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ABSTRACT 10 

The epithelial to mesenchymal transition (EMT) is a key cellular process underlying cancer 11 

progression, with multiple intermediate states whose molecular hallmarks remain poorly 12 

characterized. To fill this gap, we explored EMT trajectories in 7,180 tumours of epithelial 13 

origin and identified three macro-states with prognostic and therapeutic value, attributable to 14 

epithelial, hybrid E/M and mesenchymal phenotypes. We show that the hybrid state is 15 

remarkably stable and linked with increased aneuploidy and APOBEC mutagenesis. We 16 

further employed spatial transcriptomics and single cell datasets to show that local effects 17 

impact EMT transformation through the establishment of distinct interaction patterns with 18 

cytotoxic, NK cells and fibroblasts in the tumour microenvironment. Additionally, we provide an 19 

extensive catalogue of genomic events underlying distinct evolutionary constraints on EMT 20 

transformation. This study sheds light on the aetiology of distinct stages along the EMT 21 

trajectory, and highlights broader genomic and environmental hallmarks shaping the 22 

mesenchymal transformation of primary tumours. 23 

 24 
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INTRODUCTION 26 

The epithelial to mesenchymal transition (EMT) is a cellular process in which polarized 27 

epithelial cells undergo multiple molecular and biochemical changes and lose their identity in 28 

order to acquire a mesenchymal phenotype1. EMT occurs during normal embryonic 29 

development, tissue regeneration, wound healing, but also in the context of disease1,2. In 30 

cancer, it promotes tumour progression with metastatic expansion3. Recent studies have 31 

uncovered that EMT is not a binary switch but rather a continuum of phenotypes, whereby 32 

multiple hybrid EMT states underly and drive the transition from fully epithelial to fully 33 

mesenchymal transformation4,5. Elucidating the evolutionary trajectories that cells take to 34 

progress through these states is key to understanding metastatic spread and predicting 35 

cancer evolution. 36 

The transcriptional changes accompanying EMT in cancer have been widely characterised 37 

and are governed by several transcription factors, including Snail, Slug, Twist and zinc fingers 38 

ZEB1 and ZEB26-8. EMT appears driven by waves of gene regulation underpinned by 39 

checkpoints, such as KRAS signalling driving the exit from an epithelial state, dependent upon 40 

EGFR and MET activation9.  41 

However, EMT progression is not only characterized by transcriptional alterations of 42 

regulatory circuits; the genetic background of the cell can also impact its capacity to undergo 43 

this transformation. Gain or loss of function mutations in a variety of genes, including KRAS10, 44 

STAG211, TP5312, as well as amplifications of chromosomes 5, 7 and 13 have been shown to 45 

promote EMT13. Several pan-cancer studies have also linked copy number alterations, 46 

miRNAs and immune checkpoints with EMT on a broader level14,15. Mathematical models 47 

have been developed to describe the switches between epithelial and mesenchymal states4 48 

but without considering any genomic dependencies.   49 

Despite extensive efforts to study the dynamics of EMT, some aspects of this process remain 50 

poorly characterized. In particular, most of the studies mentioned considered EMT as a binary 51 

switch and failed to capture intrinsic and local microenvironment constraints that may change 52 
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along the continuum of EMT transformation. Single cell matched DNA- and RNA-seq datasets 53 

would ideally be needed for this purpose, but they are scarce. To overcome this, we have 54 

integrated data from the Cancer Genome Atlas (TCGA), MET50016, MetMap17, GDSC18, 55 

POG57019, as well as orthogonal spatial transcriptomics and single cell datasets to 56 

characterise the EMT continuum, its spatial context and interactions established with cells in 57 

the tumour microenvironment. By mapping 7,180 tumours of epithelial origin onto a “timeline” 58 

of epithelial-to-mesenchymal transformation, we identified discrete EMT macro-states and 59 

derived a catalogue of genomic hallmarks underlying evolutionary constraints of these states. 60 

These genomic events shed light into the aetiology of hybrid E/M and fully mesenchymal 61 

phenotypes, and could potentially act as early biomarkers of invasive cancer. 62 

 63 

RESULTS 64 

Pan-cancer reconstruction of EMT trajectories from transcriptomics data 65 

We hypothesised that a pan-cancer survey of EMT phenotypes across bulk sequenced 66 

samples should capture a broad spectrum of the phenotypic variation one may expect to 67 

observe at single cell level, and this could be linked with genomic changes accompanying 68 

EMT transformation. To explore the EMT process within bulk tumour samples, we employed a 69 

cohort of primary tumours of epithelial origin (n = 7,180) spanning 25 cancer types from 70 

TCGA. The bulk RNA-seq data from these tumours underlie multiple transcriptional 71 

programmes reflecting different biological processes, including EMT. Inspired by McFaline-72 

Figueroa et al9, we quantified the levels of EMT in these bulk tumours against a consensus 73 

reference single cell RNA sequencing (scRNA-seq) dataset derived from non-transformed 74 

epithelial cells as well as cancer cells from multiple tissues that have been profiled at different 75 

times during the epithelial to mesenchymal transition in vitro. These data allowed us to 76 

reconstruct a generic “pseudo-timeline” of spontaneous EMT transformation onto which we 77 

projected the bulk sequenced samples from TCGA, positioning them within the continuum of 78 

EMT states (Figure 1a). To account for signals from non-tumour cells in the 79 
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microenvironment, which have been recently shown by Tyler and Tirosh20 to confound the 80 

EMT state inference in bulk data, we adjusted the expression of all genes based on the 81 

tumour purity inferred from matched DNA-sequencing (see Methods). These corrected 82 

expression profiles were then mapped to the single cell reference trajectories and an EMT 83 

pseudotimeline was reconstructed that accounted for potential tumour contamination. 84 

Moreover, the confounding effects highlighted by Tyler and Tirosh are prominent when using 85 

specific mesenchymal signatures that overlap with markers of cancer-associated fibroblasts 86 

(CAFs), but our approach should also be generally less prone to such biases as we employ a 87 

whole-transcriptome reference of single cells progressing through EMT rather than selected 88 

markers. Thus, the resulting signal should more reliably capture the transformation of 89 

epithelial cells rather than immune/stromal programmes, and is expected to reflect the 90 

average EMT state across the entire tumour cell population.  91 

Using this approach, we reconstructed the EMT pseudotime trajectory across multiple cancer 92 

tissues (Figure 1b, Supplementary Table S1). The expression of canonical epithelial and 93 

mesenchymal markers was consistent with that observed in the scRNA-seq data and 94 

expectations from the literature (Supplementary Figure S1a). Along the pseudotime, we 95 

observed frequent co-expression of such markers, which could reflect a hybrid E/M state21 96 

(Supplementary Figure S1b). Importantly, when analysing cancer types individually by aligning 97 

against breast, lung and prostate reference cell lines rather than to a consensus reference, 98 

the pseudotime reconstruction and EMT scores obtained were strongly correlated with those 99 

from the pan-cancer analysis (Supplementary Figure S1c), thereby demonstrating that the 100 

pan-cancer methodology can broadly recapitulate phenotypes identified in individual cancers. 101 

Furthermore, the reconstructed pseudotimeline closely matched increasing levels of EMT 102 

transformation in independent cell line experiments from a variety of systems (Supplementary 103 

Figure S1d), further validating our approach experimentally. 104 

 105 

 106 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2022. ; https://doi.org/10.1101/2021.07.23.453584doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

EMT macro-states underlie the continuum of mesenchymal transformation in cancer 107 

To characterise the dominant EMT states governing the continuum of transcriptional activity 108 

described above, we discretised the pseudotime trajectory based on expression values of 109 

canonical EMT markers using a Hidden Markov Model approach and uncovered three macro-110 

states: epithelial (EPI), hybrid EMT (hEMT) and mesenchymal (MES) (Figure 1b-c, 111 

Supplementary Figure S1b). These states were robust to varying levels of gene expression 112 

noise (Supplementary Figure S1e). As expected, the probability for the cancer cells to switch 113 

from the epithelial to the hEMT (0.32) state was higher than the probability to passage directly 114 

into the mesenchymal state (0.09). The hEMT tumours tended to remain in the same state 115 

42% of the times, suggesting this state could be more stable than anticipated – as previously 116 

stipulated22 and consistent with observations that a fully mesenchymal state is not always 117 

observed23.  118 

The EMT scores progressively increased between the EPI, hEMT and MES states, as 119 

expected (Figure 1d). Reassuringly, in an independent cohort of metastatic samples 120 

(MET500), EMT levels were relatively elevated along the transformation timeline compared to 121 

TCGA samples and were most abundantly falling within the hEMT state (Figure 1d, 122 

Supplementary Figure S2a). Interestingly, we also observed possible cases of a reversion to 123 

an epithelial state in metastatic samples, which is to be expected when colonizing a new 124 

environmental niche.  125 

We also applied our EMT scoring methodology to the MetMap resource, which has 126 

catalogued the metastatic potential of 500 cancer cell lines across 21 cancer types. The 127 

invasion potential of these cell lines increased with the EMT score as expected (Figure 1e, 128 

