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Abstract
Gene prediction and annotation for eukaryotic genomes is challenging with large data demands and1

complex computational requirements. For most eukaryotes, genomes are recovered from specific tar-2

get taxa. However, it is now feasible to reconstruct or sequence hundreds of metagenome-assembled3

genomes (MAGs) or single-amplified genomes directly from the environment. To meet this forth-4

coming wave of eukaryotic genome generation, we introduce EukMetaSanity, which combines state-5

of-the-art tools into three pipelines that have been specifically designed for extensive parallelization6

on high-performance computing infrastructure. EukMetaSanity performs an automated taxonomy7

search against a protein database of 1,482 species to identify phylogenetically compatible proteins8

to be used in downstream gene prediction. We present the results for intron, exon, and gene locus9

prediction for 112 genomes collected from NCBI, including fungi, plants, and animals, along with10

1,669 MAGs and demonstrate that EukMetaSanity can provide reliable preliminary gene predictions11

for a single target taxon or at scale for hundreds of MAGs. EukMetaSanity is freely available at12

https://github.com/cjneely10/EukMetaSanity.13
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Main14

Until recently, the large-scale annotation of eukaryotic genomes has not been a major requirement15

or consideration for the tools and pipelines built to perform aspects of gene prediction. This is a16

logical status of the state of the field as standard eukaryotic genomics requires a target organism of17

interest and extensive financial and data investments for sequencing, both for chromosome construc-18

tion (i.e., DNA-centric) and gene locus prediction (i.e., RNA-centric) (Xu et al., 2020; Mock et al.,19

2017; Shoguchi et al., 2018; Li et al., 2018; Leclère et al., 2019). However, with the maturation of20

the large-scale recovery of eukaryotic metagenomic-assembled genomes (MAGs) (Alexander et al.,21

2021; Delmont et al., 2021; Duncan et al., 2020; West et al., 2018), the steps for accurately predicting22

gene loci needs to shift from current methods that typically focus on a single genome to an approach23

that can be readily parallelized to annotate hundreds or thousands of genomes.24

As techniques such as metagenomics and single-cell amplified genomics more frequently provide25

environmental eukaryotic genomes without the presence of accompanying expression data, accurate26

gene identification using ab initio predictions and protein evidence will be required to leverage the27

information stored therein. Without the aid of expression data, gene locus prediction is computa-28

tionally complex and requires two major steps: (1) repeat identification/masking and (2) exon-intron29

boundary identification (Faure et al., 2021; Salzberg, 2019; Danchin et al., 2018; Yandell and Ence,30

2012). Both of these steps can be performed by a number of tools/pipelines built to support specific31

tasks, each with nuances in runtime, input requirements, and user supervision (Bruna et al., 2020;32

Lomsadze et al., 2005, 2014; Stanke et al., 2006; Hoff and Stanke, 2013; Hoff et al., 2015; Bruna33

et al., 2021; Levy Karin et al., 2020; Holt and Yandell, 2011; Cantarel et al., 2008). These tasks34

can also be expedited if suitably close phylogenetic neighbors can be identified to assist in evidence35

supported prediction(s) (West et al., 2018). Execution times for these steps in a typical eukaryotic an-36

notation pipeline can add hours or days to the total runtime needed to properly identify genes, making37

large-scale annotation projects difficult to plan and manage.38

Here, we present EukMetaSanity, a workflow package that combines crucial steps for accurate gene39

loci prediction without gene expression data, while also providing downstream avenues for protein40

annotation and gene refinement through the use of expression data when available (RNA-seq or tran-41

scriptomes). EukMetaSanity combines a number of tools and tasks into a single unified package that42

is easily deployable in different compute environments. The flexibility of EukMetaSanity is built into43

the application programming interface (API) that allows end-users to select the tools and databases44

relevant to their questions, but also for rapid incorporation of new tools and high-level paralleliza-45

tion on high performance computing (HPC) systems that support Simple Linux Utility for Resource46

Management (SLURM) (Yoo et al., 2003).47

The overarching workflow for genome annotation is split into three distinct components - Run, Report,48

and Refine (Figure 1). We will discuss below the details of the Run pipeline, prioritized with accurate49

identification of gene loci and exon-intron boundaries. Both the Report and Refine pipelines accept the50

genes predicted in the Run pipeline in order to perform protein annotation and gene locus refinement,51

respectively, using the same overall parallelization techniques. The Report pipeline annotates proteins52

identified in the Run or Refine pipelines using established databases and tools such as MMseqs253

(Steinegger and Söding, 2017), KofamScan (Aramaki et al., 2019), and eggNOG (Huerta-Cepas et al.,54

2018), while the Refine pipeline accepts RNA-seq and/or transcriptome data that can be mapped to55
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genomes using Hisat2 (Kim et al., 2019) and GMAP (Wu and Watanabe, 2005), respectively, and56

used in locus boundary refinement with BRAKER2 (Bruna et al., 2021). The implementation of the57

tools in the Report and Refine pipelines does not deviate from prescribed methodologies and accepts58

all user-defined parameters from the source programs.59

Figure 1: Schematic of the three EukMetaSanity pipelines: Run, Report, and Refine.

