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Abstract
Many processes of biological diversification can simultaneously affect multiple evolu-

tionary lineages. Examples include multiple members of a gene family diverging when
a region of a chromosome is duplicated, multiple viral strains diverging at a “super-
spreading” event, and a geological event fragmenting whole communities of species. It
is difficult to test for patterns of shared divergences predicted by such processes, because
all phylogenetic methods assume that lineages diverge independently. We introduce a
Bayesian phylogenetic approach to relax the assumption of independent, bifurcating
divergences by expanding the space of topologies to include trees with shared and
multifurcating divergences. This allows us to jointly infer phylogenetic relationships,
divergence times, and patterns of divergences predicted by processes of diversification
that affect multiple evolutionary lineages simultaneously or lead to more than two de-
scendant lineages. Using simulations, we find the new method accurately infers shared
and multifurcating divergence events when they occur, and performs as well as current
phylogenetic methods when divergences are independent and bifurcating. We apply our
new approach to genomic data from two genera of geckos from across the Philippines
to test if past changes to the islands’ landscape caused bursts of speciation. Unlike
our previous analyses restricted to only pairs of gecko populations, we find evidence
for patterns of shared divergences. By generalizing the space of phylogenetic trees in a
way that is independent from the likelihood model, our approach opens many avenues
for future research into processes of diversification across the life sciences.
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Significance statement

Phylogenetic models have long assumed that lineages diverge independently. Processes of
diversification that are of interest in biogeography, epidemiology, and genome evolution,
violate this assumption by affecting multiple evolutionary lineages. To relax the assumption
of independent divergences and infer patterns of divergences predicted by such processes,
we introduce a new way of conceptualizing, modeling, and inferring phylogenetic trees. We
apply the new approach to genomic data from geckos distributed across the Philippines, and
find support for patterns of shared divergences predicted by repeated fragmentation of the
archipelago by interglacial rises in sea level.

Data availability

We recorded a detailed history of all our analyses for this project in a version-controlled
repository, which is publicly available at github.com/phyletica/phycoeval-experiments and
archived on Zenodo (doi.org/10.5281/zenodo.5162056; Oaks, 2021). The C++ source code for
ecoevolity is freely available from github.com/phyletica/ecoevolity, with detailed documen-
tation and tutorials available at phyletica.org/ecoevolity. All of the scripts and parameter
files we used to assemble the gecko datasets are available in our gekkonid project repository
(github.com/phyletica/gekgo) that is archived on Zenodo (doi.org/10.5281/zenodo.5162085;
Oaks and Wood, Jr., 2021). The gecko sequence reads are available on the NCBI Sequence
Read Archive (Bioproject PRJNA486413, SRA Study SRP158258).
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1 Introduction
There are many processes of biological diversification that affect multiple evolutionary

lineages, generating patterns of temporally clustered divergences across the tree of life. Un-
derstanding such processes of diversification has important implications across many fields
and scales of biology. At the scale of genome evolution, the duplication of a chromosome
segment harboring multiple members of a gene family causes multiple, simultaneous (or
“shared”) divergences across the phylogenetic history of the gene family (Doyle and Egan,
2010; Jiao et al., 2011; Clark and Donoghue, 2017; Li et al., 2018). In epidemiology, when
a pathogen is spread by multiple infected individuals at a social gathering, this will create
shared divergences across the pathogen’s “transmission tree” (Pybus and Rambaut, 2009;
Ypma et al., 2013; Klinkenberg et al., 2017). If one of these individuals infects two or more
others, this will create a multifurcation (a lineage diverging into three or more descendants)
in the transmission tree. At regional or global scales, when biogeographic processes fragment
communities, this can cause shared divergences across multiple affected species (Hickerson
et al., 2006; Leaché et al., 2007; Plouviez et al., 2009; Voje et al., 2009; Daza et al., 2010;
Barber and Klicka, 2010). If the landscape is fragmented into three or more regions, this can
also cause multifurcations (Hoelzer and Meinick, 1994). For example, the repeated fragmen-
tation of the Philippines by interglacial rises in sea level since the late Pliocene (Haq et al.,
1987; Rohling et al., 1998; Siddall et al., 2003; Miller et al., 2005; Spratt and Lisiecki, 2016)
has been an important model to help explain remarkably high levels of microendemism and
biodiversity across the archipelago (Inger, 1954; Heaney, 1985; Brown and Guttman, 2002;
Evans et al., 2003; Heaney et al., 2005; Roberts, 2006; Linkem et al., 2010; Siler et al., 2010,
2011, 2012; Brown and Siler, 2014). This model predicts that recently diverged taxa across
the islands should have (potentially multifurcating) divergence times clustered around the
beginning of interglacial periods. We are limited in our ability to infer patterns of diver-
gences predicted by such processes, because phylogenetic methods assume lineages diverge
independently.

To formalize this assumption of independent divergences and develop ways to relax it,
it is instructive to view phylogenetic inference as an exercise of statistical model selection
where each topology is a separate model (Yang, 1994; Yang et al., 1995; Suchard et al.,
2001). Current methods for estimating rooted phylogenies with N tips only consider tree
models with N − 1 bifurcating divergences, and assume these divergences are independent,
conditional on the topology (see Lewis et al., 2005, for multifurcations in unrooted trees). If,
in the history leading to the tips we are studying, diversification processes affected multiple
lineages simultaneously or caused them to diverge into more than two descendants, the true
tree could have shared or multifurcating divergences. This would make current phylogenetic
models with N − 1 independent divergence times over-parameterized, introducing unneces-
sary error (Figure 1). Even worse, with current methods, we lack an obvious way of using our
data to test for patterns of shared or multifurcating divergences predicted by such processes.

We relax the assumption of independent, bifurcating divergences by introducing a Bayesian
approach to generalizing the space of tree models to allow for shared and multifurcating di-
vergences. In our approach, we view trees with N−1 bifurcating divergences as only one class
of tree models in a greater space of trees with anywhere from 1 to N − 1 potentially shared
and/or multifurcating divergences (Figure S1). We introduce reversible-jump Markov chain
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True history

Problem:
Current methods
only consider
general model

Consequence:
Unnecessary
parameters
introduce error

Current tree model

τ1τ2 τ3τ4 τ5τ6 τ7 τ8

Solution:
Generalize tree space
to accommodate
shared divergences

Advantage:
Estimate shared
parameters using more
tip data

Generalized tree model

τ1 τ2 τ3
Figure 1. An example evolutionary history with shared divergences (left), and the benefits of the generalizing
tree space under such conditions (right). Current methods are restricted to one class of tree models, where the
tree is fully bifurcating and independent divergence-time parameters are estimated for all internal nodes (center).
Figure made using Gram (Version 4.0.0; Foster, 2018) and the P4 phylogenetic toolkit (Version 1.4 5742542;
Foster, 2004). Middle three lizard silhouettes from pixabay.com, and others from phylopic.org; all licensed under
the Creative Commons (CC0) Public Domain Dedication.

Monte Carlo algorithms (Metropolis et al., 1953; Hastings, 1970; Green, 1995) to sample
this generalized space of trees, allowing us to jointly infer evolutionary relationships, shared
and multifurcating divergences, and divergence times. We couple these algorithms with a
likelihood model for directly calculating the probability of biallelic characters given a popu-
lation (or species) phylogeny, while analytically integrating over all possible gene trees under
a coalescent model and all possible mutational histories under a finite-sites model of charac-
ter evolution (Bryant et al., 2012; Oaks, 2019). Using simulations, we find the generalized
tree model accurately infers shared and multifurcating divergences while maintaining a low
rate of falsely inferring such divergences. To test for patterns of shared and multifurcating
divergences predicted by repeated fragmentation of the Philippines by interglacial rises in
sea level (Oaks et al., 2013; Brown et al., 2013; Oaks et al., 2019), we apply the generalized
tree model to genomic data from two genera of geckos codistributed across the islands.

2 Results

2.1 Simulations on fixed trees

The generalized tree model (MG) sampled trees significantly closer (Robinson and Foulds,
1979; Kuhner and Felsenstein, 1994) to the true tree than an otherwise equivalent model that
assumes independent, bifurcating divergences (MIB), when applied to 100 data sets simu-
lated along the species tree in Figure 2A, each with 50,000 unlinked biallelic characters
(Figure 2B). From these simulated data, the generalized model consistently inferred the
correct shared and multifurcating divergences with high posterior probabilities (Figure 2C).
Unlike the independent-bifurcating model, the generalized approach avoids strong support
for nonexistent branches that spuriously split truly multifurcating nodes (Figure 2D). Under
both models, analyzing only the variable characters causes a reduction in tree accuracy (Fig-
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ure 2B), but yields similar posterior probabilities for shared and multifurcating divergences
(Figure 2C).

When applied to data sets of 50,000 characters simulated along a tree with independent,
bifurcating divergences (Figure 3A), both the MG and MIB models consistently inferred
the correct topology with strong support (Figure 2B), and the MG method did not support
incorrect shared or multifurcating divergences (Figure 3C). This was true whether all the
characters or only the variable characters were analyzed (Figure 3B&C). Looking at the
distances (Robinson and Foulds, 1979; Kuhner and Felsenstein, 1994) between the trees
from the posterior samples and the true tree, there is no difference between the MG and
MIB models when the true tree has only independent, bifurcating divergences (Figure 3D).
For both models, using all the characters yields posterior samples of more accurate trees
than only analyzing variable characters (Figure 3D).

2.2 Simulations on random trees

When we simulated 100 data sets (each with nine species and 50,000 characters) where
the true tree and divergence times were randomly drawn from the generalized tree distri-
bution (MG), we again found that the MG performs better than the MIB at inferring the
correct tree and divergence times (Figure 4A), and generally recovers true shared and mul-
tifurcating divergences with moderate to strong support (Figure 4B&C). When the tree and
divergence times were randomly drawn from an independent, bifurcating tree model (MIB),
the generalized model performs similarly to the true model (Figure S2).

Both the MG and MIB models accurately and precisely estimate the age of the root, tree
length, and effective population size from the data sets simulated on random MG and MIB

trees (Top two rows of Figures S3, S4, and S5, respectively). Accuracy is similar with and
without constant characters, but precision is higher when including constant characters.