Supplementary Figure S2b). Cell lines classified as MES by our HMM model were 129 

predominantly metastatic, while hEMT cases had a weak invasion potential. 130 

At tissue level, the proportion of samples in each EMT state was variable (Figure 1f), with 131 

hEMT dominating in head and neck, oesophageal, lung squamous and pancreatic 132 

carcinomas, while adenoid cystic, kidney carcinomas and melanomas were highly 133 
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mesenchymal. When investigating molecular subtypes already described for a variety of 134 

cancers, most of them did not show distinct distributions by EMT state (Supplementary Figure 135 

S2c). Nevertheless, the ovarian mesenchymal subtype was reassuringly enriched in hEMT 136 

and MES cancers, and the same could be observed for genomically stable gastric cancers, 137 

which have been linked with diffuse histology and enhanced invasiveness24.  138 

The EMT classification was significantly correlated with the clinical cancer stage (Chi-square 139 

test p<<0.0001, Supplementary Figure 2d), with transformed samples (hEMT/MES) found to 140 

be 1.3-fold and 1.2-fold enriched in late-stage tumours, respectively, while the epithelial state 141 

was 1.4-fold overrepresented in early-stage cancers (Figure S1i). In primary tumours, 12% of 142 

the profiled samples were classified as fully transformed (MES), with the majority of them 143 

(60%) annotated as late-stage tumours (Supplementary Table S2). Notably, metastatic 144 

samples available from TCGA (n=343) were overwhelmingly classed as MES (94%, 145 

Supplementary Figure 2e), suggesting that the transformed phenotype is more pronounced in 146 

metastases than in primary tumours, as expected. While the correlation between cancer stage 147 

and EMT state does not appear as strong as potentially anticipated in primary tumours, the 148 

proportion of observed late-stage cancers increases as we move from EPI to hEMT and MES 149 

cancers in most cancer tissues, with mesenchymal cholangiocarcinomas, esophageal and 150 

kidney chromophobe cancers being entirely late stage (Supplementary Fig 2f). The fact that 151 

some early stage cancers are classified as fully mesenchymal (5%) may suggest early 152 

evidence for the phenotypic transformation required for metastasis. Indeed, multiple studies 153 

have demonstrated the activation of the EMT transcriptional programme in the early stages of 154 

cancer10,25. Even the hEMT phenotype was hypothesised to be sufficient for promoting 155 

metastatic dissemination26, although this is likely tissue-dependent.  156 

 157 

Tumour cell extrinsic hallmarks of EMT 158 

Multiple microenvironmental factors, including tumour associated macrophages, secreted 159 

molecules (IL-1, TNF-α) or hypoxia, have been extensively described to promote EMT27-29. 160 
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However, their macro-state specificity is less well characterised. The three EMT macro-states 161 

we have described within TCGA cancers displayed no significant difference in tumour purity, 162 

confirming that non-tumour cell content did not play a significant part in assigning these states 163 

(Supplementary Figure S3a). This also made comparisons in tumour microenvironment 164 

compositions equitable across the three states. We observed that cytotoxic, γδ T and 165 

endothelial cells were progressively enriched with increased stages of EMT transformation 166 

(Figure 2a-b, Supplementary Figure S3b), suggesting that the fully mesenchymal state is most 167 

often linked with “immune hot” tumours. In line with this hypothesis, these tumours also 168 

showed the highest exhaustion levels (Figure 2c). The hEMT samples still displayed a 169 

relatively higher level of fibroblasts pan-cancer, despite the tumour purity correction, 170 

potentially suggesting a real biological association (Figures 2a-b). In fact, when examining 171 

these associations by cancer tissue, we noticed that active fibroblasts were often similarly 172 

enriched in hEMT and MES samples compared to epithelial ones (Supplementary Figure 173 

S3c), which would be expected with increased tumour progression. However, due to the 174 

confounding effects between fibroblast and hEMT markers as highlighted by Tyler and 175 

Tirosh20, we acknowledge that part of the signal recovered may still not be unambiguously 176 

attributed to either the cancer or microenvironmental component despite our best efforts to 177 

correct for this. 178 

Samples with a transformed phenotype (MES, hEMT) presented significantly elevated hypoxia 179 

levels in several cancer types (Figure 2d). Hypoxia has previously been shown to promote 180 

EMT by modulating stemness properties30. We found that CD44, an established cancer stem 181 

cell marker known to promote EMT31,32, was most highly expressed in the hEMT state across 182 

cancers (Figure 2e), and elevated levels of several other stemness signatures most often 183 

accompanied the hEMT and MES macro-states (Figure S3d-e).  Unlike mesenchymal 184 

samples, the majority of hEMT tumours (20%) were characterized by both hypoxia and CD44 185 

expression (Supplementary Table S3). Thus, the interplay between hypoxia and stemness 186 
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may play a greater role in attaining the hEMT state compared to the fixation of a fully 187 

mesenchymal phenotype. 188 

 189 

Spatially-resolved EMT patterning reveals local microenvironmental effects 190 

The associations identified between EMT and tumour microenvironmental features, including 191 

fibroblasts and hypoxia, are interesting – but could potentially be confounded by averaged 192 

signals in bulk data. Indeed, bulk data is not able to capture the diversity of EMT states that 193 

may be comprised within an entire tumour, and may miss spatial effects on EMT 194 

transformation. To shed further light into these associations, we employed spatial 195 

transcriptomics data from three breast cancer slides from 10x genomics generated with the 196 

Visium platform, along with multi-region profiling of eight breast tumours generated using 197 

ST2K as described by Andersson et al33 to explore the spatial heterogeneity of EMT and links 198 

with other phenotypes within the cancer tissue. We observe remarkable heterogeneity of EMT 199 

transformation across the tissue, with occasional clustering of EMT states within epithelial 200 

pockets (Figures 3a-b,i-j, Supplementary Figure S4a-b). Fibroblasts are generally observed to 201 

surround the epithelial neoplastic areas, with the amount of infiltration varying from patient to 202 

patient (Figures 3c,k, Supplementary Figure S4c). Furthermore, hypoxia was generally 203 

increased within areas presenting more advanced mesenchymal transformation, with 204 

strongest correlations observed either in hybrid or fully mesenchymal spots (Figures 3d,h,i,p, 205 

Supplementary Figure S4d,f).  206 

We used clustering to identify areas within the tissue that present more homogeneous 207 

patterns of expression (see Methods, Figures 3e-f,m-n) and investigated the tumour 208 

microenvironment composition within these clusters in relation to EMT states. We confirm the 209 

associations between the MES state and CD8+/CD4+ T cell infiltration, monocytes and 210 

macrophages observed in bulk data (Figures 3g,o, Supplementary Figure 4e). We further 211 

uncover associations between transformed (hEMT/MES) areas and dendritic cells and 212 

polymorphonuclear leukocytes (PMNs). Fibroblast infiltration always appears more strongly 213 
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linked with highly transformed areas of the tumour, and occasionally with epithelial spots too. 214 

Within a larger dataset of multi-region spatial transcriptomics slides from multiple patients, we 215 

found that intermediate levels of transformation (hEMT) uniquely associated both with 216 

MSC/iCAF-like and myCAF-like cells, whereas the EPI state was only linked with the former 217 

and the MES state with the latter (Figure 3q). Furthermore, natural killer (NK) cells were the 218 

only cell type to solely associate with hEMT spots, potentially suggesting NK activation 219 

strategies may be effective against tumour cells in this hybrid state. 220 

Overall, this analysis recapitulates some of the features observed in bulk tumours, while 221 

uncovering a fine-grained heterogeneous landscape of cell states and associations. Although 222 

some of the patterns are recurrent, there is a high degree of spatial and patient-to-patient 223 

variation in EMT and TME composition, suggesting that local spatial effects are likely 224 

important determinants of EMT progression. While we found a moderate association between 225 

hypoxia and EMT transformed cells in breast cancer tissues examined, the inter-patient and 226 

tissue-specific heterogeneity became clearer when examining spatial maps from prostate 227 

transcriptomes from Berglund et al34 (Supplementary Figure S5a-b). Here, only one of two 228 

tissue sections showed a marked correlation between hypoxia and hEMT within the cancer 229 

areas, and not in normal or prostatic intraepithelial neoplasia (PIN). Furthermore, hypoxia was 230 

more strongly associated with high rather than moderate levels of EMT transformation in a 3D 231 

micro-tumour breast model where collective migration had been induced35 (Supplementary 232 

Figure 5c). The associations in this experiment may nevertheless be overshadowed by the 233 

fact that early stages of transformation from ductal carcinoma in situ to invasive ductal 234 

carcinoma are being investigated. Hypoxia may be a clearer phenotype in more advanced 235 

cancers with hEMT or MES phenotypes, which is something we could not capture in these 236 

analyses as all tumours originated from stage I or II cancers. 237 

Despite the large spatial variability, the continuum of EMT transformation is abundantly clear 238 

in spatially profiled slides, and stresses the importance of examining local effects to 239 

understand tumour progression and responses to treatment. 240 
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EMT diversity in single cell data 241 

