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Abstract

Parkinson’s disease is a progressive neurodegenerative disorder in which loss of dopaminergic 

neurons in the substantia nigra results in a clinically heterogeneous group with variable motor and non-

motor symptoms with a degree of misdiagnosis. Only 3-5% of sporadic Parkinson’s patients present with 

genetic abnormalities, thus environmental, metabolic, and other unknown causes contribute to the 

pathogenesis of Parkinson’s disease, which highlights the critical need for biomarkers. There could be a 

significant clinical benefit to treating Parkinson’s disease at the earliest stage and identify at-risk 

populations once disease-modifying treatments are available.  In the present study, we prospectively 

collected and analyzed plasma samples from 201 Parkinson’s disease patients and 199 age-matched non-

diseased controls. Multiomic and Bayesian artificial intelligence analysis of molecular and clinical data 

identified the diagnostic utility of N-acetyl putrescine (NAP) in combination with smell (B-SIT), 

depression/anxiety (HADS), and acting out dreams (RBD1Q) clinical measurements.  The clinical and 

biomarker panel demonstrated an area under the curve, AUC = 0.9, positive predictive value, PPV=0.91, 

and negative predictive value, NPV=0.66 utilizing all four variables. The assessed diagnostic panel 

demonstrates combinatorial utility in diagnosing Parkinson’s disease, allowing for an integrated 

interpretation of disease pathophysiology and highlighting the use of multi-tiered panels in neurological 

disease diagnosis.
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1. Introduction

Parkinson’s Disease (PD) is a progressive neurological disorder characterized by motor features 

including tremors, bradykinesia, muscle rigidity, and postural instability, as well as non-motor features such 

as loss of sense of smell, sleep/REM disorder, and autonomic dysfunctions which can include constipation, 

urinary problems, changes in heart rate variability, psychiatric disturbances with anxiety, and depression as 

well as cognitive decline [1]. Pathologically, PD is defined by dopaminergic neuronal loss in the substantia 

nigra pars compacta (SN), and intracellular inclusions called Lewy bodies (LB) in the neurons of affected 

brain regions [2, 3]. Abnormal handling of misfolded proteins by the ubiquitin–proteasome and the 

autophagy–lysosomal systems [4, 5], increased oxidative stress, mitochondrial dysfunction, and 

inflammation, well-described mechanisms involved in the pathogenesis of PD [5, 6]. 

The misdiagnosis rate of patients with PD in the clinical setting can be as high as 25%-42% [7] in 

the early stage of the disease. [8-10]. A molecular diagnostic test, which can be used to identify those with 

early stages of PD is a critical unmet need. Reliable diagnostic biomarkers are essential for identifying 

populations at risk and those that are pathologically susceptible to disease impetus. This provides an 

opportunity for an early and accurate diagnosis to predict the disease occurrence and progression. The 

diagnostic biomarker can be used as an objective  tool to characterize evaluation indicators stratifying 

normal and pathogenic biological processes [11]. 

Significant progress has been made in uncovering the complex molecular mechanisms exploited in 

the pathogenesis of PD. The emergence of several omics techniques, such as transcriptomics, proteomics, 

and metabolomics, have played a key role in identifying novel pathways associated with dopaminergic 

neurodegeneration, global system physiological changes, and subsequently PD, which include 

mitochondrial and proteasomal function as well as synaptic neurotransmission [10]. Additionally, these 

unbiased techniques, particularly in the brain regions that are uniquely associated with the disease, have 

greatly enhanced our ability to identify novel pathways, such as axon-guidance, potentially involved in PD 
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pathogenesis [12, 13]. To date, there has been extensive focus on the genetic etiology of disease [3]. In 

contrast, multi-omic analysis provides broader connectivity to adaptive and environmental sequalae that 

drive disease phenotypic effectors. Metabolomics assessment, which comprises the broadest capture of 

integrated biochemical assessment using mass spectrometry or NMR technology, provides a comprehensive 

view of metabolites tied to the biological phenotype.

