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Abstract: 37 

Identifying virus characteristics associated with the largest public health impacts on human 38 
populations is critical to informing zoonotic risk assessments and surveillance strategies. Efforts 39 
to assess “zoonotic risk” often use trait-based analyses to identify which viral and reservoir host 40 
groups are most likely to source zoonoses but have not fully addressed how and why the impacts 41 
of zoonotic viruses vary in terms of disease severity (‘virulence’), capacity to spread within 42 
human populations (‘transmissibility’), or total human mortality (‘death burden’). We analyzed 43 
trends in human case fatality rates, transmission capacities, and total death burdens across a 44 
comprehensive dataset of mammalian and avian zoonotic viruses. Bats harbor the most virulent 45 
zoonotic viruses even when compared to birds, which alongside bats, have been hypothesized to 46 
be “special” zoonotic reservoirs due to molecular adaptations that support the physiology of 47 
flight. Reservoir host groups more closely related to humans—in particular, Primates—harbor 48 
less virulent, but more highly transmissible viruses. Importantly, disproportionately high human 49 
death burden, arguably the most important metric of zoonotic risk, is not associated with any 50 
animal reservoir, including bats. Our data demonstrate that mechanisms driving death burdens 51 
are diverse and often contradict trait-based predictions. Ultimately, total human mortality is 52 
dependent on context-specific epidemiological dynamics, which are shaped by a combination of 53 
viral traits and conditions in the animal host population and across and beyond the human-animal 54 
interface. Understanding the conditions that predict high zoonotic burden in humans will require 55 
longitudinal studies of epidemiological dynamics in wildlife and human populations. 56 

Significance statement:  57 

The clear need to mitigate zoonotic risk has fueled increased viral discovery in specific reservoir 58 
host taxa. We show that a combination of viral and reservoir traits can predict zoonotic virus 59 
virulence and transmissibility in humans, supporting the hypothesis that bats harbor 60 
exceptionally virulent zoonoses. However, pandemic prevention requires thinking beyond 61 
zoonotic capacity, virulence, and transmissibility to consider collective ‘burden’ on human 62 
health. For this, viral discovery targeting specific reservoirs may be inefficient as death burden 63 
correlates with viral, not reservoir, traits, and depends on context-specific epidemiological 64 
dynamics across and beyond the human-animal interface. These findings suggest that 65 
longitudinal studies of viral dynamics in reservoir and spillover host populations may offer the 66 
most effective strategy for mitigating zoonotic risk. 67 

Introduction 68 

The vast majority of human pathogens are derived from animal populations (1). In response to 69 
increasingly frequent zoonotic spillovers and their substantial public health risks (2), there has 70 
been a movement to identify the ecological systems and taxonomic groups of animals and 71 
pathogens that are most likely to source the next emerging zoonosis in the human population (3–72 
9). However, most of this work has centered on a binary definition of zoonotic risk—whether 73 
particular pathogens are capable of infecting humans—without considering how pathogens vary 74 
with respect to their impacts on humans after spillover. The ongoing SARS-CoV-2 pandemic has 75 
re-emphasized the reality that not all zoonoses pose risks of equal magnitude—some are 76 
exceptionally more dangerous than others due to the severity of disease they cause (‘virulence’) 77 
or their capacity to spread within human populations (‘transmissibility’), which combined, 78 
influence the total number of human deaths (‘death burden’) (10). Given the extraordinary 79 
diversity of both animal hosts and the viruses they harbor, understanding which animal and virus 80 
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groups are more likely to source dangerous zoonoses is an important public health aim. Many 81 
high-profile zoonotic viruses—including Nipah and Hendra henipaviruses; Ebola filovirus; 82 
SARS, MERS, and SARS-CoV-2 coronaviruses; pandemic avian influenzas; West Nile virus; 83 
and Eastern Equine encephalitis virus—have emerged from Chiropteran (bat) or avian reservoirs 84 
(11). The high number of zoonotic viruses found in bats and birds has been attributed to their 85 
large gregarious populations, mobility, ability to colonize anthropogenic environments, and sheer 86 
species diversity (7, 11). Nonetheless, the question remains: are bat- and/or bird-borne viruses 87 
disproportionately dangerous?  88 

A recent meta-analysis (10) found that mammalian reservoir hosts most closely related to 89 
humans harbor zoonoses of lower impact in terms of mortality relative to more phylogenetically 90 
distant hosts. These results were consistent with phylogenetic trends in virulence that have been 91 
reported in cross-species pathogen emergences in other systems (12, 13), and likely reflect 92 
mismatches in host biology, physiology, and ecology. Notably, order Chiroptera (bats)—one of 93 
the more distantly related host orders—had the highest positive effect size on case fatality rate in 94 
humans. Nevertheless, this analysis considered only directly transmitted viruses and viruses 95 
derived from mammalian hosts, despite the existence of several high-profile vector-borne and 96 
avian zoonoses (11). In particular, birds occupy a separate taxonomic class from humans—a 97 
phylogenetic distance that might correlate with heightened virulence in humans.   98 

In vitro work has suggested that molecular adaptations that support the physiology of 99 
flight, a trait unique to bats among mammals, may allow bats to tolerate rapidly-replicating 100 
viruses that express heightened virulence upon emergence in less tolerant hosts such as humans 101 
(14)—thus offering a possible explanation for bat virus virulence. Bats and birds share a suite of 102 
convergent flight adaptations—both taxa are remarkably long-lived for their body size and 103 
appear to circumvent metabolic constraints on longevity through cellular pathways evolved to 104 
mitigate oxidative stress induced by flight (11). These metabolic adaptations are hypothesized to 105 
be linked to the evolution of virulent viruses in bats, but only typically discussed with respect to 106 
their effect on lifespan in birds (15). A few papers have reviewed birds’ role as special zoonotic 107 
reservoirs (11, 16), but the virulence of avian zoonoses remains largely unexplored. Nonetheless, 108 
though the most virulent zoonotic viruses may garner the most publicity, these pathogens are not 109 
necessarily the most ‘dangerous’ to human health. Rather, human health is most impacted by 110 
viruses that cause large volumes of cases and deaths (‘burden’). While some viruses such as 111 
Ebola and rabies are associated with both high case fatality rates and burden in the human 112 
population, pandemic viruses are often characterized by relatively low case fatality rates but high 113 
human transmissibility. The 2009 H1N1 influenza pandemic was estimated to have caused 60.8 114 
million cases and more than 12,000 deaths in the United States alone with a case fatality rate of 115 
less than 1% (17), and as of July 9th, 2021, SARS-CoV-2 has caused over 185 million cases and 116 
4 million deaths worldwide with a case fatality rate of just 2.2% (18). To prevent the next 117 
zoonotic pandemic, it is important to think beyond the individual measures of zoonotic capacity, 118 
virulence, and transmissibility to consider collective ‘burden’ on public health.  119 