The analyses performed so far have been focused on datasets where the EMT signal is either 242 

measured in bulk across the entire tumour, or via spatial techniques within finer grained spots 243 

but still comprising multiple cells. This of course limits our ability to comprehend the true EMT 244 

heterogeneity of a tissue, as we lack single cell resolution of phenotypes. To further 245 

investigate this, we employed matched bulk and single cell data from the same cancer 246 

patients to test whether the EMT profiles estimated in bulk tissue might capture similar states 247 

as those seen at single cell level. Using breast cancer data from Chung et al36, we were able 248 

to confirm a good correlation between the estimated EMT pseudotimeline in bulk and the 249 

average EMT signal captured from single cell data (Figure 4a). This provides some further 250 

reassurance that the bulk estimates, while fairly generic, do approximate the average signal 251 

across the tumour. Moreover, we investigated the interactions established between cells in 252 

different EMT states and other cell populations in the tumour microenvironment (Figure 4b). 253 

Within this dataset, the number of interactions with non-tumour cells increased with increasing 254 

EMT transformation, closely reflecting the observations in bulk tumours. 255 

To further explore this in multiple cancer types, we investigated single cell data from breast, 256 

lung, colorectal and ovarian tumours as described by Qian et al37. We found that tumour cells 257 

in the EPI, hEMT and MES state formed distinct clusters that often reflected an EMT 258 

progression and were well separated from clusters of other cells in the microenvironment 259 

(Figure 4c). The majority of tumour cell clusters were clearly distanced from fibroblast clusters, 260 

confirming our premise that a whole-transcriptome reference would be better able to 261 

distinguish true malignant cells on the course of mesenchymal transformation from CAFs. 262 

Nevertheless, a minority of cells appear more similar to T cells (Figure 4c breast and lung 263 

panels) or fibroblasts (Figure 4c breast and colorectal panels), although they are not 264 

dispersed throughout these clusters but rather grouped at the extremity.  265 

The cell-cell interaction landscape was quite diverse, with hEMT cells generally showing fewer 266 

interactions with the TME amongst the three states, while epithelial-fibroblast interactions 267 

were enhanced in lung and colon cancers, and mesenchymal-fibroblast interactions in ovarian 268 
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cancers (Figure 4d). These observations, along with the spatial transcriptomics data, suggest 269 

that the relation between EMT transformation of tumour cells and their interactions with the 270 

TME is likely a complex one, highly tissue specific and driven by local spatial effects.  Ideally, 271 

single cell, spatially resolved longitudinal datasets would be needed to fully resolve such 272 

heterogeneity. 273 

 274 

Tumour cell intrinsic hallmarks of EMT 275 

Despite the insights into EMT spatial organisation and TME interactions observed previously, 276 

the genomic influence in these datasets cannot be measured. While lacking the granularity of 277 

single cell or spatially-resolved datasets, bulk sequenced datasets with matched genomics 278 

and transcriptomics measurements are still the main resource that allows us to glance into 279 

potential genomic determinants of cellular plasticity. We thus returned to the TCGA dataset to 280 

explore the genomic background that underlies EMT transformation. Intrinsic cell properties 281 

such as increased proliferation, mutational and copy number burden, as well as aneuploidy 282 

would be expected along the EMT trajectory. Across distinct tissues, these changes were 283 

most pronounced in the hEMT state (Figure 5a). While the clonality of tumours in the three 284 

states did not differ significantly (Kruskal-Wallis p>0.05), the number of clonal and subclonal 285 

mutations increased with the state of EMT transformation. Interestingly, the hEMT group also 286 

presented higher levels of centrosome amplification, which have been linked with increased 287 

genomic instability38,39 and poor prognosis40.  288 

Such alterations to the genomic integrity of the cells result from multiple mutational processes. 289 

These processes leave recognizable patterns in the genome termed “mutational signatures”, 290 

which in their simplest form constitute of trinucleotide substitutions and have been broadly 291 

characterised across cancers41. However, their involvement in EMT transformation is poorly 292 

understood. To investigate whether any neoplastic process introducing mutations in the 293 

genomes was conditioned by EMT, we modelled the associations between mutational 294 

signatures and EMT using linear mixed effects models (Methods, Figure 5b). The mismatch 295 
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repair deficiency signature SBS6 and the smoking-linked SBS4 signature were significantly 296 

increased in hEMT tumours, while SBS39, of unknown aetiology, was most elevated in fully 297 

transformed tumours (Figure 5c). The APOBEC mutagenesis signatures SBS2 and SBS13 298 

also appeared elevated in hEMT tumours, in line with observations that inflammation-induced 299 

upregulation of the activation-induced cytidine deaminase (AID) enzyme, a component of the 300 

APOBEC family, triggers EMT42. However, when taking the tissue effect into account in the 301 

modelling procedure, no pan-cancer tissue agnostic associations between mutational 302 

processes and EMT were identified – suggesting that the previously captured associations are 303 

likely tissue-restricted. Thus, while some influence may exist on EMT from tissue-specific 304 

mutational processes, there was no evidence of an overarching mutagen that might induce 305 

EMT. 306 

 307 

Genomic driver events underlying the EMT transformation pan-cancer 308 

Beyond the broader hallmarks discussed above, we sought to identify specific genomic 309 

changes creating a favourable environment for EMT transformation or imposing evolutionary 310 

constraints on its progression. We observed that subclonal diversification followed distinct 311 

routes according to the pattern of EMT transformation for several genes, including BRAF, 312 

PMS1 and FNBP1 (Figure 5d). The fraction of cancer cells harbouring BRAF mutations, 313 

frequently acquired in melanoma, was markedly increased in mesenchymal samples, 314 

suggesting that a clonal fixation of this event may be key for the establishment of a fully 315 

mesenchymal state, which is in line with the observed dominance of this phenotype in skin 316 

cancers (Figure 1f). Mutations in the mismatch repair gene PMS1 and the actin cytoskeleton 317 

remodelling gene FNBP1 were subclonally fixed in hEMT cancers, potentially suggesting that 318 

acquiring such alterations later during tumour evolution may benefit the establishment of a 319 

hybrid phenotype.  320 

To further investigate such associations, we prioritised cancer driver mutations, focal and arm-321 

level copy number changes that may be linked with EMT, and implemented a lasso-based 322 
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machine learning framework to identify those drivers able to discriminate between EPI, hEMT 323 

and MES states across cancers, while accounting for tissue-specific effects (Methods, Figure 324 

5e). The developed models were validated using several other machine learning approaches 325 

and demonstrated remarkably high accuracies of 92-97% in distinguishing the fully 326 

transformed state from either the hybrid or mesenchymal one (Supplementary Figures S6a-327 

b,d-e,g-h). Lower performance was obtained for the model discriminating between hEMT and 328 

EPI (~62-73%, Supplementary Figures 6c,f,i), which is not surprising due to the intermediate, 329 

hybrid nature of the former, but is still useful in understanding weaker effects on EMT 330 

transformation. 331 

Among the genomic biomarkers able to discriminate transformed tumours (hEMT, MES) from 332 

the epithelial state, we identified genes that have been previously linked with cell migration, 333 

invasion and EMT, such as RB1, VHL, ERBB2, ARHGAP26, PRDM1, APC (Figures 5f-g , 334 

Supplementary Tables S4, S5). RB1, a key cell cycle regulator, has been shown to promote 335 

EMT in conjunction with p53 in triple negative breast cancer43, while VHL alterations 336 

contribute to EMT via regulation of hypoxia44. Larger scale events included deletions of the 4p, 337 

6p and 17p chromosomal arms, all of which harboured cancer drivers which have been 338 

previously linked with EMT, e.g. FGFR3 on 4p45, DAXX and TRIM27 on 6p46,47, TP53 on 17p12 339 

(Supplementary Table S4). Deletions of the 4p arm appeared in the majority of lung 340 

squamous cell and esophageal carcinomas (58% and 50%, respectively), while 6p arm 341 

deletions were most frequent in pancreatic, esophageal cancers and adrenocortical 342 

carcinomas (>20% in each). 17p arm deletions were the most abundant, especially in ovarian 343 

(76%) and kidney chromophobe cancers (76%), with an average of 37% of cases affected per 344 

tissue. Therefore, no strong bias in terms of cancer type was observed for these large-scale 345 

alterations. In addition to these, events less strongly linked with metastatic transformation 346 

were also uncovered, such as mutations in CHIC2, encoding for a protein with a cysteine-rich 347 

hydrophobic domain occasionally implicated in leukemia, or amplifications of the ELL gene, an 348 

elongation factor for polymerase II. While the genomic hallmarks distinguishing the extremes 349 
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of mesenchymal transformation (MES versus EPI) were predominantly classical cancer 350 

drivers involved in the most fundamental processes (e.g. cell cycle) (Supplementary Figure 351 