Herein, we will detail the performance of the Run pipeline, which automates gene locus prediction.60

The first priority of the Run pipeline is the determination of an approximate NCBI taxonomic assign-61

ment for the genome of interest, as this assignment will inform repeat masking and the proteins used62

as evidential support in gene prediction. This assignment is completed on a first-pass set of protein63

predictions that are generated by the program MetaEuk (Levy Karin et al., 2020). The MMseqs264

taxonomy subcommand compares the input genome against a modified database that contains the Or-65

thologous Database of Proteins (OrthoDB; n = 1,271 eukaryotic genomes) (Kriventseva et al., 2019)66

and the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP; n = 719 tran-67

scriptomes) (Keeling et al., 2014). The combined OrthoDB-MMETSP database provides extended68

coverage beyond laboratory cultivars and macrofauna to include environmental eukaryotes, specifi-69

cally emphasizing marine protists. The combined dataset encompasses 1,482 species and provides70

representatives for 352 Orders in 127 Classes (overlap determined using https://github.com/71
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frallain/NCBI_taxonomy_tree/pull/1). For reasons discussed below, these databases were se-72

lected due to their use of the NCBI taxonomy ID (taxid) ontology schema, which provides the ability73

to extract related organisms based on a shared identifier. Additional databases that use the NCBI taxid74

can be easily incorporated to expand the breadth of the databases packaged with EukMetaSanity, but75

databases that lack this shared ontology (Niang et al., 2020; Richter et al., 2020) would require mod-76

ification in their corresponding taxonomy schema or integration into steps further downstream in the77

Run pipeline than currently implemented.78

When an appropriate NCBI taxonomy can be identified, genomes undergo repeat identification and79

masking using RepeatMasker (Smit et al., 2013) which uses the Family- or Superfamily-level NCBI80

taxid to select repeat models from the DFam library (Hubley et al., 2016). Repeats are also masked81

in an ab initio fashion using RepeatModeler2 (Flynn et al., 2020), which runs multiple iterations82

of repeat identification and refinement to generate repeat families that inform the masking step in83

RepeatMasker. Taxonomic information is then used to select all relevant proteins from the OrthoDB-84

MMETSP database that match at least the Order-level predicted assignment. These proteins are used85

as inputs in gene prediction for GeneMark-EP (Bruna et al., 2020). Should a suitable Order-level86

assignment be unavailable or GeneMark ProtHint fail to predict intron boundaries, the annotation87

step defaults to GeneMark-ES (Lomsadze et al., 2005) to perform ab initio prediction. Additionally,88

we automate the first round of Augustus (Stanke et al., 2006) training by searching the input genome89

against the OrthoDB-MMETSP database with the MMseqs2 subprogram linsearch and, for the90

60 models in the Augustus species database, select the model with the highest scoring linsearch91

match. Predicted gene loci from all three annotation tools (GeneMark-EP/ES, Augustus, MetaEuk)92

are directly available, but, additionally, EukMetaSanity can combine multiple annotation tracks to93

provide gene loci approximations that capture all non-overlapping recovered loci (Tier 1), gene loci94

supported by two tools (Tier 2), or only gene loci supported by all three tools (Tier 3; Figure S1).95

To explore how reliable the EukMetaSanity Run pipeline was in returning accurate gene predictions,96

multiple experiments were conducted using high-quality genomes with accompanying gold standard97

annotations from the NCBI Reference Sequence (RefSeq) and GenBank databases, as well as per-98

forming comparisons between the methodologies used to predict genes in environmentally derived99

MAGs. To illustrate that the protein evidence methodology used by EukMetaSanity can recapitulate100

the gene content of gold standard eukaryote genomes, 102 genomes were selected from the NCBI101

RefSeq database plus an additional set of 10 genomes tested using BRAKER2 (Bruna et al., 2021)102

and the recently released platypus genome (Zhou et al., 2021). The 112 genomes were selected to103

provide representatives from a phylogenetically diverse set of organisms with a range of overall ge-104

nomic complexity and size, ranging from unicellular algae (Guillardia theta, 55.1Mbp) (Curtis et al.,105

2012) to the platypus (Ornithorhynchus anatinus, 1.86Gbp; Supplemental Data 1).106

To our knowledge, this is the first time that a comparison has been made for 100+ eukaryote genomes107

using these three annotation approaches, with previous assessments ranging from 7-12 genomes (Levy108

Karin et al., 2020; Bruna et al., 2021; Banerjee et al., 2021). This computationally intensive task109

(18,461 CPU hrs for 48 genomes with length 100-400 Mbp; 8,879 CPU hours for 14 genomes ≥400110

Mbp) is achieved in relatively short time-scales through the aggressive use of parallelization and111

optimization by EukMetaSanity to manage the resources distributed to compute nodes on an HPC112

system (Figure S2; Supplemental Data 2).113

For the three gene prediction software suites used to analyze the NCBI genome set, BUSCO (Seppey114
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et al., 2019) completion scores were used to estimate the impact on genome annotation (Supplemen-115

tal Data 1). Genomes annotated with the GeneMark-EP program (Bruna et al., 2020) produced a116

distribution of identified BUSCO completion estimates that were not significantly different from the117

reference set (pBH-FDR = 0.3553; Wilcoxon rank-sum). When compared to the reference annotation,118

the GeneMark-EP annotation resulted in a median decrease of five identified BUSCO proteins, while119

the median decrease for identified BUSCO proteins for Augustus (Stanke et al., 2006) and MetaEuk120

Levy Karin et al. (2020) was 70 and 110, respectively (Figure 2A). GeneMark-EP and MetaEuk121

over-predicted the total number of proteins in the dataset by 16.4% and 72.2%, respectively, while122

Augustus under-predicted the total number of proteins by 36.2% (Figure 2A). Combining annotation123

tracks using the Tier 1 criteria resulted in a final gene track which benefited from the initial high-124

scoring GeneMark-EP annotation set and which incorporates additional gene loci identified either by125

MetaEuk or Augustus, resulting in a median decrease of four BUSCO proteins when compared to126

the reference and an over-prediction of 65.7% of the total number of proteins (Figure 2A). Tier 1127

predictions resulted in the smallest number of genomes that had lower BUSCO completeness, and128

was able to return the same completeness score or higher for 50.0% of the genomes. Collectively,129

the GeneMark-EP and Tier 1 approach performed well in minimizing the number of BUSCO proteins130

lost during gene prediction; however, both methods over-predict the number of detected genes. The131

high degree of over prediction in the Tier 1 approach is to be expected as it combines results from132

all three tools, substantially increasing the number of false positives. As an alternative approach, the133