We apply generalized additive models (GAMs) to a comprehensive dataset of 120 
mammalian and avian zoonotic viruses to identify reservoir host and viral traits predictive of the 121 
(a) case fatality rate (CFR), (b) capacity for forward transmission, and (c) death burden induced 122 
by infections in the human population—with the goal of characterizing sources of zoonotic 123 
viruses that pose the greatest danger to global health. Our work builds on a small body of meta-124 
analyses that have begun to explore variation in the virulence and between-human 125 
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transmissibility of zoonotic viruses (4, 19–21). We provide the most thorough analysis of 126 
quantitative zoonotic virus data published to date, including the first analysis of burden and the 127 
largest sample size—with trends examined across the majority of known zoonotic viruses. We 128 
hypothesized that birds—given their capacity for flight and phylogenetic distance from 129 
humans—might rival bats for the association with the most virulent zoonotic viruses. However, 130 
we did not expect bats or birds to be responsible for the greatest burden on global health, instead 131 
anticipating high burden to be largely a function of viral traits and associated with reservoir 132 
orders that harbor less virulent, more transmissible viruses. 133 

Results 134 

Drawing from existing databases (3, 7), we compiled a dataset of all mammalian and avian 135 
zoonotic virus species that met a strict definition of zoonotic—requiring a record of natural 136 
human infection confirmed by PCR or sequencing and animal-to-human directionality in 137 
transmission. Virus species linked to multiple independent reservoir groups (e.g., canine and bat 138 
rabies) or those which spillover to humans both directly from their reservoir and through bridge 139 
hosts (e.g., Nipah virus) were subdivided into separate entries for each unique transmission chain 140 
ending in spillover, creating a final dataset of 87 viruses with a total of 91 transmission chains 141 
(SI Data and Results, Table S1). We then applied generalized additive models (GAMs) to assess 142 
predictors (SI Data and Results, Table S7) of three metrics of zoonotic risk: global estimates of 143 
case fatality rates (CFRs) in humans (proxy for virulence), capacity for forward transmission 144 
within the human population ranked on a four-point scale (human transmissibility), and post-145 
1950 cumulative death counts (death burden) (Materials and Methods).  146 
Predictors of human CFRs. In our virulence analysis, we observed a left-skewed distribution of 147 
CFRs, with 34.1% of virus species linked to no fatalities (0% CFR) and more than half (58.5%) 148 
linked to a CFR of less than 10% (Figure S1 in SI Figures). Bat reservoirs harbored the most 149 
virulent zoonotic viruses, contributing two thirds of the identified viruses with CFRs higher than 150 
50%. The top selected GAM to predict global estimates of CFR in humans—across the 86 151 
unique zoonotic transmission chains for which at least two human cases have been recorded—152 
explained 74.7% of the deviance and included virus family, reservoir host group, bridged 153 
spillover, and vector-borne transmission (Figure 1, Table S5a in SI Data and Results). Consistent 154 
with previous work (10) and the hypothesis that bats are “special” zoonotic reservoirs, order 155 
Chiroptera had the largest positive effect size on CFR in humans (Figure 1b). The top selected 156 
model predicted a CFR of 65.4% for zoonotic viruses derived from order Chiroptera, 157 
representing a more than 50% increase from the next highest predicted CFR (Figure S2). 158 
Contrary to our flight hypothesis, avian reservoirs were not similarly associated with 159 
disproportionately virulent zoonoses; order Aves had a neutral effect size on human CFR that 160 
was not significant. Order Cetartiodactyla had the largest negative effect size on CFR, but 161 
notably, Cetartiodactyl hosts in our dataset included only domesticated animal species—cattle, 162 
pigs, and camels. The long coexistence of domestic animals and humans likely facilitated 163 
increased research effort for this clade, which have may have led to greater detection of low 164 
virulence zoonoses in domestic animal species. A long history of domestic animal-human 165 
coexistence may also have supported the development of preexisting human immunity to some 166 
livestock diseases, resulting in lower virulence infections. 167 

Past analyses have observed that particular viral families associate non-randomly with 168 
particular host groups (10, 22), suggesting that virus taxonomy may underlie trends in virulence 169 
across reservoir orders. For example, the high number of virulent bat-borne zoonoses (Figure S1 170 
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in SI Figures) may be entirely a result of the virus groups that preferentially infect bats, rather 171 
than the bats themselves. However, here, reservoir host group and virus family significantly 172 
predicted CFR within the same models (Figure 1a), indicating that both reservoir and virus taxa 173 
contributed to the observed variation in virulence. Chiroptera had the highest positive effect size 174 
on CFR despite being associated with virus families that ranged from the most (Rhabdoviridae) 175 
to least (Coronaviridae) virulent (Figure 1c). Removing the 100% fatal lyssaviruses (n=5) from 176 
the dataset resulted in large reductions in the CFR predicted for bat-borne zoonoses (Figure S4), 177 
though order Chiroptera still had the highest and most significant positive effect size on CFR 178 
(Figure S2 in SI Figures, Table S6a in SI Data and Results). 179 

Previous work has demonstrated a positive correlation between reservoir host 180 
phylogenetic distance from humans and the case fatality rates of zoonoses derived from those 181 
reservoirs (10); in our analysis, however, reservoir host group phylogenetic distance from 182 
Primates was not correlated with CFR, dropping entirely from the top ranked model and not 183 
ranking significantly in any of the top 15 selected models (Figure 1a). The combined effect of 184 
reservoir host group and virus family as predictor variables in the same model likely 185 
overwhelmed any correlation between host phylogeny and CFR, particularly given the lack of 186 
granularity in our phylogenetic distance variable, based on a time-scaled phylogeny, which 187 
produced only six unique distance values across nine host groups, with Chiroptera and four of 188 
the other mammalian orders clustering at a single distance level (Materials and Methods). 189 
Nevertheless, trends in effect size on CFR (Figure 1b) and predicted CFR (Figure S2) across 190 
reservoir host groups suggest that, in general, virulence increases with phylogenetic distance, but 191 
this positive correlation may collapse at “extreme” distances.   192 