Interestingly in PD patients, putrescine levels are increased in cerebrospinal fluid (CSF), whereas 

the concentration of spermidine is reduced compared to controls [15]. Putrescine is a polyamine that 

belongs to the category of ubiquitous small polycations that ionically bind to various negatively charged 

molecules and have many functions, mostly linked to cell growth, survival, and proliferation [14]. Examples 

of polyamines are putrescine, spermidine  and spermine, whose levels are stringently regulated in the human 

body. Based on partial polyamine data previously reported [15] and our metabolomics platform outcome, 

we investigated a prospective PD cohort clinically and evaluated polyamine metabolic changes analytically. 

Further, we integrated clinical features identified by our Bayesian analysis to be causally associated with 

clinical outcomes.  The use of these clinical features as a phenotypic readout complimented the molecular 

biomarker analysis.  The combination of the CLIA validated assay of N-Acetylputrescine (NAP) and non-

canonical clinical features of Hospital Anxiety and Depression Scale (HADS) and REM Sleep Behavior 

Disorder Single-Question Screen score (RBD1Q) demonstrated diagnostic utility [16-18].  This panel might 

provide broad utility for PD diagnosis and represents the integration of both clinical and molecular 

presentation of the disease.
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2. Materials and Methods

2.1 Materials:

N-Acetylputrescine reference standard, Bovine Serum Albumin (BSA), Trichloroacetic acid (TCA), 

Formic Acid (FA) and Isobutyl Chloroformate (IBCF) were obtained from Sigma (St. Louis, MO, USA). 

Optima LC/MS Grade of Acetonitrile, Water, and Sodium carbonate were purchased from Fisher Scientific 

(Pittsburgh, PA,USA). Human K2-EDTA Plasma was supplied by BIOIVT (Westbury, NY, USA)

2.2 Plasma Sample Collection:

K2-EDTA plasma samples and clinical data from PD patients and controls were obtained from 

Parkinson’s Institute and Clinical Center (Sunnyvale, CA., USA). All study subject information shall 

remain de-identified. Samples were collected within the following range of self-reported fasting time: not 

less than 4 hours, not more than 8 hours. Non-diseased controls (n=199) and Parkinson’s Disease patients 

(n=201) were analyzed, with Hoehn and Yahr (H&Y) average scale of 2.1 and Unified Parkinson’s Disease 

rating scale (UPDRS) score from 10 to 115 (Table 1). The non-diseased control group included 125 males 

and 72 females. The PD patient cohort included 103 males and 91 females. All volunteers participating in 

this study gave their informed consent for inclusion before they participated in the study. Research use of 

the samples was conducted by the terms outlined within the informed consent form and the terms set forth 

therein, along with the tenets of the Declaration of Helsinki and its later amendments or comparable ethical 

standards.

2.3 Sample Preparation of NAP in Plasma Extraction and Derivatization: 

Solutions and reagents were brought to room temperature (RT) before initiating the extraction 

process.  Standards (STD), sub-stocks, quality controls (QCs), surrogate matrix, and unknown human 

plasma samples are thawed at RT. Two double blanks are included in each batch by transferring 50µL of 
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2.5% BSA into clean 2mL microcentrifuge tubes.  STD, QCs, and unknowns (50µl) were added to separate 

microcentrifuge tubes. Liquid chromatography mass spectrometry grade water (100µl) and 4% TCA 

(100µl) were added to these tubes and vortexed for 1 minute on a multi-tube vortex mixer (VWR 

International LLC, Radnor, PA).

Samples were centrifuged (Eppendorf 5415D) for 15 minutes at 10,000x g a 5°C. To a clean 

microcentrifuge tube, 200µL of LCMS grade water and 125µl 1M Sodium carbonate buffer were added. 

Each sample (125µL) was transferred to a microcentrifuge tube containing LCMS grade water and 1M 

sodium carbonate buffer. To these tubes, 25µL isobutyl chloroformate was added. All samples were 

vortexed for approximately 1 minute in a multi-tube vortex. The samples were then incubated for 15 

minutes at 35°C and shaken at 150 rpm. Next, the samples were placed in the centrifuge for 10 minutes at 

10,000x g at 5°C. After removing from the centrifuge, the samples were extracted using SPE cartridges 

(Waters Oasis HLB 10mg 1CC Cartridge) in conjunction with the UTC Positive Pressure manifold.  Using 

low positive pressure, the columns were conditioned in the following sequence: Add 1mL of Methanol and 

wait until liquid flowed through, next add 1mL of LCMS grade water and wait until the liquid flowed 

through. Finally, samples (275µL) were loaded onto the cartridge. Samples sit for approximately 1 minute 

or until the sample flowed through entirely. Low positive pressure is applied to remove any residual liquid. 