6j), the ones distinguishing fully transformed from hybrid phenotypes were more clearly linked 352 

with cell migration, including processes of cytoskeletal regulation, cell adhesion and T cell 353 

signalling (Supplementary Figure 6k).  354 

The hEMT state-specific markers were mostly enriched in cell fate commitment and metabolic 355 

pathways (Figure 5h, Supplementary Figure S6l). Among the top events distinguishing this 356 

phenotype from the epithelial one was the disruption of EPAS1 (HIF2A), a well-known hypoxia 357 

regulator which has been previously implicated in EMT48. SMAD4, a suppressor of cell 358 

proliferation, was clearly linked with the switch between hEMT and EPI, with activating 359 

mutations contributing to an hEMT phenotype while deletions were prevalent in epithelial 360 

cancers. Indeed, SMAD4 mutations have been shown to induce invasion and EMT marker 361 

upregulation in colorectal cancer49. Deletions of FOXO3, a gene involved in cell death and 362 

implicated in EMT50, were specifically linked with high levels of aneuploidy, stemness and 363 

centrosome amplification.  364 

 365 

Validation of genomic associations 366 

To gain further insight into the role of the putative genomic markers proposed by our pan-367 

cancer model on EMT transformation, we validated some of these candidates and their effect 368 

on cell migration using several siRNA screens. First, using data from Koedoot et al51, we 369 

found that knocking down 31 of the 61 targets resulted in significant changes in the surface 370 

area, perimeter and elongation/roundness of the cells in Hs578T and MDA-MBA-231 breast 371 

cancer cell lines, suggesting either an impairment or an enhancement of migratory properties 372 

(Figure 6a). ETV6, linked to EPI-hEMT transformation in our models, was shown in Koedoot 373 

et al to produce a big round cellular phenotype upon knockdown, with effects on cellular 374 

migration in line with expectations from the model. Indeed, ETV6 disruption has been shown 375 

to promote TWIST1-dependent tumour progression52, confirming our observations. Several 376 
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other genes also showed significant phenotypic effects upon knockdown, albeit to a lesser 377 

extent, and many of them, including RB1, ELL and NCKIPSD (involved in signal transduction) 378 

were confirmed in both cell lines. RB1 also showed a low penetrance EMT microscopy 379 

phenotype upon knockdown in an independent transcription factor-focused siRNA screen from 380 

Meyer-Schaller et al53, further confirming it as a mesenchymal marker. 381 

Another gene with effects in the Hs578T cell line, PRDM1, a repressor of interferon activity 382 

which our model linked with the MES state, was also shown to alter multiple cellular properties 383 

associated with migration in an independent screen from Penalosa-Ruiz et al54 (Figure 6b). In 384 

particular, PRDM1 knockdown increased the E-cadherin expression area and intensity, as did 385 

SETD2 knockdown. Among other MES-linked candidates from our models, knockdowns of the 386 

transcriptional regulators CDC73 and TRIM24 showed weaker phenotypes linked with 387 

migration, mostly related to homogeneity of textures observed under the microscope, again 388 

potentially related to a less transformed state. Overall, these analyses recapitulate many of 389 

the already described markers of EMT transformation, and also suggest that ELL and 390 

NCKIPSD mutations may affect the cancer cell’s ability to undergo EMT transformation. 391 

Further experimental studies will be needed to clarify the mechanism by which this may occur. 392 

A good fraction of the reported alterations (36%) were also confirmed to be linked with the 393 

metastatic potential of cancer cell lines at pan-cancer or tissue specific level (Supplementary 394 

Figures 7a-c). Among these DEK, a splicing regulator and putative hEMT biomarker, showed 395 

a particularly strong correlation. Suppression of several of these genes also strongly impacted 396 

cell viability (Supplementary Figure 7d-e), but RB1, DEK, RGPD3, MN1, LMO1 and 397 

ARHGAP26 were deemed non-essential and thus more likely to be promising targets for EMT 398 

manipulation.  399 

Clinical relevance of EMT 400 

Finally, we show that the defined EMT states have potential clinical utility. As expected, 401 

patients with a partially or fully transformed  phenotype had worse overall survival outcomes 402 
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(Figure 7a, Supplementary Table S6). Furthermore, the EMT macro-state progression 403 

reflected a step-wise decrease in progression-free intervals (Figure 7b).  404 

Among the driver events that have been linked with EMT in this study, alterations in genes 405 

ERBB2, PRDM1, FLT4 and TMPRSS2 associated with a mesenchymal phenotype, and ten 406 

other events associated with hEMT (including genome doubling, 3p/8p deletions, EPAS1, 407 

NCKIPSD mutations) were linked with worse prognosis (Figure 7c-d, Supplementary Table 408 

S7). Cases with mutations in FNBP1 and CHIC2 displayed better prognosis. 409 

To further explore potential links between EMT and therapy responses, we investigated 410 

whether EMT progression might confer different levels of sensitivity to individual cancer drugs 411 

using cell line data from GDSC18. We found 22 compounds whose IC50 values were 412 

significantly correlated with the EMT score (Figure 7e). The strongest associations were 413 

observed with Sapitinib, an inhibitor of ErbB1/2/355, Osimertinib, a lung cancer EGFR inhibitor, 414 

and Acetalax, a drug used in the treatment of triple negative breast cancers. These 415 

observations reiterate the reported genomic links between events in the tyrosine kinase 416 

pathway and EMT transformation.  417 

Finally, we investigated whether EMT transformation may be linked with different treatment 418 

outcomes in the clinic. Within TCGA, patients with higher EMT levels in the pre-treatment 419 

tumour showed progressively worse outcomes upon oxaliplatin treatment (Figure 7f), with 420 

complete responders significantly distinguished from patients with progressive disease. In 421 

fact, there was a two-fold enrichment in complete responders among patients with epithelial 422 

and hybrid tumours compared to mesenchymal ones (Fisher’s exact test p=1.5e-05). We also 423 

linked post-treatment EMT phenotypes with therapy responses using the POG570 dataset 424 

(Supplementary Figure S8a). The EMT levels increased significantly in samples treated with 425 

temozolomide over progressively longer time frames, suggesting this drug may induce EMT 426 

transformation in cancer (Supplementary Figure S8b). The opposite effect was observed for 427 

rituximab, with tumours becoming more epithelial over the treatment course.  428 
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Overall, these analyses suggest that the level of EMT transformation may play a role in 429 

determining responses to some chemotherapies as well as targeted therapies. However, our 430 

insights into the exact context in which EMT matters is limited by the lack of longitudinal, 431 

spatially and microenvironmentally resolved datasets. 432 

   433 

DISCUSSION 434 

Previous studies of the EMT process have suggested the existence of a phenotypic 435 

continuum characterised by multiple intermediate states56. We have shown that distinct EMT 436 

trajectories in cancer are underpinned by three macro-states, reflecting both tumour cell 437 

intrinsic as well as tumour microenvironment associated changes. The hybrid E/M state, 438 

characterised by the co-expression of epithelial and mesenchymal markers, was surprisingly 439 

frequent (39%). It is clear that this state is distinct from epithelial tumours, presenting higher 440 

CAF infiltration and occasionally enhanced hypoxia and stemness. While it is likely this is an 441 

intermediate state in cancer progression along the EMT continuum, as suggested by the 442 

longitudinal datasets analysed and the intermediate progression-free intervals, it is also clearly 443 

heterogeneous and less genomically influenced than the extreme epithelial and mesenchymal 444 

states. Furthermore, the extent to which it is intrinsically rather than environmentally distinct 445 

cannot be determined in bulk datasets. It has been reported that cells with hybrid EMT 446 

features give rise to daughter cells that are either mesenchymal or epithelial and are more 447 

prone to migrate 31, which could explain some of the heterogeneity observed for this state. 448 

Undoubtedly, the hEMT state can be further subdivided into sub-states, as shown by Goetz et 449 

al4 and Brown et al57. The true number of EMT intermediate states is just beginning to be 450 

explored. However, the noisy bulk sequencing data are limiting our ability to capture them, 451 

highlighting the need to complement these studies with spatially-resolved and single cell data. 452 

