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Abstract 

The conceptualization of emotional states as patterns of interactions between large-scale brain networks 

has recently gained support. Yet, few studies have directly examined the brain’s network structure during 

emotional experiences. Here, we investigated the brain’s functional network organization during 

experiences of sadness, amusement, and neutral states elicited by movies, in addition to a resting-state. We 

tested the effects of the experienced emotion on individual variability in the brain’s functional connectome. 

Next, for each state, we defined a community structure of the brain and quantified its segregation and 

integration. Our results show that emotional states increase the similarity between and within individuals 

in the brain’s functional connectome. Second, in the brain’s modular organization, sadness, relative to 

amusement, was associated with higher modular integration and increased connectivity of cognitive control 

networks: the salience and fronto-parietal networks. Last, in both the functional connectome and the 

emotional report, we found higher similarity among women. Our results suggest that the experience of 

emotion is linked to a reconfiguration of whole-brain distributed, not emotion-specific, functional networks 

and that the brain’s topological structure carries information about the subjective emotional experience. 
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Introduction 

The encoding of emotion in the human brain remains an area of ongoing debate. Traditionally, most studies 

sought to map specific categories of emotion to localized brain regions or anatomical circuits, focusing on 

the role of subcortical structures (Ekman 1999; Panksepp 2004). However, it has become increasingly 

evident that there is no one-to-one mapping between discrete emotions and individual brain regions 

(Lindquist et al. 2012). With the evolution of cognitive network neuroscience, the study of the neural basis 

of emotion has shifted to the examination of functional brain networks (Pessoa 2017). The recent 

application of machine learning techniques to neuroimaging data demonstrated that specific categories of 

emotion can be distinguished based on neural activity patterns, distributed over the cortex and subcortex 

(Kragel and LaBar 2015; Wager et al. 2015).  

 This new line of research may suggest that there is no brain region or even a brain network, that is 

specific to a certain emotion. Rather, emotional states are thought to be reflected in patterns of interactions 

between multiple large-scale brain networks (Barrett and Satpute 2013; Wager et al. 2015; Pessoa 2017). 

These functional brain networks are not only involved in emotion but also in non-emotional processes (such 

as conceptualization, attention, motor function, and executive control), and are not dedicated to an emotion 

category, but instead, their specific interactions are postulated to be the basis for an emotional state.  

However, surprisingly, despite much theoretical interest, few studies have directly examined the brain’s 

network structure during subjective experiences of emotion. Thus, in an attempt to fill these experimental 

gaps, our study's goals were twofold. First, to delineate the manner in which emotional states influence 

individual differences in brain functional connectivity. Second, to define the community structure of the 

brain during specific emotional experiences. 

 Outside the field of emotion, the effects of the task or mental state on individual differences in the 

brain’s functional connectome have recently gained interest (Cole et al. 2013; Geerligs et al. 2015). A 

functional connectome refers to the communication patterns between brain regions, typically computed by 

the level of synchronization between fMRI blood-oxygen-level-dependent (BOLD) signals (Van Essen and 

Ugurbil 2012). The effects of the mental state on variability in the functional connectome can be evaluated 
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by examining: (i) within-subject similarity, i.e., how functional connectomes acquired during different 

states are similar within an individual, and (ii) between-subject similarity, how functional connectomes 

acquired during a specific state are similar across individuals. Previous studies, such as that of Finn and 

colleagues (Finn et al. 2017), demonstrated that both the within- and between-subject similarities are 

dependent on the state.  

 The mental state was further shown to influence the brain’s modular organization. As a complex 

system, the brain can be divided into communities of regions, called modules, that are functionally highly 

intra-connected and less strongly functionally inter-connected (Meunier et al. 2010). Describing the brain 

from a network science perspective allows one to quantify higher-level complex interactions between the 

network’s elements (e.g., brain regions), and examine their link to the mental state and behavior (Medaglia 

et al. 2015). For example, Cohen and D’Esposito (2016) found increased modular segregation during a 

motor task as opposed to enhanced global integration during a working memory task.  

 Crucially, disturbances of emotion are key components in many psychiatric disorders, such as 

depression, anxiety, and autism. Understanding how emotional states are encoded in the brain's complex 

functional structure, not only by the macro-scale networks that are involved but also by the specific 

communication patterns between them, and how they are dependent on the subjective emotional experience, 

could be critical for developing brain-based models that can predict disease trajectory and clinical outcome, 

ultimately advancing the clinical utility of neuroimaging methods.  

 In the current study, we aimed to: (i) Examine the effects of the emotional experience and sex on 

the within- and between-subject similarity in the brain’s functional connectome. We hypothesized that the 

emotional state would increase the similarity in the brain’s global organization, both between individuals 

and between states within individuals. Given the well-established sex differences in mood disorders 

(Riecher-Rössler 2017), we hypothesized that sex would interact with the emotional state. (ii) Define the 

modular organization of the brain during specific emotions: sadness and amusement. These emotional 

categories were chosen based on their relevance to clinical disorders, such as depression and bipolar 

disorder (Joormann et al. 2007; Fu et al. 2008; Gruber et al. 2014), and their opposed emotional valence. 
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(iii) Quantify differences between emotional states in the segregation and integration of network 

communities. In line with the notion of emotional states as distinct interactions between large-scale 

functional brain networks, we postulated that sadness and amusement, despite being both high-order 

complex cognitive states, will differ in their level of modular segregation and in specific patterns of 

between-module communication.  

 

Materials and Methods 

Participants 

Healthy young participants were recruited among undergraduate students at the Hebrew University of 

Jerusalem. Exclusion criteria included: past or present psychiatric or neurological disorders, use of 

psychiatric medication, use of hormonal contraceptives, or any premenstrual symptoms. One participant 

was excluded due to anxiety in the MRI scanner, and another was excluded because of in-scanner motion 

(see MRI data preprocessing in the Supplemental Methods). The final analyzed sample comprised 50 

healthy participants (30 women, 20 men; age: 23.94±2.64 years). Datasets from a subsample of the 

participants were previously used in a prior study (Dan et al. 2019). For women that completed two MRI 

scans as part of a separate parallel study, data utilized in this study were always taken from their first scan. 

Note that half of the women were scanned during the mid-follicular phase and half during the late-luteal 

phase.  The study was approved by the Hadassah Hebrew University Medical Center Ethics Committee and 

was carried out in compliance with the Declaration of Helsinki. 