Samples were eluted by adding 250µL 80:20:0.1 ACN:H2O:FA to each cartridge. Samples flow through 

with gravity, approximately 2 minutes, before using low positive pressure to elute the remaining liquid into 

clean microcentrifuge tubes. The eluant was dried under a gentle stream of N2 using a Turbovap at 37°C. 

All samples were reconstituted by adding 200µL of Reconstitution Solution (10:90:0.1, ACN:H2O:FA) and 

vortexed for 1 minute. Samples were then transferred to amber glass HPLC vials with 0.3 mL inserts. 

Samples were loaded directly for injection onto the LC-MS/MS, or the extracts were stored at 4°C until 

injection. 

2.4 LC-MS/MS (MRM) Analysis for NAP: 
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The multiple reaction monitoring (MRM) analyses was performed on an AB SCIEX QTRAP® 5500 

mass spectrometer (SCIEX) equipped with an electrospray source, Shimadzu (Kyoto, Japan) Ultra-Fast 

Liquid Chromatograph (UFLC) (LC-20AD XR pumps and SIL-20AC XR autosampler), and a Poroshell 

120, EL-C18, (2.1x 50mm, 2.7µ) column (Agilent, Santa Clara, CA). The MRM of derivatized N-Acetyl 

putrescine precursor and transition were m/z 231.00 and m/z 115.00, respectively, used as quantifier (Suppl. 

Table 1). Liquid chromatography was carried out at a flow rate of 0.350 mL/min, and the sample injection 

volume was 5 µL. The column was maintained at a temperature of 40°C. Mobile phase A consisted of 0.1% 

Formic Acid (Sigma Aldrich) in water (Fisher Scientific), and mobile phase B consisted of 0.1% formic 

acid in acetonitrile (Fisher Scientific). The gradient with respect to %B was as follows: 0 to 4 min, 5%; 4 

to 5.5 min, 40%; 5.5 to 6.1 min, 95%; 6.1 to 10.0 min 5%. The instrument parameters for the 5500 QTRAP 

mass spectrometer were as follows: ion spray voltage of 5500V, curtain gas of 20 psi, collision gas set to 

“medium”, interface heater temperature of 500°C, nebulizer gas (GS1) of 40 psi, and ion source gas (GS2) 

of 40 psi and unit resolution for both Q1 and Q3 quadrupoles. Data analysis was performed using the AB 

SCIEX Analyst® software (version 1.5.1 or 1.6.2, Sciex, Framingham, MA), and peak integrations were 

reviewed manually.

2.5 Multi-Omic And Statistical Analysis: 

A multi-omic assessment of plasma was performed as previously reported [19]. The statistical analysis 

was conducted using R-Studio (2020, Version 3.6.2). Logistic regression was used to build all the models 

in ROC analysis. The selection of clinical variables was based on causal graphs (networks) generated by 

BERG’s AI platform bAIcis®, which relies on Bayesian network methods to learn from directed acyclic 

graphs [20].  To identify potential causal drivers of the PD status, an ensemble model from all variables 

was generated using bAIcis®, and the clinical variables directly connected to the outcome of interest were 

selected for further exploration. Variables of the best combination of multivariate models were chosen 

based on balancing the AUC and the complexity of the model. The 95% confidence interval was computed 
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with 2000 stratified bootstrap replicates. Differences in means between PD and non-PD controls were 

assessed using t-test. Statistical significance for all analyses was determined at p<0.05.

3. Results

3.1 General Demographics and Discovery Assessment

A total of 201 PD patients and 199 non-disease controls participated in this study, with an average 

age of 65.4 and 64.7 years old, respectively (Table 1). The average score of Hoehn and Yahr (H&Y) scale 

was 2.1, including the 43 PD patients for stage I, 127 for stage II, 22 for stage III, 7 for stage IV, and 1 for 

stage V. The Unified Parkinson Disease rating scale (UPDRS) score for these PD patients ranged from 10 

to 115. Metabolomic, lipidomic, and proteomic assessment of plasma samples were performed and 

integrated with Bayesian analysis and regression assessment of clinical and molecular features (Figure 1).