Our spatial transcriptomics and single cell analyses demonstrate a heterogeneous EMT 453 

landscape, delineating clear spatial effects of the continuum of EMT transformation within the 454 

tissue. Fibroblasts and cytotoxic T cells often surround more mesenchymal neoplastic areas, 455 
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and these are occasionally accompanied by hypoxia. While some differential immune 456 

recognition is evidenced by co-localisation of MES with CD8/CD4+ T cell signals and hEMT 457 

with NK cell signals, partially or fully mesenchymal cells appear to interact less with the 458 

microenvironment, potentially due to evasion caused by neoantigen presentation in these 459 

more mutated cells58. The tumour cells in different EMT states are generally well distinguished 460 

from immune cells and the stroma in single cell datasets, with a minority of cells requiring 461 

improvement in discrimination methods. While this analysis is limited by our ability to capture 462 

a broad spectrum along the EMT transformation as the data are only sourced from early stage 463 

cancers, it does lay out a framework for future studies in this space. These should ideally 464 

integrate spatial and single cell transcriptomics for a better comprehension of the complex 465 

interplay between EMT and the tumour microenvironment. 466 

Our study confirmed previously established molecular hallmarks of EMT, including increased 467 

chromosomal instability and hypoxia/stemness in hEMT, and cytotoxicity/exhaustion in 468 

mesenchymal tumours15, along with several genomic dependencies of this process. While the 469 

exploration of EMT biomarkers is not new, most of the studies in this area have been reliant 470 

on gene expression activity rather than mutational dependencies and they are generally 471 

tissue-specific15,28. Pan-cancer studies generally consider EMT as a binary switch14,15,28. In 472 

contrast, our study identified genomic hallmarks of three EMT macro-states, providing further 473 

granularity into how genome-driven cancer evolution shapes EMT trajectories in a state-474 

specific manner. Indeed, we show that distinct genes contribute to the establishment of a fully 475 

mesenchymal phenotype, e.g. RB1 or DEK, while others such as EPAS1, FNBP1 or SMAD4 476 

modulate switches between epithelial and hybrid phenotypes. Furthermore, the genomic 477 

distinction in the latter case was less strong than between the extremes of EMT 478 

transformation, suggesting that transcriptional or epigenetic alterations may play an increased 479 

role in the earlier stages of EMT, while genomic events may further promote and help 480 

establish a fully transformed phenotype, which was accurately predicted based solely on 481 
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genomic alterations. A causal relationship between the acquisition of any of these genomic 482 

changes and EMT should be further experimentally tested in the future.  483 

The EMT process was also linked to responses to several targeted therapies as well as some 484 

chemotherapy drugs, with an expected reduction in response in more mesenchymal cancers. 485 

EMT could thus potentially be exploited for therapeutic benefit in certain contexts. 486 

Overall, the results of this study demonstrate the complex intrinsic and microenvironmental 487 

mechanisms that shape the landscape of EMT transformation during cancer. We have not 488 

considered the role of chromosomal rearrangements or epigenetic changes in EMT, which 489 

could provide further explanations to the maintenance of an hEMT phenotype. Additional 490 

research is required to understand the biological role and spatial constraints of the identified 491 

biomarkers, their importance in a clinical setting, and to identify additional mechanisms that 492 

may promote EMT.   493 

 494 

METHODS 495 

Data sources 496 

Bulk RNA-sequencing, copy number (segment file and focal alterations), somatic variants 497 

(MuTect59), molecular subtypes and clinical data were retrieved for 8,778 primary tumours of 498 

epithelial origin from the harmonized version of TCGA using the TCGAbiolinks R package60. 499 

Based on tumour purity estimates reported by Hoadley et al61 samples with purity lower than 500 

30% were removed leaving 7,180 samples. All other data sources employed for validation are 501 

described below. 502 

Reconstruction of EMT trajectories in bulk data 503 

The reconstruction of the EMT trajectory of the TCGA samples was performed using a 504 

procedure that allows the mapping of bulk-sequenced samples to single cell-derived 505 

expression programmes inspired from McFaline-Figueroa et al9. The workflow of the analysis 506 

consists of several steps. The first step of the analysis requires two gene expression matrices 507 
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as input, namely one bulk sequenced dataset, for which the EMT trajectory is to be 508 

determined, and one single cell reference dataset, for which the associated trajectory (P) of 509 

individual cells is known. In the first step of the analysis the matrices were merged; then, in 510 

order to remove the batch effects originated by the two different platforms, a correction was 511 

applied using ComBat62. In the second step, principal component analysis (PCA) was 512 

performed on the merged matrix. The single-cell derived EMT trajectory was then mapped 513 

onto the bulk data using an iterative process and a mapping strategy based on k nearest 514 

neighbours (kNN). The number of iterations (i) is equal to the number of bulk samples. During 515 

each i-th step of iteration, a single bulk-sequenced sample and the reference scRNA-seq data 516 

were used as input for the kNN algorithm. The procedure computed the mean of the 517 

pseudotime values of the single cell samples that have been detected by the kNN algorithm to 518 

be associated with the i-th bulk sample. The implementation of the kNN algorithm is based on 519 

get.knnx() function from the FNN R package.  In our case, we used as input the bulk RNA-seq 520 

data from TCGA samples. scRNA-seq datasets from McFaline-Figueroa et al9, as well as, 521 

Cook et al63 were used as references. Overall, 10 different scRNA-seq datasets were used 522 

including A549, MCF7, DU145 and OVCA420 cell lines treated with TGFB1 or TNF. A 523 

spontaneous, as well as TGFB1 driven EMT model in MCF10 cell lines was also used. The 524 

procedure described above was repeated with with each of the 10 reference datasets as input 525 

along with the TCGA bulk expression data. This resulted in 10 separate pseudotime estimates 526 

for each TCGA bulk-sequenced sample, one based each one of the reference single-cell 527 

datasets. The average of the 10 pseudotimes was used to obtain the final pseudotime 528 

estimate. Because samples are projected individually along the consensus reference single 529 

cell data points, the pseudotime estimate only depends on the reference used and not on the 530 

specific cohort the sample is part of. Thus, the pseudotime estimates are cohort-independent. 531 

Segmentation of the EMT trajectory and robustness evaluation 532 

We used a Hidden Markov Model approach to identify of a discrete number of EMT states. 533 

The input of this analysis was a matrix (M) where the rows were the TCGA samples (N) and 534 
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the columns the gene markers (G) of EMT (see the section “Computation of the EMT scores” 535 

below for the list of genes). The original N columns were sorted for the t values of the 536 

pseudotime (P). This matrix and P were provided as input for a lasso penalized regression. P 537 

was used as response variable, the genes as the independent variables. The non-zero 538 

coefficients obtained from this analysis were selected to create a sub-matrix of M that was 539 

used as input for a Hidden Markov Model. 540 

Different HMM models were tested while changing the number of states. After this tuning, and 541 

through manual inspection, we determined that 3 states were most in line with biological 542 

expectations. Each HMM state was assigned to a “biological group” (i.e. epithelial, hybrid 543 

EMT, mesenchymal) by exploring the expression levels of known epithelial and mesenchymal 544 

markers in each HMM state. The selection of the coefficients was performed with the R 545 

package glmnet. The identification of the EMT states was done using the deepmixS4 R 546 

package.  547 

To evaluate the “robustness” of the EMT states we applied the same procedure described 548 

above while increasing levels of expression noise in the original dataset. We used the jitter 549 

function in R to introduce a random amount of noise to the expression values of the genes 550 

(from the default parameter of the jitter function to noise levels of 5500). For each noise level, 551 

we repeated the analysis 100 times. We considered several metrics to measure the stability of 552 

the HMM-derived EMT states. We reasoned that increasing noise could result in classification 553 

mismatches of the samples compared to their originally assigned EMT state. Therefore, we 554 

evaluated two metrics to assess the correct assignment of the samples to the original EMT 555 

states. Firstly, for each level of noise added and at each iteration, we computed the change in 556 

number of samples categorised in the new states compared to the original EMT states. 557 

Second, we measured the assignment accuracy for the samples to the original EMT states. 558 

EMT pseudotime reconstruction with adjustment for TME contamination 559 

To account for confounding expression signals coming from non-tumour cells in the 560 

microenvironment, we regressed the expression data on the tumour purity estimates obtained 561 
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from matched DNA-sequencing using the MOFA R package. The purity-adjusted expression 562 

values were used as bulk input to the PCA projection for the pseudotime reconstruction. 563 

Computation of the EMT scores 564 

A list of epithelial and mesenchymal markers was compiled through manual curation of the 565 

literature6,9,28 , as follows: 566 

• epithelial genes: CDH1, DSP, OCLN, CRB3 567 

• mesenchymal genes: VIM, CDH2, FOXC2, SNAI1, SNAI2, TWIST1, FN1, ITGB6, 568 

MMP2, MMP3, MMP9, SOX10, GSC, ZEB1, ZEB2, TWIST2 569 

EMT scores for each TCGA sample were computed in a similar manner as described by Chae 570 

et al64. Briefly, the average z-score transformed expression levels of the mesenchymal 571 

markers were subtracted from the average z-score transformed expression levels of the 572 

epithelial markers. To segment the EMT trajectory, along with the epithelial and mesenchymal 573 

markers we have also considered markers of hybrid EMT6,65: PDPN, ITGA5, ITGA6, TGFBI, 574 

LAMC2, MMP10, LAMA3, CDH13, SERPINE1, P4HA2, TNC, MMP1. 575 

Tissue-specific EMT trajectory derivation  576 

Using a similar bulk-to-single cell mapping approach as described before, we mapped the 577 