 

Emotional brain states induced by movie-watching 

Each fMRI scan included the following sequence to induce four different mental states: (i) resting-

state (10 minutes): eyes open, fixating on a visual crosshair; (ii, iii) two emotional states (10 minutes each): 

sadness and amusement, induced by continuous exposures to movies, and (iv) a neutral movie state (10 

minutes). Each movie state (sadness, amusement, and neutral) was induced by four movie clips (2-3 minutes 
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each) presented in a row. The order of the emotional states (sadness, amusement) was counterbalanced 

across the sample and within each sex. The resting-state preceded the movie states and the neutral state was 

induced between the emotional states. We chose movies since we wanted to probe emotion in a naturalistic 

way, including an intense emotional experience. Movie-watching is a powerful ecological method to induce 

engaging and rich high-order cognitive states in the MRI scanner (Nastase et al. 2020). Another advantage 

of movie-watching is that it commonly reduces in-scanner head motion and thus can improve data quality 

(Vanderwal et al. 2019). 

The movies were taken from available sets (Gross and Levenson 1995; Rottenberg et al. 2007; Farb 

et al. 2010; Schaefer et al. 2010) and tested in a separate behavioral study on an independent group of 

participants to evaluate their discreetness, intensity, and to select the best movie clips to use in the scanner. 

The following criteria were applied (Dan et al. 2019): (i) the movies should induce only the target discrete 

emotion (i.e., sadness and not a mixture of sadness and fear) (ii) the target emotion should be rated high on 

intensity. The movies were matched for the duration, the number of actors, and social interaction. All 

movies were in English with Hebrew subtitles. Detailed information about the movie stimuli is provided in 

Supplemental Table S1. 

 Before the MRI scan, participants were instructed to allow themselves to feel whatever feelings or 

emotions that come up without trying to suppress them. Within the scanner, participants rated after each 

movie state their subjective emotional experience during movie-watching on 1-to-8 Likert scales for: 

sadness, amusement, fear, anger, calmness, arousal, and attention. Responses were collected using MRI-

compatible button boxes with 4 buttons for each hand (8 buttons total). Outside the scanner, participants 

rated their subjective emotional experience during each movie state on 1-to-8 Likert scales using a detailed 

questionnaire that included 17 discrete emotional categories, valence (i.e., the affective quality of the 

experience, good/positive vs. bad/negative), arousal, and interest. The questionnaire was similar to that of 

Gross and colleagues (Rottenberg et al. 2007) and translated to Hebrew (see Supplemental Methods for the 

English version of the movie rating questionnaire that was used outside the scanner). Participants were 
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encouraged to report honestly their emotions and try to separate them from their mood that day, from what 

they think other people felt or what they believe people should feel.  

 

MRI data acquisition and preprocessing 

MRI data were acquired on a 3T Magnetom Skyra. Preprocessing of fMRI data was done using SPM12 

(Wellcome Trust Centre for Neuroimaging, London, United Kingdom, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Details of acquisition, preprocessing, and in-scanner 

motion correction are found in the Supplemental Methods. 

 

Functional connectome for each brain state 

For each participant and mental state (i.e., sadness, amusement, neutral, rest), a whole-brain functional 

connectome covering the cortex and subcortex (excluding the cerebellum) was computed using CONN 

(Whitfield-Gabrieli and Nieto-Castanon 2012). The brain was parcellated to nodes and the average fMRI 

BOLD time series was calculated for each node. Pearson's correlations were computed between time series 

from all pairs of nodes and Fisher's transform was applied to correlation values, resulting in symmetric 

connectivity matrices.  

 In network analysis of the brain, the effect of the atlas used for node definition is an area of ongoing 

investigation. We, therefore, calculated functional connectomes using four different atlases: (i) Automated 

anatomical labeling atlas (AAL) (Tzourio-Mazoyer et al. 2002): 90 nodes; (ii) Harvard-Oxford atlas (HO) 

(Desikan et al. 2006): 105 nodes; (iii) Shen atlas (Shen et al. 2013): 218 nodes (excluding the cerebellum); 

(iv) Schaefer atlas (Schaefer et al. 2018): 400 nodes. The brain stem and cerebellum were excluded from 

the atlases. Since the Schaefer brain subdivision does not include the subcortex, 14 subcortical nodes from 

the Harvard-Oxford atlas were added to this atlas, resulting in a total of 414 nodes. Note that the AAL and 

Harvard-Oxford subdivisions were defined based on anatomical features whereas Shen and Schaefer 

defined parcels based on the functional homogeneity of resting-state time series. 
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Functional connectome similarity analysis 

For each parcellation atlas, functional connectivity matrices were thresholded at z=0 (i.e., negative weights 

were set to zero) to include only positive correlations (see Supplemental Figures S9-S11 for analysis that 

included negative correlations). To examine within- and between-subject similarity in the functional 

connectome, we followed previous approaches (Cole et al. 2014; Finn et al. 2017): the unique elements of 

each connectivity matrix were extracted by taking the upper triangle of the matrix, resulting in a vector of 

edge values for each participant for each mental state. The between-subject similarity was calculated using 

Pearson’s correlation between all possible pairs of participants for a certain state. These values were 

Fisher’s z-transformed, averaged across participants, and reverted to r values, resulting in a single value per 

participant. The within-subject similarity was calculated using Pearson’s correlation between all pairs of 

states for each participant, resulting in six values per participant (sadness vs. amusement, sadness vs. 

neutral, amusement vs. neutral, sadness vs. rest, amusement vs. rest, neutral vs. rest).  

 To examine the effect of sex on between-subject similarity, we calculated similarity among women 

(i.e., between each woman and all other women) and among men, denoted here as women-to-women and 

men-to-men similarity. To verify that the unbalanced number of women and men in the sample (30 women, 

20 men) didn’t create a bias, we repeated the sex differences analyses with 20 men and a randomly chosen 

subsample of 20 women.  Statistical analyses were conducted with SPSS v.23 (SPSS Inc., Chicago, IL) on 

the Fisher transformed z-values. Differences in within- and between-subject similarity were tested by 2-

way mixed ANOVA models implemented by a GLM with state as a within-subject factor and sex as a 

between-subject factor. Post-hoc pairwise comparisons were conducted using Sidak correction. 

 

Modularity analysis 

Community detection for each brain state 

To decompose the entire brain network into functional communities for each mental state, modularity 

analysis was conducted on the weighted functional connectivity matrices using a consensus partitioning 

algorithm (Lancichinetti and Fortunato 2012) implemented in the Brain Connectivity Toolbox (BCT) 
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(Rubinov and Sporns 2010). This algorithm partitions a whole-brain network into nonoverlapping groups 

of brain regions, i.e., “communities” or “modules”, by maximizing a modularity function. The Harvard-

Oxford atlas was chosen for node definition since it showed greater between-subject similarity in the 

functional connectome per state, compared to the higher resolution network parcellations of Shen and 

Schaefer (see Results and Figure 2a). In the first step, for each participant and each state separately, we 

applied a Louvain modularity optimization procedure 500 times to define an agreement matrix. Each cell 

in the agreement matrix corresponded to the proportion of times that a pair of nodes were assigned to the 

same community over the 500 repetitions. At the next step, Louvain modularity optimization was conducted 

on the agreement matrix, with 500 repetitions, generating a new agreement matrix. This step was repeated 

until convergence, i.e., until the agreement matrix was binary: containing only zeros or ones.  