EukMetaSanity Tier 2 method outputs genes that are supported by at least two lines of evidence. With134

the Tier 2 criteria, the number of genomes that lost BUSCO proteins increased, but this loss of true135

positives is offset by a drastic decrease in potential false positives (Tier 2 under-predicts total proteins136

by 6.3%; Figure S3). The use of either GeneMark-EP, Tier 1, or Tier 2 outputs depends on the goal137

of the researcher to maximize sensitivity (Tier 1) or precision (Tier 2; Figure S3).138

To assess the recovery at the individual gene loci level, the program GffCompare (Pertea and Pertea,139

2020) was used to perform a stringent comparison between the EukMetaSanity output and the NCBI140

reference (Supplemental Data 1). GffCompare uses stringent cutoffs in its assignment of true positives141

(TP), false positives (FP), and false negatives (FN) that require exact coordinate matches for features142

(i.e., base-, exon-, intron-, and locus-level), and allows for no more than a 100-base difference at the143

ends of exons when assessing locus-level accuracy. We found that each of the programs used in Euk-144

MetaSanity achieved median sensitivity and precision values > 59.0% in the NCBI dataset when con-145

sidering base-level matches (total number of bases assigned to an exon at the same coordinate), with146

the Tier 1 approach and GeneMark-EP scoring the highest base-level sensitivity (86.2% and 84.2%,147

respectively) and precision scores (83.8% and 89.5%, respectively; Figure 2B-E). Key differences in148

each program are apparent in the annotation quality with respect to accurate identification of exon149

and intron feature levels. While both features retained median sensitivity and precision > 59% for150

GeneMark-EP and Tier 1 predictions, MetaEuk saw median sensitivity and precision scores of 4.7%151

and 10.2%, respectively, for exon recovery, and 0.9% and 9.5%, respectively, for intron recovery (Fig-152

ure 2B). For Augustus, the median sensitivity and precision were 23.1% and 42.3%, respectively, for153

exon recovery, and 27.8% and 51.2%, respectively, for intron recovery (Figure 2C). The median per-154

centages for unannotated gene loci for MetaEuk, Augustus, GeneMark, and Tier 1 predictions were155

19.2%, 25.5%, 11.1%, and 7.4%, respectively (Figure 2B-E). These results demonstrate that even156

when considering the strict cutoffs used by GffCompare, GeneMark-EP and the Tier 1 output are157

able to produce high accuracy annotation predictions that recover ∼90% of the previously annotated158
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Figure 2: [Continued on next page.]
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Figure 2: Comparison of EukMetaSanity results to NCBI provided annotations for 112
genomes. (A) Box plots comparing BUSCO completeness and protein prediction results for the three
gene prediction tools and Tier 1 approach against the NCBI reference (n = 112). From left to right:
Panel 1 - BUSCO completeness for each genome. p-value for Wilcoxon ranked sum with Benjamini-
Hochberg false discovery correction. Panel 2 - The total number of BUSCO proteins lost/gained
for each genome. Panel 3 - The log decrease in BUSCO proteins. Panel 4 - The log increase in
BUSCO proteins. Panel 5 - Log size of proteins recovered. (B-E) Box plots comparing GffCompare
results for the three gene prediction tools and Tier 1 approach. Sensitivity and precision calculated as
S = T P/(T P+FN)) and P = T P/(T P+FP), respectively. %Missed Exon, Intron, and Locus indi-
cates that value not recovered by the associated method. (F-I) Box plots comparing LocusCompare
results for the three gene prediction tools and Tier 1 approach. F1 = 2× (S×P)/(S+P)

loci.159

At locus-level resolution, GffCompare results provide a perspective that relies on exact boundary160

accuracy of all introns. We performed a complimentary assessment to compare the degree to which161

gene content is captured, but for which intron structure may be incorrect. This method, which we call162

LocusCompare, identifies the degree to which a predicted gene overlaps a reference gene loci (i.e.,163

length of prediction-reference overlap divided by the length of the reference; Figure S4). TP, FP, and164

FN are determined using a sliding scale of threshold cutoffs (0.1 - 1.0) that reflects the proportion165

of the reference locus that is recovered (e.g., a threshold value of 0.1 indicates a predicted gene166

overlaps at least 10% of the reference gene at a locus position and 1.0 represents an overlap of the167

exact length, or greater, of the reference gene; Figure S4; Supplemental Data 1). GeneMark-EP168

and Tier 1 predictions retained median F1 scores ≥ 0.5 for LocusCompare threshold values ≤ 0.9169

(Figure 2F-G), while MetaEuk and Augustus F1 scores dropped < 0.5 at lower threshold values170

(≤ 0.4 and ≤ 0.7, respectively; Figure 2H-I; Supplemental Data 3). The GeneMark-EP and Tier 1171

results indicate that, for many genes predicted by EukMetaSanity, the recovered genes are at least172

90% of target gene length. And, while Tier 1 predicts a larger number of total proteins, this does not173

result in a large decrease in F1 scores when compared to GeneMark-EP. These results suggest that174

EukMetaSanity functions well when the status about the presence/absence of a protein is important,175

for example interpreting metabolic potential from a large MAG dataset (as in Alexander et al. 2021).176

