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1 Abstract

The cryo-EM resolution revolution enables the devel-
opment of algorithms for direct de-novo modelling
of protein structures from given cryo-EM density
maps. Deep Learning tools have been applied to lo-
cate structure patterns, such as rotamers, secondary
structures and Cα atoms. We present a deep neu-
ral network (nicknamed SegmA) for the residue type
segmentation of a cryo-EM density map. The net-
work labels voxels in a cryo-EM map by the residue
type (amino acid type or nucleic acid) of the sam-
pled macromolecular structure. It also provides a vi-
sual representation of the density map by coloring
the different types of voxels by their assgned colors.
SegmA’s algorithm combines a rotation equivariant
group convolutional network with a traditional U-net
network in a cascade. In addition SegmA estimates
the labeling accuracy and reports only labels assigned
with high confidence. At resolution of 3Å SegmAs
accuracy is 80% for nucleotides. Amino acids which
can be seen by eye, such as LEU, ARG and PHE, are
detected by Segma with about 70% accuracy.

A web server of the application is under de-
velopment at https://dev.dcsh7cbr3o89e.

amplifyapp.com. The SegmA open code is available
at https://github.com/Mark-Rozanov/SegmA_3A/

tree/master

2 Introduction

Knowledge of the three dimensional structure of a
protein is a major tool in elucidating its functional-
ity. Cryo-electron microscopy (cryo-EM) (Callaway
(2017) ) has become a key experimental method for
obtaining 3D visualization maps of large molecu-
lar structures. The recent ”resolution revolution”
(Kühlbrandt (2014)) in cryo-EM has led to an in-
creasing number of near atomic resolution density
maps deposited in the EM databank EMDB (Law-
son et al. (2016)), making cryo-EM one of the leading
experimental methods for determining protein struc-
ture. A microscope samples tens of thousands of im-
ages which are sorted, aligned and averaged to pro-
duce a 3-D density map volume. Afterwards a mod-
elling process is applied to calculate atomic coordi-
nates from this 3D map. The typical modelling pro-
cess is mainly manual aided by computational mod-
elling tools.

De-novo modelling methods process a cryo-EM
map and obtain an atomic structure when homol-
ogous structures are not available. Traditional de-
novo cryo-EM modelling algorithms utilize methods
like template matching, 3D image analysis and en-
ergy minimization. Lasker et al. (2007), Lindert et al.
(2012), Baker et al. (2011), Terashi & Kihara (2018),
Chen et al. (2016), Liebschner et al. (2019), DiMaio
et al. (2011) are examples of such methods. RENNSH
(Ma et al. (2012)), Pathwalking (Chen et al. (2016)),
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SSELEarner (Si et al. (2012)) utilize traditional ma-
chine learning (ML) methods in structure determi-
nation. Those include among others kNN - k nearest
neighbor clustering (RENNSH), SVM - support vec-
tor machines (SSE learner) and k-means ( Pathwalk-
ing).

Recently Deep Learning (DL) tools started to play
an important role in cryo-EM modeling. The Convo-
lutional Neural Networks (CNN) and their variations
perform well on the task of secondary structure detec-
tion (Maddhuri Venkata Subramaniya et al. (2019),
Moritz et al. (2019)). One of the first attempts to
get structural insight at the amino acid level was
AAnchor(Rozanov & Wolfson (2018)). AAnchor es-
timates amino acid centers and types using a 3D
CNN. Only residues recovered with high confidence
(nicknamed anchors) are reported. A2-Net (Xu et al.
(2019)) is a two-stage modeling algorithm: a CNN
for pattern recognition is followed by a Monte Carlo
search to determine the protein structure. Deep-
Tracer (Pfab et al. (2021)) uses a cascaded convo-
lutional neural network to predict secondary struc-
tures, amino acid types, and backbone atom posi-
tions. Structure Generator (Li et al. (2020)) uses
CNN to estimate amino acids with their poses, which
are then fed to a graph convolutional network and a
recurrent network to obtain the 3D protein structure.
For a comprehensive review of Deep Learning meth-
ods in cryo-EM modelling we recommend Si et al.
(2021) and Li et al. (2020).