 After a consensus partition was identified for each participant, we computed a group-level 

consensus partitioning for each state. The consensus partitions of all participants for a specific state were 

combined to create a group-level agreement matrix. Each cell in the group-level agreement matrix 

corresponded to the proportion of times that a pair of nodes were assigned to the same community across 

participants. At the next step, Louvain modularity optimization was conducted on the group-level 

agreement matrix, using 500 repetitions, generating a new group-level agreement matrix. This step was 

repeated until convergence to a binary group-level matrix. The procedure yielded a community structure, 

or modular organization, for each state at the individual and group levels. The consensus partitioning 

procedure was repeated over a range of the resolution parameter gamma (Reichardt and Bornholdt 2006) 

and with different treatments of negative weights in the modularity function (Rubinov and Sporns 2011). 

A resolution parameter gamma=2.25 and a positive-only weighted modularity function were chosen. 

Details regarding the choice of the resolution parameter and modularity function are found in the 

Supplemental Methods, Figures S1-S5.  

 To compute the similarity within- and between-subjects in the community structure, we used the 

normalized mutual information (NMI) (Kuncheva and Hadjitodorov 2004). The NMI measures the 

dependency between two node assignments, i.e., how much information one set of assignments provides 
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about a second set of assignments, and ranges from 0 (no information/similarity) to 1 (identical community 

structure). 

 

Modular segregation and integration metrics 

After each node was assigned to a group-level module for each mental state, we calculated the following 

measures of modular segregation and integration. Note that all measures retain the weights of the functional 

connections and were calculated for a specific state.  

(i) System segregation (Chan et al. 2014): the normalized difference between within- and between-module 

connectivity. A higher value indicates greater segregation, i.e., less interaction between modules. This 

measure was calculated for each module, resulting in a modular segregation metric as follows: 

System segregation𝑖 =  
Z̅w,i − Z̅b,i

Z̅w,i

 

where Z̅w,i is the mean functional connectivity (Fisher transformed z-values) between all pairs of nodes 

within module i and Z̅b,i is the mean functional connectivity between nodes of module i and nodes of all 

other modules. 

(ii) Participation coefficient (Guimerà and Amaral 2005): quantifies the diversity of a node’s connections 

across modules. It is close to 1 if the node’s connections are distributed uniformly among all modules and 

0 if all connections are within the node’s module. A high participation coefficient indicates high integration, 

i.e., strong connections to many modules, whereas a low participation coefficient indicates high 

segregation, i.e., weak interactions with other modules. For each module, we calculated the mean 

participation coefficient across all its nodes. The weighted variant of the participation coefficient from the 

BCT was used: 

Participation coefficient𝑖 =  1 − ∑ (
ki(m)

ki
)

2

mϵM
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where M is the set of modules m,  𝑘𝑖(𝑚) is the weighted degree (i.e., summed weighted functional 

connectivity) of node i to nodes within module m and 𝑘𝑖 is the total weighted connectivity of node i to all 

nodes regardless of module membership.  

(iii) Pairwise between-module connectivity: defined as the mean functional connectivity strength (Fisher 

transformed z-values) between pairs of modules, averaged across all possible connections. For example, 

the connectivity between module i and module j was calculated as the sum of functional connections 

between nodes in module i and nodes in module j, divided by the number of possible connections (number 

of nodes in module i x number of nodes in module j). 

 To examine differences between the four mental states in overall modular segregation and 

integration, the mean system segregation (across all modules), mean participation coefficient (across all 

nodes), and the modularity quality index (Q) (i.e., the modularity function that was maximized during the 

consensus clustering) were computed and analyzed by 1-way ANOVA models. A higher value of Q 

indicates a more modular organization. The overall functional connectivity strength (including positive 

connections only) was also calculated for each mental state and analyzed by 1-way ANOVA models. 

 Statistical differences between the emotional states (sadness, amusement) in segregation and 

integration of specific modules, were tested for the modules that were common to both emotions by 2-way 

repeated-measures ANOVA models implemented by a GLM with emotion and module as within-subject 

factors. Post-hoc pairwise comparisons were conducted using Sidak correction. In addition, for each 

emotional state, the association between segregation and integration metrics and the reported valence, 

arousal, and intensity of the emotional experience was computed using Pearson’s correlation. Ratings were 

taken from outside the scanner. 

 

Behavioral report of emotion experience 

Valence and interest were rated outside the scanner for the three movie states: sadness, amusement, neutral. 

Arousal and the intensity of the target emotion were rated both within and outside the scanner. For the 

detailed questionnaires outside the scanner, the intensity of sadness was calculated as the average rating for 
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“sadness” and “sorrow” and the intensity of amusement was calculated as the average of “amusement” and 

“enjoyment”. Attention was rated within the scanner. Note that arousal was added to the questionnaires 

(within and outside the scanner) after the beginning of the study; thus ratings were missing from 9 

participants for all states. The rating of valence for amusement was missing from one participant. 

 The between-subject similarity in the behavioral report of emotion was computed for each movie 

state (sadness, amusement, neutral), utilizing a similar approach to the one used for the functional 

connectome. The detailed ratings outside the scanner were used and the vector of ratings for the 19 items 

(emotional categories, valence, interest) was extracted for each participant for each state. The between-

subject similarity was calculated using Pearson’s correlation between all possible pairs of participants for 

a certain state. These values were Fisher’s z-transformed and averaged across participants resulting in a 

single value per participant. To examine the effect of sex, we calculated similarity among women and men, 

i.e., women-to-women and men-to-men similarity. To verify that the unbalanced number of women and 

men in the sample (30 women, 20 men) didn’t create a bias, we repeated the sex differences analysis with 

20 men and a randomly chosen subsample of 20 women. 

 For each behavioral measure (valence, arousal, intensity, interest, attention, between-subject 

similarity), statistical analysis was conducted in SPSS by 2-way mixed ANOVA models implemented by a 

GLM with state as a within-subject factor and sex as a between-subject factor. Post-hoc pairwise 

comparisons were conducted using Sidak correction. 

 

Discreteness of the target emotional state 

Discreetness of the target emotional state was analyzed for both the ratings within and outside the scanner. 