To test whether these results held across a larger sample size, we ran a CFR analysis that 193 
included viruses that met a more lenient definition of zoonotic—specifically, viruses with only 194 
serological evidence of infection in humans, viruses that have only caused human infections in 195 
laboratory settings, and viruses for which only one human case has been recorded—increasing 196 
our dataset to 119 virus species with a total of 123 unique zoonotic transmission chains (Figure 197 
S5 in SI Figures, Table S6b in SI Data and Results). This supplementary analysis echoed the 198 
results from our first analysis of global CFR estimates—both reservoir and virus taxonomy 199 
contributed to the observed variation in CFR (Figure S5a in SI Figures); and Chiroptera had the 200 
highest positive effect size on CFR, whereas Aves had a neutral nonsignificant effect (Figure 201 
S5b in SI Figures). 202 

To assess whether CFR trends might be influenced by health care differences among the 203 
virus’ differing geographic ranges, we tested whether Gross Domestic Product per capita 204 
(GDPPC) significantly predicted country-specific CFR estimates—calculated from death and 205 
case counts in countries that have reported the largest outbreaks of each given virus species, with 206 
up to three country estimates for each species for a total of 119 estimates across the 86 unique 207 
zoonotic transmission chains. First, we modeled all 119 country-specific CFR estimates 208 
separately to test whether GDPPC predicts country-level variation in CFR (Figure S6 in SI 209 
Figures, Table S6c in SI Data and Results). Although significant, GDPPC explained a low 210 
percentage of the deviance (Figure S6a in SI Figures), and wide confidence intervals indicated 211 
uncertainty in trends (Figure S6d in SI Figures). To gage whether variation in GDPPC among 212 
virus’ geographic ranges might bias the trends in global CFR estimates observed in the Figure 1 213 
models, we then modeled GDPPC and country CFR estimates aggregated at the level of the 86 214 
unique zoonotic transmission chains (Figure S7 in SI Figures, Table S7d in SI Data and Results). 215 
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GDPPC was not significant in any of the top models, often dropping entirely during model 216 
selection (Figure S7a in SI Figures), suggesting that health care differences among the virus’ 217 
geographic ranges most likely do not bias Figure 1 trends. Nevertheless, as with the 218 
supplementary analysis presented in Figure S5, both analyses of the country CFR estimates 219 
echoed all key results presented in Figure 1.  220 
Predictors of transmissibility within human populations. We found that most zoonotic 221 
viruses (72.1%) have not been reported to transmit within the human population following 222 
spillover (i.e., transmissibility rank = 1, or R0 = 0) (Figure S8). Only 15.1% of virus species had 223 
demonstrated capacity for endemic transmission among humans, of which the majority (61.5%) 224 
were sourced from Primates. The top selected GAM to predict the ordinal rank of 225 
transmissibility within human populations—across the 86 unique zoonotic transmission chains 226 
for which at least two human cases have been recorded—explained 56.7% of the deviance and 227 
included virus family, the phylogenetic distance between each virus’ reservoir host group and 228 
Primates, vector-borne transmission, and the virus species publication count (Figure 2, Table S5b 229 
in SI Data and Results). Transmissibility declined with phylogenetic distance from Primates, but 230 
the estimated trend was highly uncertain (Figure 2c). We therefore reran the analysis with 231 
reservoir host group as the only host taxonomic predictor (excluding the phylogenetic distance 232 
variable). This analysis identified Primates as the only host order significantly associated with 233 
heightened transmissibility in humans, suggesting that this group is the primary driver of the 234 
phylogenetic trend observed in the top selected model (Figure S9a in SI Figures, Table S6c in SI 235 
Data and Results).   236 

Evolution of virulence theory typically assumes a tradeoff between virulence (death rate 237 
due to infection) and transmission rate on the basis that while high within-host growth rates 238 
increase infectiousness, they also increase damage to the host, increasing virulence and thus 239 
shortening the infectious period and reducing opportunities for future transmission (23, 24). 240 
Critically, CFR is not equivalent to virulence, but instead, a proxy that can be reliably quantified. 241 
As defined by Day 2002 (25), CFR is a function of both pathogen virulence (𝛼) and clearance 242 
rate (𝜎), in which 𝐶𝐹𝑅 = 𝛼/(𝛼 + 𝜎). Thus, virulent pathogens (high 𝛼) with high clearance 243 
rates (high 𝜎)—e.g., acute, short-lived infections such as Chikungunya virus (26)—could 244 
produce low CFRs. In contrast, less virulent pathogens (low 𝛼) with low clearance rates (low 245 
𝜎)—e.g., persistent infections such as HIV (27)—could produce high CFRs. Nevertheless, in our 246 
data, we observed a relationship between CFR and transmissibility in humans that roughly 247 
supports the fundamental theoretical tradeoff between virulence and transmission rate (Figure 248 
S10 in SI Figures). Viruses causing the highest CFRs in humans (>75% CFR) clustered in the 249 
lower right corner with the lowest capacity for forward transmission in the human population, 250 
implying maladaptive virulence. Conversely, the least virulent viruses (0% CFR) clustered at 251 
either the lowest transmission capacity—likely indicative of poor compatibility with humans—or 252 
the highest transmission capacity—suggesting transmission uninhibited by virulence.  253 
Predictors of post-1950 death burden in the human population. For our death burden 254 
analysis, we modeled the total number of deaths resulting from a given zoonosis recorded 255 
worldwide since 1950 (and up until March 7th, 2021). In cases where our death count could only 256 
begin after 1950, either because a zoonosis first emerged in humans after 1950 or because 257 
reliable death records were only available for a subset of the timeline, we standardized analyses 258 
by including an offset for the number of years over which the death counts were recorded. The 259 
raw death count distribution was highly left-skewed, with 39.5% of virus species linked to 0 260 
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deaths and more than half (62.7%) linked to fewer than 50 deaths (Figure S11 in SI Figures). We 261 
observed significant overdispersion in death counts, even when standardized by the number of 262 
years over which the deaths were recorded, with deaths per year ranging from zero to almost 2 263 
million for SARS-CoV-2. Just two viral predictors—virus family and species publication 264 
count—explained most of the variation in death burden among the 91 zoonotic transmission 265 
chains across all the top GAMs (Figure S12a in SI Figures). Host predictors explained a very 266 
low percentage of the variation in death burden across all the top selected models, often dropping 267 
entirely during term selection. Virus species publication count tempered virus family effects 268 
(Figure S12c in SI Figures) because virus species with high death burdens were also associated 269 
with high publication counts, likely because high death burdens motivate increased research 270 
efforts. In contrast, there was little evidence that poorly studied viruses had unusually low death 271 
burdens, implying that a lack of diagnostic effort is not a major driver of low death burdens in 272 
our data (Figure S12c in SI Figures). After excluding the virus species publication predictor, we 273 
found that Coronaviridae, Orthomyxoviridae and Rhabdoviridae had the highest positive effect 274 
sizes on death burden, driven by, respectively, the SARS-CoVs, the Influenza A transmission 275 
chains, and Rabies virus (Figure 3b, Table S5c in SI Data and Results). With virus publication 276 
count removed, the top four models included two reservoir traits—phylogenetic distance from 277 
Primates and species richness—as significant predictors. Reservoir groups most closely related 278 
to Primates were associated with heightened death burdens relative to more distantly related 279 
reservoirs, consistent with results from our transmissibility analyses that indicated that reservoirs 280 
most closely related to Primates harbored more transmissible viruses (Figure 3c). Reservoir 281 
species richness positively correlated with death burden, as we would expect given that species 282 
richness has been found to correlate with the number of viruses associated with a given reservoir 283 
order (Figure 3d) (7). However, both reservoir predictors explained a small fraction of the 284 
variation in death burden relative to virus family, confirming that death burden is largely a 285 
function of viral traits (Figure 3a).  286 
 While some reservoir groups—bats, primates, rodents, and birds—have sourced more 287 
high burden viruses than others (Figure 4a), both our model results and raw data suggested that 288 
high burden viruses appeared to be function of viral traits, not the reservoirs themselves. No 289 
single reservoir stood out as a consistent source of high burden viruses, with every reservoir that 290 
harbors high burden viruses also harboring substantially more viruses that cluster at the lowest 291 
death burdens (Figure 4a). This was not the case for virus family (Figure 4b) or primary 292 
transmission route (Figure 4c); Coronaviridae and Orthomyxoviridae and a respiratory 293 
transmission route were associated only with high burden zoonotic viruses. In general, the 294 
viruses linked to the lowest death burdens were associated with the lowest transmission capacity. 295 
As a deviation from this trend, Primates—which our models indicate harbor the most 296 
transmissible, but generally less virulent zoonotic viruses—harbored several highly transmissible 297 
viruses with low death burdens (Figure 4a).  298 