RNA-seq data of BRCA, LUAD and PRAD tumours onto the trajectories derived from the 578 

single cell data (including batch effect removal using ComBat, PCA on 25 dimensions and 579 

kNN clustering).  For the BRCA tumours, the final pseudotime estimates were averaged using 580 

values calculated from the MCF10 and MCF7 scRNA-seq reference datasets only. Similarly, 581 

for LUAD and PRAD bulk-sequenced samples only scRNA-seq references from A549 and 582 

DU145 cell lines were used respectively. 583 

Longitudinal datasets of EMT transformation 584 

Longitudinal datasets for the validation of the EMT reconstruction method were obtained from 585 

the Gene Expression Omnibus (GEO) database as follows: GSE17708, a time course 586 

experiment of A549 lung adenocarcinoma lines treated with TGF-beta; GSE84135, a time 587 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2022. ; https://doi.org/10.1101/2021.07.23.453584doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

course EMT transition experiment in hSAEC airway epithelial cells; and GSE75487, a 7 day 588 

EMT transformation experiment in H358 non-small cell lung cancer cells under doxycycline 589 

treatment to induce Zeb1. EMT pseutime inference in these datasets was performed as 590 

described above. 591 

EMT trajectory reconstruction of CCLE data and inference of the metastatic potential  592 

The RSEM gene-expression values of the Cancer Cell Line Encyclopedia66 project were 593 

retrieved from the CCLE Data Portal. We used the same procedure described above to map 594 

the CCLE data onto the 10 reference single-cell dataset EMT trajectories. This allowed for the 595 

pseudotime to be quantified for each CCLE sample. A segmentation using a HMM model was 596 

performed to identify a discrete number of EMT states (n=3). The EMT scores were also 597 

computed for each cell line. These results were referenced against the metastatic potential 598 

scores from MetMap50017. The association between HMM states and experimentally 599 

measured metastatic potential groups in cell lines (non-metastatic, weakly metastatic and 600 

metastatic) was assessed using the vcd R package. 601 

Tumour microenvironment quantification 602 

The tumour purity values of TCGA samples were retrieved from Hoadley et al61. Immune 603 

deconvolution was performed using the ConsensusTME R package67 and the ssGSEA 604 

method for cell enrichment analysis.  605 

The results of ConsesusTME were used as input for a multinomial logistic regression model. 606 

The function multinom() (from the nnet R package) was used to determine the probability of 607 

each sample belonging to a macro-EMT state based on the cellular content of the sample.  608 

Spatial transcriptomics data analysis 609 

Three breast cancer patient samples were downloaded from 10x genomics 610 

(https://support.10xgenomics.com/spatial-gene-expression/datasets). Patient 1 was AJCC 611 

Stage Group I, ER positive, PR positive and HER2 negative. Patient 2 was AJCC Stage 612 

Group IIA, ER positive, PR negative and Her2 positive. Patient 3 did not have molecular 613 
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details described. The output from the Space Ranger Visium pipeline was used for analysis. 614 

The SCTransform R package was used to normalise the data based on a regularised negative 615 

binomial regression method. Cell type and state proportions for each spot were estimated 616 

using EcoTyper68 which was run using Docker. The cell types consisted of B cells, CD4 T 617 

cells, CD8 T cells, dendritic cells, endothelial cells, epithelial cells, fibroblasts, mast cells, 618 

monocytes/macrophages, NK cells, plasma cells and neutrophils. 619 

ST2K (ST second generation, 2000 spots/array) datasets (9 patients with 3-5 repeats each) 620 

were downloaded from https://github.com/almaan/her2st. All samples were stained positive for 621 

HER2. Pre-processing steps were followed as described by the authors33.  Briefly, this 622 

consisted of using SCTransform for normalisation and Non-Negative Matrix Factorisation 623 

(NMF) for dimensionality reduction. The factors that contained consistent patterns across the 624 

tissue replicates were kept for analysis. The Stereoscope69 (v.0.2) R package was used for 625 

cell type deconvolution. The deconvolution data was downloaded from 626 

https://github.com/almaan/her2st. The major class consists of myeloid cells, T cells, B cells, 627 

epithelial cells, plasma cells, endothelial cells, cancer associated fibroblasts (CAFs), and 628 

perivascular-like cells (PVL cells). The minor tier contains finer partitioning of the major cell 629 

types, e.g., macrophages and CD8+ T cells. Further description of the deconvolution method 630 

is described by the authors33.  631 

The Seurat70 R package was used for storing, manipulating and visualising the spatial 632 

transcriptomic data.   633 

Gene module scores 634 

An EMT score was calculated per spot by adapting the method used to assign a score to the 635 

TCGA samples, using only the breast cancer cell line scRNA-seq data. The EMT scRNA-seq 636 

trajectory was mapped onto each spot within the spatial transcriptomic slide, and the mean of 637 

the pseudotime values of the single cell samples detected by the kNN algorithm was used. 638 

This was performed on multiple breast cancer cell lines and the average pseudotime across 639 

the cell lines was used to calculate the EMT score. The pseudotime was split into three 640 
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intervals to define an epithelial-like, hybrid-like and mesenchymal-like state. The 641 

AddModuleScore Seurat R function, originally developed for single cell enrichment, was used 642 

to calculate the hypoxia gene set (Buffa et al71) score across the slides. It calculates the 643 

average expression levels for the gene set and subtracts the expression of a sample control 644 

feature set (here set to 200 controls/spot). The SpatialFeaturePlot Seurat R function was used 645 

to visualise the scores. Correlations for the EMT scores were calculated by filtering for the 646 

spots containing epithelial cells and using the STUtility72 R package to calculate the 12 647 

nearest neighbours for each epithelial spot. The proportions of cells within each spot were 648 

summed across the neighbours.   649 

Cluster identification from spatial transcriptomics data 650 

The spatial transcriptomic data was subsetted to include solely the epithelial, hybrid and 651 

mesenchymal genes. The FindClusters Seurat R package then clustered the gene expression 652 

data and assigned a cluster value to each barcode spot. This identified clusters by calculating 653 

the k-nearest neighbours (k-NN) and constructing a shared nearest neighbour graph. The 654 

EMT scores were averaged across the clusters. The results for each cluster were then binned 655 

so that 'low', 'medium' and 'high' groups (corresponding to EPI, hEMT, MES) were created. 656 

The cell type enrichment scores calculated per region were plotted using the enriched-657 

region.py Python file from https://github.com/almaan/her2st.  658 

Single cell data processing and analysis 659 

Matched bulk and single-cell RNA-sequencing data from breast tumours described in Chung 660 

et al36 were retrieved from the Gene Expression Omnibus using the GSE75688 accession 661 

code. Single cell sequencing data from breast, lung, colorectal and ovarian tumours as 662 

described by Qian et al37 were obtained from an interactive web server provided by the 663 

authors (http://blueprint.lambrechtslab.org/).  Quality control analysis and normalisation of the 664 

raw gene expression matrices provided by Qian et al37 was performed using the Seurat R 665 

package73. Matrices were filtered by removing cells with < 200 and > 6000 expressed genes, 666 

as well as cells with > 15% of reads mapping to mitochondrial RNA. EMT pseudotime 667 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2022. ; https://doi.org/10.1101/2021.07.23.453584doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

estimates were calculated for tumour cells only as described previously using the scRNA-seq 668 

data references from McFaline-Figueroa et al9 as well as Cook et al63.  For each dataset, the 669 

cells were sorted according to their pseudotime and split into 3 equally-sized groups with low, 670 

medium or high mean pseudotime estimates, corresponding to EPI, hEMT and MES states. 671 

Cell-cell interaction analysis was performed using CellPhoneDB74 using the normalised gene 672 

expression matrices as input, along with cell type and tumour cell pseudotime group 673 

annotation. 674 

Genomic hallmark quantification 675 

To characterize the aneuploidy and the centromeric amplification levels of the samples in 676 

each EMT state we used the pre-computed values for TCGA from previous works40,75. Copy 677 

number alterations and clonality estimates based on PhyloWGS were obtained from Raynaud 678 

et al71. The hypoxia levels were quantified as described by Bandhari et al76. Several hypoxia 679 

gene signatures were considered, yielding similar results. Only the results obtained using the 680 

genes from Buffa et al71 were reported. The validation of hypoxia associations with EMT was 681 

performed using the spatial transcriptomics dataset from Berglund et al34 and and Affymetrix 682 

profiled dataset GSE16621135 downloaded from the GEO database using GEOquery. The 683 

EMT levels in these datasets were quantified via expression Z-scores using the GSVA 684 

package77. 685 

Finally, to estimate the levels of stemness in each EMT state, we considered a catalogue of 686 

stemness gene sets78 and used them as input for gene set enrichment analysis via the GSVA 687 

R package. 688 

Mutational signature analysis 689 

The identification of the mutational spectrum of the samples in each EMT state was performed 690 

using a custom approach based on SigProfilerExtractor41 and deconstructSigs79. 691 