2.3 The rate of falsely inferring shared divergences

To quantify the rate at which phycoeval incorrectly infers shared and/or multifurcating
divergences, we used the results from the MG analyses of the data sets simulated on random
trees from the MG and MIB models. From the posterior sample of each analysis, we used
sumphycoeval to calculate the proportion of samples that contained incorrectly merged
neighboring divergence times. To do this, we merged all possible neighboring divergence
times from the true tree, each of which creates a shared divergence or multifurcation, and
counted how many posterior samples contained each divergence scenario. We found that
phycoeval had a low false-positive rate for the simulated data; less than 1% (Figure 5A &
S6) and 5% (Figure 5D & S7) of incorrectly merged divergence times had an approximate
posterior probability greater than 0.5 when analyzing data simulated on trees sampled from
the MG and MIB models, respectively. In all cases with moderate to strong support for
falsely merged divergences, the difference in time between the merged divergences was small
(< 0.005 expected substitutions per site; Figure 5B&E). There was no correlation between
support for incorrectly merged divergences and their age (Figure 5C&F; the p-value for a
t-test that Pearson’s correlation coefficient = 0 using all points with posterior probability
> 0 was 0.11 and 0.25 for results from data simulated under MG and MIB, respectively).
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Figure 2. Results of analyses of 100 data sets, each with 50,000 biallelic characters simulated on the species tree
shown in (A) with divergence times in units of expected substitutions per site. (B) The square root of the sum of
squared differences in branch lengths between the true tree and each posterior tree sample (Kuhner and Felsenstein,
1994); the point and bars represent the posterior mean and equal-tailed 95% credible interval, respectively. P-
values are shown for Wilcoxon signed-rank tests (Wilcoxon, 1945) comparing the paired differences in tree distances
between methods. (C) Violin plots of the posterior probabilities of each node and shared divergence in the true tree
across the 100 simulated data sets. (D) Violin plots of the most probable incorrect root node and most probable
of the three incorrect splittings of the t3 and t4 multifurcations. For each simulation, the mutation-scaled effective
population size (Neµ) was drawn from a gamma distribution (shape = 20, mean = 0.001) and shared across all
the branches of the tree; this distribution was used as the prior in analyses. Tree plotted using Gram (Version
4.0.0, Commit 02286362; Foster, 2018) and the P4 phylogenetic toolkit (Version 1.4, Commit d9c8d1b1; Foster,
2004). Other plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021)
backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson
et al., 2017).
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Figure 3. Results of analyses of 100 data sets, each with 50,000 biallelic characters simulated on the species
tree shown in (A) with divergence times in units of expected substitutions per site. (B) The posterior probability
of the true topology. (C) The posterior probability of incorrectly shared or multifurcating nodes. (D) The square
root of the sum of squared differences in branch lengths between the true tree and each posterior tree sample
(Kuhner and Felsenstein, 1994); the point and bars represent the posterior mean and equal-tailed 95% credible
interval, respectively. P-values are shown for Wilcoxon signed-rank tests (Wilcoxon, 1945) comparing the paired
differences in tree distances between methods. For each simulation, the mutation-scaled effective population size
(Neµ) was drawn from a gamma distribution (shape = 20, mean = 0.001) and shared across all the branches
of the tree; this distribution was used as the prior in analyses. Tree plotted using Gram (Version 4.0.0, Commit
02286362; Foster, 2018) and the P4 phylogenetic toolkit (Version 1.4, Commit d9c8d1b1; Foster, 2004). Other
plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021) backend of the
Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson et al., 2017).
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Figure 4. The performance of the MG and MIB tree models when applied to 100 data sets, each with 50,000
biallelic characters simulated on species trees randomly drawn from the MG tree distribution. (A) The square
root of the sum of squared differences in branch lengths between the true tree and each posterior tree sample
(Kuhner and Felsenstein, 1994); the point and bars represent the posterior mean and equal-tailed 95% credible
interval, respectively. P-values are shown for Wilcoxon signed-rank tests (Wilcoxon, 1945) comparing the paired
differences in tree distances between methods. Violin plots show posterior probabilities of all true (B) shared
divergences and (C) multifurcating nodes across all simulated trees. For each simulation, the mutation-scaled
effective population size (Neµ) was drawn from a gamma distribution (shape = 20, mean = 0.001) and shared
across all the branches of the tree; this distribution was used as the prior in analyses. Plots created using the
PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021) backend of the Plots (Version 1.5.7,
Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson et al., 2017).
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Figure 5. The MG tree model has (A & D) a low false positive rate (FPR; the proportion of incorrectly merged
divergence times with a posterior probability > 0.5) when applied to data simulated on trees drawn from the
(A–C) MG and (D–F) MIB models. Support for incorrectly merged divergence times is high only when the
difference between the times is small (B & E), and is not correlated with the age of the merged nodes; p-value
= (C) 0.11 and (F) 0.25 for a t-test that Pearson’s correlation coefficient = 0 using all points with posterior
probability > 0. Time units are expected substitutions per site. Plots created using the PGFPlotsX (Version
1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021) backend of the Plots (Version 1.5.7, Commit f80ce6a2;
Breloff, 2021) package in Julia (Version 1.5.4; Bezanson et al., 2017).
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2.4 Convergence and mixing of MCMC chains

For all analyses of simulated data, the root age, tree length, and effective population size
had a potential-scale reduction factor (PSRF; the square root of Equation 1.1 in Brooks and
Gelman, 1998) less than 1.2 and effective sample size (ESS; Gong and Flegal, 2016) greater
than 200. The average standard deviation of split frequencies (ASDSF) among the four
MCMC chains was less than 0.017 for all analyses and less than 0.01 for most (Figure S8).

Convergence and mixing was better under MG than MIB when applied to data sets
simulated on trees with shared or multifurcating divergences (left column of Figure S8).
When applied to data sets simulated with no shared or multifurcating divergences, MCMC
performance was similar between MG and MIB (right column of Figure S8).

The MCMC settings used for MG and MIB are identical except for the reversible-jump
moves that add or remove divergence-time parameters are turned off under the latter model.
Under the MIB model, the tree topology is updated by several MCMC moves (see Sections
4.5 and 4.6.1 of the Supporting Information), which performed well when divergences are
independent and bifurcating (Figure 3 and Figure S8). To further probe the improved MCMC
behavior of MG in the face of shared and multifurcating divergences, we re-ran the analyses
under the MIB model on the 100 data sets simulated along the tree in Figure 2A with more
favorable MCMC settings. In theseMIB reanalyses, we ran the MCMC chains twice as long,
sampled them half as frequently, and started them with the correct tree. The results were
nearly identical to the original MCMC chains under the MIB model (Figure S9), suggesting
the improved mixing under MG was not simply do to insufficient MCMC sampling effort
under the MIB model.

2.5 Simulations of linked characters

The multi-species coalescent likelihood we have coupled with our generalized tree model
assumes each biallelic character is unlinked (i.e., each character evolved along a gene tree
that was independent of other characters, conditional on the species tree; Bryant et al., 2012;
Oaks, 2019). However, each locus comprising the gecko data sets we analyzed (see below)
consists of approximately 90 contiguous nucleotides. To assess whether linked sites might
bias our results, we repeated the simulations above, but with 500 loci, each with 100 linked
characters. When all characters (variable and constant) are analyzed, results from the data
sets simulated with linked characters are very similar to results from unlinked characters
above (Figures S3–5 and 7 and S10–13). When all but one variable character per locus is
discarded to avoid violating the assumption of unlinked characters, performance is greatly
reduced due to the large loss of data (Figures S3–5 and 7 and S10–13). These results suggest
the model is robust to linked characters and it is better to analyze all sites from multi-locus
data sets, rather than reduce them to only one SNP per locus.

2.6 Testing for shared divergences in Philippine gekkonids predicted
by glacial cycles

If the repeated fragmentation of the Philippines by interglacial rises in sea level generated
pulses of speciation, taxa distributed across the archipelago should have divergence times
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clustered around the beginning of interglacial periods. We tested this prediction by applying
our generalized tree model to RADseq data from species of Cyrtodactylus and Gekko collected
from 27 and 26 locations across the islands, respectively (Tables S1 & S2). We analyzed each
genus separately, because the rate of mutation differs between the genera, and phycoeval
currently assumes a strict clock (though this is not required by the generalized tree model).

The maximum a posteriori (MAP) trees for both genera had 16 divergence times and
weak to moderate support for five shared divergences (Figure 6; see Figures S14 & S15 and
Table S3 for more details about shared divergences). The MAP tree of Cyrtodactylus and
Gekko had three and two multifurcations, respectively. For both genera, two of the shared
divergences involved three nodes, and of the remaining three that involved two nodes, one
involved a trichotomous node (three descending lineages). There were no other strongly sup-
ported shared divergences that were not included in the MAP trees of either genera. Most of
the shared and multifurcating divergences occurred after the late Pliocene (Figure 6 and Ta-
ble S3), based on re-scaling the branch lengths of the posterior sample of trees from expected
substitutions per site to millions of years using secondary calibrations (see methods).

For both genera, the number of divergence times with the highest approximate poste-
rior probability (0.33 for Cyrtodactylus and 0.32 for Gekko) was 17, and the 95% credible
interval spanned 15–19 divergences (Figure 6). No trees with more than 22 divergence times
were sampled for either genera, making the approximate posterior probability of 23 or more
divergences less than 2.9×10−5 for both genera. The average standard deviation of split fre-
quencies (0.0027 for Cyrtodactylus and 0.0009 for Gekko) and other statistics were consistent
with the MCMC chains converging and mixing well (Table S4).

3 Discussion
To relax the assumption that all processes of biological diversification affect evolutionary

lineages independently, we introduced a generalized Bayesian phylogenetic approach to in-
ferring phylogenies with shared and multifurcating divergences. Using simulations we found
this approach can accurately infer shared and multifurcating divergences from moderately
sized data sets, while maintaining a low rate of incorrectly inferring such patterns of diver-
gence. When we used the generalized approach to infer the evolutionary histories of two
genera of gekkonid lizards across the Philippines, we found strong support against tree mod-
els assumed by current phylogenetic methods. The posterior probability of all trees with
N − 1 independent, bifurcating divergences was less than 2.9×10−5 for both genera, sug-
gesting that trees with shared and multifurcating divergences better explain the gekkonid
sequence data. It will be interesting to see if such improvement in model fit is common
as the generalized tree distribution is applied to more systems, regardless of the biological
processes responsible (if any).

Despite greatly expanding the number of possible topologies, we saw better MCMC
behavior under the MG model (Figure S8), even when the MIB chains were started with
the true tree and run twice as long (Figure S9). This could be due to the generalized
tree distribution providing more ways to traverse tree space. For example, when a posterior
distribution restricted to trees with independent bifurcating divergences has multiple “peaks”
associated with different topologies, the generalized distribution includes tree models that
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Figure 6. A summary of the generalized trees inferred from the (A–B) Cyrtodactylus and (C–D) Gekko RADseq
data sets. The maximum a posteriori (MAP) tree is shown for both genera along with the approximate posterior
probabilities of the number of divergences. Shared divergences in MAP trees indicated by dashed lines, with
approximate posterior probabilities shown along the top. All clades (splits) had approximate posterior probabilities
(PP) greater than 0.95 except for one indicated with a dot (PP = 0.89) within G. mindorensis (C). Approximate
posterior probabilities of nodes shown in grey boxes for the root and multifurcating nodes. To illustrate timescale,
branch lengths of posterior samples of trees were rescaled from expected substitutions per site to millions of years
using secondary calibrations (see methods). Top photo of Cyrtodactylus sp. by CDS; bottom photo of Gekko sp.
by Jason Fernandez & RMB. Created using ggplot2 (v3.3.5; Wickham, 2016), ggtree (v3.1.0; Yu et al., 2017),
treeio (v1.17.0; Wang et al., 2019), deeptime (v0.0.6; Gearty, 2021), cowplot (v1.1.1; Wilke, 2020), and ggrepel
(v0.9.1; Slowikowski, 2020). Links to nexus-formatted annotated trees: Cyrtodactylus & Gekko.
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are special cases of these topologies. Explicitly including these “intermediate” trees could
make the posterior less rugged and allow MCMC chains to more easily traverse tree space.

By accommodating multifurcations, our generalized tree approach helped avoid the “star-
tree paradox,” where arbitrary resolutions of a true polytomy can be strongly supported
(Figure 2D; Suzuki et al., 2002; Lewis et al., 2005). Lewis et al. (2005) found the same result
by expanding the space of unrooted tree topologies to include multifurcations. Our results
show that this solution to the star-tree paradox extends to rooted trees.

3.1 Robustness of coalescent models that assume unlinked charac-
ters

Our finding that the multi-species coalescent model of Bryant et al. (2012) is robust
to linked characters is consistent with previous simulations using species trees with one
and two tips (Oaks, 2019; Oaks et al., 2019, 2020). Our simulation results show that this
robustness extends to larger trees with multifurcations and shared divergences, and suggest
that discarding data to avoid linked characters can have a worse effect on inference than
violating the assumption of unlinked characters. This is consistent with the findings of
Chifman and Kubatko (2014) that quartet inference of splits in multi-species coalescent
trees from SNP data was also robust to the violation of the assumption that characters are
unlinked.

3.2 Diversification of Philippine gekkonid lizards

How the 7,100 islands of the Philippines accumulated one of the highest concentrations
of terrestrial biodiversity on Earth (Catibog-Sinha and Heaney, 2006; Brown and Diesmos,
2009; Heaney and Regalado, 1998; Brown et al., 2013) has been of interest to evolutionary
biologists since the founding of biogeography (Wallace, 1869; Huxley, 1868; Dickerson, 1928;
Diamond and Gilpin, 1983; Brown, 2016; Lomolino et al., 2016). Since the late Pliocene,
the archipelago’s five major (and several minor) aggregate island complexes were repeatedly
fragmented by interglacial rises in sea level into clusters of landmasses resembling today’s
islands, followed by island fusion via land bridge exposure as sea levels fell during glacial
periods (Haq et al., 1987; Rohling et al., 1998; Siddall et al., 2003; Miller et al., 2005;
Spratt and Lisiecki, 2016). The repeated fragmentation-fusion cycles of this insular landscape
has generated a prominent hypothesis to explain the high levels of terrestrial biodiversity
across the Philippines (Inger, 1954; Heaney, 1985; Brown and Guttman, 2002; Evans et al.,
2003; Heaney et al., 2005; Roberts, 2006; Linkem et al., 2010; Siler et al., 2010, 2011, 2012;
Brown and Siler, 2014). However, there is growing evidence that (1) older tectonic processes
(∼30–5 mya) of precursor paleoislands (Jansa et al., 2006; Blackburn et al., 2010; Siler
et al., 2012; Brown and Siler, 2014; Brown et al., 2016), (2) dispersal events from mainland
source populations (Diamond and Gilpin, 1983; Brown and Guttman, 2002; Brown and Siler,
2014; Chan and Brown, 2017), (3) repeated colonizations among islands (Siler et al., 2011;
Justiniano et al., 2015; Brown et al., 2016), and (4) fine-scale in situ isolating mechanisms
(Heaney et al., 2011; Linkem et al., 2011; Siler et al., 2011, 2012; Hosner et al., 2013; Brown
et al., 2015), have been important causes of diversification among and within many of the
islands.
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Oaks et al. (2019) found support for independent divergence times among inter-island
pairs of Cyrtodactylus and Gekko populations from across the Philippines, suggesting that
rare, over-water colonization, perhaps mediated by rafting on vegetation, might have been
a more important mechanism of isolation than sea-level fragmentation in these gekkonid
lizards. Our fully phylogenetic approach to this problem has allowed us to look for shared
divergences across the full evolutionary history of extant populations in these clades, finding
evidence for shared divergences that were missed by the pairwise approach. These results
emphasize a pitfall of previous methods: choosing pairs of populations, for comparison under
previous methods for inferring shared divergences (Hickerson et al., 2006; Huang et al., 2011;
Oaks, 2014, 2019), was problematic in the sense that it was somewhat arbitrary and could
miss more complex patterns of shared divergences in the shared ancestry of the taxa under
study.

