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ABSTRACT 

Non-alcohol-related fatty liver disease (NAFLD) is a leading cause of chronic liver disease 

worldwide. We performed network analysis to investigate the dysregulated biological 

processes in the disease progression and revealed the molecular mechanism underlying 

NAFLD. Based on network analysis, we identified a highly conserved disease-associated gene 

module across three different NAFLD cohorts and highlighted the predominant role of key 

transcriptional regulators associated with lipid and cholesterol metabolism. In addition, we 

revealed the detailed metabolic differences between heterogenous NAFLD patients through 

integrative systems analysis of transcriptomic data and liver-specific genome-scale metabolic 

model. Furthermore, we identified transcription factors (TFs), including SREBF2, HNF4A, 

SREBF1, YY1 and KLF13, showing regulation of hepatic expression of genes in the NAFLD-

associated modules and validated the TFs using data generated from a mouse NAFLD model. 

In conclusion, our integrative analysis facilitated our understanding of the regulatory 

mechanism of these perturbed TFs and associated biological processes.  
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INTRODUCTION 

Non-alcohol fatty liver disease (NAFLD) is considered as one of the most important causes of 

liver disease, worldwide (Asrani et al., 2019). The global prevalence of NAFLD was estimated 

to be 25% and has increased rapidly (Huang et al., 2021; Younossi et al., 2018; Younossi et al., 

2016). NAFLD is characterized by the hepatic accumulation of triglycerides, spanning from 

simple non-alcohol fatty liver (NAFL) to non-alcohol steatohepatitis (NASH) that might 

progress to cirrhosis and hepatocellular carcinoma (HCC) (Friedman et al., 2018; Huang et al., 

2021; Ioannou et al., 2019). Moreover, NAFLD is strongly associated with obesity, diabetes 

and cardiovascular disease; therefore, it drastically increased in these patient groups (Golabi et 

al., 2019; Ye et al., 2020; Younossi et al., 2019). However, no effective therapies are yet 

approved for NAFLD, even though extensive research activities have been carried out (El-

Agroudy et al., 2019; Mullard, 2020; Newsome et al., 2021; Stower, 2021). Hence, a 

comprehensive understanding of the underlying molecular mechanism of NAFLD is critical 

for the development of novel approaches for its prevention and treatment. 

Biological networks provide a robust framework for integrating omics data, elucidating 

pathophysiological responses and revealing the underlying molecular mechanisms involved in 

the progression of disease (Calabrese et al., 2017; Mardinoglu et al., 2018; Nayak et al., 2009). 

Biological networks, including protein-protein interaction networks (PPINs), transcriptional 

regulatory networks (RNs), gene co-expression networks (GCNs), genome-scale metabolic 

models (GEMs) and integrated networks (INs), are widely used in systems analysis 

(Mardinoglu et al., 2018). The central goal of biological network analysis is to identify critical 

functional units (so-called modules) and their constituent genes (Califano et al., 2012; 

Choobdar et al., 2019). Such functional modules often linked to disease processes, in which 

key drivers are highly enriched and provide insights into the disease pathogenesis (Cerami et 

al., 2010; Huan et al., 2013; Wainberg et al., 2021). In particular, GCNs for 17 human cancers 

and 46 human tissues have been generated and used to gain insights into disease mechanisms 

by identifying the key biological components of the cancers or tissues (Arif et al., 2021; Lee et 
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al., 2018; Uhlen et al., 2017). GEMs, reconstructed by incorporating all biochemical reactions 

and transport processes in a cell or tissue, have been extensively used to discover potential 

biomarkers and drug targets, as well as to reveal the mode of action of a drug (Lewis and Kemp, 

2021; Mardinoglu et al., 2018). 

To date, GCNs have been used for investigating the causal mechanisms underlying NAFLD 

using mouse population data (Chella Krishnan et al., 2018) and human population data (Zhang 

et al., 2020) and for integrative analysis of mouse model data and patients data (Saeed, 2021). 

However, there is still a lack of holistic studies in which adequately samples covering a large 

spectrum of disease severity were analysed. Moreover, the heterogeneity of clinical 

manifestations among NAFLD patients acts as an essential impediment for the discovery of 

critical pathogenic drivers, and thus systematic analysis is needed  (Alonso et al., 2017). 

Recently, several liver-biopsy proved transcriptomics data from large patients’ cohorts had 

been conducted (Azzu et al., 2021; Govaere et al., 2020; Hoang et al., 2019), and these datasets 

may be used to provide significant functional insights based on network analysis that cannot 

be derived from individual gene-level analysis.  

In this study, we employed an integrative systems biology approach by integrating NAFLD 

transcriptomics data with biological networks and elucidated the molecular mechanisms 

underlying NAFLD progression. We first generated GCNs for liver tissue of normal and 

NAFLD patients based on transcriptomics data and identified the perturbated modules 

associated with the severity of NAFLD. Second, we employed a liver-specific GEM called 

iHepatocytes2322 to analyse the differential expression data, and gained insights into detailed 

metabolic differences in NAFLD. Third, we subsequently validated the perturbated modules 

using transcriptomics data from another two independent studies and highlighted the disease-

associated modules that are conserved across multiple NAFLD cohorts by combing functional 

and topological similarities. Next, we used a liver cancer dataset in the cancer genome atlas 

(TCGA) to investigate if the dysregulated expression of genes in the disease-associated 

modules is relevant to patient outcome. Finally, we performed transcription factor (TF)-target 
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regulatory network analysis, identified TFs that regulate disease-associated modules and 

validated those TFs using the transcriptomics data from a mouse NAFLD model fed by high 

sucrose diet (HSD). 