SigProfilerExtractor was used for a de-novo identification of the mutational signatures.  We 692 

selected the solutions in which the minimal stability was greater than 0.4 and the sum of the 693 
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minimal stabilities across signatures was greater than 1. The cosine similarity with mutational 694 

signatures catalogued in the COSMIC database was computed, and only the solutions with 695 

non-redundant signatures were selected. Next, we independently ran deconstructSigs. To 696 

ensure consistency with Alexandrov et al41, we evaluated the presence of the ageing-linked 697 

SBS1 and SBS5, which have been identified in all cancers. We employed the following steps 698 

to obtain a final list of signatures and their exposures for each tissue individually: 699 

(1) Considering the results obtained from deconstructSigs, the signatures with average 700 

contribution (across all samples) greater than 5% were taken forward in the analysis.  701 

(2) We combined the signatures obtained in (1) and by SigProfiler to obtain a final list of 702 

signatures for the given tissue.  If SBS1 and SB5 were not present, we added these 703 

signatures manually. 704 

To identify EMT-associated mutational processes we used a similar approach to the one 705 

described in Bhandari et al76, based on linear mixed-effect models. Cancer type was 706 

incorporated as a random effect in each model.  An FDR adjustment was applied to the p-707 

values obtained from the analysis. The full model for a specific signature (SBS) is as follows: 708 

EMT_score ~ SBS + (1|cancer) 709 

Prioritisation of genomic alterations in TCGA 710 

Single nucleotide variants were obtained from TCGA using the TCGAbiolinks R package and 711 

the Mutect pipeline. Cancer driver events harbouring nonsynonymous mutations were 712 

selected for further analysis. To identify putative driver events that are positively selected in 713 

association with an EMT state, we employed dNdScv80, which quantified the ratio of non-714 

synonymous and synonymous mutations (dN/dS) in each gene and state, by tissue. All the 715 

somatic driver events with a q-value less than of 0.10 were considered for downstream 716 

analysis. 717 

Copy number events were obtained using the TCGAbiolinks R package. Chromosomal arm-718 

level data were obtained from Taylor et al75.  719 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2022. ; https://doi.org/10.1101/2021.07.23.453584doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Identification of genomic events linked with EMT  720 

To search for genomic events linked with the described EMT macro-states, we considered all 721 

somatic mutations, focal and arm-level copy number events in driver genes from the COSMIC 722 

database that were obtained in the previous steps. Two parallel methodological approaches 723 

based on lasso and random forest were used to identify events that could be predictive of 724 

EMT transitions in a two-step process. First, feature selection was performed using a stability 725 

selection approach. We used the function createDataPartition() from the caret R package to 726 

generate an ensemble of vectors representing 1,00 randomly sampled training models. This is 727 

an iterative approach, in which at each iteration a lasso analysis is performed, and the non-728 

negative coefficients computed by lasso are saved. This step was performed using the 729 

cv.glmnet() function from glmnet. The tissue source was included as potential confounder in 730 

the lasso model. The models were trained on 80% of the data. At the end of this stage, the 731 

variables that were selected in at least the 80% of the iterations were taken forward and 732 

employed as predictors. Features selected in at least 50% of the iterations were also 733 

considered for downstream validation. A similar approach was employed for feature selection 734 

and model building with random forest. 735 

In the second step, ROC curves were generated on the test dataset (20% of the data). In 736 

addition, the predictors obtained from the two pipelines were also used as input for random 737 

forest (ranger implementation), gradient boosting (gbm) and Naïve Bayes models. In these 738 

cases, the trainControl() function (from the caret R package) was used in a 5-fold cross-739 

validation repeated 10 times. The function evalm() (from MLeval R package) was used to 740 

compare the different machine learning methods. Only the features selected via the lasso 741 

procedure were carried forward for downstream analysis. 742 

Cancer cell fraction estimates 743 

The cancer cell fraction (CCF) of selected mutations was calculated using the following 744 

formula: 745 
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𝐶𝐶𝐹! 	= %2 +	
[𝑝𝑢𝑟𝑖𝑡𝑦 ∗ (𝐶𝑁! − 2)]

𝑝𝑢𝑟𝑖𝑡𝑦
	5 ∙ 𝑉𝐴𝐹! 	, 746 

where CNi stands for the absolute copy number of the segment spanning mutation i and VAFi 747 

is the variant allele frequency of the respective mutation. The purities of the TCGA samples 748 

were obtained from Hoadley et al61.  749 

Validation of genomic events linked with EMT 750 

Three large scale public siRNA screens were employed for experimental validation of the 751 

proposed genomics associations with EMT. The first dataset from Koedoot et al51 looked at 752 

gene knockdown effects on cell migration abilities in the Hs578T (top panel) and MDA-MB-753 

231 breast cancer cell lines. The data were obtained from the associated publication and 754 

contained detailed measurements of effects on cellular phenotype upon knockdown, 755 

quantified as changes in cell net surface area, length of minor and major axes, axis ratio 756 

(large/small: elongated cells, close to 1: round cells), perimeter score (larger – more 757 

migration). Data from further phenotypic tests containing confirmed morphology (big/small 758 

round cells) were also available on a subset of the genes.  759 

The second siRNA screen from Penalosa-Ruiz et al54 quantified migration-related cell integrity 760 

in mouse embryonic fibroblasts through a variety of microscopic measurements of the cells 761 

upon gene knockdown across multiple replicates. The data were obtained from the 762 

corresponding publication. 763 

The third screen from Meyer-Schaller et al53 focused on the effect of transcription factor 764 

knockdown on cell migration in normal murine mammary gland epithelial cells. 765 

To understand relevance of the hypothesised biomarkers to the metastatic dissemination of 766 

various cancer cell lines, we downloaded the experimentally measured metastatic potential 767 

levels for cancer cell lines from MetMap19. We compared metastatic potential between 768 

samples with and without a specific EMT marker event (mutations or copy number 769 

alterations), pan-cancer and by tissue. Only the markers that were linked with the hEMT or 770 
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MES states and that showed a statistically significant difference (p < 0.05) in metastatic 771 

potential between the two groups (with and without alteration) have been considered.  772 

The viability of the cancer cell lines harbouring putative EMT biomarkers was evaluated based 773 

on CRISPR screening data81 conducted on 990 cell lines. CERES scores denoting gene 774 

essentiality were downloaded from Project Achilles. Negative values of these scores indicate 775 

that the depletion of a gene influences negatively the viability of a cell line. We only 776 

considered genomic markers linked with the hEMT and MES states from our analysis and 777 

assessed CERES scores for individual genes both pan-cancer and at tissue level. 778 

Drug response datasets 779 

Cell line drug sensitivity data was obtained from the Genomics of Drug Sensitivity in Cancer 780 

database (GDSC)22. The treatment information for TCGA cancers was retrieved using the 781 

TCGA biolinks package. The POG57023 dataset was used to study the relation between the 782 

EMT states and the duration and effects of given cancer treatments. The EMT states in this 783 

dataset were inferred similarly as described above using the kNN approach.  784 

Gene ontology analysis 785 

The characterization of the biological processes associated with the reported lists of genes 786 

was performed using the R package pathfindR82.  787 

Survival analysis 788 

Standardized clinical information for the TCGA cohort was obtained from Liu et al83. Cox 789 

proportional hazard models were used to model survival based on variables of interest and to 790 

adjust for the following potential confounders: tumour stage, age at diagnosis, gender and 791 

body mass index (BMI). Patients in clinical stages I-II were denoted as having “early stage 792 

tumours”, while stages III-IV corresponded to “late stage tumours”. The R packages survival, 793 

survminer and ggforest were used for data analysis and visualization. 794 

 795 
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Data visualization and basic statistics 796 

Graphs were generated using the ggplot2, ggpubr and diagram R packages. Groups were 797 

compared using the Student’s t test, Wilcoxon rank-sum test or ANOVA, as appropriate. 798 

Data availability 799 

The results published here are based upon publicly available data generated by the TCGA 800 

Research Network (https://www.cancer.gov/tcga), MET500 801 

(https://met500.path.med.umich.edu/), MetMap (https://depmap.org/metmap/), GDSC 802 

(https://www.cancerrxgene.org/) and POG570 (https://www.bcgsc.ca/downloads/POG570/). 803 

All data comply with ethical regulations, with approval and informed consent for collection and 804 

sharing already obtained by the relevant consortia. 805 

Code availability 806 

All code developed for the purpose of this analysis can be found at the following repository: 807 

https://github.com/secrierlab/EMT/tree/EMTquant.v1.1 . 808 
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FIGURES 1026 

 1027 

Figure 1. Pan-cancer EMT trajectories and underlying macro-states. (a)   Workflow for 1028 

reconstructing the EMT trajectories of TCGA samples. 1: Bulk and single cell datasets are 1029 
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combined and processed together to remove batch effects. 2: Dimensionality reduction using 1030 

PCA is performed. 3: A k-nearest neighbours (kNN) algorithm is used to map bulk RNA-1031 

sequencing onto a reference EMT trajectory derived from scRNA-seq data. 4: Tumours are 1032 

sorted on the basis of their mesenchymal potential along an EMT “pseudotime” axis. (b) 1033 