We recognize that our use of secondary calibrations to convert the timescale of the di-
versification of each genus into millions of years is error-prone, and should not be used to
tie estimated shared divergences to specific geological or climatic events. However, given
how recent most of the estimated shared divergences are for both Cyrtodactylus and Gekko
(Figure 6; Table S3), it is unlikely the magnitude of error from our calibrations is great
enough such that the true timing of these divergences would pre-date the late Pliocene.
Thus, we conclude these estimated divergences are consistent with predictions of the model
of diversification based on Plio-Pleistocene interglacial fragmentation of the islands. Given
the numbers of shared or multifurcating divergence events estimated within this time frame
are relatively low for both Cyrtodactylus and Gekko (6 and 5, respectively), and have weak
to moderate support, our findings also are consistent with accumulating evidence that a
number of complex processes of diversification have played important roles in shaping the
distribution of life across the Philippines, not just paleo-island fragmentation.

A simultaneous analysis involving broader taxonomic sampling of Philippine gekkonids
(e.g., Gekko, Cyrtodactylus, Pseudogekko, Lepidodactylus, and Luperosaurus ; Wood, Jr.
et al., 2020) would likely reveal support for an increased number of shared divergences across
the archipelago, including older divergences predicted by geological processes that pre-date
the Plio-Pleistocene interglacial fragmentations. When comparing our results between Cyr-
todactylus and Gekko, we see some patterns suggestive of such shared diversification. For
example, early divergences in both genera show patterns consistent with arrival into the
archipelago, and subsequent diversification, via the Palawan Island Arc (Blackburn et al.,
2010; Siler et al., 2012). Results from both genera support a pattern where a clade, sister to
species endemic to the Palawan microcontinental block, began diversifying across the oceanic
islands of the Philippines approximately 25–20 mya (Figure 6). Among the divergences esti-
mated to have occurred within the last 2 my, there also appear to be regional consistencies
in when and where lineages were diversifying in the Philippines, including population-level
diversification for the widespread Cyrtodactylus philippinicus and Gekko mindorensis within
and among the Mindoro and West Visayan faunal regions in the central Philippines (Figures
6, S14, & S15; Siler et al., 2012, 2014). Regardless of temporal concordance among diver-
gences, the results of this work further support Philippine species within both focal clades
having originated in the archipelago as a result of one or more faunal exchanges between
oceanic portions of the Philippines associated historically with the Philippine mobile belt
and the Palawan microcontinental block (Brown et al., 2013; Yumul et al., 2008).
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Currently, broader taxonomic analyses are limited by a simplifying assumption of phycoeval
that mutation rates are constant across the tree. We sought to minimize the effects of vio-
lations of this assumption by analyzing the two gekkonid genera separately. The Philippine
species in each genus are closely related (the posterior mean root age in expected substi-
tutions per site for Cyrtodactylus and Gekko was 0.012 and 0.013, respectively) and share
similar natural histories, so an assumption of a similar rate of mutation across the popula-
tions we sampled within each genus seems reasonable. Future developments of phycoeval
allowing the rate to vary across the phylogeny would be an obvious way to improve our cur-
rent implementation and make it more generally applicable to a greater diversity of systems.

3.3 Future directions

Given that processes of co-diversification are of interest to fields as diverse as biogeog-
raphy, epidemiology, and genome evolution, we hope the generalized tree model offers a
statistical framework for studying these processes across the life sciences. To help achieve
this, there are several ways to improve upon our current implementation of this approach.
Allowing the generalized tree model and associated MCMC algorithms to be coupled with a
diverse set of phylogenetic likelihood models is an obvious way to expand its applicability to
more data types and systems. The independence of the tree model and MCMC algorithms
from the likelihood function makes this relatively straightforward. Similarly, our approach
can be extended to accommodate tips sampled through time (Stadler, 2010; Heath et al.,
2014; Gavryushkina et al., 2016; Stadler et al., 2018) and “relaxed-clock” models (Drummond
et al., 2006; Drummond and Suchard, 2010; Heath et al., 2011). The former would allow for
fossil and epidemiological data, and the latter would allow it to be applied to diverse sets of
taxa that are expected to vary in their rates of mutation.

As we alluded to above when discussing MCMC behavior, expanding the set of tree
models to include all possible non-reticulating topologies with one to N − 1 divergence
times could have important implications for the joint posterior distribution of phylogenetic
models. We suggest posteriors that are rugged under a tree model with strictly independent
and bifurcating divergences might be smoother under a generalized tree model, but more
formal theoretical work to characterize this joint space is needed.

Lastly, the distribution we used over the generalized tree space (uniform over topologies
with beta-distributed node heights) is motivated by mathematical convenience, rather than
inspired by biological processes. Process-based models, like a generalized birth-death model,
could provide additional insights. In addition to inferring phylogenies with shared or multi-
furcating divergences, process-based models would allow us to infer the macroevolutionary
parameters that govern the rate of such divergences.

4 Methods

4.1 Generalized tree model

Let T represent a rooted, potentially multifurcating tree topology with N tips and n(t)
internal nodes t = t1, t2, . . . tn(t), where n(t) can range from 1 (the “comb” tree) toN−1 (fully
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bifurcating, independent divergences). Each internal node t is assigned to one divergence
time τ, which it may share with other internal nodes in the tree. We will use τ = τ1, . . . , τn(τ)

to represent n(τ) divergence times, where n(τ) can also range from 1 to N − 1, and every τ
has at least one node assigned to it, and every node maps to a divergence time more recent
than its parent (Figure S17).

To formalize a distribution across this space of generalized trees, we assume all possible
topologies (T ) are equally probable (see Figure S1 for an example of the sample space of
topologies). We also assume the age of the root node follows a parametric distribution (e.g., a
gamma distribution), and each of the other divergence times is beta-distributed between the
present (τ0) and the height of the youngest parent of a node mapped to the divergence time
(Figure S17). This was inspired by and related to the Dirichlet distribution on divergence
times of Kishino et al. (2001), but we use beta distributions to make it easier to deal with the
fact that under our generalized tree model, multiple nodes can be mapped to each divergence
time. For additional flexibility, we allow a distribution to be placed on the alpha parameter
of the beta distributions of all the non-root divergence times, which we denote as ατ .

4.2 Likelihood model

To perform Bayesian phylogenetic inference under the generalized tree model, it can be
coupled with any function for calculating the probability of data evolving along a tree. This
means it can be coupled with any data type and associated phylogenetic likelihood function.
Even if the likelihood function does not explicitly accommodate multifurcations, these can
be treated as a series of arbitrary bifurcations with branches of zero length to obtain the
same likelihood of the tree.

Here, we couple the generalized tree model with a multi-species coalescent model that
allows the likelihood of any species tree to be estimated directly from biallelic character data,
while analytically integrating out all possible gene trees and character substitution histories
along those gene trees. Below we give a brief overview of this model; for a full description of
this likelihood model, please see Bryant et al. (2012), and see Oaks (2019) for a correction
when only variable characters are analyzed.

4.2.1 The data

From N species for which we wish to infer a phylogeny, we assume we have collected
orthologous, biallelic genetic characters. By “biallelic”, we mean that each character has at
most two states, which we refer to as “red” and “green” following Bryant et al. (2012). For
each character from each species, we have collected n copies of the locus, r of which are
copies of the red allele. We will use n and r to denote allele counts for one character from
all N species; i.e., n, r = {(n1, r1), (n2, r2), . . . (nN , rN)}. We use D to represent these allele
counts across all the characters.

4.2.2 The evolution of characters

We assume each character evolved along a gene tree (g) according to a finite-characters,
continuous-time Markov chain (CTMC) model, and the gene tree of each character is in-
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dependent of the others, conditional on the species tree (i.e., the characters are effectively
unlinked). We use u and v to denote the relative rate of mutating from the red to green
state and vice versa, respectively, as a character evolves along a gene tree, forward in time
(Bryant et al., 2012; Oaks, 2019). Thus, π = u/(u + v) is the stationary frequency of the
green state. We denote the overall rate of mutation as µ, which we assume is constant
across the tree (i.e., a “strict clock”). Because evolutionary change is the product of µ and
time, when µ = 1, time is measured in units of expected substitutions per character. If a
mutation rate per character per unit of time is given, then time is measured in those units
(e.g., generations or years).

4.2.3 The evolution of gene trees

We assume the gene trees of each character branched according to a multi-species coales-
cent model within a single, shared, generalized species tree, where each branch i represents a
population with a constant effective size N i

e (Nielsen and Wakeley, 2001; Rannala and Yang,
2003; Liu and Pearl, 2007; Heled and Drummond, 2010; Bryant et al., 2012). We use Ne to
denote the effective population sizes for all branches in the generalized tree, with topology T
and divergence times τ; Ne = N1

e , N
2
e , . . . , N

n(t)+N
e where n(t) + N is equal to the number

of branches in the tree.

4.2.4 The likelihood

Using the work of Bryant et al. (2012), we analytically integrate over all possible gene
trees and character substitution histories to compute the likelihood of the species tree directly
from allm biallelic characters under a multi-population coalescent model (Kingman, 1982a,b;
Rannala and Yang, 2003),

p(D |T, τ,Ne, µ, π) =
m∏
i=1

p(ni, ri |T, τ,Ne, µ, π). (1)

To accommodate multifurcations, we used recursion and Equation 19 of Bryant et al. (2012).
This equation shows how to obtain the conditional probabilities at the bottom of an ancestral
branch by merging the conditional probabilities at the top of its two descendant branches.
At a multifurcation, we recursively apply Equation 19 of Bryant et al. (2012) to merge the
conditional probabilities of each descendant branch in arbitrary order. We confirmed that
this recursion returns an identical likelihood as treating the multifurcation as a series of
bifurcations with zero-length branches.

4.3 Bayesian inference

The joint posterior probability distribution of the tree (with potential shared and multi-
furcating divergences) and other model parameters is

p(T, τ, ατ ,Ne, µ, π |D) =
p(D |T, τ,Ne, µ, π)p(T )p(τ |T, ατ )p(Ne)p(µ)p(π)p(ατ )

p(D)
(2)
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4.3.1 Priors

We use the generalized tree distribution described above as the prior on the topology
(T ) and divergence times (τ). For all of our analyses below, we (1) set the alpha parameter
of the beta distributions on non-root divergence times (ατ ) to 1, (2) set the mutation rate
(µ) to 1, so that time is in units of expected substitutions per character, (3) assume one
gamma-distributed effective population size is shared across all the branches of the species
tree, and (4) set the stationary frequencies of the two character states to be equal (π = 0.5),
making our CTMC model of character evolution a two-state equivalent to the “JC69” model
of nucleotide substitution (Jukes and Cantor, 1969).

4.4 Approximating the posterior of generalized trees

We use Markov chain Monte Carlo (MCMC) algorithms (Metropolis et al., 1953; Hastings,
1970; Green, 1995) to sample from the joint posterior in Equation 2. To sample across trees
with different numbers of divergence times during the MCMC chain, we use reversible-
jump MCMC (Green, 1995). We also use univariate and multivariate Metropolis-Hastings
algorithms (Metropolis et al., 1953; Hastings, 1970) to update the divergence times and
effective population sizes. See the Supporting Information for details and validations of our
MCMC algorithms.

4.5 Software implementation

We implemented the models and algorithms above for approximating the joint poste-
rior distribution of generalized trees, divergence times, and other model parameters in the
software package ecoevolity Oaks (2019); Oaks et al. (2019, 2020). The C++ source code
for ecoevolity is freely available from https://github.com/phyletica/ecoevolity and
includes an extensive test suite. From the C++ source code, three command-line tools are
compiled for generalized tree analyses: (1) phycoeval, for performing Bayesian inference
under the model described above, (2) simphycoeval for simulating data under the model
described above, and (3) sumphycoeval for summarzing the posterior samples of generalized
trees collected by phycoeval. Documentation for how to install and use the software is avail-
able at http://phyletica.org/ecoevolity/. A detailed, version-controlled history of this
project, including all of the data and scripts needed to produce our results, is available as
a GitHub repository https://github.com/phyletica/phycoeval-experiments and was
archived on zenodo (Oaks, 2021). We used multiple commits of ecoevolity for the anal-
yses below, as we added features to the sumphycoeval tool (this history is documented in
the project repository). However, all of our analyses can be replicated using Version 1.0.0
(Commit 2ed8d6ec) of ecoevolity.

