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3Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Université de
Lille, 59650 Villeneuve d’Ascq, France
4Department of Computer Science and Information Systems,BITS Pilani K K Birla
Goa Campus, Goa, India
5Cognitive Neuroscience Lab, BITS Pilani K K Birla Goa Campus, Goa, India
6Department of Biological Sciences,BITS Pilani K K Birla Goa Campus, Goa, India
Correspondence*:
Corresponding Author
f20180193@goa.bits-pilani.ac.in

ABSTRACT2

Emotion classification using electroencephalography (EEG) data and machine learning3
techniques has been on the rise in the recent past. However, past studies uses data from4
medical-grade EEG setup with long set-up time and environment constraints. This paper focuses5
on classifying emotions on the valence-arousal plane using various feature extraction, feature6
selection and machine learning techniques. We evaluate different feature extraction and selection7
techniques and propose the optimal set of features and electrodes for emotion recognition. The8
images from the OASIS image dataset were used to elicit valence and arousal emotions, and9
the EEG data was recorded using the Emotiv Epoc X mobile EEG headset. The analysis is10
carried out on publicly available datasets: DEAP and DREAMER for benchmarking. We propose11
a novel feature ranking technique and incremental learning approach to analyze performance12
dependence on the number of participants. Leave-one-subject-out cross-validation was carried13
out to identify subject bias in emotion elicitation patterns. The importance of different electrode14
locations was calculated, which could be used for designing a headset for emotion recognition.15
The collected dataset and pipeline are also published. Our study achieved a root mean square16
score (RMSE) of 0.905 on DREAMER, 1.902 on DEAP, and 2.728 on our dataset for valence17
label and a score of 0.749 on DREAMER, 1.769 on DEAP and 2.3 on our proposed dataset for18
arousal label respectively.19

Keywords: Signal Processing, Electroencephalography, Machine Learning, Regression, Portable EEG, Valence, Arousal, Emotion,20
Feature extraction, artifact rejection21
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1 INTRODUCTION

The role of human emotion in cognition is vital and has been studied for a long time, with different22
experimental and behavioural paradigms. Psychology researchers have tried to understand human23
perception through surveys for a long time. Recently, with the increasing need to learn about human24
perception, without human biases and conception of various emotions across people (Ekman, 1972), we25
observe the increasing popularity of neurophysiological recordings and brain imaging methods. Since26
emotions are triggered almost instantly, Electroencephalography (EEG) is an attractive choice due to its27
better temporal resolutions and mobile recording devices. (Tuncer et al., 2021; Lang, 1995; Katsigiannis28
and Ramzan, 2018; Koelstra et al., 2012; Ko et al., 2021; Moss et al., 2003).29

30

However, most pattern recognition benchmarks for decoding human emotions from EEG signals have31
been performed with research-grade EEG recording systems with large setup times, sophisticated recording32
setup, and cost. Although a portable EEG headset has a lesser signal-to-noise ratio, its low-cost and easy33
use makes it an attractive choice for collecting data from a wider population sample and overcoming34
the problem of insufficient uniform EEG data for algorithmic research. The algorithmic pipeline of35
decoding user intentions through neurophysiological signals consists of denoising, pre-processing, feature36
extraction, electrode and feature selection, and classification. Although there are deep-learning algorithms37
(Haselsteiner and Pfurtscheller, 2000; Jeevan et al., 2019; Karlekar et al., 2018; Mahajan and Baths, 2021;38
Schirrmeister et al., 2017; Übeyli, 2009; Zhou et al., 2018; Jin and Kim, 2020; Tao et al., 2020) which claim39
to do the frequency decomposition, feature extraction, and classifier training in the hidden layers, their40
explainability is limited, and amount of training data required is huge. Machine learning-based emotion41
recognition hence performs weighted Spatio-temporal averaging of EEG signals. While several feature42
extraction methods were reported in the past, it is crucial to understand which methods are suited for43
emotion recognition and optimize the set of features for performance. Moreover, the electrodes’ relative44
importance can help explain the significance of different regions for emotion elicitation. This could, in turn,45
help in optimizing the electrode locations while conducting EEG-based studies.46

In this study, first, we propose a protocol for eliciting emotions by presenting selected images from the47
OASIS dataset (Kurdi et al., 2016) and signal recording through a low-cost, portable EEG headset. Second,48
we create a pipeline of pre-preprocessing, feature extraction, electrode and feature selection, classifier for49
emotional response (Valence and Arousal) decoding and evaluate it for our dataset and two open-source50
datasets; incremental training to demonstrate the dependence of performance on population sample size is51
presented. Third, we rank different categories of feature extraction techniques to evaluate the applicability52
of feature extraction techniques for highlighting the patterns indicative of emotional response. Moreover,53
we analyze the electrode importance and rank different brain regions for their importance. Fourth, we ask if54
we can automate the feature selection and electrode selection techniques for BCI pipeline engineering and55
validate the procedure with a qualitative and quantitative comparison with neuroscience literature. Lastly,56
we publish the proposed pipeline and recorded dataset for community.57