3.2 Assay Development and Validation

To quantify NAP in human K2-EDTA plasma, the quantification method using LC-MS/MS was 

developed. Due to low circulating levels of NAP, the sensitivity of quantification was improved using 

derivatization of isobutyl chloroformate in the sample preparation.  The validation performance of the NAP 

assay is summarized in Suppl. Table 1-8, including linearity, precision, matrix effect, system suitability, 

short-term stability, long-term stability, and reproducibility in the autosampler.  Fit-for-purpose method 

validation results demonstrated quantitative ranges for NAP from 1 ng/mL to 85 ng/mL in plasma analysis 

(Suppl. Table 3). The results of validation assessed by QCs met acceptance criteria (Suppl. Table 2-8).

3.3 Human Plasma Sample Analysis of NAP

Utilizing our CLIA validated quantification method, the K2-EDTA plasma samples from a total of 

400 participants, including 199 non-disease (ND) and 201 PD cohort, were analyzed for NAP quantitation.  

When comparing PD in male and female patients, there were no statistical differences of plasma levels of 

NAP in gender that was observed (one-way ANOVA, p=0.6492) (Data not shown). A significant difference 
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in plasma NAP between ND and PD was detected (t-test, p< 0.0001). The mean concentrations of NAP in 

the plasma for ND and in the PD cohorts were 3.70 ng/mL and 4.74 ng/mL, respectively (Figure 2).  

3.4 Receiver Operating Characteristic Curve (ROC) Analysis of NAP and Three Clinical Features for 

PD Diagnosis

To examine the clinical performance, a receiver operating characteristic curve (ROC) analysis was 

applied for PD diagnosis in this project.  In results of ROC analysis using the trapezoidal rule, the area 

under the curve (AUC) for NAP alone was 0.72, suggesting that plasma NAP levels demonstrate utility for 

PD diagnosis. The PD diagnosis of NAP alone showed the specificity as 90% and sensitivity as 35% with 

a cutoff value of 6.91ng/mL, respectively.  In multivariate logistic regression models, the AUC values using 

the demographic factors of age, gender, or a combination with NAP were not improved in the separation of 

ND and PD cohorts (data not shown). Analysis of 121 clinical variables using the bAIcis platform identified 

smell test (B-SIT), depression and anxiety assessment test (HADS), and acting out dreams test (RBD1Q) 

as three potential clinical features for diagnosis of PD [16-18]. The multivariate model integrated with NAP 

and three clinical features revealed an optimal AUC of 0.90 to distinguish the PD from the non-disease 

cohort with a specificity of 95% and sensitivity of 52%.  In predictive proficiency of PD diagnosis, the 

positive predictive value (PPV) and negative predictive value (NPV) for NAP alone were 0.78 and 0.58, 

and for the multivariate model, they were 0.91 and 0.66, respectively. 

4. Discussion

Our study is the largest metabolomic biomarker study that identified a combination of clinical non-

motor measures (smell, anxiety/depression, and RBD) together with a plasma metabolite NAP with a 

specificity of 95% and sensitivity of 52%. It is also the first study that includes sufficient data for the 

calculation of diagnostic performance. PD is the second most common neurodegenerative disease affecting 

millions of people in the USA and many more worldwide. PD is estimated to occur in about 1% of the 
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population over 60 and 4% of the individuals over 80 years old [21, 22]. It is difficult to accurately 

determine the precise prevalence of PD since the numbers do not include the majority of undiagnosed or 

misdiagnosed cases. The annual costs incurred for PD in the United States have been estimated to be nearly 

$11 billion, including $6.2 billion in direct costs [23]. The most significant proportion of cost for PD 

treatment occurs in the later stages of the disease when symptoms are most severe [24]. Any therapeutic 

strategy that could halt PD symptoms in the earlier disease stages with no further progression would greatly 

reduce disease burden for patients and families. In parallel, there is a critical need to develop diagnostic 

biomarkers for early disease detection using combinatorial PD biomarkers of clinical signs and blood 

metabolites. 