A fraction of a loci, when translated to protein, may be suitable for detecting a gene despite inexact177

intron boundaries, and may yield results that can be explored further with the databases provided in178

the Report pipeline. We do not recommend the use of the EukMetaSanity Run pipeline alone if the179

goal is to determine exact intron-exon boundaries, which will still require additional transcript-level180

support.181

From the larger overall analysis of 112 NCBI genomes, here we highlight 11 particularly relevant182

bellwether examples that underscore the advantages and limitations of EukMetaSanity for plant and183

animal taxa. For these taxa, EukMetaSanity was effectively able to recover a large percentage of the184

known gene loci (Figure S5). In this subset, the Tier 1 and Tier 2 approaches recovered BUSCO185

scores that differed by < 3.6% from each other, with the exception of the platypus genome. In these186

instances, the Tier 2 approach showed marked increase in F1 scores across all thresholds, as well as an187

increase in sensitivity and precision metrics at the base-, exon-, intron-, and locus-levels (Supplemen-188
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tal Figure 6F & 6K). The Tier 1 approach overestimated the number of recovered gene loci (760,818189

predicted genes vs 384,839 reference genes), but the Tier 2 approach acted as a useful filter to re-190

move false positives, pseudo-genes, and other spurious ORFs that are not supported by at least two191

annotation programs (349,810 predicted genes; Figure S5). The only exception to this was the Or-192

nithorhynchus anatinus (platypus) genome, which exemplifies an instance when ab initio prediction193

is superior to protein evidence supported predictions. There are only 18,894 proteins in the OrthoDB-194

MMETSP from the Order Monotremata, which come from organisms other than O. anatinus (i.e.,195

echidnas). In comparison, the platypus has 38,847 annotated genes. In this instance, ab initio pre-196

diction through Augustus was successful in recovering a large fraction of the expected genes (70.2%197

BUSCO completeness; Supplemental Data 1) compared to gene predictions that included protein ev-198

idence (7.5% and 0% BUSCO completeness for MetaEuk and GeneMark-EP, respectively). The lack199

of sufficient representation in the OrthoDB-MMETSP database drastically decreases the likelihood200

that protein evidence-based gene prediction software can accurately resolve gene loci in this newly201

sequenced mammal species.202

To further explore the impact of a lack of closely related organisms in the taxonomic database on gene203

prediction results for novel environmental organisms, we artificially removed a selection of organisms204

from the OrthoDB-MMETSP database prior to gene prediction. From NCBI RefSeq, we identified 34205

fungal genomes (assigned to the Kingdom Fungi) from 15 different Orders and created 15 modified206

OrthoDB-MMETSP databases, each depleted of proteins from the corresponding fungal Order (Sup-207

plemental Data 4). These results recapitulate those reported using the NCBI gold standard genomes:208

GeneMark-EP and the Tier 1 were superior in recovering predicted gene loci compared to Augustus209

and MetaEuk (Figure 3; Figures S6 and S7). Exploring the results from GeneMark-EP, there was210

no statistical difference between the BUSCO completeness for genomes when using the full database211

versus the database depleted of genomes sharing the same Order (pBH-FDR = 0.849; Wilcoxon rank212

sum; Figure 3). For the GeneMark-EP output, we did see slight decreases in precision and sensitivity213

for most of the categories assessed using GffCompare and slight increases in the percent exons, in-214

trons, and loci missed in the annotation step. The total number of proteins recovered increased when215

using the depleted database (+42,850 proteins), while the average protein length decreased (-7 amino216

acids), suggesting that at least some of the gene loci were being unintentionally split when using a217

more distantly related protein set as evidence (Table S1). On an approach-by-approach basis, there218

was a trend of similar BUSCO completeness values and LocusCompare F1 scores when comparing219

the full versus depleted databases, though the values for MetaEuk and Augustus were substantially220

lower (Figure 3; Figure S7; Supplemental Data 5). The results from this assessment indicate that the221

method implemented by EukMetaSanity can be used to provide gene annotations for genomes even222

when near neighbors within the same Order are not available. In this instance, the presence of related223

Orders in the database acted as a bridge to provide sufficient information to recover quality gene an-224

notations. For organisms that lack representation at the Class or Phylum level, the lack of reference225

proteins will undoubtedly have an impact on gene recovery. EukMetaSanity is designed to handle226

these cases by defaulting to the GeneMark-ES implementation and providing an output like the Tier 2227

approach which can return putative gene loci supported by at least two of provided annotation tools,228

affording added confidence in the final annotation set, as well as decreasing the total false positive229

protein predictions that are included (Figure S3). As the data illustrates, this approach is also useful230

for more complex organisms.231

After establishing the functionality of EukMetaSanity on the benchmark datasets above, we applied232
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Figure 3: Reliability of EukMetaSanity using Order-level depleted databases for 34 fungal
genomes in 15 Orders. Box plots comparing BUSCO completeness and protein prediction results
for the three gene prediction tools and Tier 1 approach against the NCBI reference (n = 34) for the
complete OrthoDB-MMETSP database (green) and depleted database lacking the associated Order-
level set of proteins (orange). From left to right: Panel 1 - BUSCO completeness for each genome.
p-value for Wilcoxon ranked sum with Benjamini-Hochberg false discovery correction. Panel 2 - The
total number of BUSCO proteins lost/gained for each genome. Panel 3 - The log decrease in BUSCO
proteins. Panel 4 - The log increase in BUSCO proteins. Panel 5 - Log size of proteins recovered.