The highest death burdens were overall associated with zoonotic viruses that are less 299 
virulent but highly transmissible in human populations (Figure 4d). Respiratory pathogens with 300 
capacity for human-to-human transmission have often incurred massive burdens over short 301 
timeframes as a result of rare, but catastrophic spillover events that spark widespread 302 
transmission in humans. Critically, while our dataset included only six viruses with respiratory 303 
droplets as a primary transmission route—SARS-CoV-1, SARS-CoV-2, MERS CoV, Influenza 304 
A, Nipah, and Monkeypox—these viruses accounted for more than 85.9% of the deaths recorded 305 
for the 86 viruses in our death burden analysis, highlighting respiratory transmission as a high-306 
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risk zoonotic trait. However, these data were derived from a notably small sample size, as three 307 
of the six respiratory viruses have caused only a single major epidemic. There was also 308 
substantial variation among these respiratory viruses, with the death burdens associated with 309 
SARS-CoV-1 and SARS-CoV-2 differing by more than 2.5 million.  310 

Additionally, several outliers demonstrated that capacity for forward transmission in 311 
human populations does not always predict death burden; it is critical to also consider 312 
epidemiological dynamics across and beyond the human-animal interface. Less transmissible 313 
viruses can accumulate large death burdens over many small, but frequent spillovers, particularly 314 
in systems in which humans regularly interact with animal reservoirs. Rabies, Hantaan (HTNV), 315 
and Japanese Encephalitis viruses have been associated with some of the highest death burdens 316 
induced by viral zoonosis despite lacking forward transmission in human populations (Figure 317 
4d). This is likely because these viruses spill over to humans from animal host populations that 318 
live amongst human communities—Rabies burden is largely driven by spillover from endemic 319 
circulation in domestic dogs (28), HTNV spills over from striped field mouse (Apodemus 320 
agrarius) populations that inhabit agricultural fields (29), and Japanese encephalitis is amplified 321 
via domesticated pigs (30). Outbreaks in these spillover host populations source human 322 
infections that are dead ends for further transmission but add up to large numbers. Emphasizing 323 
the importance of understanding system-specific dynamics, HTNV had a death burden more than 324 
18 times greater than the combined death burden of all ten other rodent-borne hantaviruses in our 325 
dataset, most likely because other rodent reservoirs of hantaviruses tend to overlap less with 326 
human populations (29). Furthermore, zoonotic viruses that have historically been low burden 327 
pathogens can “unexpectedly” cause high death burdens in the case of virus evolution or unique 328 
epidemiological circumstances (31). For example, Ebola virus first emerged in humans in 1976, 329 
causing deadly, but local outbreaks up until late 2013, when suddenly, emergence in a region 330 
with dense and interconnected human populations, coupled with virus adaptation (32), allowed 331 
an Ebola spillover event to spark a transnational epidemic that in just 2 years, caused more than 332 
6.5 times the total number of deaths recorded from 1976-2013 (31, 33). These outliers suggest 333 
that understanding epidemiological dynamics—within wildlife populations and across and 334 
beyond the human-animal interface—in specific systems is a critical component of predicting 335 
death burden and consequently, danger to human health. 336 

Discussion 337 

A key insight from our work is that bats harbor the most virulent zoonotic viruses relative to 338 
other mammalian and avian reservoirs (Figure S1 in SI Figures). Given that birds represent the 339 
only other flying vertebrates and that flight adaptations are hypothesized to influence viral 340 
virulence in bats (11), we expected avian viruses to similarly be associated with heightened 341 
CFRs in humans. However, we found that only order Chiroptera had an exceptionally high 342 
positive effect size on CFR in humans, while Aves had a neutral nonsignificant effect. It is of 343 
course possible that we observed this association between Chiroptera and high CFRs in part 344 
because low virulence zoonotic viruses have gone undetected in bat reservoirs; however, other 345 
poorly studied reservoirs are not comparably associated with heightened virulence, suggesting 346 
that detection bias cannot explain our results. Like CFR, transmissibility in humans was also 347 
correlated with reservoir traits, but in this case, Primates—the reservoir group most closely 348 
related to humans—sourced the zoonotic viruses with the highest capacities for forward 349 
transmission in human populations. While a combination of both virus and reservoir taxonomy 350 
predicted virulence and transmissibility, death burden did not correlate with any reservoir group 351 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.25.453574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.25.453574
http://creativecommons.org/licenses/by-nc/4.0/


