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Abstract
Molecular and genomic approaches that target mixed microbial communities (e.g., metagenomics
or metatranscriptomics) provide insight into the ecological roles, evolutionary histories, and phys-
iological capabilities of the microorganisms and the processes in the environment. Computational
tools that harness large-scale sequence surveys have become a valuable resource for characterizing
the genetic make-up of the bacterial and archaeal component of the marine microbiome. Yet, fewer5

studies have focused on the unicellular eukaryotic fraction of the community. Here, we developed
the EukHeist automated computational pipeline, to retrieve eukaryotic and prokaryotic metagenome
assembled genomes (MAGs). We applied EukHeist to the eukaryote-dominated large-size fraction
data (0.8-2000µm) from the Tara Oceans survey to recover both eukaryotic and prokaryotic MAGs,
which we refer to as TOPAZ (Tara Oceans Particle-Associated MAGs). The TOPAZ MAGs consisted10

of more than 900 eukaryotic MAGs representing environmentally-relevant microbial and multicellu-
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lar eukaryotes in addition to over 4,000 bacterial and archaeal MAGs. The bacterial and archaeal
TOPAZ MAGs retrieved with EukHeist complement previous efforts by expanding the existing phy-
logenetic diversity through the increase in coverage of many likely particle- and host-associated taxa.
We also demonstrate how the novel eukaryotic genomic content recovered from this study might be15

used to infer functional traits, such as trophic mode. By coupling MAGs and metatranscriptomic data,
we explored ecologically-significant protistan groups, such as the Stramenopiles. A global survey of
both eukaryotic and prokaryotic MAGs enabled the identification of ecological cohorts, driven by
specific environmental factors, and putative host-microbe associations. Accessible and scalable com-
putational tools, such as EukHeist, are likely to accelerate the identification of meaningful genetic20

signatures from large datasets, ultimately expanding the eukaryotic tree of life.

Introduction
Unicellular microbial eukaryotes, or protists, play a critical part in all ecosystems found on the planet.
In addition to their vast morphological and taxonomic diversity, protists exhibit a range of functional
roles and trophic strategies (Caron et al., 2011). Protists are centrally important to global biogeo-25

chemical cycles, mediating the pathways for the synthesis and processing of carbon and nutrients in
the environment (Mitra et al., 2014; Caron et al., 2017; Strom, 2008). Despite their importance across
ecosystems and in the global carbon cycle, research on microbial eukaryotes typically lags behind that
of bacteria and archaea (Caron and Countway, 2009; Keeling and Campo, 2017). Consequently, fun-
damental questions surrounding microbial eukaryotic ecological function remain unresolved. Novel30

approaches that enable genome retrieval from meta’omic data provide a means of bridging that knowl-
edge gap.

Assembled genetic fragments (derived from metagenomic reads) can be grouped together based on
their abundances, co-occurrences, and tetranucleotide frequency to reconstruct likely genomic col-
lections, often called bins (Alneberg et al., 2014; Wu et al., 2014; Kang et al., 2019; Graham et al.,35

2017). These bins can then be refined through a series of steps to ultimately represent metagenome
assembled genomes or MAGs (Parks et al., 2017; Delmont et al., 2018; Tully et al., 2018; Almeida
et al., 2019). Binning metagenomic data into MAGs has revolutionized how researchers ask questions
about microbial communities and has enabled the identification of novel bacterial and archaeal taxa
and functional traits (Rinke et al., 2019; Tully, 2019), but the recovery of eukaryotic MAGs is less40

well established. The reason for this being arguably twofold: (1) eukaryotic genomic complexity
(Zhang et al., 2011) complicates both metagenome assembly and MAG retrieval; and (2) there is a
bias in currently available metagenomic computational tools towards the study of bacterial and ar-
chaeal members of the community. Much can be learned about the diversity and role of eukaryotes in
our environment from eukaryotic MAG retrieval (Olm et al., 2019).45

Here we developed and applied EukHeist, a scalable and reproducible pipeline to facilitate the recon-
struction, taxonomic assignment, and annotation of prokaryotic and eukaryotic metagenome assem-
bled genomes (MAGs) from mixed community metagenomes. The EukHeist pipeline was applied
to a metagenomic dataset from the Tara Oceans expedition protist-size fractions samples (Carradec
et al., 2018), which encompasses more than 20Tb of raw sequence data. From these large-size fraction50

metagenomic samples, we recovered over 4,000 prokaryotic MAGs and 900 eukaryotic MAGs.
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Results and Discussion
We developed the EukHeist metagenomic pipeline to automate the recovery and classification of
eukaryotic and prokaryotic MAGs from large-scale environmental metagenomic datasets. EukHeist
was applied to the metagenomic data from the large-size fraction metagenomic samples (0.8-2000µm)55

from Tara Oceans (Carradec et al., 2018), which is dominated by eukaryotic organisms. We generated
94 co-assembled metagenomes based on the ocean region, size fraction, and depth of the samples
(Figure S1), which totaled 180 Gbp in length (Supplementary Table 1). A total of 988 eukaryotic
MAGs and 4,022 prokaryotic MAGs were recovered; considering our efforts to target the larger size
fractions, these MAGs have been made available under the name Tara Oceans Particle Associated60

MAGs, or TOPAZ (Supplementary Tables 2 and 3). The TOPAZ MAGs expand the current repertoire
of publicly available eukaryotic genomic references for the marine environment and shed light on the
biogeographical and functional potential of these eukaryotic-enriched marine communities.

Eukaryotic genome recovery from metagenomes covers major
eukaryotic supergroups65

The EukHeist classification pipeline identified 988 putative eukaryotic MAGs following the refine-
ment of recovered metagenomic bins based on length (> 2.5 Mbp) and proportion of base pairs pre-
dicted to be eukaryotic in origin by EukRep (West et al., 2018) (Figure S4). Protein coding regions in
the eukaryotic MAGs were predicted using the EukMetaSanity pipeline (Neely et al., 2021), and the
likely taxonomic assignment of each bin was made with MMSeqs (Steinegger and Söding, 2018) and70

EUKulele (Krinos et al., 2021) (Supplementary Table 2). Of the 988 eukaryotic MAGs recovered,
713 MAGs were estimated to be more than 10% complete based on the presence of core eukaryotic
BUSCO orthologs (Simao et al., 2015). For the purposes of our subsequent analyses, we only con-
sider the highly complete eukaryotic TOPAZ MAGs, or those that were greater than 30% complete
based on BUSCO ortholog presence (n=485) (Figure 1).75

Eukaryotic genomes are known to be both larger and have higher proportions of non-coding DNA than
bacterial genomes (Zhang et al., 2011). On average across sequenced eukaryotic genomes, 33.1% of
genomic content codes for genes (2.6% - 59.8% for the 1st and 3rd quartiles) (Hou and Lin, 2009),
while bacterial genomes have a higher proportion of coding regions (86.9%; 83.9% - 89.3%) (Hou
and Lin, 2009). The high-completion TOPAZ eukaryotic MAGs have an average of 73.7%±14.3%80

gene coding regions (Figure S9). This trend of a higher proportion of coding regions was consistent
across eukaryotic groups, where Haptophyta and Ochrophyta TOPAZ MAGs had an average coding
region of 80.3±4.9% and 78.1±6.3%, respectively. Genomes from cultured Haptophyta (Emiliania
huxleyi CCMP1516 with 31 Mb or 21.9% (Read et al., 2013)), and Ochrophyta (Phaeodactylum
tricornutum with 15.4 Mb or 57.3% (Bowler et al., 2008)) had significantly lower proportions of85

protein coding regions within their genomes compared to TOPAZ MAGs. The lowest percentages of
gene coding were within Metazoan and Fungal TOPAZ MAGs, with 52.6± 9.8% and 58.8± 6.7%,
respectively. As a point of comparison, the human genome is estimated to have ≈ 34 Mb or ≈ 1.2%
of the genome coding for proteins (Consortium, 2004). Globally, the higher gene coding percentages
for the recovered eukaryotic TOPAZ MAGs likely reflect biases caused by the use of tetranucleotide90

frequencies in the initial binning (Kang et al., 2019) as well as challenges inherent in the assembly of
non-coding and repeat-rich regions of eukaryotic genomes.

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.25.453713doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.25.453713
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: [Continued on next page.]