the Run pipeline to two sets of marine, eukaryotic MAGs reconstructed from the Tara Oceans large233

size fraction metagenomic datasets (Supplemental Data 6-7) (Carradec et al., 2018). Here we high-234

light the impact of applying EukMetaSanity gene prediction compared to two different approaches235

used by the authors. As no “gold standard” annotation exists for the recovered MAGs, our intentions236

were to compare the results provided by EukMetaSanity to the methodologies initially used in gene237

annotation.238

Delmont et al. (2021) reconstructed 682 eukaryotic MAGs and performed annotation using a pro-239

tocol that included protein mapping against the Uniref90 and METdb (Niang et al., 2020) databases240

with splice aware mapping, ab initio predictions using Augustus, and a mapping step that used 905241

metatranscriptome assemblies (Pesant et al., 2015). While the specific approaches to protein map-242

ping differ, the overall concept was conserved between the Delmont et al. (2021) methodology and243
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Figure 4: Comparison of EukMetaSanity results to alternative annotation pipelines used for
Tara Oceans MAGs. (A) MAGs from Delmont et al. (2021) (n = 682). (B) MAGs from Alexander
et al. (2021) (n = 987). From left to right: Panel 1 - BUSCO completeness for each genome. p-value
for Wilcoxon ranked sum with Benjamini-Hochberg false discovery correction. Panel 2 - The total
number of BUSCO proteins lost/gained for each genome. Panel 3 - The log decrease for genomes that
lost BUSCO proteins. Panel 4 - The log increase for genomes that gained BUSCO proteins. Panel 5 -
Log size of proteins recovered.
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the approach implemented by EukMetaSanity (i.e., providing useful protein evidence to downstream244

processes). However, the metatranscriptome mapping is a time and computationally intensive step245

(682 MAGs × 905 metatranscriptomes), where the total Tara Oceans metatranscriptome dataset to-246

tals ∼11TB of data. Additionally, no repeat modeling or masking was conducted as part of the initial247

protocol. Within EukMetaSanity, GeneMark-EP and the Tier 1 results generated BUSCO comple-248

tion estimates that were not significantly different from the completion estimates from the Delmont249

et al. (2021) protocol (pBH-FDR = 0.2421; Wilcoxon rank-sum; Figure 4A). The Tier 1 approach in-250

creased the number of identified BUSCO proteins in over 62% of the processed MAGs by a median251

of five additional BUSCO proteins per MAG. For the less than 48% of MAGs that saw a decrease252

in BUSCO proteins, the median number of BUSCO proteins lost was three (Figure 4A). The Tier 1253

approach increased the total number of identified proteins in the complete dataset by 19% (compar-254

atively, GeneMark-EP identified 6% more proteins; Figure 4A). Both MetaEuk and Augustus under-255

predicted the number of genes in the MAG dataset and produced BUSCO completion estimates with256

values that were significantly lower than the Delmont et al. (2021) protocol (pBH-FDR = 3.48×10-10,257

pBH-FDR = 1.98×10-5, respectively; Wilcoxon rank-sum; Figure 4A). The fact that EukMetaSanity258

delivers similar MAG completeness scores without the computationally intensive transcriptome map-259

ping, while increasing the total number of putative proteins, demonstrates that EukMetaSanity can be260

used to provide initial gene predictions for environmental genomes. Excitingly, when a dataset like261

the Tara Oceans metatranscriptome is available, the Refine pipeline is available to automate this step262

and provide refined gene predictions through BRAKER2.263

Interestingly, one putative Delmont et al. (2021) MAG (TARA_MED_95_MAG_00445) consistently264

failed to annotate genes with GeneMark-EP. Using genes identified with Augustus and MetaEuk (16265

and 1,930 proteins, respectively), annotation with EukMetaSanity resulted in 1,943 non-overlapping266

protein predictions. Taxonomy prediction using the MMseqs2 taxonomy subprogram for the MetaEuk-267

derived proteins identified 44% as belonging to the Phylum Ciliophora and the MAG had a relatively268

small proportion (0.33%) of interspersed repeat elements (n = 322). A cursory analysis using Tiara269

(Karlicki et al., 2021) revealed that the 13.5 Mbp MAG in question consisted of DNA sequences270

whose origins were 28.8% eukaryotic, 28.3% bacterial, 10.2% archaeal, 7.3% prokaryotic, and 25.4%271

unknown. When protein prediction was performed using Prodigal v2.6.3 (-p meta) (Hyatt et al.,272

2012), a tool for prokaryotic gene prediction, the number of recovered putative coding sequences273

increased from 1,943 to 9,020, suggesting that this particular MAG represented a binning error that274

combined genomic content across Domains. This is an interesting test case to illustrate that the cor-275

rectly implemented gene annotation pipeline can act as a quality control check on environmentally276

derived genomes going forward.277

Alexander et al. (2021) generated 987 eukaryotic MAGs from the Tara Oceans large size fraction278

metagenomic dataset (Supplemental Data 7). The initial annotation protocol (not published) applied279

an ab initio pipeline that ran GeneMark-ES and MAKER (Holt and Yandell, 2011) on the input280

MAG with no masking of repetitive DNA. Using this annotation as a baseline, both GeneMark-EP281

and the Tier 1 approach were not significantly different from the estimated BUSCO completeness282

scores compared to the original Alexander et al. (2021) protocol (pBH-FDR = 0.3565; Wilcoxon283

rank-sum; Figure 4B). Both MetaEuk and Augustus had significantly lower BUSCO completeness284

(pBH-FDR = 5.59×10-6, pBH-FDR = 3.19×10-10, respectively; Figure 4B). The Tier 1 approach in-285

creased the number of identified BUSCO proteins in 402 MAGs (40.7%) with 60 MAGs (6.1%)286

seeing an increase of ≥10 BUSCO proteins, including four MAGs (0.4%) seeing an increase of ≥100287
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BUSCO proteins. This approach maintained the number of identified BUSCO proteins in 217 MAGs288

(22.0%; Figure 4B). Conversely, 368 MAGs (37.3%) decreased in the number of identified BUSCO289

proteins, but only 18 MAGs (1.8%) lost ≥10 BUSCO proteins (Figure 4B). Using the Tier 1 approach,290

we increased the total number of proteins identified by 30%. Processing the Alexander et al. (2021)291