 

 

9 

and instead, was a function of viral traits. Nevertheless, our data indicated that mechanisms 352 
driving high death burdens are diverse and often contradict trait-based predictions. Several high-353 
profile zoonotic viruses linked to significantly higher death burdens than we would expect based 354 
on their capacity for forward transmission in the human population (Figure 4d), suggesting that 355 
death burden is highly dependent on both the contact rate at the human-animal interface and 356 
epidemiological dynamics within the human population—factors which are not fully captured by 357 
the broad explanatory variables considered in trait-based analyses. 358 

The surprisingly low virulence of avian zoonotic viruses in contrast to bat-borne viruses 359 
may reflect the extreme phylogenetic distance that separates birds from Primates. In our previous 360 
analysis, we found that mammalian reservoir hosts most closely related to humans harbor less 361 
virulent zoonotic viruses relative to more distantly related mammalian hosts such as bats (10). 362 
This positive correlation between reservoir phylogenetic distance from humans and viral 363 
virulence is consistent with trends that have been reported in cross-species pathogen emergences 364 
in other systems (10, 12, 13), and likely reflects maladaptive virulence resulting from 365 
mismatches in host biology, physiology, and ecology. Clearly, while bats are distantly related to 366 
humans, they are still mammals, whereas birds occupy a separate taxonomic class. It is likely 367 
that the positive correlation between phylogenetic distance and virulence collapses at distances 368 
beyond mammals, because viruses are expected to have a limited capacity to replicate in host 369 
environments that are very different from that of their reservoir, leading to ‘non-host resistance’ 370 
(34, 35). Phylogenetic distance dropped from all CFR models likely due to a lack of granularity 371 
in our phylogenetic distance data, which described reservoir host cophenetic distance from 372 
Primates on a time-scaled phylogeny (7), producing only six unique distance values across all of 373 
the reservoir groups in our database. Trends across reservoir host groups overall support the 374 
hypothesis that the positive correlation between phylogenetic distance and virulence collapses at 375 
“extreme” distances. Nevertheless, more studies are needed to parse the effect of phylogenetic 376 
distance on virulence trends in animal-to-human spillovers. The time-scaled phylogeny 377 
represents the only available phylogeny that includes both mammals and birds. Future studies 378 
would benefit from developing additional phylogenies of mammalian and avian reservoirs, 379 
which prioritize immunological or physiological traits that may more accurately proxy 380 
virologically relevant differences in host environments. 381 
 Chiroptera represented an outlier among distantly related reservoirs, with an undeniably 382 
positive effect size on CFR more than triple that recovered for any other mammalian order. 383 
Consistent with the hypothesis that bats represent a ‘special’ viral reservoir (36), the order 384 
Chiroptera does appear to harbor zoonotic viruses that are uniquely virulent upon spillover to 385 
humans, even when considering virulence effects that might be attributed to their phylogenetic 386 
distance from Primates. In bats, flight adaptations have been linked to viral tolerance, which 387 
previous work suggests may select for high growth rate viruses that could manifest as virulent 388 
upon emergence in less tolerant hosts such as humans (14). Notably, bats experience limited 389 
morbidity or mortality from intracellular infections with only a few known exceptions (36–39). 390 
Conversely, while birds harbor several zoonotic viruses that are virulent in humans such as 391 
Highly Pathogenic Avian Influenza (HPAI), West Nile, and Equine Encephalitis viruses, only 392 
some avian species are tolerant of these infections—many avian species experience morbidity 393 
and mortality (40). Bats and birds are expected to experience similar selective pressures from 394 
flight—they have been found to incur comparable energetic costs while flying, despite different 395 
forms and physiologies (15, 41). However, the two taxonomic groups, within disparate vertebrate 396 
classes, may have responded differently to these selective pressures. Specifically, there is a 397 
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possibility that bats evolved cellular pathways that protect against both aging and 398 
immunopathology, whereas birds evolved pathways that only protect against aging. For example, 399 
bats have been found to host a suite of cellular-level anti-inflammatory adaptations—including 400 
enhanced cellular autophagy and downregulated signaling pathways linked to the induction of 401 
inflammatory antiviral defenses—which may both mitigate cellular damage induced by bat 402 
metabolism and inhibit immunopathology incurred upon viral infection (36, 42–46). On the other 403 
hand, birds may rely primarily on systemic antioxidant responses (47), which mitigate oxidative 404 
stress, but do not interact so tightly with cellular-level processes that impact viral pathology. 405 
Critically, birds appear to be missing anti-inflammatory protein tristetraprolin (TTP) (48), and 406 
immunopathology is often the cause of death in birds that die from viral infections such as HPAI 407 
and West Nile virus (40). Differences between mammalian and avian immune systems may 408 
additionally play a role in their differing infection outcomes. The immune system is broadly 409 
conserved in amniotes, but some avian immunological features diverge from those of bats and 410 
other mammals: notably, birds lack lymph nodes and instead develop B cells in a specialized 411 
lymphoid organ, the bursa of Fabricius; have heterophil in their white blood cells as opposed to 412 
neutrophil; and produce only three classes of immunoglobulin in contrast to the five produced by 413 
mammals (11). Nevertheless, the differing effects of Chiropteran and avian metabolic 414 
adaptations on viral tolerance and viral evolution remain largely uncharacterized and more basic 415 
research in this field is needed (49). 416 