For the detailed questionnaires completed outside the scanner, a score was computed for each of the 

following 11 emotion categories: sadness (calculated as the average rating for “sadness” and “sorrow”), 

amusement (average of “amusement” and “enjoyment”), fear, anger, embarrassment (average of 

“embarrassment” and “shame”), disgust, surprise, guilt, anxiety, contempt, and confusion. To evaluate 

whether each movie state induced a discrete target emotion, Wilcoxon signed-rank paired tests were 
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computed for each state between the intensities of the target emotion (sadness or amusement) and all other 

10 non-target emotional categories. Similarly, for the within-scanner ratings, Wilcoxon signed-rank paired 

tests were computed for each state between the intensities of the target emotion and the other 3 non-target 

emotional categories (fear, anger, sadness/amusement). A Bonferroni correction was applied for multiple 

comparisons (2 movie states, 13 comparisons for each movie) resulting in a significance threshold of 

p<1.9·10-3. 

 

Extracting visual and auditory features of movie stimuli 

Low- and mid-level visual and auditory features of the movie stimuli were extracted using Pliers open-

source Python package (McNamara et al. 2017) (https://github.com/PsychoinformaticsLab/pliers). The 

low-level features of brightness, vibrance, optic flow and audio root-mean-square energy (audio RMSE) 

were extracted, as well as the mid-level feature of the number of faces presented onscreen. Note that for 

greater accuracy, the detection of faces was done both in Pliers and by manual encoding. The following 

metrics were computed: (i) Pliers: the proportion of frames containing at least one face, (ii) manual 

encoding: the number of faces presented for each frame. For each movie and each feature, the mean and 

standard deviation across frames were calculated. For each feature, differences between movies states 

(sadness, amusement, neutral) in the mean across frames or in the standard deviations were assessed in 

SPSS by 1-way ANOVA models.  

 

Results  

Visual and auditory features of movie stimuli 

Supplemental Table S2 presents the visual and auditory features of each movie clip. There were no 

statistical differences between states (sadness, amusement, neutral) for any of the movie features. 
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Within-subject similarity in the brain’s functional connectome 

The within-subject similarity was dependent on the state (Figure 1) [main effect of state, all p<10-6, 

Greenhouse-Geisser corrected: AAL: F(3.58,172.25)=102.50, partial eta-squared: ηp
2=0.68; HO: 

F(3.73,179.25)=129.83, ηp
2=0.73; Shen: F(3.62,173.99)=177.27, ηp

2=0.78; Schaefer: 

F(3.56,171.15)=200.71, ηp
2=0.80].  

 An individual’s functional connectome was more similar between two movie states (sadness, 

amusement, neutral) than between a movie state and rest, regardless of the brain parcellation atlas (pairwise 

differences: all p<10-6 Sidak corrected, Cohen’s d=1.35-3.08) (for visual clarity, this effect is not marked 

by lines and asterisks in Figure 1). Furthermore, for all atlases except for the AAL, the functional 

connectome was more similar between two emotional states (sadness, amusement) than between an 

emotional state and the neutral movie state (all p<0.05 Sidak corrected, Cohen’s d=0.43-0.81). There was 

no effect of sex or sex-by-state interaction (Supplemental Figure S6). The same results were found for a 

subsample matched for the number of women and men (20 women, 20 men), namely no sex differences 

(Supplemental Figure S7). 

 

Between-subject similarity in the brain’s functional connectome 

Parcellating the brain into more nodes resulted in an overall decrease in similarity between participants 

(number of parcels: Schaefer>Shen>HO>AAL) (Figure 2). The between-subject similarity was dependent 

on the state (Figure 2a) [main effect of state, all p<10-6 Sidak corrected, Greenhouse-Geisser corrected: 

AAL: F(2.17,76.106.55)=292.72, ηp
2=0.85; HO: F(2.26,111.04)=1263.05, ηp

2=0.96; Shen: 

F(2.21,108.63)=470.38, ηp
2=0.90; Schaefer: F(1.68,82.60)=55.97, ηp

2=0.53].  

 Participants were more similar to one another during emotional states (sadness, amusement) than 

during the neutral movie state, regardless of the parcellation atlas [(i) sadness vs. neutral: all p<10-6 Sidak 

corrected, Cohen’s d=4.72, 9.55, 5.32, 2.69 for AAL, HO, Shen and Schaefer atlases respectively; (ii) 

amusement vs. neutral: all p<10-6 Sidak corrected, Cohen’s d=1.79, 3.69, 5.02 for AAL, HO and Shen 

atlases respectively, not significant for Schaefer: p=0.099 Sidak corrected, Cohen’s d=0.34]. Furthermore, 
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higher between-subject similarity was found during sadness relative to amusement [all p<10-6 Sidak 

corrected, Cohen’s d=2.34, 3.62, 1.06 for AAL, HO, and Schaefer atlases respectively]. The Shen atlas 

showed an opposite and smaller effect (p=0.001 Sidak corrected, Cohen’s d=0.55).  

 Women were more similar to other women than men to other men, across states, for all atlases 

except for the Shen atlas (Figure 2b) [main effect of sex: AAL: F(1,48)=15.21, p=2.9∙10-4, ηp
2=0.24; HO: 

F(1,48)=22.80, p=1.7∙10-5, ηp
2=0.32; Schaefer: F(1,48)=20.94, p=3.4∙10-5, ηp

2=0.30]. Sex differences 

varied by state [sex-by-state interaction: AAL: F(1.59,76.30)=37.03, p<10-6, ηp
2=0.43; HO: 

F(1.55,74.50)=32.17, p<10-6, ηp
2=0.40; Shen: F(1.61,77.29)=15.67, p=1∙10-5, ηp

2=0.24; Schaefer: 

F(2.05,98.68)=19.98, p<10-6, ηp
2=0.29; all Greenhouse-Geisser corrected]. Amusement showed significant 

sex differences across all atlases (all p<0.002 Sidak corrected, Cohen’s d=0.44-0.96). Similar results were 

obtained with a balanced subsample of 20 women and 20 men (Supplemental Figure S8). 

 

Behavioral report of emotional experience 

Table 1 presents the ratings of the movie states for discrete emotion categories, valence, arousal, interest, 

and attention, rated within and outside the scanner. 

 

Valence, arousal, intensity, interest, and attention 

(i) Valence  

A main effect of state was found, as expected: amusement>neutral>sadness [F(2,94)=53.46, p<10-6, 

ηp
2=0.53]. Namely, the emotional experience during induction of amusement was rated as 

“pleasant/positive” whereas the experience during induction of sadness was rated as “unpleasant/negative”. 

There were no sex or interaction effects.  