RESULTS 

Generation of co-expression networks for liver tissue 

We identified the robust co-expressed genes showing transcriptional differences between the 

liver tissue of normal subjects and NAFLD patients. We first constructed GCNs of liver tissue 

based on the transcriptomics data from the Genotype-Tissue Expression (GTEx) database 

(GTEx analysis V8) (Consortium, 2013) and NAFLD cohort including 10 normal samples, 50 

patients with NAFL and 155 patients with NASH (Govaere et al., 2020) (Figure 1A). We 

filtered out lowly-expressed genes for each dataset based on their mean gene expression level 

(TPMs <1) and performed Spearman's rank correlation test between each gene pair. All p 

values were adjusted by FDR correction (Benjamini-Hochberg). Afterwards, we remained gene 

pairs with significantly positive correlation (coefficient > 0 with FDR < 0.05) on the networks 

(Figure 1A) and used the Leiden algorithm (Traag et al., 2019) to identify modules of genes 

from the network. In total, Leiden graph-based clustering identified six and five modules of 

genes in the GTEx cohort and NAFLD cohort, respectively. Each module in the same cohort 

consists of uniquely assigned genes with a substantial similarity between gene expression 

(Figure 1B; Dataset S1).  Of note, we found that gene members of any module in the GTEx 

cohort were different from that of modules in the NAFLD cohort even though 95.9% genes 

comprising modules in the NAFLD cohort were included by GTEx modules (Figure 1C).  

Identification of perturbated modules in NAFLD 

We investigated whether the differences in module composition correlated with the molecular 

changes underlying NAFLD progression. We first identified differentially expressed genes 

(DEGs) to reveal the global transcriptomic differences in the liver of patients with NAFLD. 

We observed that 4,051 and 4,281 genes were significantly upregulated (adjusted p-value < 
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0.05) between NAFL and control samples and between NASH and normal samples, 

respectively (Figure 1D; Dataset S2). Enrichment analysis in KEGG pathway showed that the 

upregulated DEGs are mostly enriched in the pathways associated with endocytosis, axon 

guidance, adherens junction, insulin resistance and insulin signalling (Figure 1E; Dataset S3). 

Moreover, we found that 3,936 and 3,911 genes were significantly downregulated between 

NAFL and control samples and between NASH and normal samples, respectively (Figure 1D; 

Dataset S2). Enrichment analysis showed that downregulated DEGs enriched in pathways 

associated with oxidative phosphorylation, spliceosome, thermogenesis, and proteasome 

(Figure 1E).  

We also examined the enrichment of those dysregulated DEGs associated with NAFLD in each 

co-expression module identified in GTEx and NAFLD cohort data. The results showed that 

module 1 and module 3 of the NAFLD cohort with 215 samples (cohort_215_M1 and 

cohort_215_M3) are significantly enriched (hypergeometric test p-value ≈ 0) by upregulated 

and downregulated DEGs associated with NAFLD, respectively (Figure 1F). In particular, 66.6% 

of genes (1,431 out of 2,149) in cohort_215_M1 and 94.6% of genes (314 out of 332) in 

cohort_215_M3 are significantly upregulated and downregulated in NAFL vs control groups, 

respectively. 65.8% of genes in cohort1_215_M1 and 94% of genes (312 out of 332) in 

cohort_215_M3 are significantly upregulated and downregulated in NASH vs control groups, 

respectively. Notably, we found both cohort_215_M1 and cohort_215_M3 are significantly 

overlapped (hypergeometric test p-value = 2.17×10-14 and 3.11×10-8) with module 1 in GTEx 

cohort (GTEx_M1), which were overrepresented by both upregulated and downregulated 

DEGs associated with NAFLD (Figure 1F). Interestingly, KEGG enrichment analysis of genes 

in those modules suggests that the significantly enriched pathways are consistent with the 

dysregulated pathways enriched by DEGs (Figure 1E; Figure S2A). Moreover, we found 

cohort_215_M4 are significantly enriched by upregulated genes (19 and 25 out of 38 in NAFL 

vs control and NASH vs control, respectively) and only significantly overlapped with 

GTEx_M3 (hypergeometric test p-value = 4.11×10-13). Taken together, co-expression network 
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analysis identified modules of genes that are significantly perturbated in patients with NAFLD.  

Altered metabolism in NAFLD patients 

To further evaluate the detailed metabolic changes underlying NAFLD progression, we 

identified reporter metabolites (Patil and Nielsen, 2005), around which the most significant 

transcriptional changes occur, using differential expression data from NAFLD and network 

topology provided by iHepatocytes2322 (Mardinoglu et al., 2014). (Figure S2B).  Such reporter 

metabolites can thus be used to identify the key dysregulated regions of the metabolic network. 

A total of 321 metabolites were significantly (p-value <0.05) associated with upregulated genes 

in either NAFL vs control or NASH vs control (Figure 2; Figure S2C; Dataset S4), Among 

these, the most significant reporter metabolites associated with upregulated genes in NAFL vs 

control were those involved in arginine and proline metabolism, glycerophospholipid 

metabolism, and nucleotide metabolism. The top reporter metabolites associated with 

upregulated genes between NASH and control samples involved in beta-oxidation of fatty acids, 

cholesterol biosynthesis, and chondroitin/heparan sulphate biosynthesis. Chondroitin sulphate 

(CS) and heparan sulphate (HS) are the essential components of proteoglycans (PG), which 

have been proposed as potential biomarkers for NASH diagnosis and staging of NAFLD by 

integrative analysis of transcriptomic data obtained from patients with NAFLD and GEM 

(Mardinoglu et al., 2014). The analyses from the current investigation utterly consistent with 

the previous study. In addition, we observed 215 metabolites were significantly associated with 

downregulated genes in NAFLD, involving in folate metabolism and oxidative 

phosphorylation (Figure 2; Figure S2D; Dataset S4).  