In the past, the scope of using electrophysiological data for emotion prediction has widened and led58
to standardized 2D emotion metrics of valence and arousal (Russell, 1980) to train and evaluate pattern59
recognition algorithms. Human brain-recording experiments have been conducted as part of effort to60
associate emotion quantitatively with words, pictures, sounds, and videos (Moors et al., 2013; Mohammad,61
2018; Leite et al., 2012; Lane et al., 1999; Gerber et al., 2008; Warriner et al., 2013; Eerola and Vuoskoski,62
2011; Lang, 1995; Kurdi et al., 2016). EEG frequency band has been found to be dominant during different63
roles, corresponding to various emotional and cognitive states (Klimesch, 2012, 1999; Klimesch et al.,64
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1990; Klimesch, 1996; Kamiński et al., 2012; Bauer et al., 2007; Berens et al., 2008; Jia and Kohn, 2011).65
Besides using energy spectral values, researchers use many other features such as frontal asymmetry,66
differential entropy and indexes for attention, approach motivation and memory. “Approach” emotions67
such as happiness are associated with left hemisphere brain activity, whereas “withdrawal,” such as disgust,68
emotions are associated with right hemisphere brain activity (Coan et al., 2001; Davidson et al., 1990). The69
left to right alpha activity is therefore used for approach motivation. The occipito-parietal alpha power has70
been found to have correlations with attention(Misselhorn et al., 2019; Smith and Gevins, 2004). Fronto-71
central increase in theta and gamma activities has been proven essential for memory-related cognitive72
functions(Shestyuk et al., 2019). Differential entropy combined with asymmetry gives out features such73
as differential and rational asymmetry for EEG segments are some recent developments as forward-fed74
features for neural networks(Duan et al., 2013; Torres P. et al., 2020).75

In an attempt to classify emotions using EEG signals, many time-domain, frequency-domain, continuity,76
complexity(Gao et al., 2019; Galvão et al., 2021), statistical, microstate (Milz et al., 2016; Lehmann, 1990;77
Shen et al., 2020b), wavelet-based (Jie et al., 2014). Empirical features (Subasi et al., 2021; Patil et al.,78
2019) have been used to aid better classification results using advanced ensemble learning techniques (Fang79
et al., 2021) or using deep networks, often referred to as bag of deep features (Asghar et al., 2019). We80
have summarized the latest studies using EEG to recognize the emotional state in Table ??81

82

This paper is organized as follows. Section 2 provides description of the three datasets used for our83
analysis. The theoretical background and the details of pre-processing steps (referencing, filtering, motion84
artifact and rejection and repair of bad trials) are discussed in section 3. Section 4 addresses the feature85
extraction details and provides overview of features extracted. Section 5 describes the feature selection86
procedure adapted in this work. Section 6 presents our experiments and results. This is followed by section87
7 for discussion of experiments performed and results obtained in this work. Finally, Section 8 summarizes88
the conclusion and future scope of this work.89

MATERIALS AND METHODS

2 DATASETS

2.1 OASIS EEG dataset90

2.1.1 Stimuli selection91

The OASIS image dataset (Kurdi et al., 2016) consists of a total 900 images from various categories such92
as natural locations, people, events, inanimate objects with various valence and arousal elicitation values.93
Out of 900 images, 40 images were selected to cover the whole spectrum of valence and arousal ratings as94
shown in Fig 1.95

2.1.2 Participants and device96

The experiment was conducted in a closed room with the only source of light being the digital 21”97
Samsung 1080p monitor. Data was collected from fifteen participants of mean age 22 with ten males and98
five females using EMOTIV Epoc EEG headset consisting of 14 electrodes according to the 10-20 montage99
system at a sampling rate of 128Hz and only the EEG data corresponding to the image viewing time were100
segmented using markers and used for analysis.101

102
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Table 1. Table summarising various machine learning algorithms and features used to classify emotions
on various datasets, reported with accuracy

Dataset Classifier Feature extraction method Accuracy
(%)

Ref

DEAP kNN Gray-Level Co-occurrence Matrix;
Spectral Power Density

79.58
(Average)

(Jadhav
et al.,
2017)

DEAP kNN Relative Power Energy; Logarithmic
Relative Power Energy; Absolute
Logarithmic; Relative Power Energy

67.51,
68.55,
65.10
(VAD)

(Verma
and
Tiwary,
2017)

DEAP SVM Hjorth parameters; Entropy; Power
of Frequency bands; RASM; DASM;
Energy of frequency bands using
wavelets

65.72 (10
fold CV);
65.92
(LOO-
CV)

(Khateeb
et al.,
2021)

DEAP GNB Spectral power; Spectral power
differential asymmetry

61.6,
64.7, 61.8
(VAD)

(Koelstra
et al.,
2012)

Video
Clips

kNN Absolute logarithmic Recoursing;
Energy Efficiency of alpha, beta, and
gamma bands decomposed using db4
wavelet function

83.26 (M et al.,
2010)

Movie
Clips

SVM Power spectrum and wavelet
decomposition of frequency bands;
Entropy exponent; Katz fractal
dimension; Feature smoothening
using LDS; Feature reduction using
PCA, LDA and CFS

87.53
(Best
accuracy)

(Wang
et al.,
2011a)

DEAP 2k-NN Spectral power of frequency bands;
Spectral power difference of
symmetric electrodes; Histogram
parameters of segment level
probability vectors; Dirichlet
distribution parameters

76.9, 68.4,
73.9, 75.3
(VADL)

(Wang
et al.,
2014)