4.6 Simulation-based analyses

4.6.1 Methods used for all our simulations (unless noted)

We used sumphycoeval to simulate data sets of 50,000 biallelic characters from one
diploid individual from nine species (i.e., two copies of each character sampled from each
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species). Except for our simulations of linked characters described below, the characters
were unlinked (i.e., each character was simulated along an independent gene tree within
the species tree). For all of our simulations and analyses, we constrained the branches of
the species tree to share the same mutation-scaled, diploid effective population size (Ne µ),
which we randomly drew from a gamma distribution with a shape of 20 and mean of 0.001.
We used this distribution as the prior on Ne in subsequent analyses of the simulated data
sets. The mean of this distribution corresponds to an average number of differences per
character between individuals of 0.004, which is comparable to estimates from genomic data
from populations of zooplankton (Choquet et al., 2019), stickleback fish (Hohenlohe et al.,
2010), humans (Auton et al., 2015), and the gecko species we analyze here (Oaks et al.,
2019).

We analyzed each simulated data set under two models using phycoeval: the generalized
tree model described above, which we denote asMG, and an otherwise equivalent model that
is constrained to the space of trees with independent, bifurcating divergences (i.e., trees with
N−1 divergence times), which we denote asMIB. For bothMG andMIB, we used a gamma-
distributed prior on the age of the root node with a shape of 10 and mean of 0.2. For each
data set we ran four independent MCMC chains for 15,000 generations, sampling every 10
generations, and retaining the last 1000 samples of each chain to approximate the posterior
(4000 total samples). For each generation, nine (equal to the number of tips) MCMC moves
are randomly selected in proportion to specified weights, some of which automatically call
other moves after finishing to improve mixing. Each chain started from a random bifurcating
topology with no shared divergences, and the root age and other divergence times drawn
randomly from their respective prior distributions.

From the 4000 posterior samples collected for each simulated dataset, we used sumphycoeval
to calculate the mean and 95% credible intervals of the root age, tree length, effective popu-
lation size, and the number of divergence times, and to summarize the frequency of sampled
topologies, splits, nodes, and shared divergences. We define a split as a branch in the tree
that “splits” the tips of the tree into two non-overlapping subsets; those that do and do not
descend from the branch. We define a node as a split with a particular set of splits that de-
scend from it; this is necessary to summarize the frequency of multifurcations. We also used
sumphycoeval to calculate the distance between every sampled tree and the true tree using
the square root of the sum of squared differences in branch lengths (Robinson and Foulds,
1979; Kuhner and Felsenstein, 1994). To assess convergence and mixing of the chains, we
used sumphycoeval to calculate the average standard deviation of split frequencies (ASDSF;
Lakner et al., 2008) across the four chains with a minimum split frequency threshold of 10%,
as well as the potential scale reduction factor (PSRF; the square root of Equation 1.1 in
Brooks and Gelman, 1998) and effective sample size (ESS; Gong and Flegal, 2016) of the log
likelihood, root age, tree length, and effective population size.

4.6.2 Simulations on fixed trees

We used simphycoeval to simulate 100 data sets on two fixed trees with 9 species, one
with shared and multifurcating divergences (Figure 2A) and the other with only bifurcating,
independent divergences (Figure 3A). We analyzed each simulated data set under models
MG and MIB, both with and without constant characters; for the latter we specified for
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phycoeval to correct the likelihood for only sampling variable characters (Bryant et al.,
2012; Oaks, 2019).

To explore the improved MCMC mixing under the MG model for data sets simulated on
trees with shared or multifurcating divergences (see results), we re-ran the analyses under
the MIB on the 100 data sets simulated on the tree shown in Figure 2A. In these re-analyses
underMIB, we ran the MCMC chain twice as long (30,000 generations versus 15,0000) while
sampling half as frequently (every 20 generations versus 10), and started each chain with
the correct tree.

4.6.3 Simulations on random trees

Using simphycoeval, we also simulated 100 data sets on trees randomly drawn from the
prior distributions of the MG and MIB models. As above, we analyzed each simulated data
set with and without constant characters under the MG and MIB models. We used MCMC
to sample trees randomly from the prior distributions of both models. More specifically,
we used simphycoeval to (1) randomly assemble a strictly bifurcating tree with no shared
divergences times, (2) run an MCMC chain of topology changing moves for a specified
number of generations (we used 1000), and (3) draw the root age, other divergence times,
and the effective population sizes randomly from their respective prior distributions. For
each MCMC generation, nine (equal to the number of tips) topology changing moves were
randomly selected in proportion to specified weights.

Due to the nested beta (uniform) distributions on non-root divergence times, some trees
sampled from MG and MIB will have all or most of the divergence times close to zero.
This happens when one of the oldest non-root divergences is randomly assigned a time
near zero. For example, the trees shown in Figure S16A–C all have eight independent,
bifurcating divergences. Given such trees, it is nearly impossible to differentiate independent
divergences with a finite data set. It is also not clear what an investigator would want
phycoeval to infer given a true tree like Figure S16A; whereas eight independent divergences
is technically correct in the synthetic world of nested beta distributions, it seems an unlikely
biological explanation. To avoid such extreme scenarios, we rejected any trees that had
divergences times closer than 0.001 substitutions per site. This resulted in 61 and 201 trees
being rejected in order to obtain 100 trees under the MG and MIB models, respectively.
Despite this arbitrary filtering threshold, challenging tree shapes remained in our sample
for simulations. For example, see the trees in Figure S16D–F, all with eight independent,
bifurcating divergences.

4.6.4 Simulations of linked characters

The likelihood model above assumes characters are unlinked (i.e., they evolved along
gene trees that are independent of one another conditional on the species tree). To assess
the effect on inference of violating this assumption, we repeated the simulations and analyses
above (for both fixed and random trees), but simulated 500 loci of 100 linked characters each
(i.e. for each locus, 100 characters evolved along a shared gene tree). We used simphycoeval
to simulate these data sets in two ways: (1) all 50,000 characters are simulated and retained,
and (2) only (at most) one variable character is retained for each locus. For the latter data
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sets, characters are unlinked, but only (at most) 500 characters, all variable, are sampled.
We analyzed all of these data sets under both the MG and MIB models. For data sets with
only variable characters, we corrected the likelihood for not sampling constant characters
(Bryant et al., 2012; Oaks, 2019).

4.7 Inference of shared divergences in Philippine gekkonids

We applied our new approach to two genera of geckos, Gekko and Cyrtodactylus, sampled
across the Philippine Islands. We used the RADseq data of Oaks et al. (2019) available on
the NCBI Sequence Read Archive (Bioproject PRJNA486413, SRA Study SRP158258).

4.7.1 Assembling alignments

We used ipyrad (Version 0.9.43; Eaton and Overcast, 2020) to assemble the RADseq
reads into loci for both genera. All of the scripts and ipyrad parameter files we used to
assemble the data are available in our gekkonid project repository (https://github.com/
phyletica/gekgo) archived on Zenodo (Oaks and Wood, Jr., 2021), and the ipyrad settings
are listed in Table S5. Using pycoevolity (Version 0.2.9; Commit 217dbeea; Oaks, 2019),
we converted the ipyrad alignments into nexus format, and in the process, removed sites
that had more than two character states. The final alignment for Cyrtodactylus contained
1702 loci and 155,887 characters from 27 individuals, after 567 characters with more than
two states were removed. The final alignment for Gekko contained 1033 loci and 94,612
characters from 26 individuals, after 201 characters with more than two states were removed.
Both alignments had less than 1% missing characters. The assembled data matrices for
Cyrtodactylus and Gekko are available in our project repository (https://github.com/
phyletica/phycoeval-experiments) and the data associated with specimens are provided
in Tables S1 & S2.

4.7.2 Phylogenetic analyses

When analyzing the Cyrtodactylus and Gekko character matrices with phycoeval, we
(1) fixed stationary state frequencies to be equal (π = 0.5), (2) set the mutation rate (µ)
to 1 so that divergence times are in units of expected substitutions per site, (3) used an
exponentially distributed prior with a mean of 0.01 for the age of the root, (4) set ατ = 1
so that non-root divergence times are uniformly distributed between zero and the age of the
youngest parent node, and (5) assumed a single diploid effective population size (Ne) shared
across the branches of the tree with a gamma-distributed prior. For the gamma prior on Ne,
we used a shape of 2.0 and mean of 0.0005 for Cyrtodactylus, and a shape of 4.0 and mean
of 0.0002 for Gekko, based on estimates of Oaks et al. (2019) from the same and related
species.

For both genera, we ran 25 independent MCMC chains for 15,000 generations, sampling
the state of the chain every 10 generations. In each generation, phycoeval attempts N
MCMC moves (27 and 26 for Cyrtodactylus and Gekko, respectively) randomly selected in
proportion to specified weights, some of which automatically call other moves after finishing
to improve mixing. For 20 of the chains, we specified for phycoeval to start from the “comb”
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topology (n(τ) = 1). For the remaining five chains, we had phycoeval start with a random
bifurcating topology with no shared divergences (n(τ) = N − 1).

We used sumphycoeval to summarize the sampled values of all parameters and the
frequency of sampled topologies, splits, nodes, and shared divergences. To assess convergence
and mixing, we used sumphycoeval to calculate the average standard deviation of split
frequencies (ASDSF; Lakner et al., 2008) and the potential scale reduction factor (PSRF;
the square root of Equation 1.1 in Brooks and Gelman, 1998) and effective sample size (ESS;
Gong and Flegal, 2016) of all parameters across all 25 MCMC chains. We present these
convergence statistics in Table S4.

To plot the trees, we used sumphycoeval to scale the branch lengths of all the sampled
trees so that the posterior mean root age was 23.07 million years for Cyrtodactylus (Grismer
et al., 2022) and 33.76 million years for Gekko; the latter age is based on a time-calibrated
phylogenetic estimate from another data set that is being prepared for publication. Our
goal in scaling the branch lengths to millions of years is not to test whether shared diver-
gence events correspond with the onset of specific interglacial periods, but rather to see if
shared divergences fall within the general time frame predicted by a model of sea-level-driven
diversification (i.e., within the last ≈4 million years).
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Figure S1. An example of the expanded sample space of topologies for the generalized tree distribution (MG)
versus a tree model that assumes independent, bifurcating divergences (MIB). With four tips, there are 15
topologies for a MIB model, all with three divergence times (within box). The MG model has 14 additional
topologies with fewer than three divergence times. Notice the internal nodes are not labeled; i.e., the rank, or
order, of non-nested internal nodes do not matter. E.g., in the topology at the top-left, regardless of whether A
& B or C & D diverge first, it is the same topology. However, if A & B and C & D diverge at the same time, this
is a different topology (or tree model) with one fewer divergence-time parameter (the topology in the upper-left
of the n(τ) = 2 section). Trees plotted using Gram (Version 4.0.0; Foster, 2018) and the P4 phylogenetic toolkit
(Version 1.4 5742542; Foster, 2004).
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Figure S2. The performance of the MG and MIB tree models when applied to 100 data sets, each with 50,000
biallelic characters simulated on species trees randomly drawn from the MIB tree distribution. (A) The square
root of the sum of squared differences in branch lengths between the true tree and each posterior tree sample
(Kuhner and Felsenstein, 1994); the point and bars represent the posterior mean and equal-tailed 95% credible
interval, respectively. P-values are shown for Wilcoxon signed-rank tests (Wilcoxon, 1945) comparing the paired
differences in tree distances between methods. (B) Violin plots comparing the mean posterior probabilities of
true splits for each of the 100 simulated trees. For each simulation, the mutation-scaled effective population size
(Neµ) was drawn from a gamma distribution (shape = 20, mean = 0.001) and shared across all the branches of
the tree; this distribution was used as the prior in analyses. Plots created using the PGFPlotsX (Version 1.2.10,
Commit 1adde3d0; Carlsson and Papp, 2021) backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff,
2021) package in Julia (Version 1.5.4; Bezanson et al., 2017).
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Figure S3. The accuracy and precision of the MG and MIB models at estimating the age of the root (in
expected subsitutions per site) from data sets with 50,000 biallelic characters simulated on species trees randomly
drawn from the MG and MIB tree distributions. Each plotted circle and associated error bars represent the
posterior mean and 95% credible interval. Estimates for which the potential-scale reduction factor was greater
than 1.2 (Brooks and Gelman, 1998) or the effective sample size was less than 200 are highlighted in red. Plots
created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021) backend of the Plots
(Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson et al., 2017).
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True tree length