Despite recent advances, fully automated protein
structure determination from a cryo-EM map is still
challenging. There are natural factors that limit the
precision of an atomic structure estimation. Among
those is the existence of regions of degraded quality in
an experimental cryo-EM map caused by molecular
flexibility or resolution degradation at the periphery
of a molecular complex (Joseph et al. (2020), Si et al.
(2021)). Another factor is the variation in residue
size and conformation for different amino acid types.
As a result residue recognition precision strongly de-
pends on the amino acid type (Rozanov & Wolfson
(2018)). The third factor to be mentioned is protein-
RNA and protein-DNA complexes. Modelling of such
a complex requires separation between amino acids
and nucleic acids.

We address the three above mentioned challenges
by a segmentation approach. In this segmentation
task the output is a map of the same dimension as
the input map where each voxel in the output map
is coloured according to the amino acid type it be-
longs to (see Figure 6). Namely, the proposed DL
algorithm produces a coloured visualization of an in-
put cryo-EM map. White regions correspond to areas
where the exact amino acid types cannot by detected,
those are marked as ”uncovered”. In SegmA’s out-
put a residue conformation and boundary are seen
in addition to the residue position and type. Voxels
belonging to nucleic acids are marked by a different
color, which enables separation of RNA/DNA from
the proteins and the background.

Previous studies have highlighted some of the best
practices in DL processing of a cryo-EM map:

• Use of cascade structures has advantages for un-
balanced data. In this approach the first stage
classifier rejects most false negatives and the suc-
cessive classifiers perform exact labeling.

• Fully Convolutional U-Net architecture is a key
to fast processing of a 3D image.

• A reliable data normalization technique is crucial
due-to large data distribution variations (Figure
3).

SegmA incorporates the approaches mentioned
above. In addition SegmA incorporates some novel
approaches:

• SegmAs segmentation is based on the Group
Convolutional Equivariant Network (G-CNN),
(Cohen & Welling (2016)), to leverage rotation
equivariance of a protein pose in a cryo-EM map.

• SegmA has the ability to estimate the regions
where correct prediction is available and report
results only in those regions.

• SegmA utilizes a simple and fully automatic in-
put data normalization strategy.

At resolution of 3Å SegmAs accuracy is 80% for nu-
cleotides. Visually distinct amino acids, such as LEU,
ARG and PHE, are detected by Segma with 70%
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accuracy. A web server of the application is un-
der development at https://dev.dcsh7cbr3o89e.

amplifyapp.com. The SegmAs open code is available
at https://github.com/Mark-Rozanov/SegmA_3A/

tree/master

3 Methods

3.1 Map Processing

Given a 3D electron density map of a pro-
tein/macromolecular assembly, our task is to assign
a label to each voxel within the map. The assigned
label should specify that the voxel belongs to one of
the following 23 types: one of the 20 amino acids
(1 − 20), nucleotide (21), background (0), or uncov-
ered (22), where ”background” denotes voxels which
belong neither to proteins nor to amino acids and
”uncovered” denotes voxels which have not been la-
beled confidently enough to be considered. The al-
gorithm is executed by a cascade of three neural net-
works - see Figure 2.

The initial labeling of the processed volume is per-
formed by the Classification Net (CLF-NET). The
CLF-NET is a group convolutional network, which
has the rotation equivariance property (Cohen &
Welling (2016)), i.e. its features are invariant to ro-
tation of the input cryo-EM map. The Classification
Net receives as input a normalized volumetric patch
of the cryo-EM map and outputs the labels of each
voxel within this patch. CLF-NET has a receptive
field of 10Å3.

The results of CLF-NET are fed to the Segmenta-
tion Net (SEG-NET), which performs the final label-
ing of the voxels. SEG-NET is a U-net CNN (Ron-
neberger et al. (2015)) which combines the cryo-EM
values of the input voxels with the results of CLF-
NET on the neighboring voxels. The Segmentation
Net has two inputs: a normalized patch of the cryo-
EM map and the result of CLF-NET for this patch.
The output is the final label of each voxel, which takes
into account the neighborhood information. SEG-
NET has a receptive field of 15Å3.