The study was approved by the Institutional Ethics Committee of BITS, Pilani (IHEC-40/16-1). All EEG103
experiments/methods were performed in accordance with the relevant guidelines and regulations as per the104
Institutional Ethics Committee of BITS, Pilani. All participants were explained the experiment protocol105
and written consent for recording the EEG data for research purpose was obtained from each of the subject.106

2.1.3 Protocol107

The subjects were explained the meaning of valence and arousal before the start of the experiment and108
were seated at a distance of 80-100 cms from the monitor.109

The images were shown for 5 seconds through Psychopy (Peirce et al., 2019), and the participants were110
asked to rate valence and arousal on a scale of 1 to 10 before proceeding to the next image, as shown111
in Fig 2. The ratings given in the OASIS image dataset were plotted against the ratings reported by the112
participants in order to draw correlation between them, as shown in Fig 3.113
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Figure 1. Valence and arousal ratings of OASIS dataset. Valence and arousal ratings of entire OASIS
(Kurdi et al., 2016) image dataset (blue) and of the images selected for our experiment (red). The images
were selected to represent each quadrant of the 2D space.

2.2 DEAP114

DEAP dataset(Koelstra et al., 2012) has 32 subjects; each subject was shown 40 music videos one115
min long. Participants rated each video in terms of arousal levels, valence, like/dislike, dominance, and116
familiarity. Data was recorded using 40 EEG electrodes placed according to standard 10-20 montage117
system. The sampling frequency was 128Hz. In this analysis, we consider only 14 channels (AF3, F7, F3,118
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) for the sake of uniformity with other two datasets.119

2.3 DREAMER120

DREAMER(Katsigiannis and Ramzan, 2018) dataset has 23 subjects; each subject was shown 18 videos121
at a sampling frequency 128Hz. Audio and visual stimuli in the form of film clips were employed to122
elicit emotional reactions to the participants of this study and record EEG and ECG data. After viewing123
each film clip, participants were asked to evaluate their emotion by reporting the felt arousal (ranging124
from uninterested/bored to excited/alert), valence (ranging from unpleasant/stressed to happy/elated), and125
dominance. Data was recorded using 14 EEG electrodes.126

3 PREPROCESSING

Raw EEG signals extracted out of the recording device are continuous, unprocessed signals containing127
various kinds of noise, artifacts and irrelevant neural activity. Hence, lack of EEG pre-processing can128
reduce the signal-to-noise ratio and introduce unwanted artifacts into the data. In pre-processing step,129
noise and artifacts presented in the raw EEG signals are identified and removed to make them suitable for130
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Figure 2. EEG Data collection protocol Experiment protocol for the collection of EEG data. 40 images
from OASIS dataset were shown to elicit emotion in valence and arousal plane. After presenting each
image, ratings were collected from participant.

analysis on the further stages of experiment. The following subsections discuss each step of pre-processing131
(referencing, filtering, motion artifact and rejection and repair of bad trials) in more detail.132

3.1 Referencing133

The average amplitude of all electrodes for a particular time point was calculated and subtracted from the134
data of all electrodes. This was done for all time points across all trials.135

3.2 Filtering136

A Butterworth bandpass filter of 4th order was applied to filter out frequencies between 0.1Hz and 40Hz137

3.3 Motion Artifact138

Motion artifacts can be removed by using Pearson Coefficients (Onikura et al., 2015). The gyroscopic139
data (accelerometer readings) and EEG data were taken corresponding to each trial. Each of these trials140
of EEG data was separated into its independent sources using Independent Component Analysis (ICA)141
algorithm. For the independent sources obtained corresponding to a single trial, Pearson coefficients were142
calculated between each source signal and each axis of accelerometer data for the corresponding trial. The143
mean and standard deviations of Pearson coefficients were then calculated for each axis obtained from144
overall sources. The sources that had Pearson coefficient 2 standard deviations above mean for any one145
axis were high pass filtered for 3Hz using a Butterworth filter as motion artifacts exist at these frequencies.146
The corrected sources were then projected back into the original dimensions of the EEG data using the147
mixing matrix given by ICA.148
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(a)

(b)

Figure 3. Comparison of actual and self-reported valence and arousal ratings. Valence and arousal
ratings reported by the participants during the EEG data collection and ratings from the OASIS image
dataset.
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3.4 Rejection and repair of bad trials149

Auto Reject is an algorithm developed by Mainak et al. (Jas et al., 2017) for the rejection of bad trials in150
Magneto-/Electro- encephalography (M/EEG data), using a cross-validation framework to find the optimum151
peak to peak threshold to reject data.152

• We first consider a set of candidate thresholds ϕ.153

• Given a matrix of dimensions (epochs x channels x time points) by X ∈ R N×P, where N is the number154
of trials/epochs P is the number of features. P = Q*T, Q being the number of sensors, and T the number155
of time points per sensor.156

• The matrix is split into K folds. Each of the K parts will be considered the training set once, and the157
rest of the K-1 parts become the test set.158

• For each candidate threshold, i.e. for each159
Tl ∈ ϕ

we apply this candidate peak to peak threshold(ptp) to reject trials in training set known as bad trials,160
and the rest of the trials become the good trials in the training set.161

ptp(Xi) = max(Xi)−min(Xi)

where Xi indicates a particular trial.162

• A is the peak to peak threshold of each trial, Gl is the set of trials whose ptp is less than the candidate163
threshold being considered164