Comprehensive understanding of human health and disease requires interpretation of complex 

biological processes at multiple levels such as genome, epigenome, transcriptome, proteome, and 

metabolome. These together can be classified as “multi-omics” data. The availability of multi-omics data 

has advanced the field of medicine and biology [25]. In this study, we have taken an integrative approach 

that has combined multi-omics data in order to highlight the interrelationships of the involved biomolecules 

and their clinical phenotype in disease. [26].

In three recent PD biomarker metabolomic analyses, several altered metabolites were identified, 

including amino acids, acylcarnitines, and polyamines in PD, however, these studies did not utilize CLIA-

validated assays and were underpowered (Table 2). This first study used urinary metabolomic profiling of 

18 metabolites, most of these branched chain, tryptophan, and phenylalanine amino acids, demonstrated 

discrimination capability in early, mid, and advanced stage PD patients (ND=65;PD=92)  [27]. A major 

pitfall of the use of amino acids as biomarkers is that they could be overrepresented due to unbalanced 

demographics within the cohort or influence from concomitant medications. The second study assessed 

plasma metabolomic profiling and found acylcarnitines related to mitochondrial beta-oxidation as potential 

early diagnostic PD biomarkers.  A group of long-chain acylcarnitines (AC12-14) (ND=32,45; 

PD=109,145) and nine fatty acid (8-18) metabolites (ND=40; PD=41) were found to be present in early 
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stages of PD diagnosis  [28, 29].  Due to the possible influence of other comorbidities within these groups, 

the use of acyl carnitines became a challenge for diagnosis.  Moreover, increasing evidence suggests the 

possible role of polyamines in PD underlined several potential PD biomarkers in the mechanism of 

polyamine synthesis and metabolism [15, 30].  In a small scale clinical study (n=33), putrescine and N1-

Acetylspermidine in cerebrospinal fluid (CSF) were significantly higher in PD patients compared to the 

control group [15]. Furthermore, the plasma level of N8-acetylspermidine and N1, N8-diacetylspermidine 

demonstrated significant accuracy in ROC curve analysis and positively correlated with H&Y stages [30].  

Although these reports mentioned elevated NAP levels of plasma in PD patients, no further precise details 

of NAP clinical performance were elucidated. However, these measurements were not confirmed on robust 

bioanalytical platforms [30, 31]. 

Some limitations in our study are listed as follows. While PD patients enrolled were not assessed 

by PET or SPECT imaging for the dopamine transporter (DAT) they were clinically diagnosed by a 

movement disorder specialist. Other illnesses and medication usage by patients may affect the status of 

their metabolism. Further validation of the proposed biomarker panel in more extensive, well-defined 

patient cohorts could be the next step to validate the finding of this study.

Lacking standardized criteria supporting PD diagnosis at the prodromal stage, current diagnosis of 

PD relies on primarily on clinical history and neurological assessment by a movement disorder and 

exclusion of other neurodegenerative diseases. The non-motor clinical signs and symptoms identified from 

our bAIcis® platform may appear in prodromal PD stage, including olfactory dysfunction, rapid eye 

movement sleep behavior disorder (RBD), and depression and anxiety.  Three clinical features alone would 

be unreliable as a diagnostic biomarker [32, 33].  The multivariate logistic regression model with NAP and 

three clinical features demonstrated promising diagnostic performance. This study presents a potential 

avenue for clinical diagnostics while also underlining a possible role in polyamine metabolism for 

deciphering elusive etiology of PD.

5. Conclusions
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In this study, we have completed the largest metabolite investigated biomarker study that was assessed 

using a CLIA validated assay and Bayesian analysis to identify complementary clinical features providing 

an AUC=0.9 and a PPV of 0.91. The multivariate marker model, consisting of three clinical features 

integrated with NAP, significantly improved the diagnostic accuracy for PD, demonstrating a higher 

positive predictive value than unintegrated individual variates. Clinical features alone demonstrated limited 

clinical efficacy. Results from this study demonstrated the power of a combined approach to PD biomarker 

discovery along with the possibility of implementing NAP into clinical biomarker tests. 
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Table 1. Patient Demographics

Non-Disease Parkinson’s Disease

Total Patients 197 194

Male 125 103

Female 72 91

Age, mean years (SD) 65.4 (9.6) 64.7 (9.1)