4

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.25.453713doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.25.453713
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: TOPAZ eukaryotic MAGs span the eukaryotic tree of life. The maximum likelihood
tree was inferred from a concatenated protein alignment of 49 proteins from the eukaryotic BUSCO
gene set that were found to be commonly present across at least 75% of the 485 TOPAZ eukaryotic
MAGs that were estimated to be >30% complete based on BUSCO ortholog presence. The MAG
names were omitted but the interactive version of the tree containing the MAG names can be accessed
through iTOL (https://itol.embl.de/shared/halexand). Branches (nodes) are colored based
on consensus protein annotation estimated by EUKulele and MMSeqs. The Ocean Region (OR),
Depth (D), and Size Fraction (SF) of the co-assembly that a MAG was isolated from is color coded
as colored bars. The completeness (comp) and contamination (cont) as estimated based on BUSCO
presence are depicted as a heatmap. Predicted Heterotrophy Index (H-index), which ranges from
phototroph-like (-300) to heterotroph-like (300) is shown as a heatmap. The predicted trophic mode
(T-pred) based on the trophy random forest classifier with heterotroph (pink) and phototroph (green),
is depicted. The number of proteins predicted with EukMetaSanity are shown as a bar graph along
the outermost ring.

Phylogenetic placement of TOPAZ MAGs aligned with estimated taxonomy based on protein-consensus
annotation (Figure 1). The recovered MAGs spanned 8 major eukaryotic supergroups: Archaeplas-
tida (Chlorophyta), Opisthokonta (Metazoa, Choanoflagellata, and Fungi), Amoebozoa, Apusozoa,95

Haptista (Haptophyta), Cryptista (Cryptophyta), and the SAR supergroup (Stramenopiles, Alveolata,
and Rhizaria) (Burki et al., 2020). Eukaryotic MAGs were retrieved from all ocean regions surveyed,
with the largest number of high-completion TOPAZ MAGs recovered from the South Pacific Ocean
Region (SPO) (n=143) and the fewest recovered from the Southern Ocean (SO) (n=11) and Red Sea
(RS) (n=12) (Figure S8). These regional trends in MAG recovery and taxonomy aligned with the100

overall sequencing depth at each of these locations (Supplementary Table 1), with fewer, less diverse
MAGs recovered from the SO and RS (Figures S5 and S8).

The largest number of MAGs was recovered from the smallest size fraction (0.8− 5µm) (n=311)
(Figures 1 and S5), and yielded the highest taxonomic diversity, including MAGs from all the ma-
jor supergroups listed above (Figure S5). Chlorophyta (n=133), Ochrophyta (n=57), and taxa placed105

within the SAR group (Stramenopiles, Alveolata, and Rhizaria) (n=56) made up the the largest pro-
portion of small size fraction MAGs. Chlorophyta MAGs were smaller and had fewer predicted
proteins relative to other eukaryotic MAGs, despite demonstrating comparable completeness metrics;
the average Chlorophyta MAG size was 13.9 Mbp with 7525 predicted proteins (Figure S9). By
contrast, Cryptophyta and Haptophyta had the largest average MAG size with 50.8 Mbp and 44.4110

Mbp with an average of 23500 and 24400 predicted proteins, respectively (Figure S9). Fewer eukary-
otic MAGs were recovered from the other size fractions 5−20µm (n=20), 20−180µm (n=87), and
180−2000µm (n=39) (Figure S5), instead these larger size fractions recovered a higher total number
of metazoan MAGs. Metazoan MAGs had the lowest average completeness (50±13%) (Figures S7
and S9); where the average size of recovered metazoan MAGs was 43.2 Mb (6.5-177Mbp), encom-115

passing an average of 14600 proteins (Figure S9). 76 of the 123 metazoan MAGs likely belong to the
Hexanauplia (Copepoda) class; copepod genomes have been estimated to be up to 2.5 Gb with high
variation (10-fold difference) across sequenced members (Jørgensen et al., 2019).

MAGs were also retrieved from all discrete sampling depths: surface, SRF (n=315), deep chloro-
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phyll max, DCM (n=133), mesopelagic, MES (n=13), as well as samples with no discrete depth,120

MIX (n=21) and the filtered seawater controls, FSW (n=3). Notably, the FSW included 1 Chloro-
phyta MAG (TOPAZ_IOF1_E003) that was estimated to be 100% complete with no contamination
(Supplementary Table 2).

The composition of TOPAZ MAGs from basin-scale mesopelagic co-assemblies recovered a higher
percentage of fungi relative to other depths. This is similar to other mesopelagic and bathypelagic125

molecular surveys, where the biomass of fungi is thought to outweigh other eukaryotes (Morales
et al., 2019; Pernice et al., 2015; Edgcomb et al., 2010). Further, fungal MAGs had the highest overall
average completeness (87±15%) (Figures S7 and S9). A total of 16 highly complete fungal MAGs
were also recovered, of those, 11 originated from the MES (Figures 1 and S8). Putative fungal TOPAZ
MAGs were recovered from the phyla Ascomycota (n=10) and Basidiomycota (n=1) and ranged in130

size from 12.5-47.8 Mb (Figure S9), which are within range of known average genome sizes for these
groups, 36.9 and 46.5 Mb, respectively (Mohanta and Bae, 2015).

The metagenome read recruitment to these TOPAZ MAGs paralleled MAG recovery, where metazoan
MAGs dominated the larger size fractions (20− 180µm and 180− 2000µm) across both the surface
and DCM for all stations, and Chlorophyta MAGs were dominant across most of the small size frac-135

tion stations (0.8−5µm) (Figure S11). A notable exception are the stations from the Southern Ocean,
where Haptophyta and Ochrophyta were most abundant in all size fractions. Compared to the samples
from the photic zone, SRF and DCM, the average recruitment of reads from the MES was far lower
(24500±34450 average CPM in the MES compared to 131000±104000 and 136000±85000 for the
SRF and DCM, respectively (Figure S11). This suggests that the mesopelagic have high variability140

across communities (Pernice et al., 2015) and that we did not fully capture the eukaryotic MAGs that
adequately describe all surveyed communities. Alternatively, this might suggest that the communities
sampled were dominated by prokaryotic biomass (Pernice et al., 2014).

Trophic mode can be predicted from MAG gene content
Eukaryotic microbes can exhibit a diversity of functional traits and trophic strategies in the marine145

environment (Worden et al., 2015; Caron et al., 2011), including phototrophy, heterotrophy, and
mixotrophy. Phototrophic protists are responsible for a significant fraction of the organic carbon
synthesis via primary production; these phototrophs dominate the microbial biomass and diversity in
the sunlit layer of the oceans (Worden et al., 2015; de Vargas et al., 2015). Phagotrophic protists (het-
erotrophs), which ingest bacteria, archaea, and smaller eukaryotes, and parasitic protists are known to150

account for a large percentage of mortality in food webs (Sherr and Sherr, 2002; Caron et al., 2011;
Worden et al., 2015). Protists are also capable of mixed nutrition (mixotrophy), where a single-cell
exhibits a combination of phototrophy and heterotrophy (Stoecker et al., 2017). Typically, the identifi-
cation of trophic mode has relied upon direct observations of isolates within an lab setting, with more
recent efforts including transcriptional profiling as a means of assessing trophic strategy (Keeling155

et al., 2014; Liu et al., 2016). Scaling up these culture-based observations to environmentally-relevant
settings (Alexander et al., 2015; Hu et al., 2018; Gong et al., 2016) has been an important advance
in the field for exploring complex communities without cultivation. An outcome from these studies
has been the realization that trophic strategies are not governed by single genes (Labarre et al., 2020);
in reality, trophic strategy will be shaped by an organisms’ physiological potential and environmen-160

tal setting. Therefore larger genomic and transcriptomic efforts to predict or characterize presumed
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Figure 2: Estimated trophic status of TOPAZ eukaryotic MAGs. (Top) Trophic status was pre-
dicted for each high-completion TOPAZ eukaryotic MAG using a Random Forest model trained on
the presence and absence of KEGG orthologs and is shown as a color (green, phototroph, pink, het-
erotroph). The Heterotrophy Index (H-index) (Equation (8)) for each MAG is plotted with a box
plot showing the range of the H-index for each higher level group. (Bottom) The relative distribution
and abundance of Phototroph (green), non-Metazoan Heterotroph (Pink), and Metazoan Heterotroph
(Purple) is depicted across all surface samples. Plots are subdivided by size classes.