We found that both reservoir host and virus taxonomy predict the virulence and 417 
transmissibility of a virus in the secondary human host, consistent with the expectation that a 418 
virus evolves virulence to maximize reproduction in its reservoir population (50). The optimal 419 
balance between virulence and transmission depends on how the reservoir host population 420 
responds to the virus (the ‘host selective pressure’), which is determined by the ecological, 421 
physiological, and biological traits of the reservoir. While we identified “special” reservoirs of 422 
virulent and transmissible zoonotic viruses, we found that the human death burden incurred by 423 
viral zoonoses does not correlate with any one reservoir host order, including bats, and instead, is 424 
a function of viral traits. Our data demonstrate that mechanisms driving high death burdens are 425 
diverse and often contradict trait-based predictions. High death burdens have resulted from rare 426 
spillover events of highly transmissible viruses that spread widely in the human population; 427 
small, but frequent spillovers of the least transmissible viruses; and historically low-burden 428 
pathogens that take off given the right ecological and evolutionary conditions. This suggests that 429 
ultimately, death burden depends on epidemiological circumstances, which should be shaped, not 430 
by reservoir host traits, but by a combination of viral traits and conditions in the animal host 431 
population and across and beyond the human-animal interface. Notably, the pandemic spread of 432 
SARS-CoV-2 can be attributed to its highly effective respiratory transmission between humans, 433 
a trait linked to its identity within Coronaviridae, rather than its bat origins (indeed, CoVs 434 
demonstrate gastrointestinal tropism in bat reservoirs) (51). 435 

Over the course of the last decade, a significant amount of funding and research effort has 436 
been dedicated to identifying correlates of zoonotic risk, often with a long-term aspiration of 437 
identifying ways to anticipate and prevent emerging zoonoses in the future (52–54). This 438 
research increasingly prioritizes viral discovery over longitudinal studies of epidemiological 439 
dynamics and targets animal populations such as bats that have been identified as key zoonotic 440 
reservoirs. While our analysis corroborates the hypothesis that bats are a ‘special’ reservoir for 441 
virulent zoonotic viruses, we also demonstrate that viral traits—not bat reservoirs—pose the 442 
greatest danger to human health. We argue that burden, which does not correlate with any animal 443 
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reservoir and instead appears to be a function of transmission conditions to and within the human 444 
population, more correctly approximates “danger” to human health than does virus virulence. 445 
While reservoir and viral traits can predict zoonotic capacity, virulence, and transmissibility, 446 
death burden is dependent on system-specific epidemiological dynamics, which are shaped by a 447 
combination of viral traits and conditions in the animal host population and across and beyond 448 
the human-animal interface. Thus, understanding and controlling the mechanisms that drive high 449 
death burdens in humans—high rates of human-animal contact and/or epidemiological dynamics 450 
in the human population that allow discrete spillover events to trigger human epidemics—451 
requires longitudinal surveillance of specific zoonotic or potentially zoonotic viruses in both 452 
animal and human populations. There is a pressing need for more longitudinal studies of 453 
transmission dynamics in human and wildlife populations to better understand and prevent the 454 
epidemiological conditions that cultivate the most dangerous cases of zoonotic viral emergence.   455 

 456 

Materials and Methods 457 

Constructing the database. We curated a comprehensive database of mammalian and avian 458 
zoonotic viruses—and the taxonomic orders of the reservoir hosts from which they were 459 
derived—published by Mollentze et al. 2020 (7). Using the information provided in that database 460 
and supplementing with literature searches, we extracted viruses that met a strict definition of 461 
zoonotic, requiring at least one published human infection in which the virus species was 462 
confirmed by PCR, sequencing, or isolation as well as evidence of animal-to-human 463 
directionality in transmission. We excluded six viruses (Table S2 in SI Data and Results) that 464 
have only caused human infections in laboratory settings. We additionally did not include viruses 465 
such as HIV (55) and HCoV-299E (56) that have zoonotic origins, but have maintained separate, 466 
genetically distinct human transmission cycles since before 1950 (Table S3 in SI Data and 467 
Results). We excluded such viruses for several reasons: precise death and case count records are 468 
sparse pre-1950; viruses that have circulated within the human population for centuries or 469 
decades often have unconfirmed or disputed origins; and over long timescales, viral evolution in 470 
the human population is expected to muddle any relationship between zoonotic history and 471 
dynamics in the human population (31). With this strict inclusion criteria, we compiled 87 472 
unique virus species (Table S1 in SI Data and Results). Each virus species was associated with 473 
one reservoir host order, with the exception of Rabies virus and Mammalian 1 orthobornavirus, 474 
which are both known to be maintained by two distinct nonhuman animal reservoir orders in 475 
independent transmission cycles (7).  476 
 For each virus-reservoir association, we collected both human case fatality rate (CFR) as 477 
a proxy for virulence, and the cumulative global death count as a proxy for burden on the human 478 
population. For CFR, we collected two estimates. First, we recorded existing estimates of global 479 
CFRs from the literature, calculating averages when ranges were reported. Second, for each virus 480 
species, we calculated up to three country-specific CFRs from death and case counts in countries 481 
that have reported the largest outbreaks of that virus—when available, using data that spanned 482 
multiple outbreaks and/or years to maximize sample size and accuracy. We expected that global 483 
CFR estimates would be more precise approximations of virulence, while country-specific CFR 484 
reports would allow us to assess and account for potentially confounding effects of regional 485 
differences in health care and overall infrastructure. For our death burden response variable, we 486 
collected the total number of deaths recorded across the world since 1950. In many cases, our 487 
death count began after 1950, either because a zoonosis first emerged in humans after 1950 or 488 
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reliable death records were only available for a subset of the timeline. To standardize, we added 489 
a variable for the number of years over which death counts were recorded to use as an offset in 490 
our models. Death and case counts were derived, when available, from the Global Infectious 491 
Diseases and Epidemiology Network (GIDEON) (57)—which contains outbreak data from case 492 
reports, government agencies, and published literature records—and supplemented with 493 
literature searches. All variable descriptions are provided in Table S4 in SI Data and Results. 494 

We additionally ranked each zoonosis’ capacity for transmission within human 495 
populations—a correlate of R0—on a four-point scale (10). We assigned a human 496 
transmissibility level of “1” to viruses for which forward transmission in human populations 497 
post-spillover had not been recorded; “2” to viruses for which forward transmission in humans 498 
had been recorded but was described as atypical; “3” to viruses for which transmission within 499 
human populations had occurred regularly but was restricted to self-limiting outbreaks; and “4” 500 
to viruses for which endemic human transmission had been reported.  501 