Finally, the Confidence Net (CNF-NET) evaluates
the results of SEG-NET. It assigns a binary label (1

-correct, 0 incorrect) to each voxel. Only ”correct”
voxels are reported, the rest are marked with label
22 (uncovered). The Confidence Net is a rotation
equivariant convolutional network. It has a receptive
field of 15Å3 and 24 channels of input (the source
cryo-EM map and 23 output channels of the SEG-
NET).

3.2 Input Normalisation

Experimental cryo-EM maps suffer from variation in
their density value distributions. While voxels with
higher density should mark the locations of atoms,
density values of similar molecules may differ sig-
nificantly from one map to another (Lawson et al.
(2020)). This is due to lack of standardization com-
bined with multiple factors affecting the density val-
ues, such as the microscope type and reconstruction
software. Online databases such as EMDataResource
(Lawson et al. (2016)) assign different threshold val-
ues for each map for the interpretation of atom lo-
cations. Figure 3 shows density values for three test
maps on a logarithmic scale. Each of the three shown
cases has a unique density distribution which is dif-
ferent from one map to another. Moreover the den-
sity distribution varies as function of the distance of
a voxel to the map center. This variation does not
have any recognisable pattern.

Machine learning algorithms usually apply a data
normalisation procedure which ensures that the
training data and the test data are of similar dis-
tribution. Cascaded-CNN (Moritz et al. (2019)) has
a five stage normalisation algorithm based on or-
dered statistics and manually selected thresholds.
Emap2Sec (Maddhuri Venkata Subramaniya et al.
(2019)) normalises each voxel in the map to the range
0− 1 by a linear transformation. AAnchor (Rozanov
& Wolfson (2018)) adjusts the mean and standard de-
viation of each sample box of size 10Å3. Normalising
each sample box prevents using a fully convolutional
network on the whole map and therefore is time con-
suming. Having said that, note that normalising a
whole map is not efficient, since density distribution
changes within a map. Moreover, a typical map has
a large ”background” volume which does not contain
any atoms. SegmA applies a trade-off approach. A
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map is divided into patches of size N3
patch, where each

patch is normalised to mean value of 0.5 and stan-
dard deviation of 0.15. A fully convolutional neural
network is applied separately on each patch. Large
values of Npatch result in fast running time at the cost
of density distribution variability. Based on empirical
estimations, SegmA uses Npatch = 45Å.

3.2.1 Group CNN for the Amino Acids Clas-
sification

A function f(x) is said to be equivariant to a func-
tion g if f (g(x)) = g (f(x)). A function f(x) is said
to be invariant to a function g if f (g(x)) = f(x).
Note that the matrix convolution operation is equiv-
ariant to translation: a shift in the input leads to a
corresponding shift in the output. Due to the transla-
tion equivariance, conventional CNNs classify struc-
tural patterns regardless of their location without ad-
ditional effort.

However many classification tasks, especially in
3D, should also accommodate the rotational sym-
metry property: a rotation of an object should not
change its classification. Moreover, sometimes rota-
tional symmetry holds for local volume fragments, for
example, a rotation of an amino acid by 90o should
not alter its classification. The most popular ap-
proach to deal with angular rotations is an augmen-
tation of the training dataset with rotated versions
of the input. In this case a CNN ”duplicates” learn-
ing features for ”all” possible rotations. The obvious
disadvantages of such an approach are more critical
in 3D, due to the large input data size and the 3D
space of rotations.

Group convolutional neural networks (G-CNNs),
introduced in Cohen & Welling (2016), have an ar-
chitecture which exploits the rotational symmetry.
A layer in a G-CNN performs operations which are
equivariant to rotations, i.e. f iG−CNN (grot(x)) =

grot
(
f iG−CNN (x)

)
, where grot is a rotation function

and f iG−CNN is i layer of the G-CNN network. A
3D classification G-CNN processes a 3D input matrix
and outputs a scalar label, therefore G-CNN is ro-
tation invariant: fG−CNN (grot(x)) = fG−CNN (x)
where fG−CNN : RN×N×N → {1, . . . , Nlabels} is a
G-CNN classification function.