Validation of perturbated modules in two independent NAFLD cohorts 

To validate whether modules related to significant transcriptomics and metabolic changes in 

patients with NAFLD can truly reflect the perturbations in a disease-specific manner, we 

analysed GCNs generated using liver-biopsy proved transcriptomics datasets from two 

independent NAFLD cohorts with 75 and 58 samples, respectively (Azzu et al., 2021; Hoang 
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et al., 2019) (to avoid repeated IDs, we assigned cohort 1 to the studied NAFLD cohort, and 2 

and 3 for NAFLD cohorts for validation in the downstream analysis). By the same method 

constructing GCN for the first NAFLD cohort as described in Method, we identified four and 

eight modules of genes in NAFLD cohort 2 and 3, respectively (Figure S3A&B). To explore 

module similarity among NAFLD cohorts, we calculated the Jaccard index between each pair 

of modules from different NAFLD cohorts and performed hypergeometric test to evaluate the 

significance of the observed overlap in gene members (Figure 3A, B&C; Dataset S1). To begin 

with, we tested the modules between NAFLD cohort 1 and cohort 2. The results showed that 

genes in cohort1_215_M4 were only significantly overlapped (29 out of 38; Jaccard index = 

0.388; hypergeometric test p-value = 1.66×10-69, Figure 3A&D) with genes in module 3 of 

NAFLD cohort 2 with 75 samples (cohort2_75_M3). We next tested the module pairs in 

NAFLD cohort 1 and cohort 3, found cohort1_215_M4 also shared 29 genes with module 7 of 

NAFLD cohort 3 with 58 samples (cohort_3_58_M7) (Jaccard index = 0.434; hypergeometric 

test p-value = 3.73×10-71, Figure 3B&D). Interestingly, the genes in cohort2_75_M3 were 

significantly overlapped (45 out of 80; Jaccard index = 0.425; hypergeometric test p-value = 

1.82×10-86, Figure 3C&D) with genes in cohort3_58_M7 as well.  

We subsequently assessed the module similarity and overlap between any two modules 

between the GTEx cohort and NAFLD cohorts to validate if those conserved modules in 

NAFLD cohorts have a similar expression pattern in normal liver tissue. Hierarchical clustering 

of the Jaccard index between module pairs showed a distinct cluster consisting of 

cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7 was only significantly over-

represented by module 3 in GTEx cohort (GTEx_M3), which contains 1,975 genes (Figure 1B; 

Figure S3C). We found that more than 70% genes in cohort1_215_M4 (27 out of 38; 

hypergeometric test p-value = 4.11×10-13), cohort2_75_M3 (57 out of 80; hypergeometric test 

p-value = 4.97×10-27), and cohort3_58_M7 (50 out of 71; hypergeometric test p-value = 

2.92×10-24) were included by module GTEx_M3. (Figure 4A).  
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For a systematic evaluation on biological functions related to the modules, we quantified the 

statistical significance of enrichment of genes with the association in disease-related gene sets 

obtained from DisGeNET database (https://www.disgenet.org/) (Pinero et al., 2020), liver-

specific proteome in Human Protein Atlas (HPA) database (http://www.proteinatlas.org/) 

(Uhlen et al., 2015), and KEGG pathway gene sets. We found that genes in cohort1_215_M4, 

cohort2_75_M3, and cohort3_58_M7 were significantly over-represented by multiple liver 

disease-related gene sets, including NAFLD and steatohepatitis (Figure 3E; Dataset S5). 

Interestingly, these three modules were also significantly enriched in heart diseases, for 

instance, coronary heart disease, coronary artery disease, and coronary arteriosclerosis. We 

further evaluated the overlap of genes in each of three disease-associated modules with 936 

liver-specific genes defined by HPA (Fagerberg et al., 2014; Uhlen et al., 2015; Yu et al., 2015). 

The results showed that genes in cohort1_215_M4 (10 out of 38; hypergeometric test p-value 

= 0.0005), cohort2_75_M3 (30 out of 80; hypergeometric test p-value = 1.68×10-14), and 

cohort3_58_M7 (22 out of 71; hypergeometric test p-value = 6.02×10-10) are highly enriched 

with liver-specific genes (Figure 3F). In addition, we observed that genes in GTEx_M3, which 

shows high module similarity with those three modules identified in diseases cohorts, 

significantly enriched in the peroxisome, branched-chain amino acids (BCAAs; valine, leucine 

and isoleucine) degradation, and fatty acid degradation (Figure 4B). However, steroid 

biosynthesis and terpenoid backbone biosynthesis were the most significantly enriched 

pathways in all the three modules of disease cohorts. Moreover, fatty acid biosynthesis, citrate 

cycle (TCA cycle), and insulin signalling pathway were only significantly enriched in the 

modules of disease cohort(s).  

Topological features of genes in NAFLD-associated modules 

The analysis of topological properties can provide important information about hub genes or 

other influential genes that significantly impact the dynamic of the module. To understand the 

interplay of genes in the module, we then obtained several key network properties using the 

“NetworkAnalyzer” in Cytoscape to analyse the disease-associated modules. In our workflow, 
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we used degree and closeness centrality to evaluate the importance of nodes in a module. In an 

unredirected network, the degree of a node is the number of edges linked to this node and a 

node with a high degree has been considered as functionally significant  (Doncheva et al., 2012). 

Genes with high closeness centrality are considered as the controlling point of molecular 

communication (Miryala and Ramaiah, 2019). 