MAGs dataset illustrates how EukMetaSanity increases the quality of gene prediction and the total292

number of proteins from such a dataset, profoundly expanding the amount of data that can be passed293

to the functional annotation step and used for resolving metabolic reconstructions. The corresponding294

EukMetaSanity-derived gene predictions were used to assess functional potential for the Alexander295

et al. MAGs and provided insight into the ecological distribution of trophic strategies for the dataset296

(Alexander et al., 2021).297

EukMetaSanity is an advanced workflow package for high-throughput gene prediction of eukaryotic298

genomes that streamlines the recovery of gene loci in environmental and cultivated genomes. Im-299

plementing the EukMetaSanity Run pipeline, we were able to annotate 1,785 genomes with repeats,300

introns, and exons using multiple top-of-the-line tools with automated selection for the necessary301

training data to recover high-quality gene loci information. The work presented here demonstrates302

that using the Tier approaches or GeneMark-EP as implemented within EukMetaSanity fits an im-303

portant niche for the near future of eukaryotic genome annotation - both rapid preliminary annotation304

of genomes lacking transcript evidence and annotation of environmental genomes reconstructed from305

undersampled and uncultivated clades. When processed serially, many of the individual steps im-306

plemented in EukMetaSanity can be incredibly time intensive (e.g., >30 hours for repeat prediction307

and >24 hours for gene loci prediction for >1Gbp genomes) which can create bottlenecks during data308

processing. The automated parallelization provided by EukMetaSanity allows researchers to fully309

optimize their computational infrastructure, prevent wasted allocation allotments, and, because each310

step of EukMetaSanity is compartmentalized, provide an avenue of rapid parameterization of steps311

for variations in datasets. Rapid parameterization is especially important when new tools or databases312

are introduced into the workflow - which the API has been specifically designed to accommodate by313

making large-scale changes accessible with minimal understanding of the core code. EukMetaSanity314

provides a first step towards making the annotation of eukaryote genomes as accessible to the average315

researcher as current methodologies allow for their prokaryotic counterparts.316

Methods317

EukMetaSanity was implemented using Python and the yapimAPI (https://github.com/cjneely10/318

YAPIM). Briefly, the yapim API distributes a data analysis pipeline across multiple inputs using user-319

defined memory and CPU resources. By leveraging simple concurrent computing operations such as320

locks and conditions, yapim reduces the total execution time for a resource-intensive analysis such321

as EukMetaSanity, allowing for and automating the parallelized large-scale analyses of hundreds or322

thousands of organisms.323

Databases324

EukMetaSanity is packaged with three pre-computed MMseqs2 protein databases (Steinegger and325

Söding, 2017) which are used throughout each pipeline as a source of protein-level evidence to various326
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programs. The databases are the Orthologous Database of Proteins (OrthoDB; n = 1,271 eukaryotic327

genomes) (Kriventseva et al., 2019), the Marine Microbial Eukaryotic Transcriptome Sequencing328

Project (MMETSP) (Keeling et al., 2014) protein taxonomy database (n = 719 transcriptomes), and a329

combined version of the two (OrthoDB-MMETSP) generated by using the concatdbs subcommand330

of the MMseqs2 software suite. These databases contain embedded NCBI taxonomy information331

which affords sub-setting at various taxonomic levels. Several downstream tools are constrained332

by the use of NCBI taxonomy and require synchronization between databases at multiple phases,333

providing one of the main limitations between mixing tools and databases from multiple sources. By334

default, EukMetaSanity incorporates the OrthoDB-MMETSP database at various steps in its pipelines335

to provide adequate coverage of varying biologically-relevant datasets and environments. Users have336

the option of selecting to use any of the three provided databases, or to use their own MMseqs2337

seqTaxDB database type.338

Tools within EukMetaSanity rely on protein evidence to generate accurate predictions. The OrthoDB-339

MMETSP database is used to identify putative taxonomy and to generate a subset of proteins that are340

mapped to the input genome for intron boundary prediction. The choice of protein database will ul-341

timately affect the kinds of evidence that are available in the pipeline. For example, the MMETSP342

database underrepresents animals, so using it to annotate a Metazoan genome without including Or-343

thoDB can drastically affect the quality of an annotation.344

Run345

The Run pipeline predicts gene loci and exon-intron boundaries for submitted genomes by accumu-346

lating ab initio and protein evidence. For each input genome, the Run pipeline will generate a set347

of one or more gene-finding format files (e.g., GFF, repeats), as well as FASTA files containing the348

gene coding regions of the genomic DNA and the derived protein sequences. The results from each349

program are optionally merged to a single set of non-overlapping gene locus predictions.350

Protein evidence gene prediction.351

First pass protein prediction is completed using MetaEuk (Levy Karin et al., 2020) and the OrthoDB-352

MMETSP database. This step is completed on the input genome prior to masking, and identified353

proteins may include pseudo-genes that include larger repetitive DNA elements. MetaEuk predicts354

proteins by first performing a six-frame translation on each contig, identifying putative protein-coding355

segments. These segments are then searched through the OrthoDB-MMETSP database, and protein356

fragments that match to the same reference protein are collected. Fragments corresponding to pu-357

tative exons are ordered and scored, and the highest scoring set of exons is returned as the putative358

protein. Here, users may provide e-value cutoffs and minimum sequence identities per the MetaEuk359

documentation.360

Taxonomy.361

Subsequent steps in the Run pipeline rely on protein-based evidence at varying taxonomic levels. The362

MMseqs2 subprogram taxonomy provides an assignment of the MetaEuk-predicted protein sequences363

generated using OrthoDB-MMETSP. Users may provide e-value, coverage, and sequence identity364

cutoffs per the MMseqs2 documentation. In reported taxonomic assignments, levels that do not meet365
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user-provided cutoffs are labelled with their parent labels (i.e., if the Order-level is not identified,366

pipeline steps will operate on the Class-level, etc.).367

Next, sequences with identified homologs in the database are parsed into a taxon tree, and the NCBI368

taxid of the lowest common ancestor is identified between the query and matching protein sequence369

sets. The MMseqs2 taxonomyreport submodule converts the results of the taxonomy search to370

a taxon tree that displays the organism’s likely assignment at various taxonomic levels (Kingdom,371