A = {ptp(Xi)|i ∈ traink}
165

Gl = {i ∈ traink|ptp(Xi) < Tl}

• Then the mean amplitude of the good trials (for each sensor and their corresponding set of time points)166
is calculated167

X =
1

N

N∑
i=1

Xi

• While the median amplitude of all trials is calculated for the test set X̃valk168

• Now the Frobenius norm is calculated for all K folds giving K errors ek ∈ E; mean of all these errors169
is mapped to the corresponding candidate threshold.170

ekl = ||XGl
− X̃valk ||Fro

• The following analysis was done taking all channels into consideration at once, thus it is known as171
auto-reject global172

• Similar process can be considered where analysis can be done for each channel independently i.e173
data matrix becomes(epochs x 1 x time points) known as the local auto-reject, where we get optimum174
thresholds for each sensor independently.175

• The most optimum threshold is the one that gives the least error176

T∗ = Tl∗ with l∗ = argmin l
1

K

K∑
i=1

ekl
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As bad trials were already rejected in the DEAP and DREAMER dataset, we do not perform automatic177
trial rejection in them.178

4 FEATURE EXTRACTION

In this work, the following set of 36 features were extracted from the EEG signal data with the help of179
EEGExtract library (Saba-Sadiya et al., 2020) for all three datasets:180

• Shannon Entropy (S.E.)181

• Subband Information Quantity for Alpha [8 Hz - 12 Hz], Beta [12 Hz - 30 Hz], Delta [0.5 Hz - 4 Hz],182
Gamma [30 Hz - 45 Hz] and Theta[4 Hz - 8 Hz] band (S.E.A., S.E.B., S.E.D., S.E.G., S.E.T.)183

• Hjorth Mobility (H.M.)184

• Hjorth Complexity (H.C.)185

• False Nearest Neighbour (F.N.N)186

• Differential Asymmetry (D.A., D.B., D.D., D.G., D.T.)187

• Rational Asymmetry (R.A., R.B., R.D., R.G., R.T.)188

• Median Frequency (M.F.)189

• Band Power (B.P.A., B.P.B., B.P.D., B.P.G., B.P.T.)190

• Standard Deviation (S.D.)191

• Diffuse Slowing (D.S.)192

• Spikes (S.K.)193

• Sharp spike (S.S.N.)194

• Delta Burst after Spike (D.B.A.S.)195

• Number of Bursts (N.B.)196

• Burst length mean and standard deviation (B.L.M., B.L.S.)197

• Number of Suppressions (N.S.)198

• Suppression length mean and standard deviation (S.L.M., S.L.S.)199

These features were extracted with a 1s sliding window and no overlap. The extracted features can be200
categorized into two different groups based on the ability to measure the complexity and continuity of the201
EEG signal. The reader is encouraged to refer to the work done by Ghassemi et al. (Ghassemi, 2018) for an202
in-depth discussion of these features.203

4.1 Complexity Features204

Complexity features represent the degree of randomness and irregularity associated with the EEG signal.205
Different features in the form of entropy and complexity measures were extracted to gauge the information206
content of non-linear and non-stationary EEG signal data.207

4.1.1 Shannon Entropy208

Shannon entropy (Shannon, 1948) is a measure of uncertainty (or variability) associated with a random209
variable. Let X be a set of finite discrete random variables X = {x1, x2, ..., xm}, xi ∈ Rd, Shannon210
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entropy, H(X), is defined as211

H(X) = −c

m∑
i=0

p (xi) ln p (xi) (1)

where c is a positive constant and p(xi) is the probability of (xi) (ϵ) X such that:212

m∑
i=0

p (xi) = 1 (2)

Higher values of entropy are indicative of high complexity and less predictability in the system. (Phung213
et al., 2014)214

4.1.2 Subband Information Quantity215

Sub-band Information Quantity (SIQ) refers to the entropy of the decomposed EEG wavelet signal for216
each of the five frequency bands.(Jia et al., 2008; Valsaraj et al., 2020). In our analysis, the EEG signal was217
decomposed using a butter-worth filter of order 7 followed by an FIR/IIR filter. Shannon entropy (H(X))218
of this resultant wave signal is the desired SIQ of a particular frequency band. Due to its tracking capability219
for dynamic amplitude change and frequency component change, this feature has been used to measure the220
information contained in the brain (Shin et al., 2006; Kanungo et al., 2021).221

4.1.3 Hjorth Parameters222

Hjorth Parameters indicate time-domain statistical properties introduced by Bo Hjorth in 1970 (Hjorth,223
1970). Variance-based calculation of Hjorth parameters incurs a low computational cost which makes224
them appropriate for performing EEG signal analysis. We make use of complexity and mobility (Das and225
Pachori, 2021) parameters in our analysis. Horjth mobility signifies the mean frequency or the proportion226
of standard deviation of the power spectrum. It is defined as :227

Hjorth Mobility =

√√√√var
(
dx(t)
dt

)
var(x(t))

(3)

where var(.) denotes the variance operator and x(t) denotes the EEG time-series signal.228

Hjorth complexity signifies the change in frequency. This parameter has been used to get a measure of229
similarity of the signal to a sine wave. It is defined as:-230

Hjorth Complexity =
Mobility

(
dx(t)
dt

)
Mobility(x(t))