Topological analysis showed that gene FDFT1 has the highest degree in both cohort1_215_M4 

(26 edges) and cohort2_75_M3 (41 edges), whereas gene MVD has the highest degree in 

cohort3_58_M7 (Figure 4C-E; Figure S4; Figure S5A; Dataset S6). The other genes with high 

connectivity are HMGCS1, DHCR7 and ACSS2 (23 edges, respectively), and ACAT2 (22 edges) 

in cohort1_215_M4; MVD (40 edges), MSMO1 and SQLE (37 edges, respectively), and IDI1 

and NSDHL (36 edges, respectively) in cohort2_75_M3; IDI1(30 edges), LSS, CYP51A1, 

FDFT1 and SQLE (29 edges, respectively) in cohort3_58_M7. Interestingly, we observed a 

highly positive correlation between the degree of 33 genes overlapped in cohort1_215_M4 and 

cohort2_75_M3 (Spearman’s correlation = 0.58, p = 0.00036, Figure 4C), which indicates that 

those two modules have a similar topological structure. Similarly, a highly positive correlation 

between degree of 33 genes shared by cohort1_215_M4 and cohort3_58_M7 (Spearman’s 

correlation = 0.73; p = 1.7×10-6, Figure 4D) and that of degree of 45 genes shared by 

cohort2_75_M3 and cohort3_58_M7 (Spearman’s correlation = 0.81; p = 1.7×10-11, Figure 4E) 

were also observed. Moreover, the top five genes with the highest closeness centrality in 

cohort1_215_M4, cohort2_75_M3 and cohort3_58_M7 are also highly conserved (Figure 

S5B). We also observed a strong correlation between closeness centrality of shared genes in 

any disease-associated module pairs of NAFLD cohorts (Figure S5C). 

Validation of topological features in an HCC cohort 

Given that NAFLD has emerged as the fastest-growing cause of HCC (Huang et al., 2021; Ray, 

2018). We next investigated whether the expression of the genes in NAFLD disease-associated 

modules, especially genes with high-connectivity, is predictive of patients with HCC using the 

Liver Hepatocellular Carcinoma dataset (TCGA-LIHC; 
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https://portal.gdc.cancer.gov/projects/TCGA-LIHC) (Figure S6A). The results showed that the 

expression of 19 genes in cohort1_215_M4, 39 genes in cohort2_75_M3 and 40 genes in 

cohort3_58_M7 are significantly (log-rank p-value < 0.05) associated with the survival of 

patients, respectively (Figure S6B; Dataset S7). Among these, the high expression of 19 genes 

in cohort1_215_M4, 28 genes in cohort2_75_M3, and 31 genes in cohort3_58_M7 are 

significantly associated with an unfavourable survival of patients. For example, the high 

expression of FDFT1 (log-rank p-value = 6.54×10-4) with the highest connectivity in both 

cohort1_215_M4 and cohort2_75_M3 and MVD (log-rank p-value = 1.26×10-3) with the 

highest connectivity in cohort3_58_M7 are significantly associated with poor patient outcome 

(Figure S6C&D). In addition, some of these genes have already been described as associated 

with NAFLD associated HCC (NAFLD-HCC). For instance, the high expression of SQLE, a 

second rate-limiting enzyme involved in de novo cholesterol synthesis with relatively high 

connectivity in disease-associated modules (Figure S4; Figure S5A), was predictive of 

unfavourable survival of HCC patients (log-rank p-value = 7.39×10-4; Figure S7). Indeed, 

recent studies have demonstrated that SQLE acts as an independent prognostic factor in patients 

with HCC associated with NAFLD, and SQLE inhibition suppressed NAFLD-HCC growth in 

vitro and in vivo (Liu et al., 2018a; Ray, 2018). 

Identification of transcription factors that regulate the NAFLD-associated modules 

To investigate the transcriptional regulation in maintaining homeostasis and alterations in the 

disease state, we performed TF enrichment analysis (hypergeometric test) using the genes from 

the disease-associated modules and module 3 in GTEx, which shows high similarity to disease-

associated modules (Figure 5; Dataset S8), based on TRRUST database (Han et al., 2018). Our 

results indicated that HNF4A, HNF1A, PPARGC1A, SREBF2 and PPARA are the most 

significantly enriched TFs in GTEx_M3 (Figure 5A). Meanwhile, we observed that HNF4A, 

SREBF1, SREBF2, YY1 and KLF13 are the significantly enriched TFs in all three disease-

associated modules. We also found the significant upregulation of hepatic expression of 
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SREBF1, SREBF2, HNF4A, and KLF13 in NAFL and NASH compared to the control group 

(adjusted p-value < 0.05, Figure 5B-F; Dataset S2).   

We then constructed the regulatory networks for the enriched TFs and associated targets in 

each of the module (Figure 5G-I; Figure S8). We observed that HNF4A, an important 

transcriptional factor mainly expressed in the liver, regulates the expression of genes involved 

in lipid metabolism and fatty acid oxidation, including cholesterol/triglyceride transporter (e.g., 

ABCG8, ABCG5 and MTTP), oxidoreductase (e.g., AKR1C4, CYP2D6 and CYP2B6) in the 

regulatory network of GTEx_M3 (Figure S8). As known, SREBF1 and SREBF2 regulate the 

expression of genes associated with de novo lipogenesis (DNL) (e.g., FASN, SCD, ACACB), 

synthesis and cellular uptake of cholesterol (e.g., HMGCR, FDFT1, NPC1L), respectively. 

Moreover, PPARA regulates the expression of genes involved in peroxisomal and 

mitochondrial β-oxidation, including ACSL1, CPT1A, CYP1A1, and ACOX1. Apolipoprotein 

C3 (APOC3), a central regulator of plasma triglyceride levels by inhibiting the removal of 

remnants of triglyceride-rich lipoproteins, is the most highly regulated gene by HNF4A, NR0B2, 

PPARA and PPARGC1A in the regulatory network of GTEx_M3. Interestingly, low-density 

lipoprotein receptor (LDLR, a key receptor that is internalized by endocytosis) is the most 

highly regulated genes in the disease-associated modules (Figure 5G-I) by SREBF1, SREBF2, 

HNF4A, YY1 and KLF13.This indicates that highly co-expressed genes involved in cholesterol 

metabolism in disease-associated modules are key compared to the other endocytosis-related 

genes that co-expressed in other modules in the same cohort. In addition to the well-established 

regulation of LDLR activation by transcription factor SREBFs and HNF4A, YY1 and KLF13, 

two specific TFs regulating the disease-associated modules, also showed a regulatory role in 

the transcriptional regulation LDLR. Taken together, the complicated regulation of LDLR in 

the disease-associated modules rather than endocytosis in normal liver tissue might play an 

essential role in the dysregulation of lipid metabolism underlying the NAFLD pathogenesis. 