Figure S4. The accuracy and precision of the MG and MIB models at estimating the tree length (the sum
of all branch lengths in units of expected substitutions per site) from data sets with 50,000 biallelic characters
simulated on species trees randomly drawn from the MG and MIB tree distributions. Each plotted circle and
associated error bars represent the posterior mean and 95% credible interval. Estimates for which the potential-
scale reduction factor was greater than 1.2 (Brooks and Gelman, 1998) or the effective sample size was less than
200 are highlighted in red. Plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and
Papp, 2021) backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version
1.5.4; Bezanson et al., 2017).
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Figure S5. The accuracy and precision of the MG and MIB models at estimating the effective population size
(Neµ) across the tree from data sets with 50,000 biallelic characters simulated on species trees randomly drawn
from the MG and MIB tree distributions. Each plotted circle and associated error bars represent the posterior
mean and 95% credible interval. Estimates for which the potential-scale reduction factor was greater than 1.2
(Brooks and Gelman, 1998) or the effective sample size was less than 200 are highlighted in red. Plots created
using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021) backend of the Plots (Version
1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson et al., 2017).
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Figure S6. The MG model has a low false positive rate (FPR; the proportion of incorrectly merged divergence
times with a posterior probability > 0.5) when applied to data simulated on trees drawn fromMG with all (Row 1)
or only variable (Row 2) unlinked characters, and all characters from linked loci (Row 3). Support for incorrectly
merged divergence times is high only when the difference between the times is small (Column 2), and is not
correlated with the age of the merged nodes (right). (Column 3; P = 0.109, 0.106, 0,053, and 0.068, from top
to bottom for a t-test that Pearson’s correlation coefficient = 0 using all points with posterior probability > 0).
When data sets with linked loci are reduced to only one variable site per locus (Row 4), the FPR increases (left)
and precision decreases (right). The top row is the same as Figure 5A–C. Time units are expected substitutions per
site. Plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021) backend
of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson et al.,
2017).
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Figure S7. The MG model has a low false positive rate (FPR; the proportion of incorrectly merged divergence
times with a posterior probability > 0.5) when applied to data simulated on trees drawn from MIB (no shared or
multifurcating divergences) with all (Row 1) or only variable (Row 2) unlinked characters, and all characters from
linked loci (Row 3). Support for incorrectly merged divergence times is high only when the difference between the
times is small (Column 2), and is not correlated with the age of the merged nodes (right). (Column 3; P = 0.25,
0.29, 0,11, and 0.11, from top to bottom for a t-test that Pearson’s correlation coefficient = 0 using all points
with posterior probability > 0). When data sets with linked loci are reduced to only one variable site per locus
(Row 4), the FPR increases (left) and precision decreases (right). The top row is the same as Figure 5D–F. Time
units are expected substitutions per site. Plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0;
Carlsson and Papp, 2021) backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia
(Version 1.5.4; Bezanson et al., 2017).
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Figure S8. Markov chain Monte Carlo (MCMC) sampling yielded better convergence and mixing among chains
under the generalized tree model when there were shared or multifurcating divergences. Convergence and mixing
of sampled trees is summarized using the average standard deviation of split frequencies (ASDSF; Lakner et al.,
2008) across the four chains of each analysis; smaller standard deviations across chains indicate better sampling
behavior. Plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021)
backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson
et al., 2017).
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Figure S9. The (A) accuracy and (B) Markov chain Monte Carlo (MCMC) sampling efficiency of the MG

tree model is better than MIB , even when the MCMC chains for MIB are started with the correct tree and are
run twice as long and sampled half as frequently (“long chains”; 30,000 generations, sampling every 20). Results
from 100 data sets simulated on the species tree shown in Figure 2A. (A) The square root of the sum of squared
differences in branch lengths between the true tree and each posterior tree sample (Kuhner and Felsenstein, 1994);
the point and bars represent the posterior mean and equal-tailed 95% credible interval, respectively. P-values are
shown for Wilcoxon signed-rank tests (Wilcoxon, 1945) comparing the paired differences in tree distances between
methods. (B) Violin plots of the average standard deviation of split frequencies (ASDSF; Lakner et al., 2008,
; smaller is better) across the four chains of each analysis. The MG and MIB results (left and center) are the
same shown in Figure 2B and Figure S8. Plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0;
Carlsson and Papp, 2021) backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia
(Version 1.5.4; Bezanson et al., 2017).
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Figure S10. Results of analyses of 100 data sets with linked loci simulated along the species tree shown in (A).
Each simulated data set comprised 500 loci with 100 biallelic characters. P-values are shown for Mann-Whitney U
tests Mann and Whitney (1947) comparing the differences in tree distances between methods. For each simulation,
the mutation-scaled effective population size (Neµ) was drawn from a gamma distribution (shape = 20, mean
= 0.001) and shared across all the branches of the tree; this distribution was used as the prior in analyses. Tree
plotted using Gram (Version 4.0.0, Commit 02286362; Foster, 2018) and the P4 phylogenetic toolkit (Version 1.4,
Commit d9c8d1b1; Foster, 2004). Other plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0;
Carlsson and Papp, 2021) backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia
(Version 1.5.4; Bezanson et al., 2017).
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Figure S11. Results of analyses of 100 data sets with linked loci simulated along the species tree shown in (A).
Each simulated data set comprised 500 loci with 100 biallelic characters. P-values are shown for Mann-Whitney
U tests (Mann and Whitney, 1947) comparing the differences in tree distances between methods. For each
simulation, the mutation-scaled effective population size (Neµ) was drawn from a gamma distribution (shape
= 20, mean = 0.001) and shared across all the branches of the tree; this distribution was used as the prior in
analyses. Tree plotted using Gram (Version 4.0.0, Commit 02286362; Foster, 2018) and the P4 phylogenetic
toolkit (Version 1.4, Commit d9c8d1b1; Foster, 2004). Other plots created using the PGFPlotsX (Version 1.2.10,
Commit 1adde3d0; Carlsson and Papp, 2021) backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff,
2021) package in Julia (Version 1.5.4; Bezanson et al., 2017).

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.07.23.453597doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453597
http://creativecommons.org/licenses/by/4.0/


MG = Generalized model (true model) MIB = Independent-bifurcating model

MG , all sites MG , variable sites MIB , all sites MIB , variable sites
A

0.0

0.1

0.2

0.3 p = 0.016 p = 0.46

MG MIB MG MIB

D
is
ta

nc
e

fr
om

tr
ue

tr
ee

B C

True shared divergences
0.00

0.25

0.50

0.75

1.00

Po
st

er
io

r
pr

ob
ab

ili
ty

True polytomies
0.00

0.25

0.50

0.75

1.00

Po
st

er
io

r
pr

ob
ab

ili
ty

Figure S12. The performance of the MG and MIB tree models when applied to 100 data sets with 500 loci
(each with 100 linked characters) simulated on species trees randomly drawn from the MG tree distribution.
For each simulation, the mutation-scaled effective population size (Neµ) was drawn from a gamma distribution
(shape = 20, mean = 0.001) and shared across all the branches of the tree; this distribution was used as the prior
in analyses. Plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021)
backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson
et al., 2017).
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Figure S13. The performance of the MG and MIB tree models when applied to 100 data sets with 500 loci
(each with 100 linked characters) simulated on species trees randomly drawn from the MIB tree distribution.
For each simulation, the mutation-scaled effective population size (Neµ) was drawn from a gamma distribution
(shape = 20, mean = 0.001) and shared across all the branches of the tree; this distribution was used as the prior
in analyses. Plots created using the PGFPlotsX (Version 1.2.10, Commit 1adde3d0; Carlsson and Papp, 2021)
backend of the Plots (Version 1.5.7, Commit f80ce6a2; Breloff, 2021) package in Julia (Version 1.5.4; Bezanson
et al., 2017).

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.07.23.453597doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453597
http://creativecommons.org/licenses/by/4.0/


1 10 2423 25 272618 19 2221201413 15 171612117 982 3 4 65

C
. r

e
d

im
ic

u
lu

s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. p

h
il

ip
p

in
ic

u
s

C
. m

a
m

a
n

w
a

C
. g

u
b

a
o

t

C
. s

u
m

u
ro

i

C
. t

a
u

tb
a

to
ru

m

C
. j

a
m

b
a

n
g

a
n

C
. a

n
n

u
la

tu
s

C
. a

n
n

u
la

tu
s

C
. a

n
n

u
la

tu
s

C
1

C
2

C
3

C
4

C
5

6

4

5

9

3

7

24

27

10

18

19

22

23

14

26

21

25

13

17

15
16

20

12

11

1

8

2

 5
°N

10
°N

15
°N

20
°N

11
6°

E
11

8°
E

12
0°

E
12

2°
E

12
4°

E
12

6°
E

Lo
ng

itu
de

Latitude

an
nu

la
tu

s
gu

ba
ot

ja
m

ba
ng

an
m

am
an

w
a

ph
ili

pp
in

ic
us

re
di

m
ic

ul
us

su
m

ur
oi

ta
ut

ba
to

ru
m

Fi
gu

re
S1

4.
T
he

m
ax
im

um
a

po
st

er
io

ri
(M

A
P
)
to
po

lo
gy

fr
om

Fi
gu

re
6A

fo
r

C
yr

to
da

ct
yl

us
sh
ow

n
w
ith

ou
t
br
an
ch

le
ng

th
s
to

m
ak
e
it
cl
ea
re
r
w
hi
ch

cl
ad
es

ar
e
in
vo
lv
ed
.
Sh

ar
ed

di
ve
rg
en
ce
s
in
di
ca
te
d
by

da
sh
ed

lin
es
,
w
ith

la
be
ls
sh
ow

n
al
on

g
th
e
to
p
th
at

co
rr
es
po

nd
to

ro
w
s
in

Ta
bl
e
S3

,
w
he
re

th
e
di
ve
rg
en
ce
s
ar
e

su
m
m
ar
iz
ed
.
C
re
at
ed

us
in
g
gg
pl
ot
2
(v
3.
3.
5;

W
ic
kh

am
,
20
16
),

gg
tr
ee

(v
3.
1.
0;

Yu
et

al
.,
20
17
),

tr
ee
io

(v
1.
17

.0
;
W
an
g
et

al
.,
20

19
),

co
w
pl
ot

(v
1.
1.
1;

W
ilk
e,

20
20

),
an
d
gg

re
pe
l(
v0
.9
.1
;S

lo
w
ik
ow

sk
i,
20
20
).

Li
nk

to
ne
xu
s-
fo
rm

at
te
d
an
no

ta
te
d
M
A
P
tr
ee
:

C
yr

to
da

ct
yl

us
.

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.07.23.453597doi: bioRxiv preprint 

https://raw.githubusercontent.com/phyletica/phycoeval-experiments/master/gekkonid-output/map-tree-cyrt-nopoly.nex
https://doi.org/10.1101/2021.07.23.453597
http://creativecommons.org/licenses/by/4.0/


1 2 14 15 16 17 1918 20 2221 23 24 262543 5 76 1312111098

G
. a

th
y

m
u

s

G
. e

rn
s

tk
e

ll
e

ri

G
. r

o
m

b
lo

n

G
. r

o
m

b
lo

n

G
. c

a
ru

s
a

d
e

n
s

is
 

G
. g

ig
a

n
te

G
. g

ig
a

n
te

G
. s

p.
 B

G
. s

p.
 A

G
. r

o
s

s
i

G
. c

ro
m

b
o

ta
 

G
. p

o
ro

s
u

s

G
. p

o
ro

s
u

s

G
. m

o
n

a
rc

h
u

s 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is
 

G
. m

in
d

o
re

n
s

is

G
1

G
2

G
3

G
4

G
5

1

5

11

2

7 6

22

20

16

19

18

15

23

17

21

26

25

24

14

13
12

4
3

10

9
8

 5
°N

10
°N

15
°N

20
°N

11
6°

E
11

8°
E

12
0°

E
12

2°
E

12
4°

E
12

6°
E

Lo
ng

itu
de

Latitude

at
hy

m
us

ca
ru

sa
de

ns
is

cr
om

bo
ta

er
ns

tk
el

le
ri

gi
ga

nt
e

m
in

do
re

ns
is

m
on

ar
ch

us
po

ro
su

s
ro

m
bl

on
ro

ss
i

sp
.A

sp
.B

Fi
gu

re
S1

5.
T
he

m
ax
im

um
a

po
st

er
io

ri
(M

A
P
)
to
po

lo
gy

fr
om

Fi
gu

re
6C

fo
r

G
ek

ko
sh
ow

n
w
ith

ou
t
br
an
ch

le
ng

th
s
to

m
ak
e
it

cl
ea
re
r
w
hi
ch

cl
ad
es

ar
e

in
vo
lv
ed
.
Sh

ar
ed

di
ve
rg
en
ce
s
in
di
ca
te
d
by

da
sh
ed

lin
es
,
w
ith

la
be
ls

sh
ow

n
al
on

g
th
e
to
p
th
at

co
rr
es
po

nd
to

ro
w
s
in

Ta
bl
e
S3

,
w
he
re

th
e
di
ve
rg
en
ce
s
ar
e

su
m
m
ar
iz
ed
.
C
re
at
ed

us
in
g
gg
pl
ot
2
(v
3.
3.
5;

W
ic
kh

am
,
20
16
),

gg
tr
ee

(v
3.
1.
0;

Yu
et

al
.,
20
17
),

tr
ee
io

(v
1.
17

.0
;
W
an
g
et

al
.,
20

19
),

co
w
pl
ot

(v
1.
1.
1;

W
ilk
e,

20
20

),
an
d
gg

re
pe
l(
v0
.9
.1
;S

lo
w
ik
ow

sk
i,
20
20
).