Mean ± SD N/A 2.1 ± 0.7
H&Y Stage

Case (n) N/A I(43), II(127),III (22), IV (7), V(1)

UPDRS mean, (SD), (range) N/A 40.4, (16.9), (10-115)

UPDRS-III mean, (SD), (range) N/A 25.6,(11.0), (1-69)
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Table 2: Summary of PD Biomarker Discovery from Published Literatures

Metabolomic Biomarkers 

References
Man-Jeong Paik 

et. al 
(2010)

 Hemi Luan et. al 
(2015)

 Florence 
Burte et. al 

(2017)

Shinji Saiki et al 
(2019)

BERG 
(2021)

Markers 

N1-
acetylspermidine, 

and putrescine 
spermidine

Acetylphenylalanin
e and other 45 

metabolites 

Serum 
Oxalate 

and other 
19 

metabolites

N1,N8 
diacetylspermidine 

and 
spermine/spermidin

e ratio

NAP and 
3 clinical 
covariates

Assay 
Method GC-MS (LC-MS ;GC-MS)

 (LC-MS 
;GC-MS; 

BDNF 
ELISA )

 (LC-MS/MS) (LC-
MS/MS)

Invasiveness 
Moderately 

invasive 
(CSF)

Low 
(Urine)

Minimally 
invasive 
(serum)

Minimally invasive  
(plasma & serum)

Minimally 
invasive  
(plasma)

Population 
Size ND:24; PD:9 ND:65; PD:92 ND:40; 

PD:41
(ND:45; PD:145); 
(ND 49; PD186)

ND:197; 
PD:194

ROC 
Analysis Insufficient data AUC 0.65-0.97 AUC 0.72-

0.85 AUC:0.95 AUC:0.90

Diagnostic 
Performance

Insufficient data 
for SE, SP, PPV, 

NPV

Insufficient data for 
SE, SP, PPV, NPV

Insufficient 
data for SE, 

SP, PPV, 
NPV

Insufficient data for 
SE, SP, PPV, NPV

SE: 52%; 
SP: 

950%; 
PPV 91%; 

NPV 
66%, 

CLIA/GLP 
Validation NO NO NO NO YES

 Note: AUC: area under curve in ROC analysis; SP: sensitivity; SE: specificity; PPV: positive predictive 
value; NPV: negative predictive valve
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Figure 1. Study design. Biomarker Discovery Pipeline and Study Design. Single center observational study 
to assess markers in Parkinson’s patients and non-disease controls. Multi-omics analysis was performed 
and CLIA validated procedures were subsequently employed for quantitative biomarker assessment.
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   (C)

Variates AUC Specificity Sensitivity PPV NPV OR

NAP 0.72 0.90 0.35 0.78 0.58 4.79

Smell (BsitTotal) 0.85 0.90 0.66 0.87 0.72 17.4

Anxiety/Depression (HADsDTotal) 0.74 0.95 0.19 0.8 0.54 4.58

Acting Out Dreams (RBDNO) 0.67 0.95 0.24 0.83 0.55 5.98

NAP + smell + depression/anxiety + 
dreams 0.90 0.95 0.52 0.91 0.66 20.4

Figure 2. Plasma Sample Analysis for NAP and Receiver Operation Characteristic (ROC) Curve Analysis (A) The 
plasma levels of NAP between non-disease and PD cohort.; ROC curve analysis for NAP alone (B) ROC curve 
analysis for NAP plus three clinical variables (C) Summary table for clinical performance of marker panel alone 
and combination, including area under curve (AUC), sensitivity, specificity, positive predictive value (PPV), 
negative predictive valve (NPV), and odds ratio (OR). 95% confident interval (CI) using Bootstrapping approach in 
ROC curve. Statistics was calculated by t-test, statistically significant: **** p<0.0001
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7. Supplemental Materials

7.1 Assay Development and Validation of NAP

The following parameters were assessed during NAP assay validation: 

7.1.1 Calibration curve linearity. The linearity of eight independent calibration curves for NAP were 

assessed in human plasma assay.

7.1.2 Intra and inter-batch precision. The assay was evaluated by analyzing the low limit of 

quantification QC (LLOQ-QC), low QC (LQC) medium QC (MQC) and high QC (HQC) human 

plasma (6 replicates for each) on different days. 