Validation of transcription factors in a mouse NAFLD model 

Next, we generated liver transcriptomics data from a mouse NAFLD model fed by HSD and 
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performed reporter TF analysis (Huang et al., 2017; Liu et al., 2019; Oliveira et al., 2008) by 

integrating with the same network of TF-target from TRRUST database (Han et al., 2018). We 

validated the TFs that are enriched in disease-associated modules (Figure 6A). The reporter TF 

algorithm was used to calculate the statically significant expression changes of gene sets 

controlled by TFs. To study the regulation of module of genes using this method, we first 

examined the scored reporter TFs that are significantly associated with the upregulated and 

downregulated genes in NAFL vs control and NASH vs control, respectively (Dataset S9). The 

analysis identified 12 reporter TFs of genes in cohort1_215_M4, of which 9 were associated 

with upregulated genes in NAFLD, including, ATF4, DDIT3, HDAC3, HNF4A, KLF5, NFYC, 

SREBF1, SREBF2, and YY1. 2 reporter TFs (VDR and WT1) are associated explicitly with 

downregulated genes in cohort_215_M4 between patients with NAFL and control samples. 

KLF13 was significantly associated with upregulated genes between NASH and control 

samples. Among these reporter TFs, five of them (HNF4A, SREBF1, SREBF2, YY1, and KLF13) 

were also identified by hypergeometric test for cohort1_215_M4 (Figure 5A). Between mice 

fed by HSD and chow diet (Figure 6A; Dataset S10), 5 reporter TFs (including KLF5, KLF13, 

SREBF1, SREBF2, and CREB1) were identified, showing significant association with 

upregulation of genes using corresponding human orthologs. Taken together, our analysis 

validated SREBF1, SREBF2, and KLF13 as TFs that regulate the hepatic expression of genes 

in cohort1_215_M4.  

Hepatic co-expression networks reflect dysregulated cholesterol homeostasis and de novo 

lipogenesis in the NAFLD cohorts 

In our network analysis, we found conserved disease-associated modules across three 

independent NAFLD cohorts, and more than 70% of the genes involved in the modules are 

associated with metabolic functions. Most of the metabolic genes in this consensus module are 

associated with cholesterol metabolism. For instance, 13 genes, namely HMGCS1, HMGCR, 

MVD, IDI1, FDPS, FDFT1, SQLE, LSS, CYP51A1, TM7SF2, NSDHL, HSD17B7, EBP and 

DHCR7, which are shared among the three disease-associated modules from different cohorts, 
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and 5 genes, namely AACS, MVK, MSMO1, DHCR24 and SC5D which are included in at least 

one of the disease-associated modules from different cohorts, are involved in the endogenous 

synthesis of cholesterol (Figure 6B). LDLR and NPC1L1, responsible for the uptake of 

cholesterol, are also found in the disease-associated modules from all three cohorts. In addition, 

several genes, namely ACLY, ACSS2, ACACA, FASN, SCD, FADS1, FADS2, ELOVL6, 

HSD16B12, GPAM, PNPLA3 and TM6SF2, which are involved in de novo lipogenesis and 

lipolysis, are also included in the disease-related modules in at least one of the cohorts. Finally, 

a few genes encoding glycolytic enzymes, such as GCK, PGD, ALDOB, ALDOC, PKLR, ME1 

and PDHB, are also found in the disease-related modules. In summary, these indicated a strong 

connection between the disease-associated clusters with the cholesterol metabolism, de novo 

lipogenesis and glycolysis in the liver and suggested their potential roles in the development 

of NAFLD.  
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DISCUSSION 

Here, we applied a systems biology approach on human liver transcriptomics data to elucidate 

the dysregulated biological processes involved in NAFLD and identified potential regulators 

via integrating with transcriptional regulatory network. Our analysis identified a highly 

conserved disease-associated gene module across three different NAFLD cohorts, and this 

module is specified in the disease networks. At the same time, we could not be found in the 

network generated from normal subjects (GTEx cohort). Therefore, this gene module could 

play a critical role in the development of NAFLD and is closely related to the mechanism of 

the disease. Interestingly, we found the majority of the genes (~70%) in these disease-

associated modules identified in the NAFLD cohort are included in the big gene module 3 of 

the GTEx cohort, which has 1,975 genes, and this suggested that the disease-associated module 

and its related biological functions were co-regulated with a large gene group in normal 

subjects and dysregulated with the progression of NAFLD.   

In addition, our analysis provided enriched TFs that regulate the disease-associated modules, 

which can facilitate our understanding of the regulatory mechanism of these perturbed 

biological processes. The results from transcription regulatory networks analysis indicated that 

SREBF1, SREBF2, HNF4A, YY1, and KLF13 are the most prominent regulators of gene 

expression in disease-associated modules, 3 of which (SREBF1, SREBF2, and KLF13) were 

validated using the transcriptomics data generated from a mouse NAFLD model. Notably, 

KLF13 is reporter TF, specific to this disease-associated module but not for the module from 

the normal subjects, suggesting their potential role in the development of NAFLD (Ericsson et 

al., 1999; Natesampillai et al., 2006). It has been shown that selective overexpression of YY1 

resulted in massive triglyceride accumulation and moderate insulin resistance in mice fed with 

HFD (Lu et al., 2014) and it may a promising target for fatty liver diseases (Wu et al., 2017). 

We also found that LDLR is a central target gene regulated by the enriched TFs in this disease-

associated module. It has been demonstrated that multiple mechanisms are involved in 

protecting against excessive cholesterol accumulation in the liver (Goldstein and Brown, 2009; 
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Natesampillai et al., 2006). LDLR-mediated endocytosis contributes to this process by 

removing approximately 70% circulating cholesterol-enriched LDL and providing feedback 

transcriptional regulation of cholesterol synthesis through SREBFs (Goldstein and Brown, 

2009).   