trophic strategies among mixed microbial communities will greatly contribute to our understanding
of the role that microorganisms play in global biogeochemical cycles, by enabling the observation of
functional traits and strategies in situ.
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Large scale meta’omic results, such the TOPAZ MAGs recovered here, can be leveraged alongside165

presently available reference data to enable the prediction of biological traits (such as trophic mode)
without a priori information. Machine learning (ML) applications can be implemented to access
the potential of these large datasets. ML approaches have been recently shown to be capable of
accurate functional prediction and cell type annotation using genetic input, in particular for cancer
cell prediction (Shipp et al., 2002; Bashiri et al., 2017; Tabl et al., 2019), and functional gene and170

phenotype prediction in plants (Mahood et al., 2020). Recently, these approaches have been applied
to culture and environmental transcriptomic data to predict trophic mode using currently available
trophy annotations (Lambert et al., 2021; Burns et al., 2018; Jimenez et al., 2021). Here, we apply
an independent machine learning model to the eukaryotic TOPAZ MAGs to predict each organisms’
capacity for various metabolisms.175

Using a reference set built from protistan transcriptomic data, we predicted the trophic mode of the
highly complete TOPAZ MAGs using machine learning and direct estimation via presence of im-
portant KEGG pathways (eq. (8)). As the gradient of trophic mode among protists is not strictly
categorical, we calculated a Heterotrophy Index (H-index) that places the TOPAZ MAGs on a scale
of highly phototrophic (negative values) to highly heterotrophic (positive values) (Figures 1 and 2).180

Thus, for all sufficiently complete (≥ 30%) TOPAZ MAGs we have predicted both a gross trophic
category (heterotrophic (n = 227), mixotrophic (n = 0), or phototrophic (n = 258) as well as the
quantitative extent of heterotrophy (H-index, eq. (8)). Broadly, the trophic predictions aligned well
with the putative taxonomy of each MAG (Figures 1 and 2). For example, TOPAZ MAGs that had
taxonomic annotation of well known heterotrophic lineages (Metazoa, Fungi), were predicted as het-185

erotrophs based on our model. Further, our data-driven trophic mode predictions correlate well with
an independent model designed to identify the presence of photosynthetic machinery and capacity for
phagotrophy (Burns et al., 2018) (Figures S26 and S27).

Despite evidence that many lineages recovered include known mixotrophs, no TOPAZ MAGs were
identified as mixotrophic using this approach. However, the utility of the H-index enables us to still190

consider mixotrophic-capable MAGs. We explore the likely reasons for this more deeply in the Sec-
tion 1.3, but one potential explanation is that MAG recovery targets the genomic content of a eukary-
otic lineage and the evolutionary history of phototrophy and heterotrophy is complicated and varies
with respect to species (Flynn et al., 2019). Therefore, the genetic composition of MAGs may reflect
encoded metabolisms that are not necessarily exhibited in situ. Additionally, mixotrophy is not a sin-195

gular trait, but rather a spectrum of metabolic abilities that are largely driven by the microorganisms’
nutritional needs and surrounding environment. Continued culturing combined with large-scale ’omic
efforts will continue to improve such ML models focused on complex traits and ultimately our abil-
ity to predict trophic mode. We suggest that the integration of metagenomic and metatranscriptomic
datasets might better reflect the active strategies being used.200

Ecological niches of heterotrophic and phototrophic Stramenopiles using meta-
transcriptomic evidence
A total of 24 high-completion TOPAZ eukaryotic MAGs were subset as a case study to explore the
utility of pairing metatranscriptome data with MAG results to characterize the ecological context
of less resolved protistan lineages. Selected MAGs included 11 taxonomically-assigned as Dic-205
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Figure 3: Dictyochophyceae and stramenopile MAGs A subset of 24 highly-complete TOPAZ
MAGs taxonomically classified as stramenopiles and Dictyochophyceae. (a) Cluster dendrogram de-
rived from the presence or absence of orthologs grouped MAGs by predicted trophic mode (green in-
dicates phototrophy and pink indicates heterotrophy). Pie charts to the left of each TOPAZ MAG name
indicate the relative CPM abundance of each MAG for (left to right pies) ocean region, depth sam-
pled, and size fraction. Bubble plots to the right of each TOPAZ MAG name indicate the total MAG
CPM abundance. (b) Summary of shared and unique orthologs based on occurrence in phototrophy-
and heterotrophy-predicted TOPAZ MAGs. Venn diagrams indicate category of orthologs shown in
each panel, while panels report the KEGG module and prevalence among MAGs in each category (bar
plot). (c) Principle component analysis derived from metatranscriptome reads, from the surface and
smallest size fraction, mapped to shared orthologs (Shared in all MAGs in (b)) among all 24 MAGs.
Symbol size designates Heterotrophy Index, while symbol color denotes predicted trophic mode.

tyochophyceae (silicoflagellates), which were putatively classified as phototrophs with our trophic
model (Figure 2), and 13 MAGs within a phylogenetically-related stramenopile clade and classified
as heterotrophs (Figures 1 and 3 a).

All 24 MAGs had a cosmopolitan distribution primarily originating from surface samples from the
smallest size fraction, but some individual MAGs had relatively higher CPM abundances suggesting210

environmental selection based on oceanographic region (Figure 3a, Figure S18, Figure S17). The
biogeography of the Dictyochophyceae aligned with existing literature, where Dictyochophyceae are
globally distributed and typically found in the euphotic layer of the world ocean (Vaulot et al., 2008;
Obiol et al., 2020; Massana, 2011). Global sampling efforts have also recovered genetic signatures of
Dictyochophyceae as a prominent, but not abundant, member of the Stramenopile group that does not215

demonstrate remarkable seasonality (Giner et al., 2019; Obiol et al., 2020). While grazing on bac-

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.25.453713doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.25.453713
http://creativecommons.org/licenses/by-nc/4.0/


teria and picocyanobacteria has been observed within mixotrophic Dictyochophyceae, previous work
to quantify grazing rates were unsuccessful to due to the low cell abundance (Unrein et al., 2014).
Therefore, metagenomic and metatranscriptomic datasets, such as the recovered TOPAZ MAGs, are
well suited to illuminate the biogeography and functional potential of the Dictyochophyceae. Dicty-220

ochophyceae and heterotrophic Stramenopiles have previously been reported in analyses of the Tara
Oceans data (Carradec et al., 2018; Pierella Karlusich et al., 2020; Vorobev et al.; Sieracki et al.,
2019).

This analysis enabled both targeted and untargeted approaches to investigate the physiology of SAR
TOPAZ MAGs. First, we assessed ortholog co-occurrence across the MAGs to identify genes that225

were present only among the phototrophy-predicted Dictyochophyceae MAGs (Phototrophy Exclu-
sive; Figure 3b). Genes deemed Phototrophy Exclusive (Figure 3b) were related to chlorophyll
biosynthesis (Por; protochlorophyllide reductase), enzymes integral to the pentose phosphate path-
ways, and acyltransferases and carboxylases, which are involved in de novo fatty acid biosynthesis
functions (e.g., ACACA; acetyl-CoA carboxylase biotin, ACSS; acetyl-coA synthetase). Inversely,230

genes detected only within putative stramenopile MAGs classified as heterotrophs (i.e., Heterotro-
phy Exclusive; Figure 3 b) included enzymes integral for the breakdown of large sugar molecules
such as glycosaminoglycans (e.g., IDUA; L-iduronidase, UDP-glucose:O-linked fucose beta-1,3-
glucosyltransferase, NAGLU; alpha N acetylglucosaminidase, IDS; iduronate-2sulfatase, and GALC;
galactosylceramidases). Enzymes associated with glycosaminoglycan metabolism may be associated235

with cell adhesion or the intracellular re-processing of glycosaminoglycan; the latter of which may be
a genetic attribute for more heterotrophic lifestyles. By isolating the presence and absence of specific
genes across MAGs with varied predicted trophic modes, we can identify sets of genes that may be
indicative of a species’ ecological role.