A G-CNN layer is built on the basis of a symmetry
group of a discrete set of rotations. Conventionally,
a discrete set of rotations by 90o in each of the 3 di-
mensions is used, because those are actually permu-
tations of 3D matrix elements and no interpolation
and matrix multiplication are required. Table 1 lists
the rotation groups used in this work.

From the implementation point of view a group
convolution layer outputs Nrot 4D matrices of di-
mension Nchan out × L ×W ×H, where Nchan out is
the number of output channels and L,W,H are the
length, width and height of a filter. Cohen & Welling
(2016) provide extended explanation of group CNNs,
including the theoretical basis and implementation
issues. For understanding group CNNs in three di-
mension we recommend Worrall & Brostow (2018)
and Winkels & Cohen (2019). SegmAs G-CNN im-
plementation was based on the open source code of
Romero et al. (2020) and Worrall & Brostow (2018).

3.3 Networks Architecture

The architecture of the Classification Net is presented
in Figure 1a. CLF-NET assigns a label to the center
of an 11Å3 cube. CLF-NET has 22 label types: 20
amino acids, nucleotide and background.

The architecture of the Segmentation Net (SEG-
NET) is presented in Figure 1b. SEG-NET utilizes
the U-net network architecture. First proposed for
the analysis of 2D biomedical images by Ronneberger
et al. (2015), nowadays U-net is one of the most pow-
erful architectures in image segmentation tasks, both
in 2D and 3D (Siddique et al. (2020)). Typical U-net
architecture consists of a contraction path and an ex-
pansion path. The contraction path, also known as
the encoder resembles a convolution network and pro-
vides classification information. SEG-NET has two
contraction paths: one is a conventional sequence of
convolutional layers, and the other is the pretrained
CLF-NET. The outputs of the two paths are concate-
nated and fed into the last layer of the encoder. The
expansion path or the decoder consists of a sequence
of deconvolution (or inverse convolution) layers. An
input to a deconvolution is the concatenation of out-
put from previous layer with the output from one of
the convolution layers from the encoder.
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The Confidence Network (CNF-NET) is a typi-
cal group CNN and its architecture is like that of
CLF-NET. The input is a 3D map with 23 channels,
which is the normalized patch of a cryo-EM map con-
catenated with the result of SEG-NET (22 pseudo-
probabilities). The output is a binary label which
asserts the SEG-NET labeling: 1 -correct, 0 incor-
rect.

All networks use the rectified linear (ReLU) activa-
tion function. The networks are implemented as Fully
Convolutional Networks (FCNs, Long et al. (2015)),
so they run on a variable input size. FCN architec-
ture reduces the running time of SegmaA: training
and testing are done on a large map patch and no
sampling or sliding window is required.

We first train the rotation equivariant CLF-NET,
afterwards SEG-NET training starts from the pre-
trained values of CLF-NET. The CNF-NET is
trained last on the output of SEG-NET.

3.4 Data Processing

The preprocessing of the training data consists of
cropping, augmentation, interpolation, normalization
and labeling. Test data preprocessing consists of in-
terpolation and normalization. Given a cryo-EM map
and a fitted atomic model, the cropping procedure
crops out the cryo-EM map edges which are far from
the fitted model. Afterwards each map-structure tu-
ple is copied 10 times with a random rotation. This
data augmentation is necessary, since rotation equiv-
ariance of a group-CNN is only for a discrete set of
rotations. The interpolation phase modifies the vox-
els size of a map to 1Å3. The labeling procedure
assigns to each voxel one of the 22 labels (see Figure
4 for details). An amino acid type (or nucleotide)
is assigned to a voxel which is in the proximity of
an atom of the residue of this type. A voxel with
no residue atom in its proximity gets the label 0 -
background.