(4)

4.1.4 False Nearest Neighbour231

False Nearest Neighbour is a measure of signal continuity and smoothness. It is used to quantify the232
deterministic content in the EEG time series data without assuming chaos(Kennel et al., 1992; Hegger and233
Kantz, 1999).234
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4.1.5 Asymmetry features235

We incorporate Differential Entropy (DE) (Zheng et al., 2014) in our analysis to construct two features236
for each of the five frequency bands, namely, Differential Asymmetry (DASM )and Rational Asymmetry237
(RASM). Mathematically, DE (h(X)) is defined as :238

h(X) =−
∫ ∞

−∞

1√
2πσ2

exp
(x− µ)2

2σ2
log

1√
2πσ2

exp
(x− µ)2

2σ2
dx =

1

2
log 2πeσ2

(5)

where X follows the Gauss distribution N(µ, σ2), x is a variable and π and exp are constant.239

Differential Asymmetry(or DASM) (Duan et al., 2013) for each frequency band were calculated as the240
difference of differential entropy of each of 7 pairs of hemispheric asymmetry electrodes.241

242
DASM = h

(
X left

i

)
− h

(
X

right
i

)
(6)

Rational Asymmetry(or RASM) (Duan et al., 2013) for each frequency band were calculated as the ratio243
of differential entropy between each of 7 pairs of hemispheric asymmetry electrodes.244

RASM = h
(
X left

i

)
/h

(
X

right
i

)
(7)

4.2 Continuity Features245

Continuity features signify the clinically relevant signal characteristics of EEG signals(Hirsch et al., 2013;246
Ghassemi, 2018). These features have been acclaimed to serve as qualitative descriptors of states of the247
human brain and hence, are important towards the process of emotion recognition.248

4.2.1 Median Frequency249

Median Frequency refers to the 50% quantile or median of the power spectrum distribution. Median250
Frequency has been studied extensively in the past due to its observed correlation with awareness251
(Schwilden, 1989) and its ability to predict imminent arousal(Drummond et al., 1991). It is a frequency252
domain or spectral domain feature.253

4.2.2 Band Power254

Band power refers to the average power of the signal in a specific frequency band. The band powers of255
delta, theta, alpha, beta , and gamma were used as spectral features. To calculate band power, initially,256
a butter-worth filter of order 7 was applied on the EEG signal. IIR/FIR filter was applied further on the257
EEG signal in order to separate out signal data corresponding to a specific frequency band. Average of258
the power spectral density was calculated using a periodogram of the resulting signal. Signal Processing259
sub module (scipy.signal) of SciPy library (Virtanen et al., 2020) in python was used to compute the band260
power feature.261
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4.2.3 Standard Deviation262

Standard Deviation has proved to be an important time-domain feature in the past experiments (Amin263
et al., 2017; Panat et al., 2014). Mathematically, it is defined as the square root of variance of EEG signal264
segment.265

4.2.4 Diffuse Slowing266

Previous studies (Boutros, 1996) have shown that diffuse slowing is correlated with impairment267
in awareness, concentration , and memory and hence, it is an importance feature for estimation of268
valence/arousal levels from EEG signal data.269

4.2.5 Spikes270

Spikes(Hirsch et al., 2013) refer to the peaks in the EEG signal up to a threshold, fixed at mean + 3271
standard deviation. The number of spikes was computed by finding local minima or peaks in EEG signal272
over 7 samples using scipy.signal.find peaks method from SciPy library (Virtanen et al., 2020).273

4.2.6 Delta Burst after spike274

The change in delta activity after and before a spike computed epoch wise by adding mean of 7 elements275
of delta band before and after the spike, used as a continuity feature.276

4.2.7 Sharp spike277

Sharp spikes refer to spikes which last less than 70ms and is a clinically important feature in study of278
electroencephalography (Hirsch et al., 2013).279

4.2.8 Number of Bursts280

The number of amplitude bursts(or simply number of bursts) constitutes a significant feature (Hirsch281
et al., 2013).282

4.2.9 Burst length mean and standard deviation283

Statistical properties of the bursts, mean µ and standard deviation σ of the burst lengths, have been used284
as continuity features.285

4.2.10 Number of Suppressions286

Burst Suppression refers to a pattern where high voltage activity is followed by an inactive period and is287
generally a characteristic feature of deep anaesthesia(Ching et al., 2012). We use the number of contiguous288
segments with amplitude suppressions as a continuity feature with a threshold fixed at 10µ (Saba-Sadiya289
et al., 2020).290

4.2.11 Suppression length mean and standard deviation291

Statistical properties like mean µ and standard deviation σ of the suppression lengths, used as a continuity292
feature.293

5 FEATURE SELECTION

Selecting the correct predictor variables or feature vectors can improve the learning process in any machine294
learning pipeline. In this work, initially, sklearn’s (Pedregosa et al., 2011) VarianceThreshold feature295
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selection method was used to remove zero-variance or constant features from the set of 36 extracted EEG296
features. Next, a subset of 25 features common to all 3 datasets (DREAMER, DEAP, and OASIS) was297
selected after applying the VarianceThreshold method for further analysis. This was done to validate our298
approach on a common set of features. The set of 11 features (S.E., F.N.N., D.S., S.K., D.B.A.S., N.B.,299
B.L.M., B.L.S., N.S., S.L.M., S.L.S.) were excluded from further analysis. In our study, SelectKBest is300
used as a feature ranking and selection technique for all 3 datasets.301