Our systematic analyses also highlighted the significant reporter metabolites involving in CS 

and HS biosynthesis, glycerophospholipid metabolism, folate metabolism and oxidative 

phosphorylation. Such metabolites are consistent with the findings of previous studies and 

could be targeted for discovery of potential biomarkers in diagnosis of NAFLD. We also found 

that most of the genes involved in the disease-associated module are involved in metabolic 

pathways such as cholesterol metabolism, DNL and glycolysis.  

The liver plays a central role in cholesterol homeostasis, and growing evidence has shown that 

excess hepatic cholesterol causing hepatic lipotoxicity is a predominant factor in the 

development of human NAFLD (Ioannou, 2016; Min et al., 2012). Abundant hepatic free 

cholesterol stimulates Kupffer cells and hepatic stellate cells (HSCs), which are key mediators 

of fibrosis and inflammation as well as mitochondrial dysfunction and thus reflects the severity 

of disease (Musso et al., 2013). Notably, the differential expression (DE) analysis pointed out 

significant upregulation of critical genes (adjusted p-value < 0.05) in these cholesterol-related 

pathways which are involved in the disease-related module, including HMGCR (the principal 

rate-limiting enzyme in mevalonate pathway), NPC1L1 (a major gene in intestinal cholesterol 

absorption) in NASH compared to control group (Dataset S2). We found scavenger receptor 

class B type I (SCARB1), which mediate the uptake of HDL cholesterol directly, significantly 

increased in NAFLD patients compared to the control group. This suggests that upregulation 

of pathways in both synthesis and absorption of cholesterol may associate with the increased 

hepatic cholesterol (Ioannou, 2016), as well as increased bile acids in NAFLD patients (Jiao et 

al., 2018).  

Additionally, recent studies have shown that high dietary cholesterol in the mice model is the 

causative factor for the progression of steatohepatitis to fibrosis and HCC and drives NAFLD 
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associated HCC (Liu et al., 2018a; Shen et al., 2020; Zhang et al., 2021). We, therefore, 

investigated whether the disease-associated modules are predictive of patient outcome using 

the liver cancer dataset. The results from Kaplan-Meier analysis showed that the high 

expression of ~41% genes (12 out of 29 genes identified in all three disease-associated modules) 

(Figure S6&7) are significantly associated with poor survival of patients, for example, FDFT1, 

MVD, DHCR7, SQLE and MVD with high connectivity in these modules. Liu et.al. have shown 

that targeting SQLE can efficiently inhibit the NAFLD-HCC in cellular and animal models (Liu 

et al., 2018a). Considering the characteristics of the co-expression mechanism among genes 

with similar functions, this integrative network analysis revealed detailed molecules involved 

in the cholesterol mechanism. It proposed more potential therapeutical targets of effective 

treatment for preventing NAFLD-to-HCC progression.  

Moreover, in the disease-associated module, we also found genes associated with DNL. 

Generally, it is believed that the triglyceride accumulation in the liver of NAFLD patients is 

caused by elevation of both DNL and fat uptake (Donnelly et al., 2005; Perdomo et al., 2019). 

However, we do not find any genes related to fat uptake in these disease-associated modules. 

In fact, CD36, the key free fatty acid transporter, is not significantly changed between NAFLD 

and control group (Dataset S2). The hepatic expression of FABP5, another critical transporter 

for fat, is significantly decreased in the patients than normal subjects. In addition, most of DNL 

related genes are significantly up-regulated in the NAFL and NASH patients compared to the 

control group. Taken together, these suggested that the DNL, rather than free fatty acid uptake, 

is the source of triglyceride accumulation in NAFLD patients.  

Finally, we identified a few key enzymes involved in glycolysis as well as insulin signalling 

pathway are included in the disease-associated module. For instance, INSIG, a key player in 

the insulin signalling pathway is included in the disease-associated modules among all three 

cohorts. A recent study has reported that INSIG is a central regulator in a negative feedback 

loop ensuring the balance of lipid desaturation and cholesterol composition and loss of INSIG1 

improves liver damage and would healing NASH progression (Azzu et al., 2021). In addition, 
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GCK, which is a kinase specific to glucose, is involved in the module of cohort 2, and it is 

significantly up-regulated in the NAFLD patients compared to the normal subjects (Dataset 

S2). In our previous study, we have reported that the GCK up-regulation is associated elevated 

insulin resistance in patients and suggested an increased influx from dietary glucose (Lee et al., 

2016). Moreover, we also observed that TKFC, which is also involved in the module and up-

regulated in NAFLD patients in cohort 2. It has been reported that increased dietary fructose 

uptake could cause NAFLD in both mouse and human patients (Jensen et al., 2018; Loomba et 

al., 2021). Therefore, these results highlighted the associated between NAFLD and insulin 

resistance, and suggested the potentially important contribution of dietary glucose, fructose as 

well as sucrose to development of the disease.  
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METHODS AND MATERIALS 

Data retrieving and pre-processing 

Each dataset was pre-processed independently: 

NAFLD cohorts. hepatic RNA-seq (raw fastq files) of NAFLD cohort 1 (Govaere et al., 2020) 

and cohort 2 (Hoang et al., 2019) were retrieved from European Nucleotide Archive (ENA) 

database (https://www.ebi.ac.uk/ena/) (Amid et al., 2020) under accession numbers 

SRP217231 (215 biopsy-proven NAFLD patients) and SRP197353 (78 biopsy-proven NAFLD 

patients), respectively; Hepatic RNA-seq of NAFLD cohort 3 (Azzu et al., 2021) with 58 

biopsy-proven NAFLD patients were retrieved from the ArrayExpress data repository 

(Parkinson et al., 2005) under accession number E-MTAB-9815. Principle component analysis 

(PCA) was used to detect outlier samples (Figure S1) and three outlier samples in NAFLD 

cohort 2 were removed based on this analysis. Afterwards, gene abundance in both transcripts 

per million (TPMs)) and raw count were quantified using the Kallisto (Bray et al., 2016) 

pipeline based on human genome (ensemble 102 version). We subsequently used DESeq2 R 

package following a standard protocol (Love et al., 2014) to identify differentially expressed 

genes (DEGs, adjusted p-value < 0.05) and performed KEGG pathway enrichment using the 

Platform for Integrative Analysis of Omics (PIANO) R package (Varemo et al., 2013). 