(ii) Arousal 

A main effect of state was found [(i) within scanner: F(2,78)=40.66, p<10-6, ηp
2=0.51; (ii) outside scanner: 

F(1.63,63.75)=47.45, p<10-6, ηp
2=0.54, Greenhouse-Geisser corrected]. Higher arousal was reported for 

both emotional states relative to the neutral state. Outside the scanner, no difference was found between 
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emotional states. Within the scanner, higher arousal was reported for amusement relative to sadness 

(p=0.041 Sidak corrected, Cohen’s d=0.36). There were no sex or interaction effects.  

(iii) Intensity of target emotion 

Within or outside the scanner, emotional states (sadness, amusement) did not differ in the reported intensity 

of target emotion, and there was no effect of sex or interaction.  

(iv) Interest 

Higher interest was reported for amusement relative to sadness, and for both emotional states relative to 

neutral: amusement>sadness>neutral [main effect of state: F(2,96)=47.10, p<10-6, ηp
2=0.49]. There were 

no sex or interaction effects.  

(v) Attention 

Higher attention was reported during emotional states relative to the neutral state, without a difference 

between emotional states [main effect of state: F(1.72,67.4)=64.28, p<10-6, ηp
2=0.62, Greenhouse-Geisser 

corrected]. There were no sex or interaction effects.  

 

Discreteness of the target emotional state 

For both emotional states, all pairwise comparisons between the intensities of the target emotion and other 

non-target emotion categories were significant (all p<10-7), across ratings collected outside and within the 

scanner, indicating discrete emotional experiences of sadness and amusement (Supplemental Table S3). 

 

Between-subject similarity in the behavioral report 

Participants were more similar to one another in their reports of emotional experience during amusement, 

relative to sadness or the neutral state (Figure 3a) [main effect of state: F(2,98)=2774.61, p<10-6, ηp
2 =0.98]. 

In addition, women were more similar to other women than men to other men (Figure 3b) [main effect of 

sex: F(1,48)=17.20, p=1.36∙10-4, ηp
2 = 0.26. main effect of emotion: F(2,96)=1236.42, p<10-6, ηp

2 =0.96]. 

There was no sex-by-emotion interaction. Similar results were obtained with a balanced subsample of 20 

women and 20 men (Supplemental Figure S12). 
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Modular organization of different brain states 

The community structure identified for sadness, amusement, neutral, and rest is presented in Figure 4 (see 

Supplemental Table S4 for the list of node assignments to modules). Each brain state was characterized by 

a specific topological organization. Eight modules were identified for amusement, neutral, and rest, and 

nine for sadness. Several qualitative differences in the community structure were observed between the four 

brain states. The salience network was identified as a separate community only in sadness and amusement. 

For sadness and neutral, the occipital cortex was divided into two networks: primary and secondary visual, 

as opposed to one visual network in amusement and rest. Separate sensorimotor and auditory communities 

were identified in sadness and amusement, whereas in neutral and rest these networks were combined into 

one community. The posterior default mode network emerged as a separate community only in resting-

state. 

 For the modularity quality index (Q), a main effect of the mental state was found 

[F(2.48,121.89)=5.25, p=0.004, ηp
2 =0.09, Greenhouse-Geisser corrected], with a higher Q for amusement 

relative to rest (p=0.002 Sidak corrected, Cohen’s d=0.55), without a difference between emotional states 

(p=0.055 Sidak corrected, Cohen’s d=0.38). A main effect of the mental state was also found for the overall 

functional connectivity strength (positive connections only) [F(3,147)=6.43, p=4∙10-4, ηp
2 =0.11], with 

higher overall connectivity indicated for rest relative to amusement and sadness (rest>amusement: p=0.001 

Sidak corrected, Cohen’s d=0.60; rest>sadness: p=0.008 Sidak corrected, Cohen’s d=0.48), without a 

difference between emotional states (p=0.52 Sidak corrected, Cohen’s d=0.09).  

 

Within- and between-subject similarity in the brain’s community structure 

The within-subject similarity in the community structure was dependent on the state (Supplemental Figure 

S13) [F(3.37,165.38)=22.12, p<10-6, ηp
2=0.31, Greenhouse-Geisser corrected]. An individual’s community 

structure was more similar between two movie states (sadness, amusement, neutral) than between a movie 

state and rest (all p<0.006 Sidak corrected, Cohen’s d=0.53-1.05). Furthermore, greater similarity was 
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found between the two emotional states (sadness, amusement) than between amusement and the neutral 

movie state (p=0.027 Sidak corrected, Cohen’s d=0.46). 

 The between-subject similarity in the community structure was dependent on the state 

(Supplemental Figure S14) [F(3,147)=7.96, p=5.9∙10-5, ηp
2=0.14]. Individuals were more similar to one 

another during sadness, compared to all other states (p=0.0003, 0.019, 0.0002 Sidak corrected and Cohen’s 

d=0.61, 0.43, 0.64 for sadness>amusement, sadness>neutral and sadness>rest respectively). 

 

Modular segregation and integration during emotional brain states 

The mean system segregation (across all modules) and the overall mean participation coefficient (across all 

nodes) were higher for sadness compared to amusement and for both emotional states relative to rest 

(Figures 5a,b) [main effect of state: (i) system segregation: F(3,147)=13.38, p<10-6, ηp
2 =0.21; (ii) 

participation coefficient: F(2.49,122.10)=54.23, p<10-6, ηp
2 =0.52, Greenhouse-Geisser corrected]. To 

compare the segregation and integration of specific modules between the emotional states, further analysis 

was conducted on the seven modules that were common to both emotions: (1) fronto-parietal; (2) salience; 

(3) language; (4) sensorimotor; (5) auditory; (6) limbic; and (7) basal ganglia. Visual modules were 

excluded since they were not comparable between the emotional states (two modules identified in sadness 

and one in amusement).  

 For the system segregation, a main effect of module was found (Figure 5c) ]F(4.92,241.11)=22.29, 

p<10-6, ηp
2 =0.31, Greenhouse-Geisser corrected. The highest modular segregation was indicated for the 

auditory module and the lowest segregation for the basal ganglia module. A module-by-emotion interaction 

was also found ]F(4.58,224.64)=39.50, p<10-6, ηp
2 =0.44, Greenhouse-Geisser corrected]: in sadness 

relative to amusement, higher segregation was indicated for the salience and auditory modules whereas in 

amusement higher segregation was indicated for the fronto-parietal and language modules.  

 For the participation coefficient, main effects of emotion, module, and emotion-by-module 

interaction were found (Figure 5d) ]emotion: F(1,49)=21.83, p=2.4∙10-5, ηp
2 =0.30; module: 

F(4.61,226.13)=65.22, p<10-6, ηp
2 =0.57, Greenhouse-Geisser corrected; emotion-by-module: 
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F(4.69,229.87)=97.37, p<10-6, ηp
2 =0.66, Greenhouse-Geisser corrected]. Across modules, greater diversity 

of connections, i.e., integration, was indicated in sadness. Furthermore, for both emotions, the highest 

diversity of connections was indicated for the basal ganglia module. In sadness relative to amusement, 

higher integration was indicated for the fronto-parietal, salience, language, limbic, and basal ganglia 

modules whereas in amusement higher integration was indicated for the auditory module. 