Ordination results based on the expression of transcripts common across all 24 MAGs (Figure 3240

c; based on ‘Shared in all MAGs’ in Figure 3b) clustered by H-index and TOPAZ MAG identity
(Figure S19). While there was some overlap among MAGs predicted to be heterotrophic versus
phototrophic, trends dictating the PCA results appeared to be driven primarily by the trophic mode
of individual MAGs, rather than region sampled (Figure 3 c, Figure S19). Further, ordination re-
sults resembled previously observed trends from transcript-based efforts to separate phototrophic,245

mixotrophic, and heterotrophic protistan species from cultivation (Koid et al., 2014; Beisser et al.,
2017) and the environment (Hu et al., 2018). Results from the mapped metatranscriptome reads
revealed populations to exhibit more heterotrophic or phototrophic traits depending on the environ-
ment (Figure S21, Figure S22). For instance, among the Dictyochophyceae-predicted MAGs variable
phototrophic versus heterotrophic relative abundances may reflect a mixotrophic-capable population250

responding to the environment (Figure S21). The 13 MAGs classified as heterotrophic (ML model
in this study) were phylogenetically similar to other Stramenopiles (Figure 3 b & Figure 1) and H-
indices reported for each MAG aligned with what was seen in the metatranscriptome signal, where
MAGs with the highest heterotrophy scores (e.g., TOPAZ_SAS1_E035 and TOPAZ_NAX_E011;
Figure S19) had higher CPM associated with heterotrophic traits in all samples (Figure S22). While255

the identity of the Dictyochophyceae MAGs was further supported by phylogenetic similarity with
other Dictyochophyceae MAGs and single-cell genome-informed MAGs (Figure S20), the taxonomic
identity of the presumed heterotrophic Stramenopile TOPAZ MAGs was less resolved. While we
cannot confidently annotate beyond the taxonomic classification of ’SAR’, these MAGs were distinct
from those in culture and likely include a mixotrophic-capable group of protists distinct from the MA-260
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rine STramenopiles (MAST; Figure S20). These findings demonstrate the value of large untargeted
genetic approaches to gain insight into the in situ metabolisms of less explored branches of the eu-
karyotic tree of life. Paired metagenomic and metatranscriptome results, alongside the environmental
context provided by a large-scale global sampling effort, and the predicted nutritional strategies we
can gain a more comprehensive understanding of protists in our oceans.265

TOPAZ prokaryotic MAGs distinct from previous marine MAG recovery ef-
forts
The vast majority of the retrieved prokaryotic MAGs belonged to Bacteria. High-quality non-redundant
TOPAZ (HQ-NR-TOPAZ) MAGs were comprised of 711 bacterial and 5 archaeal MAGs belonging to
30 different phyla (Figure 4 and Supplementary Table 4); an additional 15 phyla were recovered in the270

medium quality (MQ) MAGs. Of the 716 HQ-NR-TOPAZ MAGs, 507 were unique based on a 99%
ANI comparison threshold with MAGs generated from previous binning efforts from Tara Oceans
metagenomic data, including Delmont et al. (2018) (TARA), Tully et al. (2018) (TOBG), and Parks
et al. (2017) (UBA) (Figure 4). The phylogenetic diversity captured by the TOPAZ MAGs was quan-
tified by a comparison to a "neutral" reference set of genomes; these neutral references approximate275

the state of marine microbial genomes, dominated by isolate genomes, previous to the incorporation
of the Tara Oceans-derived MAGs (Table 1). Relative to the neutral genomic references, the entire
TOPAZ NR (includes both HQ and MQ) set represented a 42.8% phylogenetic gain (as measured
by additional branch length contributed by a set of data) and 59.9% phylogenetic diversity (as mea-
sured by the total branch length spanned by a set of taxa), as compared to efforts focused solely on the280

smaller size fractions such as TARA and UBA, which had a smaller degree of gain (31.0% and 25.8%,
respectively) and diversity (44.4% and 40.5%, respectively) (Table 1). An inclusive tree containing
the neutral reference and all Tara Oceans MAGs (TOBG + UBA + TARA + TOPAZ), the TOPAZ
NR MAGs represented 14.4% of the phylogenetic gain and 44.7% phylogenetic diversity, suggesting
that the TOPAZ MAGs offer the largest increase in phylogenetic novelty when compared to MAGs285

reconstructed from the metagenomes of the smaller size fractions (< 5.00µm). The TOPAZ MAGs
primarily originated from the larger Tara Ocean size fraction samples, and thus include a higher pro-
portion of more complex host- and particle-associated bacterial communities. The novelty of the HQ-
and MQ-NR-TOPAZ MAGs here, suggests that these particle-associated MAGs are overlooked and
current genome databases are largely skewed towards free-living bacteria.290

To confirm the hypothesis that the prokaryotic TOPAZ MAGs included particle-associated members,
we examined the genomic features of several selected groups that were well-recovered here and in
single-cell amplified genomic datasets (i.e., GORG) (Pachiadaki et al., 2019). To avoid potential
biases related to completeness and contamination of the genomes, only the HQ-NR MAGs were com-
pared to the GORG SAGs, and analyses were limited to groups with sufficient representation within295

both datasets (Bacteriodota, Cyanobacteria, and Proteobacteria). For these well represented groups,
the average GC% and estimated genome size of the TOPAZ MAGs were significantly higher than the
ones typically reported in free-living marine bacteria (Dufresne et al., 2005; Swan et al., 2013; Luo
et al., 2015) and those observed within the GORG dataset (Pachiadaki et al., 2019). TOPAZ MAGs
were found to encode more tRNAs on average per genome than GORG (39.5 vs 30). Additionally,300

Carbohydrate-Active Enzymes (CAZy) and peptidases were enriched within the TOPAZ MAGs rel-
ative to GORG (Figure S29). Larger genomes have been considered diagnostic for a copiotrophic

11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.25.453713doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.25.453713
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4: [Continued on next page.]
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Figure 4: Diversity of the high-quality non-redundant bacterial TOPAZ MAGs. The
approximately-maximum-likelihood phylogenetic tree was inferred form a concatenated protein
alignment of 75 proteins using FastTree and GToTree workflow. The MAG names were omitted
but the interactive version of the tree containing the MAG names can be accessed through iTOL
(https://itol.embl.de/shared/halexand). Branches (nodes) are colored based on taxonomic
annotations estimated by GTDBtk. The Ocean Region (OR), Size Fraction (SF), and Depth (D) of
the co-assembly that a MAG was isolated from is color coded as colored bars. The GC (%) content
is shown as a bar graph (in green), the genome size as bubble plot (the estimated size of the smallest
genome included in this tree is 1.00Mbp and the largest is 13.24Mbp) and the number of MAGs in
each genomic cluster (of 99 or higher %ANI) as a bar plot (in grey)

lifestyle in bacteria (Okie et al., 2020), since the more extended and flexible gene repertoire can fa-
cilitate substrate catabolism in organic rich niches such as particles. Genomes of copiotrophs are
also commonly found to have higher copy numbers of genes associated with replication and protein305

biosynthesis such as tRNAs and rRNAs (Rocha, 2004) which facilitate higher growth rates. In con-
trast, the streamlined genomes of SAR11 and other groups that have free-living oligotrophic lifestyles
require fewer resources to maintain and replicate their genomes and have higher carbon-use efficiency
(Giovannoni et al., 2014). Similarly, G and C have higher energy cost of production and more limited
intracellular availability compared to A and T (Moore et al., 2013; Luo et al., 2015). The genomic310

trends observed support our findings that TOPAZ MAGs represent both particle associated and free-
living microbes, and are relatively enriched for copiotrophic microbes.

Environmental factors structure TOPAZ MAG co-occurrence
The co-retrieval of eukaryotic and prokaryotic MAGs from across the global ocean allows the unique
opportunity to assess the biogeographical and ecological associations and potential co-occurrence of315

these organisms while also being able to infer likely function. To identify communities of associated
organisms that co-occur across the surface ocean metagenomes, we performed a correlation clustering
based on the abundances of the eukaryotic TOPAZ MAGS and the HQ-NR-TOPAZ MAGs (Figure 5
a). We employed a modularity optimization algorithm to the correlation analysis Blondel et al. (2008)
to identify distinct communities of co-occurring organisms. This approach identified seven distinct320

communities, which included 379 of the non-redundant TOPAZ MAGs (Figure 5 b). The commu-
nities were variably connected to each other, as defined by Equation (11), with high connectedness
among Communities 1, 2, and 3, and patchy connectedness among Communities 4-7 (Figure 5 b).
Community 6 (the smallest of the communities, which consisted of a single Bacillariophyta TOPAZ
MAG and five distinct Synechococcus TOPAZ MAGs) had the highest inter-connectedness (0.733325

connectedness), suggesting that members of this community co-occurred across samples with high
fidelity. Moreover, this community was largely distinct from other communities and only shared
significant connections to Community 7. The other six communities showed lesser degrees of inter-
connectedness (range: 0.181−0.550; mean: 0.365±0.204), suggesting that they co-occur less con-
sistently across samples.330

The seven communities that we identified based on metagenomic abundance correlations also signif-
icantly correlated with environmental factors, which consequently define the environmental niches
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Table 1: Phylogenetic diversity and gain of various MAGs originating from Tara Oceans. Phylo-
genetic diversity and gain of prokaryotic MAGs was assessed for this study (TOPAZ), TOBG (Tully
et al., 2018), UBA (Parks et al., 2017), and TARA (Delmont et al., 2018) relative to each other as well
as a "Neutral" tree comprised of relevant marine bacteria.