Li
nk

to
ne
xu
s-
fo
rm

at
te
d
an
no

ta
te
d
M
A
P
tr
ee
:

G
ek

ko
.

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.07.23.453597doi: bioRxiv preprint 

https://raw.githubusercontent.com/phyletica/phycoeval-experiments/master/gekkonid-output/map-tree-gekko-nopoly.nex
https://doi.org/10.1101/2021.07.23.453597
http://creativecommons.org/licenses/by/4.0/


A
R

ej
ec

te
d

tre
es

R
et

ai
ne

d
tre

es
D
C
I
H
A
G
B
E
F

E
F
H
C
D
B
G
I
A

0.2

D

B
D
C
F
I
A
G
E
H

B

D
H
I
G
F
C
B
E
A

E

E
D
I
A
H
G
C
B
F

C

I
C
B
G
D
E
F
A
H

F

Figure S16. Examples of trees (all with 8 independent, bifurcating divergences) rejected (top) and retained
(bottom) when a minimum threshold of 0.001 substitutions per site between divergence times is applied to trees
randomly sampled from the prior distribution of theMIB model. Trees plotted using Gram (Version 4.0.0, Commit
02286362; Foster, 2018) and the P4 phylogenetic toolkit (Version 1.4, Commit d9c8d1b1; Foster, 2004).
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2 Tables

Table S1. The data for all Cyrtodactylus samples included in our phylogenetic analyses are
included in a tab-delimited text file available from the project repository and archived on
Zenodo (Oaks and Wood, Jr., 2021): https://raw.githubusercontent.com/phyletica/
gekgo/master/phycoeval-msg-assemblies/ipyrad-assemblies/sample-data/Cyrt_
localities.tsv.

Table S2. The data for all Gekko samples included in our phylogenetic analyses are included
in a tab-delimited text file available from the project repository and archived on Zenodo (Oaks
and Wood, Jr., 2021): https://raw.githubusercontent.com/phyletica/gekgo/master/
phycoeval-msg-assemblies/ipyrad-assemblies/sample-data/Gekko_localities.tsv.

Table S3. Summary of shared divergences in the maximum a posteriori (MAP) phylogeny esti-
mated under the generalized tree model for Cyrtodactylus (Figure 6A) and Gekko (Figure 6C).
See Figures S14 & S15 for the shared divergence labels.
Shared divergence label Number of nodes Posterior prob. Mean time Time 95% HPDI
C1 3 0.569 3.163 3.075–3.255
C2 2 0.894 2.254 2.151–2.361
C3 2 0.897 1.524 1.435–1.610
C4 2 0.449 1.195 1.112–1.281
C5 3 0.303 0.957 0.878–1.041
G1 2 0.812 10.012 9.634–10.409
G2 2 0.354 1.514 1.398–1.621
G3 3 0.192 1.228 1.123–1.343
G4 2 0.552 0.844 0.725–0.978
G5 3 0.283 0.496 0.409–0.588
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Table S4. Convergence statistics we calculated with sumphycoeval from MCMC samples col-
lected with phycoeval. We ran each MCMC chain for 15,000 generations, sampling every 10
generations.

Summary Cyrtodactylus Gekko
Number of chains 25 25
Samples skipped per chain 101 101
Samples retained per chain 1400 1400
Total samples 35000 35000
ASDSF 0.0027 0.00093
Root age PSRF 1.0000057 1.0001458
Root age ESS 33671.16 26844.22
Population size PSRF 1.0006948 1.0006295
Population size ESS 17542.23 13789.14

Table S5. Settings used for assembling RADseq loci for Cyrtodactylus and Gekko.
ipyrad setting Value
assembly_method denovo
datatype rad
restriction_overhang TATG,
max_low_qual_bases 5
phred_Qscore_offset 33
mindepth_statistical 6
mindepth_majrule 6
maxdepth 10000
clust_threshold 0.85
max_barcode_mismatch 0
filter_adapters 1
filter_min_trim_len 35
max_alleles_consens 2
max_Ns_consens 0.05
max_Hs_consens 0.05
min_samples_locus 4
max_SNPs_locus 0.2
max_Indels_locus 8
max_shared_Hs_locus 0.5
trim_reads 0, 0, 0, 0
trim_loci 0, 0, 0, 0
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3 The generalized tree model
Let T represent a rooted, potentially multifurcating tree topology with N tips and n(t)

internal nodes t = t1, t2, . . . tn(t), where n(t) can range from 1 (the “comb” tree) toN−1 (fully
bifurcating, independent divergences). Each internal node t is assigned to one divergence
time τ, which it may share with other internal nodes in the tree. We will use τ = τ1, . . . , τn(τ)

to represent n(τ) divergence times, where n(τ) can also range from 1 to N − 1, and every τ
has at least one node assigned to it, and every node maps to a divergence time more recent
than its parent (Figure S17). Note, the number of divergence times is constrained by the
number of internal nodes; n(τ) ≤ n(t). For convenience, we will index each τ from youngest
to oldest. We assume the tree is ultrametric; all tips are at time zero, which we will denote
as τ0.

τ0

τ1 ∼ Beta(τ0, τ3,α, β)*

τ2 ∼ Beta(τ0, τ3,α, β)*

τ3 ∼ Beta(τ0, τ4,α, β)

τ4 ∼ Gamma(k , θ)*
IHGFEDCBA

t6

t3

t1

t2t4

t5

Figure S17. An illustration of the generalized tree model implemented in ecoevolity. The prior
distributions of the divergence times are shown to the right, and “splittable” divergence times
are indicated with an asterisk to the left. Figure created using Gram (Version 4.0.0, Commit
02286362; Foster, 2018) and the P4 phylogenetic toolkit (Version 1.4, Commit d9c8d1b1; Foster,
2004).

We assume all possible topologies (T ) are equally probable; see Figure S1 for an example
of the sample space of topologies under the generalized tree model. We assume the age of
the root node follows a parametric distribution (e.g., a gamma distribution), and each of
the other divergence times is beta-distributed between the present (τ0) and the age of the
youngest parent of any node mapped to the divergence time. For example, in Figure S17,
the parents of the nodes mapped to τ1 are t3 (parent of t1) and t6 (parent of t5), which
are mapped to τ3 and τ4, respectively, the younger of which is τ3. Thus, divergence time
τ1 in Figure S17 follows a beta distribution that is scaled to the interval between 0 and τ3,
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resulting in the prior probability density

f(τ1 | τ3, ατ , βτ ) =

(
τ1
τ3

)ατ−1 (
1− τ1

τ3

)βτ−1

B(ατ , βτ )τ3

. (3)

where ατ and βτ are the two positive shape parameters of the beta prior probability dis-
tribution, and B(ατ , βτ ) is the beta function that serves as a normalizing constant. If we
use y(τi) to denote the divergence time of the youngest parent of any node mapped to the
non-root divergence time, τi, we can generalize this beta prior probability density as

f(τi | y(τi), ατ , βτ ) =

(
τi
y(τi)

)ατ−1 (
1− τi

y(τi)

)βτ−1

B(ατ , βτ )y(τi)
. (4)

For additional flexibility, we allow a distribution to be placed on the alpha parameter of the
beta distributions on the non-root divergence times (ατ ). However, we constrain βτ = 1,
simplifying the prior probability density of each non-root divergence time to

f(τi | y(τi), ατ ) =

(
τi
y(τi)

)ατ−1

B(ατ , 1)y(τi)
. (5)

For all of our analyses presented in this paper, we constrained ατ = 1, which further simplifies
the prior probability of each non-root divergence time to the uniform density

f(τi | y(τi)) =
1

y(τi)
. (6)

For simplicity below, we denote the probability density of a divergence time as f(τi | y(τi)),
but our work generalizes to any proper probability distributions on the divergence times,
including the full beta distribution (Equation 4).

4 Approximating the posterior of the generalized tree
model

We use Markov chain Monte Carlo (MCMC), specifically Metropolis-Hastings (MH)
(Metropolis et al., 1953; Hastings, 1970) algorithms, to sample from the generalized tree
distribution. An MH algorithm works by stochastically proposing changes to parameters of
a model, and using the following rule to determine the probability of accepting these moves:

Acceptance probability = min
{

1,

(
likelihood

ratio

)
×
(
prior
ratio

)
×
(
Hastings
ratio

)}
(7)

The product of the first two terms (likelihood and prior ratios) gives us the posterior density
of the state of the model being proposed divided by the posterior density of the current state
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of the model. The Hastings ratio corrects for asymmetry in the proposal distribution by
dividing the probability density of proposing the move that would reverse the move being
proposed by the probability density of the move being proposed.

Below we describe MH moves for sampling from the generalized tree distribution, and
derive the prior and Hastings ratio for each. These moves can be coupled with any likelihood
function to calculate the likelihood ratio and sample from the posterior distribution of gener-
alized trees using MH (Equation 7). In Sections 4.1–4.4, we describe a pair of reversible-jump
moves, “split-time” and “merge-times,” for moving between trees with different numbers of
divergence times. These are the core moves that allow the full space of the generalized tree
distribution to be traversed and sampled. In Section 4.5, we describe moves that propose
changes to the topology, but do not change the number of divergence-time parameters, nor
their values. In Section 4.6, we describe a move that updates the values of divergence times
without changing the topology (though we do describe an extension of this move that does
update the topology).

4.1 Split-time move

To generalize the space of trees, we introduce two reversible-jump moves: “split-time”
and “merge-times.” When a reversible-jump move is to be attempted, the merge-times or
split-time move is chosen with probability 0.5, except for two special cases:

1. If the current state of the chain is the most general tree model (n(τ) = N − 1), then
the merge-times move is chosen with probability 1.

2. If the current state of the chain is the “comb” tree (n(τ) = 1), then the split-time move
is chosen with probability 1.

The basic idea is to randomly divide a “splittable” divergence time into two nonempty
sets of nodes, and assign one of the sets to a new, more recent divergence time. A divergence
time is considered splittable if it has (1) more than one node mapped to it, or (2) a single
multifurcating node mapped to it. For example, in Figure S17, divergence times τ1, τ2, and
τ4 are splittable. The first step is to randomly choose a divergence time, τi, from among the
splittable divergence times. After dividing τi into two sets of nodes, we need to randomly
select a time more recent than τi to assign one of the sets.

4.1.1 Drawing the new divergence time

To get the new, proposed divergence time, we randomly draw a new divergence time
between τi−1 and τi from a proposal distribution, where

gτ(τ
′ | τi, τi−1) (8)

is the conditional probability density of proposing the new time τ ′ given the times from the
current values of τi and τi−1. In our implementation, we use a beta probability distribution
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scaled and shifted to the interval τi−1–τi, so that the probability density of the new time is

gτ(τ
′ | τi, τi−1, α, β) =

(
τ ′−τi−1

τi−τi−1

)α−1 (
1− τ ′−τi−1

τi−τi−1

)β−1

B(α, β)(τi − τi−1)
, (9)

where α and β are the two positive shape parameters of the beta distribution, and B(α, β)
is the beta function . For generality and simplicity, we will use gτ to denote this probability
density of the proposed divergence time below.