Phylum, etc.). Users may provide a lower-bound on the acceptable percentage of proteins that need372

to be identified for an assignment.373

Repeats identification.374

The input genome is processed in order to hard-mask short and long interspersed nuclear repeats, as375

well as other DNA transposons, small RNA, and satellite repeats. Two options for repeat identification376

have been included as part of the Run pipeline. RepeatMasker (Smit et al., 2013) identifies repetitive377

DNA content from the DFam library (Hubley et al., 2016) of repeats using either the Family- or378

Superfamily-level NCBI taxid identified in the taxonomy step. RepeatModeler2 (Flynn et al., 2020)379

can be used as the only source of repeat prediction or in conjunction with a RepeatMasker species to380

generate ab initio predictions of repetitive DNA regions. Including both levels of repeat annotation381

maximizes the chances to identify and mask repeat content in the genome. RepeatModeler has a382

long runtime and operates best on genomes with high assembly N50, and RepeatMasker requires383

that NCBI repeat models exist for a given genome. Users who do not perform both steps may miss384

repeat content. Because repetitive DNA regions may include pseudo-genes whose intron boundaries385

do not reflect intron models of true genes, these regions must be masked prior to subsequent ab initio386

prediction to generate the most accurate models of intron splice sites in a given organism. Both of387

these DNA repeat models are then used to hard-mask any repeat regions identified, excluding low-388

complexity repeats. Users may also provide external repeat libraries to use in masking at this step, if389

they are available or for more complex organisms.390

Ab initio gene prediction.391

EukMetaSanity contains implementations for two ab initio gene prediction programs. In both cases,392

repeat-masked genome sequences are used as input. Users may use one or both ab initio protocols.393

Using both protocols affords the additional opportunity to capture gene content that may be missed394

by the other predicting software.395

Augustus (Stanke et al., 2006): Augustus is packaged with gene identification models for var-396

ious animals, alveolates, plants/algae, fungi, bacteria, and archaea. EukMetaSanity automates397

the selection of an Augustus species model for each input genome by running the MMseqs2398

linsearch module to identify proteins in the masked genome sequence that are found in the399

OrthoDB-MMETSP database. The Augustus species that bears the highest number of assign-400

ments to proteins identified by linsearch is selected as the model for the first round of ab initio401

training. Users may provide search criteria to linsearch that specify minimum sequence identity,402

coverage, etc.403

Subsequent rounds of training are conducted iteratively by generating training parameters based404

on the results of the prior round. This is accomplished using the Augustus subprograms gff2gbSmallDNA.pl,405
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new_species.pl, and etraining. Typically, one additional round of Augustus training is suffi-406

cient, but users may elect to perform more training rounds as desired. High numbers of training407

rounds may result in a gradual reduction in captured gene content, so users are advised against408

over-training.409

GeneMark-EP/ES (Bruna et al., 2020; Lomsadze et al., 2005): Using the MMseqs2 module410

filtertaxseqdb, proteins that share the same Order-level assignment as the input genome are411

subset from the OrthoDB-MMETSP database. These proteins are provided as input to the Gene-412

Mark subprogram ProtHint, which generates intron predictions by performing spliced protein413

alignments of the sequences selected from OrthoDB-MMETSP to the masked genome using414

the program Spaln (Gotoh, 2008). If ProtHint fails, or < 100 introns are predicted, then pro-415

teins are predicted using GeneMark-ES. Otherwise, output from ProtHint is provided with the416

masked genome as input to GeneMark-EP. Users may provide parameters to either ProtHint or417

GeneMark-EP to filter the allowable contig and gene sizes in the prediction protocol. GeneMark-418

EP or -ES is automatically run in fungal mode for relevant genomes.419

Merging final results.420

While the output of each preceding program can be used directly, we provide a final merging pro-421

tocol to reduce the gene annotations to a single set of gene predictions per gene locus in poly-422

logarithmic time (https://github.com/cjneely10/LocusSolver). Each annotation file is input423

into the merging script in GFF3 format. Annotation locations (loci) are merged into larger “superloci”424

which can consist of one or more gene tracks at that locus. For each strand within each superlocus, a425

predicted gene is selected, with priority selection assigned to GeneMark-EP/ES, then Augustus, and426

finally to MetaEuk (Tier 1; Figure S1). Users may add an additional filter to retain only genes whose427

locus is supported by more than one line of evidence (Tier 2 or Tier 3; Figure S1).428

Refine429

The Refine pipeline is a transcriptome-based gene prediction workflow that uses BRAKER2 (Bruna430

et al., 2021) for predictions. The repeat-masked genome and Order-level proteins subset from the431

OrthoDB-MMETSP database generated in the Run pipeline are used as inputs. Users may also choose432

to incorporate the gene prediction results from a previously completed GeneMark-EP/ES implemen-433

tation in the Run pipeline, or may start a new ab initio gene prediction process. Users will provide434

either trimmed RNA-seq reads or assembled transcriptomes as input to the pipeline. Trimmed RNA-435

seq data are mapped to the masked genome using Hisat2 (Kim et al., 2019), the SAM output of which436

is subsequently converted to BAM format and sorted using Sambamba (Tarasov et al., 2015). As-437

sembled transcriptomes are mapped to the input genome using GMAP (Wu and Watanabe, 2005), the438

results of which are then similarly converted and sorted to BAM format. The combined set of out-439

put BAM files are provided as input to BRAKER2, which outputs multiple result formats including440

