 

cell-extrinsic modulators. The data may inform targeted mechanistic investigations30 and direct 495 
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efforts for combination therapies. The entire dataset, including the reproducible analysis, can 496 

be downloaded from the online repository (github.com/Huber-group-497 

EMBL/CLLCytokineScreen2021), or explored interactively 498 

(www.dietrichlab.de/CLL_Microenvironment/).  499 
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Figure 1. Study outline and overview of drugs and stimuli.  

(A) Schematic of experimental protocol. By combining 12 drugs and 17 stimuli, we 

systematically queried the effects of simultaneous stimulation and inhibition of critical 

pathways in CLL (n=192). Integrating functional drug-stimulus response profiling with four 

additional omics layers, we identified pro-survival pathways, underlying molecular modulators 

of drug and microenvironment responses, and drug-stimulus interactions in CLL. All screening 

data can be explored either manually (github.com/Huber-group-

EMBL/CLLCytokineScreen2021) or interactively, via the shiny app 

(www.dietrichlab.de/CLL_Microenvironment/). 

(B) Overview of stimuli included in the screen and summary of their associated targets. HS-5 

conditioned medium is omitted, as no specific target can be shown.  

(C) Table of drugs included in the screen. Drug target, and category of target are also shown. 

(D - F) Pearson correlation coefficients of drug-drug and stimulus-stimulus correlations. (D) 

and (E) show highest drug -drug and stimulus-stimulus correlations, (F) shows selected 

combinations of stimuli targeting the NfKB and JAK-STAT pathways as examples of stimuli 

which share very similar receptors and downstream target profiles but show a divergence of 

effects. 
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Figure 2. Ex vivo microenvironmental response profiling reveals subgroups with 

distinct molecular profiles and disease progression.  

(A) Heatmap showing the viability after treatment with microenvironmental stimuli. Rows 

represent microenvironmental stimuli and columns represent primary CLL samples, annotated 

for their genetic background, sex and pre-treatment status above. Red values indicate 

increased viability upon treatment, blue indicates decreased viability. Data is row-scaled.  

(B) Lymphocyte doubling time, a clinical marker for disease progression, plotted for each 

cluster. P-values from Student’s t-tests.  

(C) Kaplan-Meier curves of time to next treatment for each cluster. P-values from univariate 

Cox proportional hazard models comparing IGHV-U enriched C1 with C2, and IGHV-M enriched 

C3 with C4.  

(D) Multinomial regression with lasso penalisation to identify enrichment or depletion of 

genetic features within each cluster.  

(E) Gene set enrichment analysis (GSEA) comparing on expression of genes in samples from 

C3 and C4. Normalised enrichment scores are shown for top 10 most significant pathways 

upregulated in C3 versus C4. 
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Figure 3. Responses to microenvironmental signals are modulated by genetic 

alterations recurrent in CLL. 

(A) Overview of results of all tested gene - stimulus associations. x-axis shows stimuli, y-axis 

shows p-values from Student’s t-test (two-sided, with equal variance). Each dot represents a 

gene-stimulus association. Tests with p-values smaller than the threshold corresponding to a 

false discovery rate (FDR) of 10% (method of Benjamini and Hochberg) are indicated by 

coloured circles, where the colours represent the gene mutations and structural aberrations.  

(B) Predictor profiles for selected stimuli to represent gene - stimulus associations identified 

through Gaussian linear modelling with L1-penalty. Within the plots, the bar plots on the left 

indicate size and sign of coefficients assigned to the named predictors. Positive coefficients 

indicate higher viability after stimulation if the feature is present. Scatter plots indicate 

log(viability) values, in order of magnitude, for each individual sample. Heatmaps show 

mutation status for each of the genetic predictors for the corresponding samples in the scatter 

plot. 
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Figure 4. Trisomy 12 modulates responses to microenvironmental signals.  

(A+B) Log normalised viability after treatment with resiquimod (TLR 7/8 stimulus) (A) and 

ibrutinib (B) in the genetic subgroups of IGHV status and trisomy 12. P-values from Student's 

t-tests.  

(C+D) GSEA comparing trisomy 12 samples to non-trisomy 12 samples in Hallmark genesets 

(C) and selected KEGG genesets of microenvironmental signalling pathways (D). 

(E) Differential TF accessibility (y axis) between trisomy 12 (n = 9) and non-trisomy 12 (n = 

43) samples, data taken from Rendeiro et al32. TFs with adjusted p-value <0.05 are shown 

and ordered by change in inferred TF activity (x-axis). Spi-B and PU.1 TF binding sites show 

higher accessibility in trisomy 12 CLL.  

(F) Over-representation tests of selected KEGG and Reactome pathways in ChIPseq analysis 

of Spi-B binding in lymphoma cell lines indicates involvement in coordinating transcriptional 

response to microenvironmental signals, including BCR and TLR signalling.  

(G) Log normalised viability after treatment with the bromodomain inhibitor IBET-762 in 

trisomy 12 and non-trisomy 12 samples. P-value from Student's t-tests.  