4.1.2 Prior ratio

The prior ratio for the split-time move is

f(T ′, τ′)

f(T, τ)
, (10)

where f(T ′, τ′) is the prior probability of the proposed tree topology and divergence times. In
our implementation, we assume that all possible tree topologies (across n(τ) = 1, 2, . . . , N−1)
are equally probable a priori. We also assume the divergence time of the root (τn(τ)) is
gamma-distributed, and each of the other divergence times is beta-distributed between the
present (τ0) and the divergence time of the youngest parent of a node mapped to τi, which we
denote as y(τi) (Figure S17; Equation 4). Given these assumptions, the prior ratio becomes

f(τ ′ | y(τ ′))f(τi−1 | y(τi−1)′)

f(τi−1 | y(τi−1))
, (11)

If τi = 1 (i.e., the divergence time selected to split was the most recent divergence), then
τi−1 is the present, and so f(τi−1 | y(τi−1)′) = f(τi−1 | y(τi−1)) = 1. Also, if none of the
nodes assigned to τi−1 has a parent assigned to the newly proposed divergence time (i.e.,
y(τi−1)′ 6= τ ′), then y(τi−1)′ = y(τi−1); e.g., in Figure S17, if τ2 is split, the prior probability
density of τ1 is not affected, because the youngest parent of a node mapped to τ1 is mapped
to τ3. In both of these special cases, the prior ratio further simplifies to

f(τ ′ | y(τ ′)) (12)

4.1.3 Hastings ratio

The probability of proposing a split-time move involves several components. First, we
have to choose to split rather than merge. We will account for the probability of this toward
the end of this section. Next, we randomly choose a splittable divergence time τi with
probability 1

ns(τ)
, where ns(τ) is the number of splittable divergence times. As described in

Section 4.1.1 above, we randomly choose a new divergence time τ ′ more recent than τi with
probability density gτ .

When we divide τi into two sets of nodes, if any polytomies get broken up, new branches
will get added to the tree. Under certain models, each of these new branches will need values
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randomly drawn for parameters. For example, if using a “relaxed-clock” model, each new
branch will need a substitution rate. Or, if using a multi-species coalescent model where
each branch has its own effective population size, a value for this will need to be drawn.
Note, this does not involve divergence-time parameters, because all nodes split from τi will
be assigned to τ ′. We will use gz to represent the product of all the probability densities of
the proposed values for the new branches. If no polytomies get broken up, or new branches
created from broken polytomies do not require parameter values, then gz = 1.

We will deal with how the nodes assigned to τi are divided into two sets below. For now,
we will use Ξ to represent the probability of the proposed division of τi. The probability
density of the proposed split move is then

g(Θ′ |Θ) =
gzgτΞ

ns(τ)
, (13)

where Θ and Θ′ represent the full state of the model before and after the proposed split
move, respectively. The move that would exactly reverse this split move would simply entail
randomly selecting the proposed divergence time from all divergence times except the root,
which would then be deterministically merged with the next older divergence time. The
probability of this reverse move is

g(Θ |Θ′) =
1

n(τ)′ − 1
=

1

n(τ)
, (14)

where n(τ) and n(τ)′ is the number of divergence times before and after the proposed split
move, respectively.

The Hastings ratio for the split move is then

g(Θ |Θ′)
g(Θ′ |Θ)

= γS
ns(τ)

n(τ)gzgτΞ
, (15)

where γS represents the probability of choosing to merge in the reverse move divided by the
probability of choosing to split in the forward move, which is

γS =


0.5 if current tree is the “comb” and proposed tree has n(τ) < N − 1

2.0 if proposed tree has n(τ) = N − 1 and the current tree is not the “comb”
1.0 otherwise.

(16)

When we are working with a tree with more than three tips, the first case occurs whenever
the current tree is the comb tree (n(τ) = 1), and the second case occurs whenever the
proposed tree has no shared divergences nor multifurcations (n(τ) = N − 1). However, for
full generality we need to include the second condition in both of these cases to account for
the situation where we are working with a tree with only three tips.
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4.2 Merge-times move

In the “merge-times” move, we randomly choose τx from one of the n(τ) − 1 non-root
divergence times. Then, we merge τx with the next older divergence time, τx+1. This will
create shared divergence times among nodes and/or multifurcating nodes. We will use τ ′x+1

to refer to the newly merged divergence time proposed by the move.

4.2.1 Prior ratio

Generally, the prior ratio for the merge-times move is the same as Equation 10. As-
suming (1) all topologies are equally probable, (2) the divergence time of the root (τn(τ)) is
gamma-distributed, and (3) each of the other divergence times is beta-distributed between
the present (τ0) and the age of the youngest parent to the nodes mapped to the divergence
time (Figure S17; Equation 4), the prior ratio becomes

f(τ ′x+1 | y(τ ′x+1))

f(τx | y(τx))f(τx+1 | y(τx+1))
. (17)

If τx+1 is the root of the tree, then f(τ ′x+1 | y(τ ′x+1)) = f(τ ′x+1) = f(τx+1 | y(τx+1)) = f(τx+1),
and this probability density is given by the gamma prior distribution on the divergence time
of the root (Figure S17).

4.2.2 Hastings ratio

The probability of the forward merge-times move is simply

g(Θ′ |Θ) =
1

n(τ)− 1
=

1

n(τ)′
(18)

where n(τ) and n(τ)′ is the number of divergence times before and after the proposed merge
move, respectively.

Borrowing from Equation 13, the probability density of the split move that would exactly
reverse the proposed merge move is

g(Θ |Θ′) =
gzgτΞ

ns(τ)′
, (19)

where ns(τ)′ is the number of splittable divergence times after the proposed merge-times
move.

The Hastings ratio for the merge move is then

g(Θ |Θ′)
g(Θ′ |Θ)

= γM
n(τ)′gzgτΞ

ns(τ)′
, (20)

where γM represents the probability of choosing to split in the reverse move divided by the
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probability of choosing to merge in the forward move, which is

γM =


2.0 if proposed tree is the “comb” and current tree has n(τ) < N − 1

0.5 if current tree has n(τ) = N − 1 and the proposed tree is not the “comb”
1.0 otherwise

(21)

4.3 Expanding Ξ

Up to this point, we have not dealt with how, during the split-time move, we divide the
nodes mapped to τi into two sets, one of which gets assigned to the new divergence time
drawn between τi−1 and τi. This has to be done with care to ensure that every possible
configuration of two divergence times derived from the nodes assigned to τi can be proposed,
such that it properly balances the reverse merge-times move. As above, we use Ξ to represent
the probability of the proposed division of τi’s nodes.

In the next two sections, we show how this is done for two special cases. The first special
case illustrates how we first choose which nodes currently mapped to τi will get moved to
the new divergence time. The second special case shows how we handle any multifurcating
nodes that have been chosen to be moved to the new divergence time. In the third section,
we build on these special cases to show a general solution for Ξ.

4.3.1 The case of all bifurcating nodes mapped to τi

We will use n(t 7→ τi) to represent the number of nodes mapped to τi. If all n(t 7→ τi)
nodes mapped to τi are bifurcating, we randomly divide these nodes into two non-empty sets
and then randomly choose one of the two sets of nodes to move to the new divergence time.
For example, this would be the case if τ2 is chosen to split from the tree shown in Figure S17.

The number of ways n(t 7→ τi) can be divided into two non-empty subsets is given by
the Stirling number of the second kind, which we denote as S2(n(t 7→ τi), 2). We uniformly
choose among these, such that the probability of randomly selecting any set partition of the
n(t 7→ τi) nodes mapped to τi is 1

n(t 7→τi) . After partitioning the nodes into two sets, there is a
1/2 probability of choosing one set to move to the new, more recent divergence time. Thus,
when all of the nodes mapped to τi are bifurcating the probability of each possible splitting
of τi is

Ξ =
1

2× S2(n(t 7→ τi), 2)
=

1

2n(t 7→τi) − 2
. (22)

4.3.2 The case of a single polytomy mapped to τi

Next, let’s consider another special case where the number of nodes mapped to τi is
one (i.e., a single polytomy). For example, this would be the case if τ4 is chosen to split
from the tree shown in Figure S17. In this case, we randomly resolve the polytomy, by
randomly (uniformly) choosing a set partition of the descending branches into non-empty
subsets. Any subsets with only one branch remain attached to the original polytomy node,

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.07.23.453597doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453597
http://creativecommons.org/licenses/by/4.0/


while each subset with multiple branches get split off to form a new node (clade) that
descends from the original polytomy node. These new nodes are assigned to the new, more
recent divergence time τ ′. The number of ways to partition the descending branches of the
polytomy are thus Bb− 2, where Bb is the Bell number (Bell, 1934)—the number of possible
set partitions of the b branches descending from the polytomy. We have to subtract 2 from
Bb, because we do not allow the two “extreme” set partitions with one or b subsets. The
former would move the whole polytomy to the new divergence time, and the latter would
leave the polytomy as is. Neither of these scenarios adds a dimension (divergence time) to
the model. We avoid these two scenarios using rejection so that the remaining partitions
of the b descending branches are chosen uniformly. Thus, when only a single polytomy is
mapped to τi the probability of each possible splitting of τi is

Ξ =
1

Bb − 2
. (23)

4.3.3 The case when multiple nodes, including at least one polytomy, are mapped
to τi

When multiple nodes are mapped to τi, and at least one is a polytomy, we need to do some
more accounting to ensure that we can reach every possible arrangement of two divergence
times that can be merged to form the current configuration of nodes mapped to τi. Similar
to the case with all bifurcating nodes, we will first divide the n(t 7→ τi) nodes mapped to τi
into two subsets and randomly choose one of these subsets to move to the proposed, more
recent divergence time, τ ′. For each multifurcating node that ends up in the subset to be
moved to τ ′ (if any), we need to either break up the polytomy, as we did in the case of the
single-polytomy case above, or move the entire polytomy to τ ′.

Unlike in the case of only bifurcating nodes mapped to τi, when we partition the n(t 7→ τi)
nodes mapped to τi into two sets, we must allow for the case where all n(t 7→ τi) end up in
the set to move to τ ′. This is because, if any of the polytomy nodes get broken up, they will
leave at least one node at τi, and the dimension of the model will change (i.e., the number
of divergence times will increase by one). So, we have to allow an empty subset when we
randomly partition the n(t 7→ τi) into two subsets. However, we cannot allow the empty
subset to be chosen to move to τ ′. There are S2(n(t 7→ τi), 2) + 1 ways to partition the
n(t 7→ τi) nodes mapped to τi into two subsets if we allow the set partition with one empty
subset. For each of these, there are two ways to choose the subset to move to τ ′, and of all
of these, there is one scenario we will reject: if the empty set gets selected to move to τ ′.
Thus, there are

(2(S2(n(t 7→ τi), 2) + 1))− 1 = (2S2(n(t 7→ τi), 2)) + 1 = 2n(t 7→τi) − 1 (24)

ways to choose a subset of the nodes assigned to τi for moving to the new divergence time,
and the probability of each is

1

2n(t 7→τi) − 1
. (25)
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For each polytomy mapped to τi that ends up in the set of nodes to move to τ ′ (if any),
we randomly choose one of the Bb possible set partitions of the b branches descending from
the polytomy. However, we will reject the set partition with b subsets (i.e., all branches
end up in their own subset). We reject this, because no subclades get broken off from the
polytomy to move to τ ′, and this scenario is already taken into account by the polytomy
node not ending up in the set of nodes to move to τ ′ in the first place. However, we need to
allow the scenario where all b branches descending from a polytomy get assigned to a single
set, which results in the entire polytomy node getting moved to τ ′, as long as at least one
node remains assigned to τi (we will handle this in a bit). Thus, for each polytomy in the set
of nodes to be moved to τ ′, there are Bb − 1 ways to move it. Using np(t ⇒ τ ′) to represent
the number of polytomies in the subset of nodes to be moved to τ ′, the total number of ways
these polytomies can be moved to τ ′ is

Φ =

np(t⇒τ ′)∏
x=1

(Bbx − 1) , (26)

and the probability of each is equal to

np(t⇒τ ′)∏
x=1

1

(Bbx − 1)
=

1∏np(t⇒τ ′)
x=1 (Bbx − 1)

=
1

Φ
. (27)

If no polytomies end up in the subset of nodes to move to τ ′, then Φ = 1.
However, if all n(t 7→ τi) nodes mapped to τi end up in the set of nodes to be moved

to τ ′, we need to reject the case where none of the polytomy nodes gets broken up (i.e., for
every polytomy, all the descending branches get partitioned into a single set), because no
nodes would remain assigned to τi, and the move would simplify to changing the value of τi.
Thus, if all n(t 7→ τi) nodes mapped to τi end up in the set of nodes to move to τ ′, the total
number of ways all np(t ⇒ τ ′) polytomies can be moved to τ ′ isnp(t⇒τ ′)∏

x=1

(Bbx − 1)

− 1 = Φ− 1, (28)

and the probability of each is equal to

1

Φ− 1
. (29)

Given all of this, the probability of choosing a subset of nodes from τi to move to the
new divergence time across all possible cases is

Ξ =


1

2n(t 7→τi)−2
if no polytomies mapped to τi

1

(2n(t 7→τi)−1)(Φ−1)
if ≥ 1 polytomy nodes mapped to τi, and all n(t 7→ τi) assigned to move set

1

(2n(t 7→τi)−1)Φ
otherwise.
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(30)

Notice, the case of n(t 7→ τi) = 1 (i.e., only a single polytomy node mapped to τi) is simply
a special case of the second condition above, where all the nodes assigned to τi end up in
the set to move to the new divergence time, including at least one polytomy.