In the final stage the SEG-NET labeling of the
map is modified according to the CNF-NET output.
Namely, voxels marked by CNF-NET as ”correct” are
reported with the SEG-NET labeling, the rest receive
the label ”uncovered”.
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RG 3D group convolution
GG 3D group convolution
3D convolution
3D deconvolution
sum over group elements
softmax function
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33
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rotation group

kernel size

(c) CNF-NET

Figure 1: (a) Classification Net architecture based
on T4 group. This is a typical group CNN network.
A GG convolution layer performs convolution on a
group of Nrot rotations. The very first layer is a RG
convolution which inputs a 3D map and outputs a
group. The sequence of GG layers is followed by a
summation layer. (b) Segmentation Net architecture
based on U-net approach. (c) Confidence Net: equiv-
ariant network based on the Klein4 group

Klein 4 Rotations
Set of all 180o rotations around
x, y, z axes

T4 12 Rotations
Tetrahedral group. Set of all
two-axes rotations by 900

S4 24 Rotations
Set of all 90o rotations around
x, y, z axes

Table 1: Rotation Groups Implemented in CONF-
NET

4 Experimental Results

SegmA was trained on 15 experimental cryo-EM
maps of resolutions 2.9Å -3.1Å and tested on three
cryo-EM maps - see Table 2.

The Classification Net was trained and tested in
4 different configurations. Three group convolution
networks for each of the symmetry groups (Klein,
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Map of Labels,
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1

Figure 2: SegmA’s processing scheme. In the pre-
processing phase a input map is partitioned to over-
lapping patches and each patch is normalized. Clas-
sification Net assigns primary labels to each voxel,
except for the boundary regions of a patch. Segmen-
tation Net assigns final labels based on the primary
labeling of nearby voxels. Confidence Net analyses
the result of SEG-NET and marks voxels whose la-
beling is of low confidence . In the postprocessing
phase all patches are concatenated in a full size map.
Voxels marked as ”uncorrect” by CNF-NET are re-
ported with the label ”uncovered” (22). The rest are
reported with the labels assigned by SEG-NET.

T4 and S4) as well as for the AAnchor configura-
tion without rotation equvariance were tested. All
four configurations had a similar amount of learnable
parameters. Table 3 summarizes the performance of
CLF-NET and SEG-NET for the four different con-
figurations of CLF-NET. Precision and recall values
were calculated for four amino acid types and nucleic
acids. One can see that the performance of group
convolutional networks is better then performance of
the regular CNN network. The performance degra-
dation of the S4 group may be explained by training
difficulties. In this configuration each layer has 576
matrices: 24 sets of 24 rotated matrices. The con-
tribution of SEG-NET is notable mostly in the recall
values, i.e., more voxels of given amino acid types are
detected. The rest of this section shows the results
for the T4 group used in CLF-NET.

Figure 3: Density value distribution for three test
cryo-EM maps. Errorbars show mean and standard
deviation value

Segmentation results of the three test map are
shown in Figures 8, 9, 10. The segmentation accuracy
was calculated for every voxel of value above the rec-
ommended threshold. Multilabel classification per-
formance is evaluated by a confusion matrix. An
entry ai,j of a confusion matrix A is defined as

the ratio ai,j =
T j
j

Nj
, where Nj is the number of in-

put cubes labeled j and T i
j is the number of inputs

labeled j with predicted label i. An ideal classifica-
tion algorithm will result in ai,i = 1 and ai,j = 0 if
i 6= j. We also refer to ai,i as the total accuracy
of label i. SEG-NET achieves performance of about
70% for nucleotides and several amino acids: ALA,
ARG, LEU, VAL, TYR, ARG.

We observed that labeling errors often occur be-
tween amino acid types of similar physico-chemical
properties. 22 labels where grouped into seven classes
(see Table 4): five classes of amino acids with sim-
ilar physico-chemical, nucleic acids class and a class
for background and uncovered voxels. As expected,
SegmAs precision is considerably higher on a segmen-
tation to classes - Figures 8f, 9f, 10f. For example a
voxel of an aliphatic amino acid can be estimated
with accuracy of about 80%.
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Crop: remove map regions
without fitting structures

Create a grid of voxel size
1Å3.