SelectkBest (Pedregosa et al., 2011) is a filter-based, univariate feature selection method intended to302
select and retain first k-best features based on the scores produced by univariate statistical tests. In our303
work, f regression was used as the scoring function since valence and arousal are continuous numeric target304
variables. It uses Pearson correlation coefficient as defined in Eq 8 to compute the correlation between305
each feature vector in the input matrix, X and target variable, y as follows:306

ρi =
(X[:, i]−mean(X[:, i])) ∗ (y −mean(y))

std(X[:, i]) ∗ std(y)
(8)

The corresponding F-value is then calculated as:307

Fi =
ρ2i

1− ρ2i
∗ (n− 2) (9)

where n is the number of the samples.308

SelectkBest method then ranks the feature vectors based on F-scores returned by f regression method.309
Higher scores correspond to better features.310

6 RESULTS

6.1 Electrodes ranking and selection311

The electrodes were ranked for the three datasets, using the SelectKBest method, as discussed in Section312
5 and the ranks are tabulated for valence and arousal labels in Table 2. To produce a ranking for Top N313
electrodes taken together, feature data for top i electrodes were initially considered. The resultant matrix314
was split in the ratio 80:20 for training and evaluation of the random forest regressor model. The procedure315
was repeated until all the 14 electrodes were taken into account. The RMSE values for the same are shown316
in Fig 4 (a). It should be noted that, unlike feature analysis, data corresponding to 5 features each of DASM317
and RASM was excluded from the Top N electrode-wise RMSE study since these features are constructed318
using pairs of opposite electrodes.319

320

6.2 Features ranking and selection321

Each extracted feature was used to generate its corresponding feature matrix of shape (nbChannels,322
nbSegments). These feature matrices were then ranked using SelectKBest feature selection method.323
Initially, a feature matrix for the best feature was generated. The ranks were tabulated for valence and324
arousal labels in Table 3. This data was split into 80:20 train-test data, the training data was used to perform325
regression with Random Forest Regressor and predicted values on test data were compared with actual test326
labels, and RMSE was computed. In the second run, feature matrices of best and second-best features were327
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Table 2. Electrode Ranking for valence label (V) and arousal label (A) based on SelectKBest feature
selection method.

DREAMER DEAP OASIS
Electrode A V A V A V

AF3 10 13 10 8 7 6
AF4 9 11 12 10 8 8
F3 11 10 7 11 5 5
F4 13 14 8 6 6 9
F7 14 12 1 1 1 1
F8 3 5 2 2 4 4

FC5 5 9 14 14 10 7
FC6 6 4 3 4 9 10
O1 12 8 13 7 11 11
O2 8 3 6 9 14 13
P7 4 2 5 3 12 12
P8 7 6 4 5 13 14
T7 1 7 9 13 3 2
T8 2 1 11 12 2 3

combined, data was split into train and test data, model was trained, and predictions made by model on328
test data were used to compute RMSE. This procedure was followed until all the features are taken into329
account. The RMSE values for the feature analysis procedure, as described above, are shown in Fig 4 (b).330

331

The identification of an optimum set of electrodes and features is a critical step. By optimum set, we imply332
the minimum number of electrodes and features that produce minimum RMSE during model evaluation, as333
shown in Fig 4. We can observe a general decline in RMSE value when the number of electrodes under334
consideration is increased. DREAMER dataset shows a much greater and smoother convergence than335
the other two datasets because more training data was available for training the model. In general, the336
minimum RMSE is observed when all 14 electrodes are selected. OASIS dataset can be excluded from this337
inference since it contained only 15 participants at the time of the experiment.338

339

Fig 4 (b), reveals a general pattern about optimal set of features. On increasing the number of features in340
consideration, initially, there is a steady drop in the RMSE values followed by a gradual increase after a341
certain critical point in the graph. Hence, a minima can be observed in the graph. As discussed above, the342
OASIS dataset can be ruled out of this generalization. The minimum RMSE values and the corresponding343
number of best features and electrodes selected are summarized in Table 4 and Table 5 respectively.344

Incremental Learning345

As given by the feature analysis described above, the best features were used to generate a feature matrix346
for valence and arousal for each dataset. The feature matrix was then used to train a random forest regressor347
as part of the incremental learning algorithm.348

Incremental learning was performed based on the collection of subject data. Initially, the first subject349
data was taken, their trial order shuffled and then split using 80:20 train test size, the model was trained350
using train split, predictions were made for test data, next 2nd subject data was taken together with the 1st351
subject, trial order shuffled, again a train-test split taken and the random forest regressor model was trained352
using the train split. Predictions were made for the test split. This procedure was repeated until data of353
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(a)

(b)

Figure 4. Model evaluation for feature and electrode selection. The random forest regressor was trained
on the training set (80%) corresponding to top N electrodes (ranked using SelectKBest feature selection
method) and RMSE was computed on the test set (20%) for valence (plain) and arousal (dotted) label on
DREAMER, DEAP and OASIS EEG datasets as shown in (a). A similar analysis was performed for top N
features for DREAMER, DEAP and OASIS EEG datasets as shown in (b).