 Specific between-module connections were further examined with the pairwise between-module 

functional connectivity. Main effects of emotion, connection, and emotion-by-connection interaction were 

found (Figure 5e) ]emotion: F(1,49)=4.27, p=0.044, ηp
2 =0.08; connection: F(8.99,440.62)=97.39, p<10-6, 

ηp
2 =0.66, Greenhouse-Geisser corrected; emotion-by-connection: F(9.62,471.53)=7.49, p<10-6, ηp

2 =0.13, 

Greenhouse-Geisser corrected]. Overall greater between-module connectivity was found for sadness, as 

indicated above by the participation coefficient. In sadness compared to amusement, higher between-

module connectivity was found for the frontoparietal-salience, frontoparietal-language, frontoparietal-

limbic, frontoparietal-auditory, salience-language, salience-sensorimotor, salience- limbic, salience-basal 

ganglia, limbic-language, and language-auditory connectivity. In amusement compared to sadness, higher 

between-module connectivity was found for the frontoparietal-sensorimotor and sensorimotor-auditory 

connections. 

 

Relationship between modular metrics and report of emotional experience 

During sadness, the mean participation coefficient of the limbic module was associated with the reported 

valence (p=0.008, r=-0.36) and with the intensity of sadness (p=0.043, r=0.28). Namely, higher sadness and 

lower valence were associated with an increased diversity of the limbic module’s connections. 

 The pairwise between-module connectivity was associated during sadness with the reported 

valence (frontoparietal-limbic: p=1.08∙10-4, r=-0.52; frontoparietal-sensorimotor: p=0.021, r=-0.32; 

salience-limbic: p=0.011, r=-0.35; basal ganglia-limbic: p=0.041, r=-0.29; basal ganglia-sensorimotor: 

p=0.034, r=0.29). The intensity of sadness was associated with the connectivity between the frontoparietal-

limbic (p=0.040, r=0.29) and the salience-limbic (p=0.032, r=0.30) modules. The reported arousal during 
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sadness was associated with the connectivity between the salience-limbic modules (p=0.029, r=0.34). The 

results are in line with the higher frontoparietal-limbic and salience-limbic connectivity found in sadness. 

No associations were found for amusement or with the system segregation. 

 

Discussion 

We demonstrated that emotional states, specifically sadness and amusement, increase the within- and 

between-subject similarity in the brain’s functional connectome. Furthermore, by using a network science 

approach, we showed that the segregation and integration of brain network communities are linked to the 

subjective experience of emotion and reconfigure according to the emotional state. Specifically, we found 

that sadness was associated with higher modular integration relative to amusement and increased 

connectivity of cognitive control networks: the salience and fronto-parietal networks. 

 The emotional condition increased the within- and between-subject similarity in the functional 

connectome, in accordance with our hypotheses. This effect was found above and beyond the effect of 

movie-watching. First, an individual’s functional connectome was more similar between two emotional 

states (sadness vs. amusement) than between an emotional state and a neutral movie state. Second, 

participants were more similar to one another during emotional states than during the neutral movie state. 

Moreover, sadness was associated with higher between-subject similarity relative to amusement, in both 

the functional connectome and community structure. 

 The higher similarity between individuals during sadness in the functional connectome and 

community structure was not explained by increased attention or interest, as emotional states did not differ 

in attention and higher interest was reported during the induction of amusement. Moreover, in the 

behavioral reports of emotion, a higher between-subject similarity was found during amusement relative to 

sadness, and not vice versa. Thus, the similarity in the functional connectome did not merely reflect a 

similarity in the experience or could be attributed to general effects of attention or engagement.  
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 In the brain’s topological organization, sadness was characterized by increased modular integration 

compared to amusement, measured by a greater diversity of functional connections across modules. 

Furthermore, the two emotions differed in their between-module connectivity patterns, primarily for the 

fronto-parietal and salience networks. Both networks are implicated in task-related activity and cognitive 

control (Power and Petersen 2013). The salience network is centered on the anterior insula and anterior 

cingulate cortex and integrates external stimuli with internal states (Seeley et al. 2007). It was shown to 

mediate the interactions between externally oriented networks, such as the fronto-parietal, and internally 

oriented networks, particularly the default mode network (Sridharan et al. 2008). The fronto-parietal 

network includes the dorsolateral prefrontal cortex and the posterior parietal cortex and was associated with 

working memory and goal-directed behavior (Seeley et al. 2007).  

 The connections of the fronto-parietal and salience modules, as well as the connectivity between 

these modules, were stronger in sadness. In addition, the salience module was more segregated in sadness, 

whereas the fronto-parietal module was more segregated in amusement. Taken together, we found that in 

sadness compared to amusement, the salience network was both more segregated, i.e., strongly intra-

connected, and more integrated, i.e., diversely inter-connected. These metrics are not mutually exclusive, 

i.e., increased modular segregation does not necessarily imply isolation of the functional community. For 

example, a previous study showed that modular segregation and global integration increased simultaneously 

due to the strengthening of specific “hub” connections (Baum et al. 2017). 

 The salience network emerged as a separate module only in sadness and amusement. In possible 

congruence, Wager et al. (Wager et al. 2015) demonstrated that sadness and amusement were grouped 

together according to their preferential activity within the salience network. The fronto-parietal network, 

on the other hand, was identified in all four mental states (including the non-emotional ones). The fronto-

parietal network was previously found to be most variable across tasks and suggested to flexibly interact 

with other networks to implement task demands (Cole et al. 2013)    

 Our results resonate with several theoretical accounts of emotion which emphasize a system-level 

approach (Wager et al. 2015; Pessoa 2019). In general agreement with those theories, we showed that each 
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emotional state can be described by a whole-brain topological structure that involves all functional brain 

systems rather than a single system or brain region. Adding to those theoretical foundations, we showed 

that differences between emotional states can be quantified by the level of segregation and integration of 

functional brain communities/modules. 

 We showed that the integration between brain modules is related to the behavioral report of 

emotional valence and intensity. This brain-behavior correspondence demonstrates that the community 

structure captures important aspects of the subjective emotional experience. These findings may further aid 

in clinical and behavioral prediction. Behavioral prediction was argued to be more accurate when brain 

measures are taken from a relevant cognitive state (Greene et al. 2018). Thus, characterizing the brain’s 

community structure during ecological states of sadness and amusement (and other emotional states such 

as fear or stress, for example) may enhance our ability to predict prospective psychiatric symptoms in at-

risk and clinical populations.   