GTEx cohort. The RNA-seq data with gene abundance in transcript TPMs from human tissues 

was retrieved from Genotype tissue expression (GTEx) (https://gtexportal.org/home/datasets) 

(Consortium, 2013) and remained the samples with available dataset in liver tissue. 

Transcriptomics data from mouse model 

 Nine C57BL/6J mice were fed a standard mouse chow diet and housed in a 12‐h light–dark 

cycle. From the age of 8 weeks, the mice were then divided into two groups of 5 mice fed with 

chow diet, 4 mice fed with high-sucrose diet for 3 weeks, respectively. At the age of 11 weeks, 

all mice are sacrificed and liver necropsy were taken for RNA sequencing. RNA sequencing 

library were prepared with Illumina RNA-Seq with Poly-A selections. Subsequently, the 
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libraries were sequenced on NovaSeq6000 (NovaSeq Control Software 1.6.0/RNA v3.4.4) with 

a 2x51 setup using ‘NovaSeqXp’ workflow in ‘S1’ mode flow cell. The Bcl was converted to 

fastq by bcl2fastq_v2.19.1.403 from CASAVA software suite (Sanger/phred33/Illumina 1.8+ 

quality scale). The fastq files for mice were then processed as the way that were used in human 

datasets mentioned above using a standard protocol of Kallisto (Bray et al., 2016).  

Construction of co-expression network and analysis 

Considering the dramatic increase in size owing to the many gene isoforms and non-coding 

RNAs (van Dam et al., 2018), we used the “protein-coding genes” for annotation of RNA-seq 

dataset and then constructed the co-expression network in gene level. For each dataset, we first 

filtered out lowly-expressed genes based on their median gene expression level (TPMs <1) and 

constructed co-expression networks by generating gene pairs Spearman correlation ranks 

within liver tissue, which was performed using “spearmanr” function from SciPy (Virtanen et 

al., 2020) in Python 3.8. Next, we remained gene pairs with significantly (adjusted p value < 

0.05) positive correlation (coefficient > 0) on the network and performed module detection 

analysis using Leiden algorithm (Traag et al., 2019), implemented by Python package leidenalg 

(version 0.7.0) with “ModularityVertexPartition” to find the optimal partition. Modules with 

less than 30 genes were discarded to be able to get significant functional analysis results in the 

downstream analysis.  

To explore the module similarity between different cohorts, we calculated the Jaccard index, 

which is simply defined as the size of the intersection between two modules divided by the size 

of the union of the same two modules, and used hypergeometric test to determine whether the 

genes in one module significantly overlapped with the genes in another module. The overlap 

was considered as significant when p-value less than 0.05.  Topological and node properties of 

modules were determined using the NetworkAnalyzer (Assenov et al., 2008) plugin 

implemented in Cytoscape (version, 3.8.2) (Cline et al., 2007). 

Functional annotation of modules in co-expression network of cohort 
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KEGG enrichment analysis. we performed functional enrichment analysis for the gene lists of 

each module of co-expression network using hypergeometric test, which is implemented by 

the python package gseapy (version 0.9.16; https://github.com/zqfang/gseapy), all gene sets of 

KEGG pathway were obtained from database source of Enrichr (Kuleshov et al., 2016).  

Disease enrichment analysis. DisGeNet (Pinero et al., 2017) is a platform integrating 

information of gene-disease association from several public data sources and literature. In our 

analysis, the lists of diseases enriched by the gene lists in each network module were retrieved 

from the DisGeNet database using ToppFun of the ToppGene suite (Chen et al., 2009), all gene 

sets in detected modules were used as background gene sets. Disease terms with Benjamini-

Hochberg corrected p value <0.05 were remained and top 20 for each disease-associated 

module were presented. 

Transcription factor enrichment analysis. We retrieved the human Transcriptional Regulatory 

Relationship Unravelled by Sentence-based Text mining (TRRUST) v2 database 

(https://www.grnpedia.org/trrust/) (Han et al., 2018) and obtained the lists of transcription 

factor and associated targets, which derived from 7,148 PubMed articles in where small-scale 

experimental studies of transcriptional regulation were described. In total, 9,395 TF-target 

regulatory relationships of 795 TFs and 2,493 targets were supplied as database for Enrichr 

(Kuleshov et al., 2016), implemented by the python package gseapy (version 0.9.16; 

https://github.com/zqfang/gseapy).   

Reporter metabolite and reporter transcription factor analyses 

To investigate the detailed metabolic differences associated with NAFLD, we first performed 

reporter metabolites analysis (Varemo et al., 2013) using the PIANO R package with 

topological information from liver-specific GEM iHepatocytes2322 (Mardinoglu et al., 2014).  

Differential expression level of genes (log2-fold change) in each contrast and corresponding 

significant levels (p value) were used as input.  

To validate the enriched transcription factors in disease-associated modules, we also employed 
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the PIANO R package to perform reporter transcription factor (TF) analysis (Huang et al., 2017; 

Varemo et al., 2013) in which log2-fold change and p-value of genes, as well as transcriptional 

regulatory information of TF-target from TRRUST database (Han et al., 2018) were used as 

input. Considering reporter TFs that control the expression of genes in a specific module, we 

assigned the p-value of genes that are not in that module as 1 in the analysis.   