all the subjects were used for RMSE computation. RMSE values for each training step, i.e. training data354
consisted of subject 1 data, then the combination of subject 1, 2 data, then the combination of subject 1, 2,355
3 data, and so on. The plots generated for RMSE values for the individual steps of training show a general356
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Table 3. Feature Ranking for valence label(V) and arousal label (A) based on SelectKBest feature selection
method

Feature DREAMER DEAP OASIS
A V A V A V

B.P.A. 7 5 18 17 25 15
B.P.B. 9 8 8 7 11 13
B.P.D. 22 22 23 22 12 23
B.P.G. 21 18 3 13 5 20
B.P.T. 20 20 19 18 24 17
D.A. 4 11 12 10 16 9
D.B. 12 10 4 4 21 11
D.D. 24 25 16 16 20 21
D.G. 16 16 5 6 14 18
D.T. 13 14 10 9 23 16
H.C. 2 4 20 20 4 4
H.M. 6 3 17 19 1 2
M.F. 14 12 24 25 7 5
R.A. 5 13 21 21 15 12
R.B. 11 9 1 2 19 10
R.D. 23 24 25 24 18 22
R.G. 17 17 2 1 13 19
R.T. 15 15 11 11 22 14

S.E.A. 10 7 13 12 10 24
S.E.B. 3 2 6 5 3 3
S.E.D. 18 19 15 15 8 7
S.E.G. 1 1 9 8 2 1
S.E.T. 19 21 14 14 9 8
S.S.N. 25 23 22 23 17 25
S.D. 8 6 7 3 6 6

Table 4. RMSE values for valence and arousal label on the test set (20%) of DEAP, DREAMER and
OASIS dataset for optimum set of features.

Dataset Valence Arousal
N RMSE N RMSE

DREAMER 11 0.905 9 0.749
DEAP 8 1.902 9 1.769
OASIS 2 2.728 1 2.300

Table 5. RMSE values for valence and arousal label on the test set (20%) of DEAP, DREAMER and
OASIS dataset for optimum set of electrodes.

Dataset Valence Arousal
N RMSE N RMSE

DREAMER 14 0.914 14 0.759
DEAP 14 1.938 14 1.806
OASIS 7 2.765 14 2.417

decreasing trend as evident from Fig 5.357
358
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(a)

(b)

(c)

Figure 5. Incremental learning performance. Valence and arousal RMSE readings obtained with
incremental learning for DREAMER (a), DEAP (b) and OASIS (c) EEG dataset using random forest
regressor (rfr).

Leave-one-subject-out cross-validation359

Subject generalization is a crucial problem in identifying EEG signal patterns. To prevent over-fitting and360
avoid subject-dependent patterns. We train the model with data of all the subjects except a single subject361
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and evaluate the model on this remaining subject. Hence, the model is evaluated for each subject to identify362
subject bias and prevent any over-fitting. Also, when building a machine learning model, it is a standard363
practice to validate the results by leaving aside a portion of data as the test set. In this work, we used the364
leave-one-subject-out cross-validation technique due to its robustness for validating results for data set at365
the participant level. Leave-one-subject-out cross-validation is a k-fold cross-validation technique, where366
the number of folds, k, equals the number of participants in a dataset. The cross-validated RMSE values for367
the three datasets for all the participants are plotted in Fig 6.368

369

Mean and standard deviation of RMSE values for valence and arousal label after cross validation have370
been summarized in Table 6. The best RMSE values lie within the standard deviation range respect to the371
leave-one-subject-out cross validation results and hence, inferences drawn from them can be validated.372

373

(a) (b)

(d)(c)

(e) (f)

Figure 6. Subject wise performance analysis for valence and arousal labels. Leave-one-subject-out
cross-validation performance analysis for valence label for (a) DREAMER (b) DEAP (c) OASIS datasets
and for arousal label for (d) DREAMER (e) DEAP (f) OASIS datasets respectively. In this cross-validation
technique, one subject was chosen as the test subject, and the models were trained on the data of the
remaining subjects.
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Table 6. Mean and Standard Deviation (Std. Dev.) of RMSE values for Valence and Arousal Label Data
after Leave-one-subject-out-cross-validation

Dataset Label Mean Std. Dev.
DREAMER Valence 1.356 0.130

Arousal 1.126 0.190
DEAP Valence 2.112 0.416

Arousal 2.025 0.519
OASIS Valence 2.933 0.582

Arousal 2.642 0.845

7 DISCUSSION

The relation between the performance (RMSE) and the number of participants is critical for any study374
concerning emotion recognition from the EEG dataset. As in Fig 5, we observe an improvement in375
performance with an increasing number of participants. This explains that the machine learning algorithm376
needs data from more participants for generalization. Interestingly, the performance degrades for the377
OASIS dataset (Fig 5 (c)) while increasing the number of participants. This could be explained as the model378
overfits when trained with data from a few subjects. This can be verified by the fact that the degradation379
in performance is only up to a certain number of subjects, as in Fig 5 (a). Hence, with data from more380
participants in the OASIS EEG dataset, we can expect to observe an increase in performance.381