Recording death and case data from laboratory-confirmed outbreaks in the literature 502 
required maintaining a strict definition of zoonotic, excluding some viruses that have been 503 
included in previous meta-analyses (3, 7, 19). We compiled excluded viruses that met looser 504 
inclusion criteria—specifically, seven viruses that have only caused human infections in 505 
laboratory settings and 25 viruses that lacked molecular confirmation of infection of humans, but 506 
still had serological evidence of infection in humans—in a supplementary database (Table S2 in 507 
SI Data and Results). Viruses included in previous meta-analyses that met neither our loose nor 508 
strict inclusion criteria are outlined in Table S3 in SI Data and Results.  509 
 Drawing from previously published databases (3, 7, 10), we collected seven variables (SI 510 
Data and Results, Table S7) that we hypothesized might predict observed variation in human 511 
CFR, capacity for transmission within human populations, and death burden. Given published 512 
correlations between phylogenetic distance and virulence in cross-species spillovers (10, 12, 13, 513 
58, 59), we included the reservoir host group cophenetic distance from Primates. We calculated 514 
this distance variable using a composite time-scaled phylogeny of the mean divergence dates for 515 
all reservoir clades, as presented in the TimeTree database (7, 60). In our prior analysis (10), 516 
phylogenetic distance values were derived from a phylogenetic tree of mammalian cytochrome b 517 
sequences (3, 61, 62), which captured significantly more variation between host orders. The 518 
time-scaled phylogeny used in this analysis produced only six unique distance values across all 519 
reservoir groups in our database but represented the only available phylogeny that included both 520 
mammals and birds. We considered both reservoir host and virus taxonomy, recording host order 521 
and virus family. However, only ten avian zoonoses were distributed across several avian 522 
reservoir host orders. To test our hypotheses regarding avian zoonoses, we addressed this small 523 
sample size by aggregating avian reservoir orders into a single “Aves” group, while maintaining 524 
separate host orders for the mammalian reservoirs. Given that the number of zoonoses harbored 525 
by a reservoir group appears to correlate with species diversity within that group (7), we 526 
hypothesized that species diversity might influence reservoir effect size on CFR in humans; thus, 527 
we included reservoir species richness, which we derived from the Catalogue of Life using 528 
version 0.9.6 of the taxize library in R (7, 63), taking the sum of values across bird orders for the 529 
Aves reservoir group. If increasing a reservoir group’s total number of zoonotic viruses also 530 
increases their number of virulent zoonoses, reservoir species richness might inflate the mean 531 
CFR of zoonotic viruses harbored by species rich reservoir groups—or alternatively, given that 532 
most zoonotic viruses have low CFRs in humans, species richness might instead reduce the mean 533 
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CFR associated with these reservoirs. Nevertheless, we expected that higher numbers of zoonotic 534 
virus species would inflate the total death burdens associated with species rich reservoir groups. 535 
We defined a “spillover type” variable to account for the zoonotic transmission chain of each 536 
virus, distinguishing between zoonoses that jump into humans directly from the reservoir 537 
population and those that spillover to humans from bridge hosts (10). While the majority of 538 
zoonoses were linked to single zoonotic transmission chains, there were a few exceptions with 539 
both “direct” and “bridged” spillover. For example, zoonotic Influenza A virus and Nipah virus 540 
(64, 65) have spilled over into the human population directly from their avian and bat reservoirs, 541 
respectively, as well as from domestic pig bridge host populations. In such cases, each spillover 542 
type (i.e., transmission chain) was entered separately in the database. We included an additional 543 
binary variable that identified whether viruses were vector-borne, as both theory (23) and 544 
previous meta-analyses (19, 20) have suggested a relationship between vector-borne 545 
transmission and virulence. Finally, as has been done in other similar meta-analyses, we included 546 
virus species publication count to account for any potential publication bias (3, 10, 59). 547 

To pair with our country-specific CFR data, we collected an eighth predictor variable—548 
gross domestic product per capita (GDPPC)—as a proxy for geographical differences in the 549 
quality of health care and epidemiological control measures. 550 

We additionally collected, for each virus species, the transmission route that contributes 551 
the majority of human infections, extending data published by Brierley et al. (19). We then 552 
assessed trends in death burden across transmission types, hypothesizing that density-dependent 553 
transmission, as characteristic of transmission via respiratory droplets, would be associated with 554 
the highest death burdens in human populations.   555 
Statistical analysis. Given the non-normal distribution of our data, expected nonlinear 556 
relationships, and nested data structures within our predictor variables (66), we applied 557 
generalized additive models (GAMs) in the mgcv package in R (67) to assess predictors of CFR, 558 
transmissibility, and death burden in human populations. Rather than manually specifying higher 559 
order polynomial functions, GAMs permit the use of smooth functions to capture nonlinear 560 
relationships between response and predictor variables (66, 67). We fit continuous variables (i.e., 561 
reservoir group species richness and phylogenetic distance from Primates, and virus species 562 
publication count) as smoothed effects, and all binary (i.e., vector-borne status and spillover 563 
type) and categorical (i.e., reservoir order and virus family) variables as random effects. For 564 
variable selection, we ran all possible model combinations, ranked by AIC, and selected the 565 
models with the lowest AIC values. 566 

We first asked, which reservoir host and virus types are associated with elevated CFRs in 567 
human populations following spillover? We constructed GAMs in the beta regression family to 568 
query the predictive capacity of our predictor variables (SI Data and Results, Table S7) on CFR 569 
in humans. We compressed our CFR range to the beta distribution interval (0,1) by applying the 570 
recommended data transformation 𝑦"	 = 	 [𝑦′(𝑁 − 1) 	+ 	1/2]𝑁, where 𝑁 is the sample size (68, 571 
69). We modeled all 119 country-specific CFR estimates separately to test whether GDPPC 572 
predicts country-level variation in CFR (Table S6c in SI Data and Results). To gage whether 573 
variation in GDPPC among virus’ geographic ranges might confound the trends in global CFR 574 
estimates, we then modeled GDPPC and CFR estimates aggregated at the level of the 86 unique 575 
zoonotic transmission chains (Table S6d in SI Data and Results). For this second model, we 576 
calculated a composite GDPPC for each aggregated CFR statistic by weighting each country’s 577 
GDPPC by the proportion of cases in the CFR calculation that were recorded in each country and 578 
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summing the weighted GDPPCs. We then modeled the global CFR estimates, which were not 579 
tied to any specific system. For all CFR analyses, we modeled unique zoonotic transmission 580 
chains—which we defined as unique reservoir orders and spillover type combinations per virus. 581 
As a result, zoonoses with a single reservoir host order and spillover type were modeled as a 582 
single CFR entry, while those with multiple reservoir orders and/or spillover types (e.g., 583 
Influenza A and Nipah viruses) were modeled as multiple CFR entries. We excluded five viruses 584 
for which only one human case has been recorded (Table S1 in SI Data and Results), deciding 585 
that we could not accurately represent a single observation as a CFR. Our final GAM analysis 586 
included 82 unique virus species with a total of 86 unique zoonotic transmission chains (Table 587 
S5a in SI Data and Results). 588 