(H) Differential TF binding site accessibility (y axis) in trisomy 12 vs non-trisomy 12 CLL 

samples (purple) and for IBET-762 vs DMSO treated CLL samples (green). Direction of 

differential accessibility values are shown for two independent datasets comparing trisomy 12 

vs non-trisomy 12 CLL and IBET-762 vs control-treated CLL, for all TFs with adjusted p value 

<0.05 in the trisomy 12 comparison. Absolute change in TF accessibility can not be compared 

between the two experiments.  
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Figure 5. Microenvironmental stimuli influence ex-vivo drug response. 

(A) Graphical representation of the four drug-stimulus interaction categories. Categories are 

defined according to the nature of the interaction (synergistic or antagonistic), and whether 

the viability is increased or decreased by the stimulus (positive or negative). x-axis shows 

treatment type, y-axis shows viability with each treatment. Red and blue points and lines 

depict a representative treatment response pattern for given interaction type. Blue horizontal 

lines represent the expected viability for combinatorial treatment in the absence of an 

interaction between drug-stimulus (i.e. additive effects), black horizontal lines represent the 

measured viability after combinatorial treatment. The difference between the black and blue 

lines represents the drug - stimulus interaction.  

(B) Bar plot of significant interactions in all four categories (p-value for 𝛽𝑖𝑛𝑡 is <0.05). 

(C) Heatmap of all βint values  for which p-value <0.05 for drug-stimulus combinations, 

annotated with interaction type. Scale indicates size and sign of βint. Rows and columns 

clustered according to hierarchical clustering.  

I: Positive 𝛽𝑖𝑛𝑡 and antagonistic (Microenvironmental stimulation reduces drug effect) 

II: Negative 𝛽𝑖𝑛𝑡 and antagonistic (Drug reduces stimuli effect)  

III: Positive 𝛽𝑖𝑛𝑡 and synergistic (Microenvironmental stimulation and drug have synergistic 

pro-survival effect) 

IV: Negative 𝛽𝑖𝑛𝑡 and antagonistic (Microenvironmental stimulation and drug show synergistic 

toxicity) 

(D - I) Examples of drug-stimulus interactions, for each category. Plots show log transformed 

viability values with each treatment, for all samples. Each line represents one patient sample 

linked across treatments. Black lines in single treatments indicate viability predicted by the 

linear model. In combinatorial treatment, the expected viability based on the additive effect 

of drug and stimulus (blue), and the viability with interaction (black), are shown to indicate 

the impact of the interaction.  

(D+E) Ibrutinib, a clinically used BTK inhibitor, is blocked by IL4 and IFNγ.  
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(F) The JAK inhibitor pyridone-6 inhibits the pro-survival effect of sCD40L + IL4 stimulation.  

(G) The p38 inhibitor ralimetinib and IFNγ show a synergistic pro-survival effect not seen in 

either single treatment.  

(H) TLR agonists, including CpG ODN (shown) increase sensitivity to BTK inhibition by ibrutinib, 

despite increasing viability as single treatments.  

(I) Soluble anti-IgM sensitises CLL samples to HSP90 inhibition by luminespib. 
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Figure 6. Integrating the effects of genetic features and stimuli on drug response.  

(A) Heatmap depicting the eight most commonly selected genetic predictors of drug-stimulus 

interactions (each row represents the coefficients of a single multivariate model, as in (B)). 

Stimuli are shown on left, and corresponding drugs on right. Coloured fields indicate that βint 

for given drug and stimulus is modulated by corresponding genetic feature. Positive 

coefficients are shown in red, indicating a more positive 𝛽𝑖𝑛𝑡 if the feature is present. Drug-

stimulus combinations with no genetic predictors of 𝛽𝑖𝑛𝑡 amongst shown genetic factors are 

omitted for clarity.  

(B) Predictor profile depicting genetic features that modulate the interaction between 

fludarabine and CpG ODN. The horizontal bars on left show the size of fitted coefficients 

assigned to genetic features. The matrix in the centre indicates patient mutation status for the 

selected genetic features aligned with the scatter plot indicating the size of βint for each 

patient. Grey lines indicate the presence of genetic feature/IGHV mutated.  

(C-D) Beeswarm boxplots of log(viability) values, for fludarabine + CpG ODN (C) and ibrutinib 

+ IL4 (D) single and combinatorial treatments, faceted by IGHV status and trisomy 12 status. 

P-values from paired Student’s t-tests. 
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Figure 7. IL4 and TLR signalling are upregulated in CLL-infiltrated lymph nodes.  

(A-B) Mean pSTAT6 (A) and pIRAK4 (B) staining intensity in CLL-infiltrated and non-neoplastic 

lymph node biopsies after background subtraction (y axis), p-values from Student’s t-test. 

Each dot represents the mean of all cells in TMA cores per patient sample.  

(C-F) Example images of IHC sections.  

(C + D) show pSTAT6 levels in (C) CLL-infiltrated and (D) non-neoplastic samples.  

(E + F) show pIRAK4 levels in (E) CLL-infiltrated and (F) non-neoplastic samples.  

(G + H) Kaplan-Meier plots for time to next treatment stratified by levels (high / low) of 

pSTAT6 (G) and pIRAK4 (H). 
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