Scatter plot of EMT scores along the pseudotime. Each dot corresponds to one bulk tumour 1034 

sample from TCGA. Samples are coloured according to the designated state by the HMM 1035 

model. (c) Diagram of the transition probabilities for switching from one EMT state to another, 1036 

as estimated by the HMM model. MES: fully mesenchymal state, hEMT: hybrid E/M, EPI: 1037 

epithelial state. (d) EMT scores compared across epithelial, hEMT, mesenchymal TCGA 1038 

samples, and the MET500 cohort. (e) Left: EMT scores compared between cell lines from 1039 

CCLE classified as “non metastatic” (aqua green), “weakly metastatic” (orange),” metastatic” 1040 

(red) according to the MetMap500 study. **p<0.01; ****p<0.0001. Right: Association plot 1041 

between the HMM-derived cell line states (rows) and their experimentally measured 1042 

metastatic potential (columns) (p=2.2e-16). (f) Distribution of the EMT states across different 1043 

cancer tissues. Each quarter of the pie corresponds to the 25% of the data. The number of 1044 

samples analysed is indicated for each tissue. 1045 
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 1047 

Figure 2. Tumour extrinsic and intrinsic hallmarks of EMT. (a) Heat map showcasing the 1048 

results of a multinomial logistic regression model trained to predict EMT states based on cell 1049 

infiltration in the microenvironment. Each row corresponds to a cell type and the 1050 

corresponding per-sample infiltration is highlighted via ssGSEA scores reported on the x axis. 1051 

The values reported in the heat map are the probabilities that a sample should fall into the 1052 

epithelial, hEMT or mesenchymal categories in relation to the ssGSEA score of a certain cell 1053 

type. (b) Cell abundance compared across the EMT states for selected cell types. (c) Levels 1054 

of exhaustion quantified across the three EMT states. (d) Median hypoxia values in the three 1055 

different EMT states across tissues. (e) Gene expression levels of the stemness marker CD44 1056 

compared across the three EMT states.  1057 
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 1058 

Figure 3. Spatial patterns of EMT. (a-d) Spot annotations of the fraction of epithelial cells 1059 

(a), EMT scores across these epithelial spots (b), fraction of fibroblasts (c) and hypoxia (d) 1060 

within individual spots profiled across the tissue in a selected breast cancer slide, derived from 1061 
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spatial transcriptomics data (Patient 1). The blue to red gradient indicates increased 1062 

expression of markers of the specific cell state or increased fraction of cell types. (b) Clusters 1063 

of homogeneous expression profiles annotated within the spatially defined transcriptomic 1064 

spots for the same slide. (c) Expression clusters visualised using UMAP dimensionality 1065 

reduction. (d) Enrichment (green) and depletion (red) of cell types in each EMT-based cluster. 1066 

The plots represent the difference between the average cell type proportion value per region, 1067 

compared to a permuted spot value (calculated 10,000 times). The plot marker size 1068 

corresponds to the absolute enrichment score, and the colour represents the enrichment sign 1069 

(red for negative and green for positive). (h) Correlation between hypoxia and individual cell 1070 

types and states. Blue indicates positive correlation, red indicates negative correlation, with 1071 

the circle size being proportional to the correlation value. (i-p) The same annotations as above 1072 

for a breast cancer sample from Patient 2. (q) Enrichment (green) and depletion (red) of cell 1073 

types in EMT-based clusters derived from multi-region spatial transcriptomics slides from the 1074 

ST2K cohort. Annotation as in (g) and (o). 1075 
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 1077 

Figure 4. EMT diversity in single cell data. (a) Comparison between EMT pseudotime 1078 

estimates in matched bulk and single cell samples from the same individuals. (b) Number of 1079 

interactions established between tumour cells found in an EPI, hEMT or MES state and other 1080 

cells in the tumour microenvironment in the Chung et al36 dataset. (c) UMAP reconstruction of 1081 

single cell expression profiles depicting the tumour and microenvironment landscape of 1082 

breast, lung, colorectal and ovarian tumours from Qian et al37. Tumour cells are coloured 1083 

according to their assigned EMT state (EPI/hEMT/MES). All other cells in the 1084 

microenvironment are also depicted in different colours. DC – dendritic cells; EC – endothelial 1085 

cells. (d) Heat maps depicting the total number of interactions established among all cell types 1086 
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in the same breast, lung, colorectal and ovarian datasets. The EPI, hEMT and MES tumour 1087 

cells are highlighted in blue, orange and red, respectively. 1088 

 1089 

 1090 
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Figure 5. Genomic driver events linked with EMT. (a) Expression of the proliferation 1091 

marker Ki67, mutational and copy number aberration (CNA) burden, aneuploidy, number of 1092 

clonal/subclonal mutations and centromeric amplification levels compared across the three 1093 

EMT states. (b) Mutational signature exposures across TCGA samples sorted by EMT score. 1094 

Only mutational signatures that were significantly linked with EMT from the linear mixed 1095 

models are displayed. The corresponding EMT scores are displayed above. (c) Signature 1096 

contributions from SBS6 (mismatch repair deficiency), SBS4 (smoking), SBS39 (unknown) 1097 

and SBS2 (APOBEC) compared between the three EMT states. (d) Cancer cell fraction of 1098 

genomic markers showing significantly distinct distribution between EMT states. (e) The 1099 

analytical workflow used to detect genomic events linked with EMT. For each state and cancer 1100 

type, we used dNdScv, SNV and copy number enrichment to prioritise mutated genes and 1101 

copy number events, respectively. These genomic events were then employed as input for 1102 

lasso modelling to classify EMT states. (f) Top-ranked genomic markers distinguishing the 1103 

mesenchymal from the epithelial state. The balloon chart on the right illustrates the 1104 

association between each marker and aneuploidy, hypoxia, centromeric amplification (CA20), 1105 

stemness index (mRNAsi) and EMT score. The size of the diamonds is proportional to the 1106 

significance of association, the colours report the odds ratios. (g) List of the top-ranked 1107 

genomic markers distinguishing the hEMT from the MES state and their associated hallmarks. 1108 

(h) List of the top-ranked genomic markers distinguishing the hEMT from the EPI state and 1109 

their associated hallmarks. 1110 
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 1112 

Figure 6. Validation of genomic associations with EMT using siRNA screens. (a) Gene 1113 

knockdown effects on cell migration abilities in Hs578T (top panel) and MDA-MB-231 (bottom 1114 

panel) cell lines (data from Koedoot et al43). The x axis depicts a change in the following 1115 

measurements in the cells upon the knockdown: net surface area, length of minor and major 1116 

axes, axis ratio (large/small: elongated cells, close to 1: round cells), perimeter score (larger – 1117 
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more migration). The y axis depicts the median weight of the gene in the model distinguishing 1118 

two different EMT states. Larger absolute weights indicate more confident associations with 1119 

EMT. The genes are coloured according to the suggested phenotype by the respective 1120 

cellular measurement. A few of the genes highlighted have undergone further phenotypic tests 1121 

and this is indicated by the confirmed phenotype (big/small round). The rest of the genes were 1122 

not further tested in the study (“Not tested”). Only candidates with a Z-score value of cellular 1123 

measurement >1 or <-1 are shown. The genes ELL and NCKIPSD are highlighted with black 1124 

dotted rectangles as they are less well characterised in the context of EMT and are found as 1125 

hits in the screen shown in panel b too. (b) Gene knockdown effects on various 1126 

measurements of migration-related cell integrity in mouse embryonic fibroblasts (data from 1127 

Penalosa-Ruiz et al45). The radial plots show the mean z-score depicting the change in cell 1128 

measurement across multiple knockdown replicates. Z-scores greater than 1 or less than -1 1129 

(above and below the corresponding black circles) suggest significant changes. All 1130 

measurements are listed for the first gene only in grey text. Coloured text indicates significant 1131 

changes in phenotype for each gene, e.g. knockdown of PRDM1 and SETD2 leads to an 1132 

increase in E-cadherin expression intensity and area.   1133 
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 1135 

Figure 7. Clinical relevance of the EMT states. (a) Overall survival compared between 1136 

MES, hEMT and EPI samples. (b) Progression free interval compared between the three 1137 

groups. (c) Genomic markers distinguishing between mesenchymal and epithelial states with 1138 

a significantly worse or improved outcome (q<0.001). (d) Genomic markers distinguishing 1139 

between hybrid and epithelial states with a significantly worse or improved outcome. WGD = 1140 

whole-genome doubling. (e) EMT scores compared between responders and non-responders 1141 

to treatment with oxaliplatin. A gradual increase in EMT levels is observed with progressively 1142 

worse outcomes. (f) Correlation between the EMT scores and IC50 values in cell lines treated 1143 
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with various drugs. The balloon chart on the left illustrates the association between the IC50 1144 

for each compound and EMT. The size of the circles is proportional to the significance of 1145 

association. The IC50 ranges for all cell lines are depicted by the density charts. 1146 
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