Base tree MAGs
of interest

No. of
MAGs

Phylogenetic
diversity*

Phylogenetic
gain°

Neutral TOPAZ (MQ, NR) 1,571 59.9% 42.8%
Neutral TOPAZ (HQ, NR) 634 41.6% 25.8%
Neutral TOBG 1,974 61.3% 46.7%
Neutral UBA 1,052 40.5% 25.8%
Neutral TARA 722 44.4% 31.0%
Neutral TOBG + UBA + TARA 3,750 66.6% 51.8%

Neutral + Tara
Oceans MAGsHQ TOPAZ (HQ, NR) 634 26.1% 6.2%

Neutral + Tara
Oceans MAGsMQ TOPAZ (MQ, NR) 1,572 44.7% 14.4%

Neutral + Tara
Oceans MAGsMQ TOBG 1,977 48.5% 11.1%

Neutral + Tara
Oceans MAGsMQ UBA 1,055 23.8% 1.6%

Neutral + Tara
Oceans MAGsMQ TARA 722 28.0% 3.4%

* total branch length spanned by a set of taxa
° additional branch length contributed by a set of taxa
HQ includes Neutral, TOBG, UBA, TARA, and TOPAZ HQ, NR MAGs
MQ includes Neutral, TOBG, UBA, TARA, and TOPAZ MQ, NR MAGs

where the communities were most abundant (Figure 5 c, Supplementary Table 13). Temperature was
a primary factor defining the community correlations, significantly correlating with five of the seven
communities. Community 4 correlated with colder temperatures and Communities, 1, 3, 5, and 6335

correlated with warmer temperatures (Figure 5 c). In Community 4, we found significant positive
correlations with chlorophyll and net primary productivity (Chla: ρ = 0.401, p = 2.34e− 35, NPP:
ρ = 0.166, p = 1.28e−3), while we found negative correlations with “residence time” (ρ =−0.347,
p = 1.98e− 14), indicating a likely occurrence in newly formed eddies. Thus, Community 4 was
largely found within colder, productive regions, and had enhanced metagenomic abundance in the340

Southern Ocean and the North Atlantic (Figure S32). Community 4 was comprised of MAGs from
Chlorophyta, Cryptophyta, Haptophyta, and Ochrophyta, the major groups containing primarily pho-
totrophic eukaryotic microbes. 18 prokaryotic MAGs were also contained in this community, includ-
ing both photosynthetic (Synechococcales) and non-photosynthetic lineages (e.g. Myxococcota and
Planctomycetota). All told, this guild of MAGs comprises likely photosynthesizers often found in345

cold, but not necessarily nutrient-rich, environments.

The four communities (1, 3, 5, and 6) that were positively correlated with temperature were distin-
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Figure 5: Distinct communities recovered from the TOPAZ MAGs. a) A network analysis per-
formed on the metagenomic abundance of all recovered eukaryotic and prokaryotic TOPAZ MAGs
based on Spearman Correlation analysis, identifying 7 distinct communities (see materials and meth-
ods). A force-directed layout of the seven communities is shown with eukaryotes (circles) and bacteria
(triangles). Only linkages between eukaryotes are visualized. b) The connectedness and taxonomic
composition of each community is depicted. Connectedness was calculated based on Equation (11).
c) A Spearman correlation between the summed metagenomic abundance of each community and
environmental parameters from the sampling (Tara Oceans Consortium and Tara Oceans Expedition,
2016), modeled mesoscale physical features based on d'Ovidio et al. (2010) (indicated with *), and
averaged remote sensing products (indicated with **). Significant Spearman correlations, those with
a Bonferroni adjusted p < 0.01, are indicated with a dot on the heatmap.

guished by different correlations with nutrients and physical features. Communities 1 and 3 tended to
be found in longer-lived eddies (according to the calculation by d’Ovidio et al. (2010) as reported in
the Tara Oceans metadata Tara Oceans Consortium and Tara Oceans Expedition (2016) as “residence350

time”) (Figure 5 c; Community 1: ρ = 0.274, p= 1.74e−8, Community 3: ρ = 0.216, p= 7.15e−5).
However, these two communities differed both in their association with nutrients and their taxonomic
compositions. Community 1 was dominated by Metazoa and bacteria and correlated with oligotrophic
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conditions (nitrate and nitrite: ρ =−0.234, p = 1.21e−10, phosphate: ρ =−0.269, p = 1.76e−14,
silica: ρ = −0.190, p = 1.02e− 6), and was most abundant in the larger size fraction samples (20-355

2000 µm) (Figure S32). By contrast, Community 3 was largely comprised of phototrophic chloro-
phytes and bacteria and was more likely to be found in high-nutrient environments (nitrate and nitrite:
ρ = 0.230, p= 3.04e−10, phosphate: ρ =−0.266, p= 3.82e−14, silica: ρ = 0.182, p= 4.39e−6),
and was most abundant in smaller size fraction samples (0.8-20 µm), particularly around the tropics
(Figure S32). The other two warm-associated communities were comprised by SAR and bacteria360

(Community 5), and Ochrophyta and SAR (Community 6) (Figure 5 b). These communities were
negatively correlated with nutrient concentrations (Community 5: nitrate and nitrite: ρ = −0.140,
p = 3.17e− 3, phosphate: ρ = −0.147, p = 1.28e− 3, silica not significant; Community 6: nitrate
and nitrite: ρ =−0.355, p= 1.68e−26, phosphate: ρ =−0.418, p= 6.01e−38, silica: ρ =−0.187,
p = 1.92e−6;), suggesting communities that thrive in oligotrophic regions.365

While many of the communities recovered appeared to be driven largely by environmental forces, the
genomic signatures of Community 1 members suggest that this community was comprised by MAGs
from hosts and likely microbiome-associated microbes. Community 1 was comprised primarily of
Metazoa, specifically Hexanauplia, and bacterial MAGs (Figure 5 b). Many of the bacterial MAGs in
Community 1 had genes that suggest adaptations to microaerophic niches such as those which might370

be experienced when living in close host association (e.g. high affinity oxygen cytochromes, and
reductases) (Figure S33). The bacterial MAGs in Community 1 could be broadly broken into two
apparent functional types: those with larger genomes typical of copiotrophic bacteria and those with
small genomes indicative potentially of reductive evolution. The first group was comprised of MAGs
from family Saprospiraceae in phylum Bacteriodota (n=2, 3.0 Mbp average genome size), the family375

UBA2386 in phylum Plactomycetota, which lacks cultured representatives (n=2, 3.3 Mbp), the order
Opitutales in phylum Verrucomicrobiota (n=2, 3.4Mbp), and the family Vibrionaceae (n=2, 4.5 Mbp)
and order Pseudomonadales (n=2; 3.2 Mbp), both in phylum Gammaproteobacteria (Figure S33). In
addition to their relatively large size, the Saprospiraceae, Plactomycetota and Vibrionaceae MAGs
were found to encode for genes involved in the hydrolysis and utilization of various complex carbon380

sources including chitin and other carbohydrates (Figure S33), such as those that might be shed or
excreted by zooplankton such as copepods (Corte et al., 2017). By contrast, the second group of
bacterial MAGs within Community 1 with smaller genomes, included MAGs from the Proteobacteria
order Rickettsiales (n=3, 0.6-1.2 Mbp), Gammaproteobacteria family Francisellaceae (n=1, 1.2 Mbp),
and the Bacteriodota family Amoebophilaceae (n=1; 0.8Mbp) Figure S33). The smaller genome sizes385

exhibited by these groups may be indicative of a genome streamlining which occurred with reductive
evolution due to obligate or facultative symbiosis (Giovannoni et al., 2014). Rickettsiales, Francisel-
laceae, and Amoebophilaceae all contain well-described obligate intracellular symbionts (Santos-
Garcia et al., 2014; Darby et al., 2007; Li et al., 2021) and zoonotic pathogens (Celli and Zahrt, 2013;
Darby et al., 2007).390

Conclusion
Sequence datasets are revolutionizing how we form new hypotheses and explore environments on the
planet. Here, we demonstrated a critical advance in the recovery of MAGs from environmentally-
relevant eukaryotic organisms with EukHeist. The retrieval and study of MAGs to study the role
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of microorganisms in environmentally significant biogeochemical cycling is promising; however the395

current lack of eukaryotic reference genomes and transcriptomes complicates our ability to interpret
the eukaryotic component of the microbial community. We recovered 988 total eukaryotic MAGs,
485 of which were deemed highly complete. Our findings demonstrate that specific branches of the
eukaryotic tree were more likely to be resolved at the MAG-level due to their smaller genome size,
distribution in the water column, and biological complexity. A substantial portion of the recovered400

eukaryotic MAGs were distinct from existing sequenced representatives, demonstrating that these
large-scale surveys are a critical step towards characterizing less-resolved branches of the eukaryotic
tree of life.