Augustus- and GeneMark-based predictions. The additional level of evidence provided by gene ex-441

pression data captures feature content such as alternative transcription start sites and the locations of442

5’ and 3’ untranslated regions of genes. Additionally, gene expression data can modify and improve443

results from Run-derived predictions.444
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Report445

The Report pipeline provides functional annotation of the predicted proteins. This pipeline anno-446

tates gene loci predicted in either the Run and/or Refine stages using MMseqs2 (Steinegger and Söd-447

ing, 2017), eggNOG-emapper (Huerta-Cepas et al., 2019, 2018), and/or KofamScan (Aramaki et al.,448

2019). MMseqs2 runs the subprogram search or linsearch against a number of pre-computed449

databases provided from the MMseq2 authors (mmseqs databases command), including Pfam (El-450

Gebali et al., 2018), UniRef (Suzek et al., 2007), the NCBI non-redundant protein database, db-451

CAN2 (Zhang et al., 2018), and others, all of which can be used to assign functional annotation452

to genes. The download of these databases occurs outside of EukMetaSanity, but any number of453

pre-computed or user generated databases can be designated for search with this step within the con-454

figuration file. eggNOG-emapper and KofamScan are implemented within this pipeline to provide455

eggNOG and KEGG functional annotations to proteins, respectively. These programs are distributed456

through their specific organizations and must be installed externally with instructions provided on457

the EukMetaSanity installation page (https://github.com/cjneely10/EukMetaSanity/blob/458

main/INSTALLATION.md). Tab-delimited summary files for each gene call are generated.459

Benchmark Datasets460

We tested how well EukMetaSanity accurately predicted proteins using three different datasets. Pa-461

rameters used with EukMetaSanity can be found in Table S2. We collected a set of 112 gold standard462

genomes from NCBI (National Library of Medicine , US) from various taxonomic levels across the463

tree of life (accessed 7 January 2021; Supplemental Data 1). We selected 34 fungal genomes that464

belonged to 15 fungal Orders (Supplemental Data 4). For each Order, we generated an MMseqs2465

database from the combined OrthoDB-MMETSP database that removed all proteins from the target466

Order using the MMseqs subprogram filtertaxseqdb. Each fungal genome was then annotated467

using the EukMetaSanity Run pipeline with a respective database depleted in proteins from their468

identified Order. EukMetaSanity was tested against a large eukaryotic MAG dataset of 1,669 MAGs,469

generated from the Tara Oceans metagenomic datasets by Delmont et al. (2021) (n = 682 MAGs; Sup-470

plemental Data 6) and Alexander et al. (2021) (n = 987 MAGs; Supplemental Data 7). In Delmont et471

al. (2021), the MAGs were annotated using a tripartite approach that integrated protein alignments,472

metatranscriptomic mapping, and ab initio gene predictions. In Alexander et al. (2021), the MAGs473

were annotated using GeneMark-ES and the MAKER pipeline with no repeat masking. Both sets of474

MAGs were annotated using the EukMetaSanity Run pipeline with the complete OrthoDB-MMETSP475

databases.476

Benchmarking477

We assessed gene prediction performance at the whole genome level by comparing BUSCO (Seppey478

et al., 2019) completeness results with the eukaryota_odb10 dataset, and the sensitivity and pre-479

cision of individual gene loci for EukMetaSanity results compared to the annotations provided by480

NCBI. Each of the four gene loci prediction protocols (MetaEuk, GeneMark-EP, Augustus, and the481

Tier 1 approach) were compared against the NCBI reference annotations.482

For all gene predictions from NCBI references, MAGs, and EukMetaSanity, protein-level annotations483

in GFF/GFF3 format were converted to protein sequences using GFFread v0.12.1 and subsequently484
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processed by BUSCO v4.1.2 (parameters: -m prot -l eukaryota) to provide a completeness es-485

timate for each genome. We compared the distribution of BUSCO completeness scores identified486

in the reference annotations to the EukMetaSanity annotations from each gene prediction protocol487

with significance determined using the Wilcoxon rank-sum statistic (Mann and Whitney, 1947) with488

Benjamini-Hochberg multiple test correction (Benjamini and Hochberg, 1995).489

Using the program GffCompare v0.12.5 (Pertea and Pertea, 2020), we generated metrics that com-490

pared the reference annotations to annotations derived from the programs contained within Euk-491

MetaSanity. These metrics summarized the sensitivity (S = T P/(T P + FN)) and precision (P =492

T P/(T P+FP)) between the reference and query annotations at the base, exon, intron, and intron-493

chain (locus) levels. At the base-, exon-, and intron-levels, a query feature is only marked as a true494

positive if the start and end coordinates exactly match the reference. For intron chains, all introns in495

the query transcript must exactly match the reference transcript. At the locus level, a putative intron496

chain in the query locus must exactly match an intron chain in the set of intron chains present at the497

reference locus. Intron chain-level accuracy allows a maximum distance of 100bp between the ends498

of the terminal exons in the query locus and the ends of the reference locus.499

We developed LocusCompare (https://github.com/cjneely10/EukMetaSanity/blob/main/500

tests/LocusCompare.py) as an additional metric that determines gene-specific sensitivity and pre-501

cision based on an overlapping locus in the genome and compares the predicted gene to the reference502

gene (Figure S4). We determined the fraction of the reference gene covered by the prediction by503

dividing the length of the overlapping region by the total length of the reference gene. We then set504

threshold cutoffs values between 0.1 and 1.0 and considered features that meet the threshold as TPs,505

and those that do not meet the threshold (or that bear redundancies) as FPs. Any missed reference506

gene locus is marked as a FN. F1 scores were calculated for each annotation set for each threshold507

(F1 = 2× (S×P)/(S+P)).508
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