TCGA data process and Survival analysis 

The transcript-expression level profiles (TPM) had been downloaded from Toil (Vivian et al., 

2017) under the project ID of TCGA-LIHC. We screened all samples in TCGA-LIHC cohorts 

and kept 363 donors with both primary tumour solid tissue samples and clinical information. 

We only extracted tumour samples with identifier “A” for liver hepatocellular carcinoma and 

subsequently quantified the mRNA expression by Kallisto (Bray et al., 2016) based on the 

GENCODE reference transcriptome (version 23). Genes with an average TPM>1 were 

reserved for the following analysis. The clinical information was collected from TCGA Pan-

Cancer Clinical Data Resource (TCGA-CDR) (Liu et al., 2018b). Samples with a survival time 

of zero-day were excluded.  

Genes were divided into two groups according to TPM values and examined by Kaplan-Meier 

survival analysis; the survival outcomes were then compared based on log-rank tests. To 

choose the best TPM cut-offs for grouping, all TPM values from the 20th to 80th percentiles 

were used to group the patients. Significant differences in the survival outcomes of the groups 

were examined, and the value with the lowest log-rank P-value is selected. The R package 

“survival” and graphics “ggplot” was used during the Kaplan-Meier analysis. Genes with log-

rank P values less than 0.05 were defined as prognostic genes. In addition, if the group of 

patients with high expression of a selected prognostic gene has a higher observed event than 

the expected event, it is an unfavourable prognostic gene; otherwise, it is a favourable 

prognostic gene. All analysis were applying on R. 
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Figure 1.  Sample information of studied cohorts and construction of co-expression networks. (A) Transcriptome 
data of liver tissue were obtained from GTEx, NAFLD cohort with 226 and 215 samples ranging from normal, 
NAFL, NASH, respectively. Spearman rank-order correlation coefficient analysis was applied to calculate the 
correlation between gene pairs after removing the lowly expressed genes (TPMs <1), and the Leiden algorithm 
was used to detect modules of significantly correlated genes. The label (number) of the module assigned by the 
algorithm. (B) The numbers of genes consist of the individual module in each cohort.  (C) The bar plot shows the 
proportions of genes in each module identified in the NAFLD cohort compared to each module specified in the 
GTEx cohort. (D) The Venn diagram of differentially expressed genes (adjusted p-value < 0.05) between patients 
with NAFLD and control samples. (E) KEGG pathway analysis showing pathways that were significantly altered 
in patients with NAFLD.  Up-regulated and downregulated pathways are shown in blue and red, respectively—
only pathways with adjusted p-value (padj) < 0.01 are presented (see also Dataset S3.  The size of the bubble is 
scaled by -log10(padj) for each KEGG pathway term. (F) Significant (p < 0.05, hypergeometric test) overlap 
between module pairs between GTEx and NAFLD cohorts and overlap between the module and dysregulated 
genes associated with NAFLD. GTEx, genotype-tissue expression; NAFLD, non-alcohol fatty acid disease; 
NAFL, non-alcohol fatty liver; NASH, non-alcohol steatohepatitis; TPMs, transcripts per kilobase million. 
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Figure 2. The most significant reporter metabolites between patients with NAFLD and control samples through 
the employment of iHepatocytes2322. Reporter metabolites were calculated for the upregulated and 
downregulated genes for each comparison. Top30-ranked reporter metabolites and subsystems in 
iHepatocytes2322 associated with up-regulated and down-regulated genes in each comparison are presented, 
respectively. Colour is proportional to the minus logarithm of the p-value (-log10(p-value)), see also Dataset S4. 
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Figure 3. Validation of disease-related modules using two independent NAFLD cohorts. (A-C) Hierarchical 
clustering of Jaccard Index between module pairs from NAFLD cohort 1 and 2; NAFLD cohort 1 and 3; NAFLD 
cohort 2 and 3. Color scales representing the range of the Jaccard index. asterisk indicates the statistical 
significance of the overlap between gene members in any two modules from the different cohorts. (D) Venn 
diagram shows numbers of genes overlapped between cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7. 
(E) Dot-plot heatmap shows top 20 significantly (‘q-value FDR B&H’ < 0.05) enriched diseases by genes in each 
module (cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7). The size of each dot is proportional to the 
number of genes enriched in each disease term. (F) The table shows the results from a hypergeometric test between 
liver-specific proteome (HPA) and disease-associated modules in NAFLD cohorts, p-value less than 0.05. 
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Figure 4. (A) Venn diagram shows numbers of genes overlapped between GTEx_M3 cohort and 
cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7, respectively. (B) Dot-plot heatmaps are showing KEGG 
pathways enriched in different modules. The colour differences of dots indicate the studied cohort (GTEx or 
NAFLD) in which the module detected. The size of each dot is proportional to the significance (-log10(padj); padj 
represents ‘q-value FDR B&H’ with value < 0.05) of enrichment for each KEGG pathway term. (C-E) Correlation 
between degree among disease-associated modules from different cohorts. The correlation was evaluated by 
Spearman correlation coefficients.  
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Figure 5. Regulatory relationship between an enriched transcription factor and associated target genes in disease-
associated modules. (A) enriched transcription factors in GTEx_M3, cohort1_215_M4, cohort2_75_M3, and 
cohort3_58_M7. (B-F) mRNA hepatic expression of the enriched transcription factors in disease-associated 
modules, including SREBF2, HNF4A, SREBF1, YY1, and KLF13. (G-I) the regulatory network between 
enriched transcription factors and associated target genes in cohort1_215_M4, cohort2_75_M3, and 
cohort3_58_M7. The regulation between transcription factor and its target was retrieved from the TRRUST 
database. 
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Figure 6. (A) Reporter TF analysis was used to validate TFs identified in disease-associated modules using 
transcriptomics data of NAFLD cohort 1 and newly generated from a mouse NAFLD model. (B) Conserved 
disease-associated modules revealed the dysregulation in the mevalonate pathway, de novo lipogenesis, glycolysis, 
and lipolysis.  
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