The continuing expansion of global-scale meta’omic surveys, such as BioGeoTraces Biller et al.
(2018) and Bio-GO-SHIP (Ustick et al., 2021), highlights the importance of developing scalable and405

automated methods to enable more complete analysis of these data. Metagenomic pipelines that
specifically integrate steps for handling eukaryotic biology, such as the EukHeist pipeline, are vital as
eukaryotes are important members of microbial communities, ranging from the ocean, to soil (Bailly
et al., 2007) and human- (Lukeš et al., 2015) and animal-associated (Campo et al., 2019) environ-
ments. The application of eukaryotic-sensitive methods such as EukHeist to other systems stands to410

greatly increase our understanding of the diversity and function of the "eukaryome".

Materials and Methods

Data acquisition
The metagenomic and metatranscriptomic data corresponding to the size fractions dominated by eu-
karyotic organisms ranging from microbial eukaryotes and zooplankton (0.8−2000µm) as originally415

published by Carradec et al. (2018) were retrieved from European Molecular Biology Laboratory-
European Bioinformatics Institute (EMBL-EBI) under the accession numbers PRJEB4352 (large size
fraction metagenomic data) and PRJEB6603 (large size fraction metatranscriptomic data) on Novem-
ber 20, 2018. Only samples with paired end reads (forward and reverse) were used in the subse-
quent analyses (Supplementary Table 1). After an initial sample-to-sample comparison with sour-420

mash (sourmash compare -k 31 -scaled 10000) (Brown and Irber, 2016) (Figure S3), it was
determined that samples largely clustered by depth and size fraction. Samples were grouped for co-
assembly by size fraction (0.8− 5µm, 5− 20µm, 20− 180µm, and 180− 2000µm) as per Carradec
et al. (2018), depth or sample type (surface (SRF), deep chlorophyll maximum (DCM), mesopelagic
(MES), mixed surface sample (MIX), and filtered seawater (FSW)), and geographic location (Supple-425

mentary Table 1). In cases where a sample did not fall directly within one of the size classes, it was
assigned to an existing size class based on the upper µm limit of the sample. This grouping resulted
in the combination of 824 cleaned, paired FASTQ files samples into 94 distinct co-assembly groups,
which were used downstream for co-assembly (Supplementary Table 1).

EukHeist pipeline for metagenome assembly and binning430

The metagenomic analysis, assembly, binning, and all associated quality control steps were carried
out with a bioinformatic pipeline, EukHeist, that enables user-guided analysis of stand-alone metage-
nomic or paired metagenomic and metatranscriptomic sequence data. EukHeist is a streamlined and
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scalable pipeline currently based on the Snakemake workflow engine (Koster and Rahmann, 2012)
that is configured to facilitate deployment on local HPC systems. Figure S2 outlines the structure435

and outputs of the existing EukHeist pipeline. EukHeist is designed to retrieve and identify both
eukaryotic and prokaryotic MAGs from large, metagenomic and metatranscriptomic datasets (Fig-
ure S2). EukHeist takes input of sequence meta-data, user-specified assembly pairings (co-assembly
groups), and raw sequence files, and returns MAGs that are characterized as either likely eukaryotic
or prokaryotic.440

Here, all raw sequences accessed from the EMBL-EBI were quality assessed with FastQC and Mul-
tiQC (Andrews, 2010). Sequences were trimmed using Trimmomatic (v. 0.36; parameters: ILLUMINACLIP:
2:30:7, LEADING:2, TRAILING:2, SLIDINGWINDOW:4:2, MINLEN:50) (Bolger et al., 2014). Pass-
ing mate paired reads were maintained for assembly and downstream analyses. Quality trimmed reads
co-assembled based on assembly groups (Supplementary Table 1) with MEGAHIT (v1.1.3, param-445

eters: k= 29,39,59,79,99,119) (Li et al., 2015). Basic statistics were assessed for all assemblies
with Quast (v. 5.0.2) (Gurevich et al., 2013) (Supplementary Table 1). Cleaned reads from assembly-
group-associated metagenomic and metatranscriptomic samples were mapped back against the assem-
blies with bwa mem (v.0.7.17) (Li and Durbin, 2010). The bwa-derived abundances were summarized
with MetaBat2 (v. 2.12.1) script jgi_summarize_bam_contig_depths (with default parameters).450

The output contig abundance tables were used along with tetranucleotide frequencies to associate
contigs into putative genomic bins using MetaBat2 (v. 2.12.1) (Kang et al., 2019). The Snakemake
profile used to conduct this analysis is available at https://www.github.com/alexanderlabwhoi/
tara-euk-metag. A generalized version of the Snakemake pipeline (called EukHeist) that might be
readily applied to other datasets is available at https://www.github.com/alexanderlabwhoi/455

EukHeist. MAGs here are subsequently named and referred to as Tara Oceans Particle Associated
MAGs (TOPAZ) and are individually named based on their assembly group (Supplementary Tables 2
and 3).

Identification of putative Eukaryotic MAGs
The binning process described above recovered a total of 16,385 putative bins. These bins were460

screened to identify high completion eukaryotic and prokaryotic bins. All bins were first screened
for length, assuming that eukaryotic bins would likely be greater than 2.5Mbp in size (modeled off
of the size of the smallest known eukaryotic genome, ∼ 2.3Mbp Microsporidian Encephalitozoon
intestinalis (Corradi et al., 2010)). Bins larger than 2.5Mbp were screened for relative eukaryotic
content using EukRep (West et al., 2018), a k-mer based strategy that estimates the likely domain-465

origin of metagenomic contigs. EukRep was used to classify the relative proportion of eukaryotic
and prokaryotic content in each bin in a contig-by-contig manner. This approach identified 907 can-
didate eukaryotic bins that were greater than 2.5Mb in length and estimated to have more than 90%
eukaryotic content by length. Protein coding domains were predicted in all 907 putative eukaryotic
bins using EukMetaSanity (Neely et al., 2021).470

Protein prediction in Eukaryotic MAGs with EukMetaSanity
Taxonomy. The MMseqs2 v12.113e3 (Steinegger and Söding, 2017, 2018; Mirdita et al., 2019)
taxonomy module (parameters: -s 7 –min-seq-id 0.40 -c 0.3 –cov-mode 0) was used to pro-

18

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.25.453713doi: bioRxiv preprint 

https://www.github.com/alexanderlabwhoi/tara-euk-metag
https://www.github.com/alexanderlabwhoi/tara-euk-metag
https://www.github.com/alexanderlabwhoi/tara-euk-metag
https://www.github.com/alexanderlabwhoi/EukHeist
https://www.github.com/alexanderlabwhoi/EukHeist
https://www.github.com/alexanderlabwhoi/EukHeist
https://doi.org/10.1101/2021.07.25.453713
http://creativecommons.org/licenses/by-nc/4.0/


vide a first-pass taxonomic assignment of the input MAG for use in a downstream element of Euk-
MetaSanity pipeline that requires an input NCBI taxon id or a taxonomic level (i.e. Order, Fam-475

ily, etc.). We created a custom database comprising both OrthoDB (Kriventseva et al., 2018) and
MMETSP (Keeling et al., 2014) protein databases (OrthoDB-MMETSP) that integrates NCBI taxon
ids. MMseqs2 was used to query each MAG against the OrthoDB-MMETSP database to identify
a first-pass taxonomic assignment. The lowest common ancestor of top scoring hits was identified
to provide taxonomic assignment to each candidate eukaryotic bin. The taxonomyreport module480

generates a taxon tree that includes the percent of MMseqs mappings that correspond to each taxo-
nomic level. A taxonomic identifier and scientific name are selected to the strain level or when total
mapping exceeds 8%, whichever comes first. The assigned NCBI taxon id is retained for downstream
analyses.

Repeats identification. RepeatModeler (Flynn et al., 2020a; Smit and Hubley, 2008-2015) was485

used to provide ab initio prediction of transposable elements, including short and long interspersed
nuclear repeats, as well as other DNA transposons, small RNA, and satellite repeats. RepeatMasker
(Smit et al., 2013-2015) was then used to hard-mask these identified regions, as well as any Family-
level (as identified above) repeats from the DFam 3.2 database (Flynn et al., 2020b). RepeatMasker
commands ProcessRepeats (parameter: -nolow) and rmOutToGff3 (parameter: -nolow) were490

used to output masked sequences (excluding low-complexity repeat DNA from the mask) as FASTA
and gene-finding format (GFF3) files, respectively.