As shown in tables 2 and 3, 3 rankings were obtained as a result of 3 datasets for each label. For the382
valence labels, out of the top 25 % electrodes, 33 % were in the frontal regions (F3, F4, F7, F8, AF3,383
AF4, FC5, FC6), 33% in the temporal regions (T8, T7) , 22 % the parietal regions (P7, P8), and 11 % in384
the occipital regions (O1, O2). For the top 50% electrodes, 57 % were in the frontal regions, 19 % in the385
temporal regions, 19 % in the parietal regions, and 4 % in the occipital regions.386

For the arousal labels, out of the top 25 % electrodes, 55 % were in the frontal regions and 44 % in the387
temporal regions. For top 50% electrodes, 57 % were in the the frontal regions, 19 % in the temporal388
regions, 19 % in the parietal regions , and 4 % in the occipital regions.389

Therefore, the frontal region was the most significant brain region for recognizing valence and arousal,390
followed by temporal, parietal, and occipital. This is in accordance with previous works on EEG channel391
selection (Alotaiby et al., 2015), (Shen et al., 2020a).392

The optimum set of features for the DREAMER dataset was observed to be (S.E.G, S.E.B, H.M, H.C.,393
B.P.A, S.D, S.E.A, B.P.B, R.B, D.B, D.A) for valence and (S.E.G, H.C, S.E.B, D.A, R.A, H.M, B.P.A, S.D,394
B.P.B) for arousal respectively. The minimum RMSE values obtained using these optimal features on the395
DREAMER dataset were 0.905 and 0.749 for valence and arousal dimensions, respectively, as evident396
from Table 4. Therefore these features were critical for recognizing emotional states and can be used in397
future studies to evaluate classifiers like Artificial Neural Networks and ensembles.398

As shown in Table 3, band power and sub-band information quantity features for gamma and beta399
frequency bands performed better in the estimation of both valence and arousal than other frequency bands.400
Hence the gamma and beta frequency bands are the most critical for emotion recognition (Wang et al.,401
2011b), (Zheng et al., 2017).402

It can be inferred from Tables 3 that H.M. was mostly ranked among the top 3 features for predicting403
valence labels and arousal labels. Similarly, H.C. was ranked among the top 4 features. This inference404
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is consistent with the previous studies that claim the importance of time-domain Hjorth parameters in405
accurate EEG classification tasks (Türk et al., 2017; Cecchin et al., 2010).406

In the past, statistical properties like standard deviation derived from the reconstruction of EEG signals407
have been claimed to be significant descriptors of the signal and provide supporting evidence to the results408
obtained in this study (Malini and Vimala, 2016; Panda et al., 2010). It was observed that SD was ranked409
among the top 8 ranks in general.410

Table 4 indicates that the minimum RMSE values obtained on the test set (20%) using the optimum set of411
features were 0.905 and 0.749 on the DREAMER dataset, 1.902 and 1.769 on the DEAP dataset and 2.728412
and 2.3 on OASIS dataset for valence and arousal respectively. For leave-one-subject-out cross-validation,413
we achieved the best RMSE of 1.35, 1.126 on DREAMER, 2.11, 2.02 on DEAP and 2.93, 2.64 on the414
OASIS dataset for valence and arousal, respectively as shown in Fig 6.415

8 CONCLUSION AND FUTURE SCOPE

EEG is a low-cost, noninvasive neuroimaging technique that provides high spatiotemporal information about416
brain activity, and it has become an indispensable tool for decoding cognitive neural signatures. However,417
the multi-stage intelligent signal processing method has several indispensable steps like pre-processing,418
feature extraction, feature selection, and classifier training. In this work, we propose a generalized open-419
source neural signal processing pipeline based on machine learning to accurately classify emotional420
index on a continuous valence-arousal plane using these EEG signals. We statistically investigated and421
validated artifact rejection, automated bad-trial rejection, state-of-the-art Spatio-temporal feature extraction422
techniques, and feature selection techniques on a self-curated dataset recorded from a portable headset in423
response to OASIS emotion elicitation image dataset and two open source EEG datasets. This published424
dataset could be used in future studies for a spectrum of intelligent signal processing methods like deep425
learning, reinforcement learning, and neuromorphic computing. The published simplistic python pipeline426
would aid researchers in focusing on innovation in specific signal processing steps like feature selection427
or machine learning without the need to recreate the entire pipeline from scratch. In accordance with428
neuroscience literature, our proposed system could identify the optimum set of electrodes and features429
that produce minimum RMSE during emotion classification for a given dataset. It also validated the claim430
that beta and gamma frequency bands are more effective than other bands when it comes to emotion431
classification. We performed the evaluation of EEG activity induced by videos (DEAP), and static images432
(DREAMER & OASIS), but not on audio stimulus. The OASIS dataset collection was limited to 15433
participants due to the Covid-19 pandemic. In future we plan to collect the data for at least 40 participants434
to draw stronger inferences. Future work would also include analysis of end to end neural networks and435
transfer learning for the purpose of emotion recognition. The published dataset can be used for further436
advancement of machine learning systems for emotional state detection with a data recorded from portable437
headset. The published EEG processing pipeline of artifact rejection, feature extraction, feature ranking,438
feature selection and machine learning could be expanded and adapted for processing EEG signal in439
response to variety of stimuli.440
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Türk, Ö., Şeker, M., Akpolat, V., and Özerdem, M. S. (2017). Classification of mental task eeg records647
using hjorth parameters. In 2017 25th Signal Processing and Communications Applications Conference648
(SIU) (IEEE), 1–4649
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