7.1.3 Matrix effect assay. Human K2-EDTA plasma and urine were spiked with the LLOQ-QC and 

HQC concentrations and assessed against calibration standards. Blank samples of plasma and urine 

were used as a zero standard from which a minimum of 9 different lots were extracted to determine 

the basal concentrations of NAP. These basal values were spiked by LLOQ-QC and HQC 

concentrations to obtain the actual nominal concentrations and then compared with the observed 

LLOQ-QC and HQC concentrations. 

7.1.4 Short-term stability (STS) and long-term stability (LTS) of calibrator in surrogate matrixes. 

Standard solutions for NAP were examined at the lowest concentrations (1.00 ng/mL) and the 

highest (85.0 ng/mL) in 2.5% BSA for the plasma assay, respectively. For STS, aliquots of 

calibrator were assessed by leaving both lowest and highest calibrators at 5°C for up to 24 hrs. 

These exposed samples were compared against unexposed samples. In LTS, aliquoted calibrators 

were stored at -80°C up to 88 days and evaluated by comparing these aliquots stored at -80°C 

against freshly prepared standards of the same concentration. 

7.1.5 STS, LTS, and freeze-thaw stability (FTS) of human plasma and urine samples. LQC and 

HQC samples were also used to assess for STS at RT for 24 hrs in the plasma assay, for LTS at -

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453542
http://creativecommons.org/licenses/by/4.0/


21

80°C up to 84 days, and for FTS up to four cycles at both -80°C and RT. In FTS, each freeze cycle 

was for a minimum of 24 hours. Triplicates or more for both QC samples were compared against 

the QC range generated during the validation. 

7.1.6 Re-injection reproducibility in the autosampler. Six replicates of each LLOQ QC, LQC, MQC 

and HQC samples were injected with a set of calibration standards. This same batch was re-injected, 

after being stored in autosampler at 4°C for up to 8 days for the plasma assay.

7.1.7 Interference assessment. Potential interferences were evaluated by individually spiking LQC and 

HQC samples with human red cell hemolysate (500 mg/dL), unconjugated bilirubin (30 mg/dL), 

and triglycerides (1000 mg/dL) and then compared to the unspiked QCs in the plasma assay. 

7.1.8 System suitability, drift, and carryover. System suitability was assessed by calculating the 

precision (% CV) of the calculated concentration from 4 replicates at the beginning of each batch. 

The precision (% CV) was obtained by calculating concentrations from a minimum 4 replicates 

each of the system suitability standards at the beginning of the batch which must be ≤ 10%. Drift 

was assessed by calculating the %bias of the calculated mean concentrations for the system 

suitability standard from 4 replicates at the beginning of each batch and 2 replicate injections at the 

end of each batch. The % Drift between the SSS injections at the beginning and at the end of the 

batch must be ≤ 20%. In the carryover evaluation, a single injection of Reconstitution Solution after 

the System Suitability Standard was used to monitor carryover in each run. The carryover at the 

retention time and mass transition of NAP, must be ≤ 20% of the peak analyte area of lowest 

concentration standard.
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Supplemental Table 1: Summary Table of MRM Parameters 

Compound Q1 Mass 
(amu)

Q3 Mass 
(amu)

Dwell Time 
(msec)

DP 
volts

EP 
volts

CE 
volts

CXP 
volts

N-Acetylputrescine 
(NAP1) 231.0 115.0 300 60 10 20 25

N-Acetylputrescine 
(NAP2) 231.0 157.0 300 60 10 20 25
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Supplemental Table 2: Validation Summary for NAP in Plasma Assay

Category Study  Assay Performance

LLOQ std.  (%Bias ) < 2%
Linearity 

other std.  (%Bias ) < 5%

intra-assay precision (%CV) < 10%
Standard and QCs performance

Precision
 inter-assay precision (%CV) < 26%

LLOQ-QC (ME%, %Bias) 90% ; -10%
Matrix Effect

HQC (ME%, %Bias) 76%; -24%

Interference Hemolysate, Bilirubin & Lipoproteins; 
LQC & HQC (%Bias) >15% **

System Suitability %CV <3%

System Suitability Drift %Drift <9%

System Performance

Carryover %Carryover 0%

STS (RT, 24h)  