Ab initio prediction. GeneMark (Lomsadze et al., 2005) was used to generate ab initio gene predic-
tions with the repeat-masked eukaryotic candidate bin sequences output from the prior step. The Gen-
eMark subprogram ProtHint attempts to use Order-level proteins from OrthoDB-MMETSP database495

to generate intron splice-site predictions for ab initio modeling using GeneMark EP (Bruna et al.,
2020). If ProtHint fails to generate predictions, then GeneMark will default to ES mode. Due to the
fragmented nature of metagenomic assemblies, the prediction parameter stringency was drastically
reduced relative to what is recommended for draft genome projects (parameters: –min_contig 500
–min_contig_in_predict 500 –min_gene_in_predict 100). These parameters can be easily500

modified within the EukMetaSanity config file. GeneMark outputs predictions of protein coding se-
quences (CDS) and exon/intron structure as GFF3 files.

Integrating protein evidence. MetaEuk (Levy Karin et al., 2020) was used to directly map the
repeat-masked eukaryotic candidate bins sequences against proteins from the MMETSP (Keeling
et al., 2014; Johnson et al., 2018) and eukaryotes included in the OrthoDB v10 dataset (Kriventseva505

et al., 2018), hereafter referred to as the OrthoDB-MMETSP database. MetaEuk easy-predict (pa-
rameters: –min-length 30 –metaeuk-eval 0.0001 -s 7 –cov-mode 0 -c 0.3 -e 100 –max-overlap
0) used Order-level proteins to identify putative CDS and exon/intron structure. MetaEuk encodes this
output as headers in FASTA sequences that are then parsed into GFF3 files.

Merging final results. GFF3 output from the previous ab initio and MetaEuk protein evidence steps510

were input into Gffread (Pertea and Pertea, 2020) (parameters: -G –merge) to localize predictions
from both lines of evidence into a single GFF3 output file. Each locus was then merged together
using a Python (Foundation) script and the BioPython API (Cock et al., 2009) within EukMetaSanity.
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The set of ab initio generated exons in each locus is used as a prediction of the underlying exon/intron
structure of the gene locus to which it is assigned. If there are any protein-evidence-generated exons515

present at the same locus, and if the total numbers of exons predicted by each line of evidence have≥
70% agreement, ab initio generated exons lacking a corresponding protein-evidence-generated exon
are removed (the first and last exon(s) of a locus are not removed). Conversely, any protein-evidence-
generated exon present that lacks a corresponding ab initio generated exon is added to the predicted
exon/intron structure. The final gene structure for each locus is then processed into GFF3 and FASTA520

format.

Functional and taxonomic annotation of eukaryotic MAGs
Predicted proteins from EukMetaSanity were annotated for function against protein families in Pfam
with PfamScan (Finn et al., 2014) and KEGG using kofamscan (Kanehisa, 2019; Aramaki et al.,
2019) (Supplementary Tables 7 and 8). The relative completeness and contamination of each pu-525

tative Eukaryotic MAG was assessed based on protein content using BUSCO v 4.0.5 against the
eukaryota_odb10 gene set using default parameters (Simao et al., 2015) and EukCC v 0.2 using
the EukCC database (created 22 October 2019 (Saary et al., 2020)). Annotation and completeness
assessment were carried out using a EukHeist-Annotate (https://www.github.com/halexand/
EukHeist-annotate). EukCC (Saary et al., 2020) was also used to calculate MAG completeness530

and contamination. The average completeness across groups increased in all cases with EukCC ex-
cept for metazoans, which on average had a lower estimated completeness (Figure S10).

The taxonomic affiliation of the high- and low-completion bins was estimated using MMSeqs tax-
onomy through EukMetaSanity and EUKulele (Krinos et al., 2021), an annotation tool that takes a
protein-consensus approach, leveraging a Last Common Ancestor (LCA) estimation of protein tax-535

onomy, as well as MMSeqs2 taxonomy module (Steinegger and Söding, 2017, 2018; Mirdita et al.,
2019). Taxonomic level estimation in EUKulele was assessed based on e-value derived best-hits,
where percent id was used as a means of assessing taxonomic level, with the following cutoffs:
species, >95%; genus, 95-80%; family, 80-65%; order, 65-50%; class, 50-30% modeled off of
Carradec et al. (2018). All MAGs were searched against the MarMetZoan combining the MarRef,540

MMETSP, and metazoan orthoDB databases (Johnson et al., 2018; Keeling et al., 2014; Kriventseva
et al., 2018; Klemetsen et al., 2017). This database is available for download through EUKulele.

Phylogeny of eukaryotic MAGs
A total of 49 BUSCO proteins were found to be present across 80% or more of the highly com-
plete eukaryotic TOPAZ MAGs and were selected for the construction of the tree. Amino acid545

sequences from all genomes and transcriptomes of interest were collected and aligned individu-
ally using mafft (v7.471) (parameters: –thread -8 –auto) (Katoh and Standley, 2013). Individ-
ual protein alignments were trimmed to remove sections of the alignment that were poorly aligned
with trimAl (v1.4.rev15) (parameters: -automated1) (Capella-Gutierrez et al., 2009a). Protein se-
quences were then concatenated and trimmed again with trimAl (parameters: -automated1). A final550

tree was then constructed using RAxML (v 8.2.12; parameters: raxmlHPC-PTHREADS-SSE3 -T 16
-f a -m PROTGAMMAJTT -N 100 -p 42 -x 42) (Stamatakis, 2014). The amino acid alignment
and construction was controlled with a Snakemake workflow: https://github.com/halexand/
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BUSCO-MAG-Phylogeny/. Trees were visualized and finalized with iTOL (Letunic and Bork, 2016).

Prokaryotic MAG assessment and analysis555

The 15,478 bins that were not identified as putative eukaryotic bins based on length and EukRep
metrics were screened to identify quality prokaryotic bins. The quality and phylogenetic-association
of these bins was assessed with a modified version of MAGpy (Stewart et al., 2019), which was altered
to include taxonomic annotation with GTDB-TK v.0.3.2 (Chaumeil et al., 2019). Bins were assessed
based on single copy ortholog content with CheckM v (Parks et al., 2015) to identify 2 different bin560

quality sets: 1) high-quality (HQ) prokaryotic bins (>90% completeness, <5% contamination), and 2)
medium-quality (MQ) prokaryotic bins (90-75% completeness, <10% contamination). A total of 4022
prokaryotic MAGs met the above criteria. A final set of 2,407 non-redundant (NR) HQ-MQ MAGs
were identified using dRep v2.6.2 (Olm et al., 2017), which performs pairwise genome comparisons
in two steps. First, a rapid primary algorithm, Mash v1.1.1 (Ondov et al., 2016) is applied. Genomes565

with Mash values equivalent to 90% Average Nucleotide Identity (ANI) or higher were then compared
with MUMmer v3.23 (Marçais et al., 2018). Genomes with ANI ≥ 99% were considered to belong
to the same cluster. The best representative MAGs were selected based on the dRep default scoring
equation (Olm et al., 2017). Out of the final set of 2,407 NR MAGs, 716 were HQ. The same pipeline
was used to determine the HQ and MQ NR MAGs reconstructed from the Tara Oceans metagenomes570

in previous studies (Tully et al., 2018; Parks et al., 2017; Delmont et al., 2018).

Phylogeny of bacterial non-redundant high-quality MAGs
Only 5 out of the 716 HQ NR MAGs were found to belong to Archaea, thus only bacterial MAGs
were used for the construction of the phylogenetic tree with GToTree v.1.4.10 (Lee, 2019) and the
gene set (HMM file) for Bacteria (74 targets). GToTree pipeline uses Prodigal v2.6.3 (Hyatt et al.,575

2010) to retrieve the coding sequences in the genomes, and HMMER3 v3.2.1 (Eddy, 2011) to identify
the target genes based on the provided HMM file. MUSCLE v3.8 (Edgar, 2004) was then used for the
gene alignments, and Trimal v1.4 (Capella-Gutierrez et al., 2009b) for trimming. The concatenated
aligned is used for the tree constructions using FastTree v2.1 (Price et al., 2010). Three genomes were
excluded from the analysis due to having too few of the target genes. The tree was visualized using580

the Interactive Tree of Life (iToL) (Letunic and Bork, 2016).