Interpolate map on the
grid

Cryo-EM map preparation Loop on Residue Type

Select atoms of a given
residue type

Run Gaussian Mixture
Model

Append created map to a
stack

Simulate Map for

Each Residude Type

20×Xmap × Ymap × Zmap

Label according to the
maximum malue

Add ”background” label

Labeling

Labeled Pair

1

Figure 4: Labeling Procedure: First, the map is
cropped and interpolated to voxel size of 1Å3. After-
wards the pdb2mrc routine (Tang et al. (2007)) is ap-
plied only for atoms of a specified residue. pdb2mrc
creates a 3D density map which is Gaussian Mixture,
where a Gaussian centers are the atom centers and
amplitudes are proportional to the atomic number. A
residue type whose GMM map has a maximum value
at an (i, j, k) voxel is the voxel label. Voxels with a
maximal GMM value below a threshold are labeled
as background (0).

It has been known from years of human eye ex-
amination of electron density maps that some amino
acids can be misinterpreted. For example Branden
& Tooze (2012) mention some ”indistinguishable”
pairs: THR-VAL, ASP-ASN, GLU-GLN, HIS-PHE
and others. SegmA experience on cryo-EM maps is
slightly different: most of the mislabeling occurs be-
tween amino acids of similar physico-chemical proper-
ties. Only LEU-ILE and THR-VAL have a consider-
ably high of diagonal values in the confusion matrix.

The role of CNF-NET is to filter out false labeled
voxels. Figure 5 shows the segmentation accuracy
values for different map density levels. While SEG-
NET shows degrading performance at intermediate
density values, CNF-NET filters out most of the false
labeled voxels and the accuracy of reported voxels re-
mains high. An isosurface display of Chimera (Pet-
tersen et al. (2004)) is given in Figure 6. At high
density values, which represent protein backbone and
atom centres, SegmA reaches nearly 80% precision

(see Figure 6 for an isosurface display of Chimera).
3D visualization programs such as Chimera, Pymol
or Coot enable a user to control the displayed surface
by selecting and appropriate density threshold value.
By increasing the shown map threshold, a viewer can
obtain more precise segmentation at the cost of shown
structure details (Figure 6).

Another insight into the SegmA net accuracy can
be obtained by clipping an isosurface and showing
the obtained cut (Figure 7). Uncovered regions ap-
pear mostly in a residue periphery, i.e., boundary
between residues or a boundary between a residue
and the background. The degraded performance of
SegmA in a residue periphery is caused mainly by
molecular flexibility and insufficient precision of the
training database. Since a cryo-EM map is actually
an average of a large number of flexible molecules,
the residue periphery often belongs to more than one
amino acid or nucleotide. Moreover, due to errors
in atoms position, the periphery regions may have
ambiguous labels in the training database.

EMD
12130

Res.
2.9Å

Coronavirus Spike from
Smuggled Guangdong
Pangolin Wrobel et al.
(2021)

EMD
11221

Res.
3Å

Nucleosome with regu-
latory linker of ALC1
Lehmann et al. (2020)

EMD
11993

Res.
3.1Å

Elongating SARS-CoV-2
RNA-dependent RNA
polymerase Kokic et al.
(2021)

Table 2: Experimental maps used in SegmA perfor-
mance evaluation

5 Conclusions

SegmA is a instance segmentation approach to obtain
structural insight into a cryo-EM map. SegmA is a
cascade of three convolution networks. A fully con-
volutional U-net architecture enables rapid (within
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Precision (Recall) %
LEU PRO VAL ARG NCL

CNN CLF-NET 39(71) 39(44) 50(46) 24(53) 56(82)
SEG-NET 49(66) 40(53) 46(42) 30(56) 57(68)

Klein CLF-NET 58(58) 39(46) 44(56) 35(54) 53(91)
SEG-NET 62(69) 49(53) 42(69) 42(68) 54(98)

T4 CLF-NET 62(64) 58(52) 56(46) 32(67) 57(87)
SEG-NET 60(66) 54(65) 58(47) 40(70) 55(94)

S4 CLF-NET 42(43) 41(41) 50(21) 24(44) 55(68)
SEG-NET 44(74) 60(55) 65(42) 25(78) 59(77)

Table 3: CLF-NET performance for various 3D
groups. Precision = TP

TP+FP , Precision = TP
TP+FN .