LLOQ std. & substock* (%Bias) -4%

LTS (-80C, 88 day)  

Standard Solutions 

in Surrogate Matrix

LLOQ std. & ULOQ std (%Bias) 11%; -8%

STS  (RT, 24h)  

LQC & HQC (%CV) 7% ; 1%

LTS ( -80C, 84 day)  

LQC & HQC (%CV) 2% ; 3%

FTS

Stability

Human Plasma

LQC & HQC (%CV) 7% ;  11%

Reproducibility (4C, 8 day)  
Reproducibility Re-injection at 4°C in autosampler

LQC & HQC (%CV) 3%; 14%

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453542
http://creativecommons.org/licenses/by/4.0/


24

Supplemental Table 3: Calibration Curve Ranges and Linearity for NAP in Plasma Assays. 

NAP Plasma assay (n =4)

Spiked Nominal 
Concentration (ng/mL)

Mean Measured 
Concentration (ng/mL) %CV Average % 

Bias

1.0 1.0 3.5 1.5
2.0 1.8 5.2 4.1
5.0 5.0 6.6 2.4
10.0 10.1 3.1 2.0
25.0 23.9 3.9 2.0
50.0 52.4 2.7 2.6
68.0 70.8 6.0 1.4
85.0 83.4 4.5 2.8

Note: The linearity for NAP (r2= 0.99745, n=4)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453542
http://creativecommons.org/licenses/by/4.0/


25

Supplemental Table 4. The Intra- and Inter-Assay Precision (%CV) in Average for Six Batches

QC Intra-assay   
(% CV) 

Inter-assay   
(% CV)

LLOQ QC 9.8 14.7

LQC  5.2 8.8

MQC 4.8 7.4

HQC 9.5 25.6
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Supplemental Table 5: Matrix Effect Summary for NAP in Plasma Assay

  spiked with NAP in plasma (n=9)

  spiking (ng/mL) ME% % Bias

LLOQ QC 1.0 89.6 -10.4

HQC 64 75.9 -24.1
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Supplemental Table 6: Short-Term Stability, and Long-Term Stability for NAP Spiked in 2.5% BSA 
Standard Solution

Stability Concentration 
(ng/mL)

Mean

(peak area)
CV% Bias %

L1 1.0 2.8E+04 1.3 -3.6STS

( 24 hrs, 5C) substock 2000 1.6E+06 1.4 -6.7

L1 1.0 4.3E+04 6.1 10.6LTS

( 88 days, -80C) L8 85.0 3.0E+06 8.2 -8.1
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Supplemental Table 7: Short-Term Stability, and Long-Term Stability for NAP Spiked in Human Plasma

Short-term 
stability

(24h, RT)

Long-term 
stability

(84 days, -80C)

Freeze-thaw 
stability

(4x)

Re-injection 
stability in 

autosampler

(8 days)

Expected 
Value 
(ng/mL)

Acceptable 
Ranges 
(ng/mL)

Mean 
(ng/mL) CV% Mean 

(ng/mL) CV% Mean 
(ng/mL) CV% Mean 

(ng/mL) CV%

LQC 3.2
LQC: 

2.33-4.03
3.1 6.9 3.2 2.2 3.1 6.8 3.2 3.5

HQC 54.2
HQC: 

27.8-80.7
41.0 1.2 63.4 2.8 42.4 11.0 46.5 13.8
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Supplemental Table 8: Interference in Plasma Assay

 Unspiked 
interference Hemolysate Bilirubin Lipoproteins

 Mean 
(ng/mL)

Mean 
(ng/mL) CV% Bias 

(%)
Mean 

(ng/mL) CV% Bias 
(%)

Mean 
(ng/mL)

% 
CV

Bias 
%

LQC 3.7 3.1 3.3 -16.1 3.0 3.2 -18.4 13.4 3.2 264.0

HQC 49 47 2.1 -3.8 45 1.3 -7.5 57 1.0 16.5
Note: In plasma assay, potential interferences were evaluated by spiking HQC and LQC samples with hemoglobin 
(500 mg/dL), unconjugated bilirubin (30 mg/dL), and triglycerides (1000 mg/dL). 
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