 Movie-watching increased the within- and between-subject similarity in the functional connectome 

relative to rest. This is consistent with previous literature showing that movies increase synchronization 

between cortical signal fluctuations across individuals (Hasson et al. 2004; Lankinen et al. 2014). Studies 

that quantitatively compared functional connectivity between different movies are scarce, and initial 

findings indicated greater within-subject similarity during movies compared to rest, without differences 

between movies (Vanderwal et al. 2017; Tian et al. 2021). Notably, most studies that examined task or state 

effects on individual differences in the functional connectome did not include naturalistic stimuli (Cole et 

al. 2014; Gratton et al. 2018). 

 Furthermore, we provided a quantitative characterization of differences in modular organization 

between movie states and rest. We found that movie-watching, compared to rest, was characterized by 

higher modular segregation and higher modular integration, i.e., diversity of connections across modules. 

This is in agreement with a recent study (Kim et al. 2018) which indicated reorganization of the community 

structure during movie-watching relative to rest, however, it did not quantify the modular segregation or 

integration of the states.  
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 Women were more similar to other women than men to other men in the brain’s functional 

connectome. The magnitude of sex differences varied according to the mental state and the brain 

parcellation atlas. The greater similarity among women is consistent with recent findings (Finn et al. 2017). 

Moreover, Finn and colleagues found the largest sex differences during an emotion perception task. In a 

related study, Green et al. (Greene et al. 2018) showed that the task that increases the ability to predict fluid 

intelligence from functional connectomes differs by sex. Interestingly, they showed that an emotion 

identification task was the best for predicting intelligence in women, whereas a working-memory task was 

the best for men.  

 We further found a higher similarity among women in the behavioral reports of emotion. In 

addition, amusement yielded the highest similarity in behavioral ratings among participants, compared to 

sadness or the neutral state. Emotion similarity in the subjective experience among individuals is known to 

be associated with many interpersonal advantages, such as greater satisfaction, empathy, cooperation, and 

reduced stress (Locke and Horowitz 1990; Barsade 2002; Townsend et al. 2014). Our results suggest that 

similarity in the experienced emotion, and thus its positive social effects, are more likely to be achieved 

during states of amusement and among women.  

 The brain parcellation atlas was shown to affect primarily the between-subject similarity in the 

functional connectome and not the within-subject similarity. We found that the similarity between 

individuals in the functional connectome was reduced with the use of smaller parcels. One possible 

explanation is that smaller parcels are more sensitive to anatomical variability and imperfect coregistration, 

and also to functional variability, namely, slightly different anatomical locations for the same function 

across participants. Salehi et al. (Salehi et al. 2020) showed that brain subdivisions based on functional 

connectivity data differ according to the task during which the data was acquired, even within an individual. 

In other words, parcels that were defined based on resting-state data, may not capture accurate functional 

units during other tasks or mental states. This may also explain the observation that among the four atlases 

that were tested, results obtained with the Shen atlas were the least consistent with those of the other atlases. 
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While both Shen and Schaefer atlases were based on functional connectivity resting-state data, only the 

Schaefer atlas integrated local and global parcellation techniques (Schaefer et al. 2018).  

 

Limitations 

Emotional states were elicited by movies, using different movie clips for each state (sadness, amusement, 

neutral). Importantly, while the contribution of low-level visual and audio properties of the stimuli to some 

of the differences between conditions in brain organization cannot be entirely ruled out, our analyses 

indicated no differences between emotional states in low- and mid-level visual or auditory features of the 

movie stimuli. Moreover, each emotional state was elicited by four movie clips, thus the state-specific 

functional connectomes captured the average interactions between brain regions across the different movies 

that induced a certain state. Characterizing states by averaging over several different movies instead of one 

was chosen to increase the generalizability of the findings, in addition to allowing for a continuous, 

naturalistic, and intense emotional experience. On a related note, low-level and mid-level visual and audio 

movie features were not associated with functional connectivity-based behavioral prediction from movie-

watching fMRI data (Finn and Bandettini 2021). We also note that while the order of the emotional states 

(sadness, amusement) was balanced across the sample and within each sex, the order of the rest and neutral 

states was not. Rest was always the first state, and neutral was induced between the emotional states. Thus, 

possible effects of fatigue can influence the comparison between the states. 

 The study design does not enable us to conclude whether the findings are specific to the emotional 

categories (sadness, amusement) or emotional valence (negative, positive). Moreover, despite the 

discreteness of the rating results for the target emotions, the mapping between emotional states and modular 

brain representations can be of many-to-one (and not one-to-one). In other words, the modular 

representation of anger, for example, can be similar to that of sadness.  We note that recent studies did not 

provide strong support for traditional dimensional approaches to emotion at the level of the brain’s network 

organization (Kragel and LaBar 2015; Wager et al. 2015). Specifically, emotional categories were not 
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indicated to be grouped according to their valence. For example, sadness and amusement, despite their 

contrasting valence, were more similar to one another in their brain representations than emotions of the 

same valence, such as sadness and fear (Wager et al. 2015). In another study, neural activity patterns were 

most separable during the experience of distinct emotional categories and not differentiable according to 

valence and arousal (Kragel and LaBar 2015). Studies examining the functional connectome similarity and 

modular organization during additional emotional and affective states are needed. 

 

Conclusions 

By applying network science methods to the neural representations of intense naturalistic emotional states, 

this study sought to deepen our understanding of the brain basis of emotion in humans. A modular 

organization of the brain during experiences of sadness and amusement was described, and the results 

extended previous attests for the essential importance of the brain’s network segregation and integration 

patterns, to the field of emotion. Our results suggest that the experience of emotion is linked to a 

reconfiguration of distributed, not emotion-specific, functional brain networks. The interaction patterns 

between functional networks, and not the networks themselves, are postulated to be associated with the 

emotional state. 
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The Brain Connectivity Toolbox (BCT) was used for modularity analyses and is freely available at 

https://sites.google.com/site/bctnet. Consensus partitioning was done using the following BCT functions: 

community_louvain.m, agreement.m, consensus_und.m. The weighted participation coefficient was 

calculated using the participation_coef.m function from the BCT. The normalized mutual information 

(NMI) was computed using getNMI.m function and is available at 

https://www.mathworks.com/matlabcentral/fileexchange/62974-getnmi-a-b. 
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Table 1. Ratings of the movie states for discrete emotion categories, valence, arousal, interest, and 

attention. 

 

Within the scanner, ratings were done on 1-to-8 Likert scales and collected immediately after each movie 

state. Participants made their responses using MRI-compatible button boxes with 4 buttons for each hand 

(8 buttons total). Outside the scanner, ratings were done with pen and paper on 1-to-8 Likert scales. The 

intensity of the target emotion is indicated in bold. 