TP is a number of true positives. FP is a number
of false positives. FN is a number of false negatives.
CNN denotes convolution neural network without ro-
tations. Klein - the group of four 180o rotations. S4
is the group of all possible 90o rotations, 24 members.
T4 is the tetrahedral group which consists of 12 two
axis rotation by 90o

0. INLBL Background, Unconfident
1. NCL Nucleic acids.

2. POS
Basic amino acids: LYS,
ARG, HIS.

3. NEG
Acidic amino acids:
ASP,GLU.

4. PLR
Polar, uncharged amino
acids: SER, THR, CYS,
MET, ASN, GLN.

5. ARM
Nonpolar, aromatic amino
acids: PHE, TYR, TRP.

6. ALP
Nonpolar, aliphatic amino
acids: GLY , ALA, VAL,
LEU, ILE, PRO”.

Table 4: Segmentation Classes

seconds) processing of a cryo-EM 3D map. Con-
siderable improvement in the segmentation precision
was achieved by using a group convolutional network
which is the heart of the algorithm. This type of
CNN has the rotational equivariance property, which
leverages the native rotation invariance of a molecule.
An instance segmentation task has natural perfor-
mance limits when applied to a cryo EM map. Some

(a) Segmentation Net Accuracy

(b) Effect of Confidence Net

Figure 5: Segmentation Accuracy for EMD-11221 for
different density values. (a) The SQ-NET accuracy
is better for voxels for of high density values, except
for very low densities, where most voxels are labeled
as background. (b) CNF-NET correction. White bar
shows the share of the uncovered region.

amino acids types cannot be revealed at a given res-
olution. Moreover, an experimental cryo-EM map
has regions of degraded resolution. SegmA detects
those regions and marks them as ”uncovered”, which
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results in a considerably higher performance in the
”covered” regions. SegmA estimates a residue type
at the voxel level, presenting the user a coloured 3D
image. SegmA also posses an advantage of a segmeta-
tion approach: a residue pose and boundary are seen
in addition to the residue position and type. SegmA
also has the ability to distinguish between protein
residues and nucleotides.
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(a) EMD-11221 isosurface for threshold value 0.013. Seg-
mentation precision 66%, coverage 66%.

(b) EMD-11221 isosurface for threshold value 0.019. Seg-
mentation precision 76%, coverage 85%.

Figure 6: EMD-11221 isosurfaces for values 0.013 and
0.019 coloured by an amino acid type. Blue regions
indicate nucleotides. Uncovered regions showed by
White color. The segmentation precision improves
and coverage increases as the threshold value grows
at the cost of shown map.
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Figure 7: EMD-11221 Clipped Surface. The mesh
shows isosurface at density value 0.013. The cutting
plane is shown as continuously colored regions. Un-
covered (white ) regions occur mostly on the bound-
ary between residues or a boundary between a residue
and the background .

(a) Input cryo-EM map
with fitted structure (b) True Segmentation

(c) SegmAs Segmentation (d) Results

(e) Segmentation to AA

(f) Segmentation to Classes

Figure 8: EMD-11221 Segmentation Results
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(a) Input cryo-EM map
with fitted structure (b) True Segmentation

(c) SegmAs Segmentation (d) Results

(e) Segmentation to AA

(f) Segmentation to Classes

Figure 9: EMD-11993 Segmentation Results

(a) Input cryo-EM map
with fitted structure (b) True Segmentation

(c) SegmA Segmentation (d) Results

(e) Segmentation to AA

(f) Segmentation to Classes

Figure 10: EMD-12130 Segmentation Results
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