Our strict definition of zoonotic status and inclusion criteria reduced our sample size. To 589 
assess whether our observed trends held across a larger sample of zoonotic viruses, we ran an 590 
additional GAM analysis of global CFR estimates that included viruses with only serological 591 
evidence of infection in humans, viruses that have only caused human infections in laboratory 592 
settings, and viruses for which only one human case has been recorded. This supplementary 593 
GAM analysis included 119 unique virus species with a total of 123 unique zoonotic 594 
transmission chains (Table S6b in SI Data and Results). 595 

We next asked, which reservoir host and virus types are associated with elevated 596 
capacity for transmission within human populations? We constructed a GAM in the ‘ocat’ 597 
(‘ordered categorical data’) family to query the predictive capacity of our predictor variables on 598 
transmissibility, defining the vector of categorical cut points, q, to match our four-point ranking 599 
scale (q = 1,2,3,4). We again excluded the five viruses for which only one human case has been 600 
recorded (Table S1 in SI Data and Results), deciding that we could not accurately determine 601 
between-human transmissibility based on a single observation. Thus, like our CFR analysis, our 602 
transmissibility analysis included 82 unique virus species with a total of 86 unique zoonotic 603 
transmission chains (Table S5b in SI Data and Results).  604 

Lastly, we asked, which reservoir host and virus types are associated with high death 605 
burdens in human populations? The death count data demonstrated strong overdispersion 606 
(Figure S11 in SI Figures). Thus, we constructed a negative binomial GAM with the scaled 607 
observation period (i.e., number of years over which the death count was recorded) as an offset. 608 
We considered simpler Poisson GAMs, as well as zero-inflated models, but enhanced residual 609 
quantile-quantile (QQ) plots (70) suggested that these distributions fit poorly. Unlike our CFR 610 
analysis, we did not exclude viruses for which only one human case has been recorded. 611 
However, we did exclude a single virus species—Rotavirus A—for which we were unable to 612 
distinguish between deaths caused by zoonotic strains versus deaths caused by endemic human 613 
strains. Thus, our death burden models included 86 zoonotic viruses with a total of 90 614 
transmission chains (Table S5c and S6f in SI Data and Results). 615 
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Figures 786 

 787 
Figure 1. Predictors of global CFR estimates. (A) Top 15 models ranked by AIC. Rows 788 
represent individual models and columns represent predictor variables. Cells are shaded 789 
according to the proportion of deviance explained by each predictor. Cells representing predictor 790 
variables with a p-value significance level of <0.1 are outlined in black. (B-D) Effects present in 791 
the top model: reservoir host group, virus family, vector-borne transmission, and bridged 792 
spillover. Lines represent the predicted effect of the x-axis variable when all other variables are 793 
held at their median value (if numeric) or their mode (if categorical). Shaded regions indicate 794 
95% CIs by standard error and points represent partial residuals. An effect is shaded in gray if 795 
the 95% CI crosses zero across the entire range of the predictor variable; in contrast, an effect is 796 
shaded in purple and considered “significant” if the 95% CI does not cross zero. Full model 797 
results are outlined in Table S5a in SI Data and Results. (B) Reservoir host groups are ordered 798 
by increasing cophenetic phylogenetic distance from Primates (in millions of years), as indicated 799 
on the top axis. 800 
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 808 
Figure 2. Predictors of capacity for forward transmission within the human population following 809 
zoonotic spillover. (A) Top 15 models ranked by AIC. Rows represent individual models and 810 
columns represent predictor variables. Cells are shaded according to the proportion of deviance 811 
explained by each predictor. Cells representing predictor variables with a p-value significance 812 
level of <0.1 are outlined in black and otherwise outlined in gray. (B-E) Effects present in the top 813 
model: virus family, reservoir group phylogenetic distance from Primates, vector-borne 814 
transmission, and virus species publication count. Lines represent the predicted effect of the x-815 
axis variable when all other variables are held at their median value (if numeric) or their mode (if 816 
categorical). Shaded regions indicate 95% CIs by standard error and points represent partial 817 
residuals. An effect is shaded in gray if the 95% CI crosses zero across the entire range of the 818 
predictor variable; in contrast, an effect is shaded in purple and considered “significant” if the 819 
95% CI does not cross zero. Full model results are outlined in Table S5b in SI Data and Results. 820 
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 823 
Figure 3. Predictors of post-1950 death burden, excluding the virus species publication count 824 
predictor. See Figure S12 in SI Figures for inclusion. (A) Top 15 models ranked by AIC. Rows 825 
represent individual models and columns represent predictor variables. Cells are shaded 826 
according to the proportion of deviance explained by each predictor. Cells representing predictor 827 
variables with a p-value significance level of <0.1 are outlined in black and otherwise outlined in 828 
gray. (B-D) Effects present in the top model: virus family, reservoir group phylogenetic distance 829 
from Primates, reservoir group species richness, and vector-borne transmission. Lines represent 830 
the predicted effect of the x-axis variable when all other variables are held at their median value 831 
(if numeric) or their mode (if categorical). Shaded regions indicate 95% Cis by standard error 832 
and points represent partial residuals. An effect is shaded in gray if the 95% CI crosses zero 833 
across the entire range of the predictor variable; in contrast, an effect is shaded in purple and 834 
considered “significant” if the 95% CI does not cross zero. Full model results are outlined in 835 
Table S5c in SI Data and Results. 836 
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 837 
Figure 4. Death burden per year (cumulative post-1950 death counts divided by the length of 838 
reporting time), grouped by (A) reservoir host group, (B) virus family, (C) primary transmission 839 
route, and (D) CFR in humans. Colors indicate transmissibility between humans, with “1” 840 
indicating the lowest level of transmission (i.e., no recorded forward transmission in human 841 
population post-spillover) and “4” indicating the highest level of transmission (i.e., record of 842 
endemic transmission in human populations post-spillover). (A) Reservoir host groups are 843 
ordered by increasing cophenetic phylogenetic distance from Primates (in millions of years), as 844 
indicated on the top axis. 845 
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