 

  

 Sadness movie state 

(mean±std) 

Neutral 

movie state 

(mean±std) 

Amusement 

movie state 

(mean±std) 

 Outside 

scanner 

Within 

scanner 

Outside 

scanner 

Within 

scanner 

Outside 

scanner 

Within 

scanner 

Sadness 5.89±1.54 6.02±1.74 1.20±0.61 1.30±0.70 1.19±0.57 1.20±0.45 

Amusement 2.66±1.44 2.94±1.88 2.68±1.30 3.18±1.57 6.15±1.34 6.40±1.14 

Fear 2.22±1.76 2.98±2.10 1.02±0.14 1.16±0.37 1.16±0.65 1.56±1.12 

Anger 2.00±1.44 2.30±1.48 1.20±0.63 1.36±0.82 1.24±0.51 1.38±0.69 

Disgust 1.18±0.48 - 1.12±0.38 - 1.78±1.20 - 

Surprise 1.50±1.12 - 1.12±0.38 - 3.16±1.95 - 

Embarrassment 1.29±0.76 - 1.20±0.56 - 2.32±1.35 - 

Guilt 1.26±0.75 - 1.00±0 - 1.14±0.63 - 

Anxiety 1.80±1.34 - 1.00±0 - 1.28±0.63 - 

Contempt 1.42±0.88 - 1.54±1.01 - 1.68±1.05 - 

Confusion 1.68±1.33 - 1.30±0.78 - 1.36±0.63 - 

Calmness 3.68±1.94 3.58±1.95 5.19±1.87 5.74±1.74 4.92±1.92 5.46±1.74 

Valence 4.28±1.79 - 5.36±1.36 - 6.77±1.10 - 

Arousal 5.63±1.75 5.41±1.84 3.29±1.74 3.53±1.91 6.04±1.39 6.09±1.68 

Interest 5.02±1.93 - 2.88±1.57 - 5.78±1.65 - 

Attention - 6.46±1.22 - 3.78±1.60 - 6.46±1.38 
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Figure legends

 

Figure 1. Within-subject similarity in the functional connectome is dependent on the brain state. The 

within-subject similarity in the functional connectome (Pearson’s correlation r values) is presented as a 

function of the pair of brain states, for the four parcellation atlases. An individual’s functional connectome 

was more similar between two movie states (three most left violins) than between a movie and rest (three 

most right violins) (pairwise differences: Cohen’s d=1.35-3.08, not indicated by asterisks in the Figure). 

Furthermore, the functional connectome was more similar between two emotional states (sadness vs. 

amusement) than between an emotional state and the neutral movie state (Cohen’s d=0.43-0.81), for all 

atlases except the AAL. In each violin, the median is indicated by dashed red lines and the mean by solid 

black lines. Significant differences are marked by asterisks (*), p<0.05 Sidak corrected. Note that all 

pairwise differences between the 3 most left violins and the 3 most right violins were also significant, and 

not indicated by lines and asterisks for visual clarity. 
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Figure 2. Between-subject similarity in the functional connectome is dependent on the brain state and 

sex. The between-subject similarity in the functional connectome (Pearson’s correlation r values) is 

presented as a function of the brain state, for the four parcellation atlases. (a) Individuals were more similar 

to one another during emotional states (sadness, amusement) than during the neutral movie state, regardless 

of the parcellation atlas (Cohen’s d=1.79-9.55). Higher between-subject similarity was found during 

sadness relative to amusement (Cohen’s d=1.06-3.62), except for the Shen atlas. (b) The effect of sex was 

examined by computing women-to-women (green) and men-to-men (orange) similarity. Women were more 

similar to other women than men to other men, across states, for all atlases except for the Shen atlas. 

Amusement showed significant sex differences across all atlases (Cohen’s d=0.44-0.96). In each violin, the 

median is indicated by dashed red lines and the mean by solid black lines. Significant differences are marked 

by asterisks (*), p<0.05 Sidak corrected. 
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Figure 3. Higher similarity in the behavioral report of emotional experience during amusement and 

among women. (a) The between-subject similarity in the subjective report of emotional experience is 

presented as a function of the emotional state. Sadness is indicated in blue, amusement in red, and neutral 

in gray. Higher similarity in the reported emotional experience was found during amusement relative to 

sadness or neutral (pairwise state differences: Cohen’s d=2.01-9.49). (b) The effect of sex was examined 

by computing women-to-women (green) and men-to-men (orange) similarity. Women were more similar 

to other women than men to other men, regardless of the emotional state (pairwise sex differences: Cohen’s 

d=0.35-0.74). In each violin, the median is indicated by dashed red lines and the mean by solid black lines. 

Significant differences are marked by asterisks (*), p<0.05 Sidak corrected. 
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Figure 4. Network communities for different brain states. Communities (i.e., modules) identified for 

sadness, amusement, neutral, and rest are indicated by colors, and shown in anatomical and topological 

spaces. (a) Anatomical brain space representation of the network communities: brain regions are indicated 

by circles and colored according to their community assignment. (b) Force-directed layouts of the network 

communities are presented using the Fruchterman-Reingold algorithm (Fruchterman and Reingold 1991). 

In this layout, connections act as spring-like attractive forces to position nodes in space such that nodes 

with more shared connections are pulled closer together. The community structure of each brain state was 

identified using group-level consensus clustering on the individual-level connectivity matrices. For 

visualization purposes only, the group-averaged functional connections are used here to represent the edges 

between the nodes in the graphs, and the graphs are displayed at a density of 0.2, i.e., the top 20% of 

connections are shown for each brain state. Brain space layouts were visualized using BrainNet Viewer 

(Xia et al. 2013) and force-directed layouts were visualized using Pajek (Batagelj and Mrvar 1998). pDMN, 

posterior default mode network.  
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Figure 5. Modular segregation and integration of emotional brain states. (a) The mean system 

segregation (across all modules) is presented as a function of the mental state. Higher values indicate higher 

segregation. (b) The mean participation coefficient (across all nodes) is presented as a function of the mental 

state. Higher values indicate greater diversity of connections across modules, i.e., higher integration. For 
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sadness (blue) and amusement (red), the (c) system segregation, (d) participation coefficient, and (e) 

pairwise between-module connectivity are presented as a function of the brain module. Note that Figure 5e 

presents only the connections that differed between emotional states. In each violin, the median is indicated 

by dashed red lines and the mean by solid black lines. Significant differences between emotional states are 

marked by asterisks (*), p<0.05 Sidak corrected. BG, basal ganglia; FPN, fronto-parietal network. 
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