4.4 Validation of Split-time and Merge-times moves

To validate the split-time/merge-times moves, we used them to sample from the prior
distribution of trees with 5, 6, and 7 leaves. If working correctly, we should sample all
n(T ) tree topologies with an equal frequency of 1

n(T )
. If we collect N MCMC samples from

the prior distribution, the number of times a topology is sampled should be approximately
distributed as Binomial(n = N , p = 1

n(T )
); i.e., binomially distributed where the number of

“trials” is equal to the number of samples, and the probability of sampling each topology is
1

n(T )
. We found a close match between the number or times each tree was sampled by our

reversible-jump MCMC chain and the expected number, and failed to reject the expected
binomial distribution using χ2 goodness-of-fit test (Figure S18; p = 0.742, 0.464, and 0.172
for the test with a 5, 6, and 7-leaved tree).
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Figure S18. Comparing the expected to the observed number of times each topology is sampled
by an MCMC chain using our split-time and merge-times moves. Under our generalized tree
distribution, how often each topology is sampled should follow a Binomial(n = N , p = 1

n(T )
)

distribution, where N is the total number of MCMC samples.
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4.5 Nested-neighbor-node-swap move

The split-time and merge-times moves can sample all of the space of the generalized
tree distribution (assuming the age of the root node is fixed). However, we implemented
additional topology moves that do not jump between tree models with different numbers of
divergence times.

The goal of this move is to change the topology without changing the number or timing of
divergences. We start by randomly picking a non-root divergence time, τi, with probability

1
n(τ)−1

. Next, we find the divergence time, τj, that contains the node that is the youngest
parent of nodes mapped to τi. We then randomly pick one of the nodes mapped to τj that
has children mapped to τi, we will call it ta. Each child of ta that is mapped to τi will
randomly contribute one of its children to a “swap pool” of nodes. If ta has children that are
not mapped to τi, we randomly pick one of these children and add it to the swap pool if it
is younger than τi. If the selected child of ta is older than τi, we randomly sample one of its
children and continue to do so until we have chosen a descendant node that is younger than
τi, which we then add to the swap pool. Lastly, we randomly pick two nodes from the swap
pool and we swap their parents.

After the proposed move, the structure of the tree rootward of the swapped nodes is the
same. Because of this, the move that would reverse the proposed move would be equally
probable; it would involve (1) choosing the same non-root divergence time τi, (2) choosing
the same ta, (3) choosing the children that swapped parents in the forward move to enter
the swap pool, and (4) picking the nodes that swapped parents in the forward move from
the pool and swapping their parents back. In #3, all the parent nodes involved have the
same number of children as before the proposed forward move, and so the probability of the
reverse move will be equal. As a result, the Hastings ratio for the move is 1.

For example, for the tree in Figure S17 if we randomly selected τ1, the divergence con-
taining the youngest parent of the nodes mapped to τ1 is τ3. Divergence time τ3 only has
one node that is a parent of nodes assigned to τ1, which is t3. Node t3 only has one child
mapped to τ1 (t1), which will randomly contribute one of its children, Leaf H or I, to the
swap pool. Node t3 also has children that are not mapped to τ1, one child t2 that is mapped
to τ2. Node t2 is considered for the swap pool, but it is too old (it is older than τ1 and thus
could not become a child of t1. So, we randomly consider one the children of t2, Leaf F or G,
for the swap pool, either of which is young enough to be added to the swap pool. Next, we
randomly choose two nodes from the swap pool, which has exactly two nodes in this case, a
child of t1 (Leaf H or I) and t2 (Leaf F or G), and these nodes swap parents. If we assume
that Leaves G and H were swapped, it is clear that the probability of the reverse move that
would swap them back is equally probable.

We also implemented variations of this move that make larger changes to the tree topol-
ogy. For example, we can perform the swap for all of the nodes mapped to τj that have
children mapped to τi (instead of randomly choosing one of them). Another option is to
randomly permute the parents of all of the nodes in the swap pool, rather than swap the
parents of just two of the nodes. By chance, when doing this permutation of the nodes in
the swap pool, it is possible to end up with the same topology we started with. To avoid
proposing the same state, we iteratively permute the parents of the nodes in the swap pool
until we have a new topology (the parents of at least some of the nodes in the swap pool
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have changed). Just like with the swap move, this permutation move can be performed on
one randomly selected node of τj that has children mapped to τi, or to all of them.

4.5.1 Validation of move

To validate this move, we used it to sample from a uniform distribution over the topolo-
gies of a 6-leaved bifurcating tree. There are 945 topologies for a rooted, bifurcating tree
(Felsenstein, 1978). If the move is working correctly, the number of times we sample each of
them should follow a Binomial(n = N , p = 1

945
) distribution, where N is the total number

of MCMC samples. From an MCMC sample of 100,000 trees, we found a close match to this
expected distribution, and were unable to reject it using a χ2 goodness-of-fit test (Figure S19;
p = 0.51).
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Figure S19. Comparing the expected to the observed number of times each topology of a rooted,
6-leaved, bifurcating tree is sampled by our nested-neighbor-node-swap move. Our MCMC sample
of 100,000 trees closely matched the expected Binomial(n = 100, 000, p = 1

945
) distribution.

4.6 Divergence time slide bump move

To begin this move, we randomly pick one of the divergence times, τi. Next, we draw a
uniform deviate, u ∼ Uniform(−λ, λ), where λ is a tuning parameter that can be adjusted to
improve the acceptance rate of the proposal. Then, we get a new divergence time value by
τie

u. We will index our randomly selected divergence time, τi, as τ1. We then use τ1, τ2, . . . , τn
to represent the selected time, τ1, and all the divergence times between τ1 and τ1e

u that
contain nodes ancestral or descendant to the nodes mapped to τ1. Note, that incrementing
indices count younger or older divergence times, depending on whether τieu < τ1 or τieu > τ1,
respectively.

The simplest case is that we do not have any intervening divergence times, and so we
only have τ1. This will happen when τ1e

u is older than the oldest node that is a child of the
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nodes mapped to τi and younger than the youngest node that is parent of the nodes mapped
to τi In that case, we propose a new time to which to slide τ1 as

τ ′1 = τ1e
u. (31)

To reverse this move (slide τ1 back) would be

τ1 = τ ′1e
u′ . (32)

To solve for the uniform deviate that would exactly reverse the move (u′), we take the log
of Equation 32 and solve for u′,

ln(τ1) = ln(τ ′1) + ln(eu
′
)

ln(τ1) = ln(τ ′1) + u′

u′ = ln(τ1)− ln(τ ′1)

u′ = ln(τ1)− ln(τ1e
u)

u′ = ln(τ1)− ln(τ1)− u
u′ = −u.

(33)

To get the Hastings ratio for this move, we use the formula of Green (1995),

Hastings ratio =
g′(u′)

g(u)
| det(J)|, (34)

which is the ratio of the probability of drawing the random deviate that would reverse the
proposed move to the probability of drawing the random deviate of the proposed move,
multiplied by the absolute value of the determinant of a Jacobian matrix. Because the
forward and reverse random deviates are uniform, g

′(u′)
g(u)

= 1, and the Hastings ratio reduces
to just the Jacobian term,

J =

 ∂τ ′1
∂τ1

∂τ ′1
∂u

∂u′

∂τ1
∂u′

∂u


=

 eu τ1e
u

0 −1


det(J) = −eu

| det(J)| = | − eu| = eu = Hastings ratio.

(35)

In the next simplest case, there is one intervening divergence time τ2. In this case, τ1 will
slide to τ2 and “bump” it to the new time τ1e

u. More formally, the move will be

τ ′2 = τ1e
u

τ ′1 = τ2.
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Again, the uniform deviate that would exactly reverse this move would be

u′ = −u

and the reverse move would be

τ2 = τ ′1

τ1 = τ ′2e
u′ .

Again, the Hastings ratio reduces to just the Jacobian term,

J =


∂τ ′2
∂τ2

∂τ ′2
∂τ1

∂τ ′2
∂u

∂τ ′1
∂τ2

∂τ ′1
∂τ1

∂τ ′1
∂u

∂u′

∂τ2
∂u′

∂τ1
∂u′

∂u



=


0 eu τ1e

u

1 0 0

0 0 −1


det(J) = 0

 0 0

0 −1

− eu
 1 0

0 −1

+ τ1e
u

 1 0

0 0


det(J) = eu

| det(J)| = eu = Hastings ratio.

(36)

To generalize this to an arbitrary number of intervening divergence times that will be
bumped, we have

τ ′n = τ1e
u

τ ′n−1 = τn

τ ′2 = τ3

τ ′1 = τ2.

Again, the uniform deviate that would exactly reverse this move would be

u′ = −u,

and the reverse move would be

τn = τ ′n−1

τn−1 = τ ′n−2
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τ2 = τ ′1

τ1 = τ ′ne
u′ .

The Hastings ratio reduces to just the Jacobian term,

J =



∂τ ′n
∂τn

∂τ ′n
∂τn−1

· · · ∂τ ′n
∂τ2

∂τ ′n
∂τ1

∂τ ′n
∂u

∂τ ′n−1

∂τn

∂τ ′n−1

∂τn−1
· · · ∂τ ′n−1

∂τ2

∂τ ′n−1

∂τ1

∂τ ′n−1

∂u
...

... . . . ...
...

...
∂τ ′2
∂τn

∂τ ′2
∂τn−1

· · · ∂τ ′2
∂τ2

∂τ ′2
∂τ1

∂τ ′2
∂u

∂τ ′1
∂τn

∂τ ′1
∂τn−1

· · · ∂τ ′1
∂τ2

∂τ ′1
∂τ1

∂τ ′1
∂u

∂u′

∂τn
∂u′

∂τn−1
· · · ∂u′

∂τ2
∂u′

∂τ1
∂u′

∂u



=



0 0 · · · 0 eu τ1e
u

1 0
. . . 0 0 0

... . . . . . . . . . ...
...

0 0
. . . 0 0 0

0 0 · · · 1 0 0

0 0 · · · 0 0 −1



det(J) = eu



1 0
. . . 0 0

... . . . . . . . . . ...

0 0
. . . 0 0

0 0 · · · 1 0

0 0 · · · 0 −1


− τ1e

u



1 0
. . . 0 0

... . . . . . . . . . ...

0 0
. . . 0 0

0 0 · · · 1 0

0 0 · · · 0 0


= −eu

| det(J)| = | − eu| = eu = Hastings ratio.

(37)

We avoid values of τ1e
u that are less than zero, by rejecting the proposed move. There is

no upper limit for the move, because the root of the tree can be moved to an arbitrarily old
divergence time. However, in our implementation, the prior on the divergence time of the
root is different than the other divergence times, and can be much more informative. In such
cases, we might be able to improve mixing and tuning of the move be excluding the root
divergence time from the move. We do this by selecting only non-root divergence times,
and rejecting any proposed moves where τ1e

u is older than the root.
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4.6.1 An extension to this move

We can easily extend this move to also propose new topologies. Whenever we have a
“bump” that involves a node and its children, we can propose a node swapping or permuting
move described above (see the nested-neighbor-node-swap move and its extensions). Because
we are sliding the nodes to take the position of the nodes they bump, the swap or permute
moves are simplified a bit. We do not have to worry about τj contributing a child that is
older than its potential new parents, so we never need to randomly choose descendants until
we find a node that is younger than τi. We implemented this move, but jointly proposing
changes to continuous divergence time parameters and changing the topology might lead to
poor acceptance rates (Yang, 2014), so using separate moves to update divergence times and
the topology is likely a better strategy.

4.6.2 Validation of this move

We used this move to sample from the prior distribution to ensure that the distribution
of sampled divergence times matched the gamma-distributed prior we placed on the root age
and the beta priors we placed on all other divergence times. To validate the extension of
this move that also incorporates node swapping when nodes “bump,” we used it to sample
from a uniform distribution over the topologies of a 6-leaved bifurcating tree. If the move is
working correctly, the number of times we sample each of the 945 topologies should be follow
a Binomial(n = N , p = 1

945
) distribution, where N is the total number of MCMC samples.

We found a close match between our samples and this expected distribution, and could not
reject it using a χ2 goodness-of-fit test (Figure S20; p = 0.165,).
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Figure S20. Comparing the expected to the observed number of times each topology of a
rooted, 6-leaved, bifurcating tree is sampled by the node-swapping extension to our divergence-
time-slide-bump move. Our MCMC sample of 1 million trees closely matched the expected
Binomial(n = 1× 106, p = 1

945
) distribution.
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