Prokaryote MAG phylogeny comparison
A set of 8,644 microbial genomes were collected from the MarDB database (Klemetsen et al., 2017)(ac-
cessed 31 May 2018) encompassing the publicly available marine microbial genomes. Genomes were
assessed using CheckM v1.1.1 (Parks et al., 2015)(parameters: lineage_wf) and genomes estimated585

to be <70% complete or >10% contamination were discarded. The remaining genomes (n = 5,878)
were assessed using CompareM v0.0.23 (parameters: aai_wf; https://github.com/dparks1134/
CompareM) and near identical genomes were identified using a cutoff of ≥ 95% average amino acid
identity (AAI) with≥ 85% orthologous fraction (determined as one standard deviation from the aver-
age orthologous fraction for genomes with 97−100% AAI). Based on CheckM quality, the genome590

with the highest completion and/or lowest contamination were retained. From the remaining genomes
(n = 3,843), all MAGs derived from the Tara Oceans dataset, specifically from Tully et al. Tully et al.
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(2018) and Parks et al. Parks et al. (2017), were removed. The remaining genomes (n = 2,275) would
be used to form the base of a phylogenetic tree representing the available genome diversity prior to
the release of previous Tara Oceans related MAG datasets Tully et al. (2018); Parks et al. (2017);595

Delmont et al. (2018), termed the “neutral“ component of subsequent phylogenetic trees.

For the comparisons, phylogenetic trees were constructed using GToTree v1.4.7 (Lee, 2019) (default
parameters; 25 Bacteria_and_Archaea markers). Any genome added to a tree that did not meet the
default 50% marker presence requirement was excluded from that tree. Five iterations of phyloge-
netic trees were constructed using the neutral genomes paired with each Tara Oceans MAG dataset,600

the high-quality TOPAZ prokaryote MAGs, and the medium-quality TOPAZ prokaryote MAGs, in-
dividually, and two larger trees were constructed containing all neutral genomes and Tara Oceans
MAGs, with additions of either high- or medium-quality TOPAZ MAGs. Phylogenetic trees were
assessed using genometreetk (parameter: pd; https://github.com/dparks1134/GenomeTreeTk)
to determine the phylogenetic diversity (i.e., the total branch length traversed by a set of leaves) and605

phylogenetic gain (i.e., the additional branch length added by a set of leaves) (Parks et al., 2017)
for each set of MAGs compared against the neutral genomes and for the TOPAZ prokaryote MAGs
compared against the neutral genomes and the other Tara Oceans MAGs.

MAG abundance profiling
Raw reads from all metagenomic and metatranscriptomic samples were mapped against the eukaryotic610

and prokaryotic TOPAZ MAGs to estimate relative abundances with CoverM (v. 0.5.0; parameters:
-min-read-percent-identity 0.95 -min-read-aligned-percent 0.75 -min-covered-fraction
0 -contig-end-exclusion 75 -trim-min 0.05 -trim-max 0.95 -proper-pairs-only; https:
//github.com/wwood/CoverM). The total number of reads mapped to each MAG was then used to
calculate Reads Per Kilobase Million (RPKM), where for some MAG, i : RPKMi = Xi/liN109, with615

X = total number of reads recruiting to a MAG, l = length of MAG in Kb, N = total number of
trimmed reads mapping to a sample in millions. We also calculated counts per million (CPM), a nor-
malization of the RPKM to the sum of all RPKMs in a sample. CPM, a modification of transcripts per
million (TPM) was first proposed by Wagner et al. (2012) as an alternative to RPKM that reduces sta-
tistical bias. The metric has since been applied to metagenomics data, sometimes called GPM (genes620

per million) (Gradoville et al., 2017).

Nutritional modelling
To predict the trophic mode of the high quality TOPAZ eukaryotic MAGs (n=485), a Random Forest
model (Breiman, 2001) was constructed and calibrated using the ranger (Wright and Ziegler, 2017)
and tuneRanger packages in R (Probst et al., 2018), respectively. The model was trained using KEGG625

Orthology (KO) annotations (Kanehisa, 2019) from a manually-curated reference trophic mode tran-
scriptomic dataset consisting of the MMETSP (Keeling et al., 2014) and EukProt (Richter et al., 2020)
(Supplementary Table 5). 644 of the transcriptomes in this reference dataset came from the MMETSP
(Keeling et al., 2014), after 22 transcriptomes were removed due to low coverage of KEGG and Pfam
annotations (Finn et al., 2014). The remaining 266 came from the EukProt database (Richter et al.,630

2020), after 162 were removed due having fewer than 500 present KOs. Nutritional strategy (pho-
totrophy, heterotrophy, or mixotrophy) was assessed for each reference transcriptome individually
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based on the literature, 25% of the combined reference transcriptomes were excluded from model
training as testing data.

A subset of KEGG Orthologs (KOs) that were predictive for trophic mode classification was deter-635

mined computationally with the vita variable selection package in R (Janitza et al., 2016) (Supple-
mentary Table 6), which was tested and justified by Degenhardt et al. Degenhardt et al. (2017). This
process was carried out by the algorithm without regard to the predicted function of the KOs, but we
found that many of these KOs were implicated in carbohydrate and energy metabolism, with prefer-
ence for those KOs that differ strongly between heterotrophs and phototrophs (particularly for energy640

metabolism; Figure S25). The model was built using the selected KOs (n = 1787 of a total 21585
KOs) with the 75% of the combined database assigned as training data.

Additionally, we developed a secondary metric for assessing the extent of heterotrophy of a transcrip-
tome or MAG. As opposed to the trinary classification scheme of the Random Forest model, this
approach quantifies the extent that the MAG aligns with heterotrophic, phototrophic, or mixotrophic645

references by assigning a composite score. We calculated the likelihood of vita selected KOs used
in the Random Forest model above to be present within heterotrophic, phototrophic, or mixotrophic
reference transcriptomes. Three scores (h, p, m), one corresponding to each trophic mode, were hence
calculated for each vita-selected KO (k) (n = 1787) (Supplementary Table 6). In Equation (1), K is
the number of references the KO was present in for each trophic mode category, while n is the total650

number of references available for each trophic mode category.

hk = g
(

Khet

nhet

)
(1)

pk = g
(

Kphoto

nphoto

)
(2)

mk = g
(

Kmixo

nmixo

)
(3)

where, g(a) =

{
a if a > 0.5
−(0.5−a) otherwise

(4)

If a given KO occurred in fewer than 50% of the reference transcriptomes for a trophic mode, it was
considered not to be characteristic of that trophic mode and as such the score, which we represent as
the variable a, the ratio of the present KOs to the total for the subset of transcriptomes annotated some
trophic mode (Equation (11)), was transformed (−(0.5−a), if a < 0.5), to reflect the absence without655

valuing absence over presence. In the test transcriptome dataset, the ratio-transformed scores were
negated when a given KO was absent from the transcriptome. For instance, if a KO was absent from
90% of reference transcriptomes assigned to heterotrophy (a = 0.1), and absent in the MAG or tran-
scriptome being evaluated, it would receive a score of hk =−1∗ (−(0.5−0.1)) = 0.4 (Equation (1))
for that KO. This reflects that the absence of the KO in the evaluated MAG or transcriptome aligned660

well with the high probability that the KO was absent among the reference transcriptomes.

The scores for all KOs selected by vita were then used to scale the presence/absence patterns observed
across transcriptomes and MAGs. Thus, for each transcriptome or MAG a single score was calculated
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for each trophic mode heterotrophy (H), phototrophy (P), and mixotrophy (M) for all KOs present
within the transcriptome or MAG (K):665

H = ∑
k∈K

hk (5)

P = ∑
k∈K

pk (6)

M = ∑
k∈K

mk (7)

These calculated values can then be aggregated to a composite heterotrophy score (Hind) (Supplemen-
tary Table 9). The score was computed as follows:

Hind =

{
−1(H−P)

√
(H−P)2, if M−max(H,P)< 50,

−1(H−P)
√

(H−P)2

M , if M−max(H,P)≥ 50
(8)

Ecological analysis of SAR and Dictyochophyceae MAGs670

24 highly-complete TOPAZ eukaryotic MAGs were subset to characterize the biogeography and pu-
tative trophic modes of Dictyochophyceae and closely-related stramenopiles. MAGs included 11
Dictyochophyceae MAGs and 13 MAGs belonging to a phylogenetically similar branch (Eukaryotic
SAR; derived from the MMSeqs and EUKulele assignment). Metagenomic CPM abundance of MAGs
was used to compare the biogeography and distribution of Dictyochophyceae and closely-related675

stramenopile MAGs. MAGs were further classified based on trophic prediction and heterotrophy
score.

To investigate physiological potential, quality trimmed metatranscriptome reads were mapped us-
ing Salmon Patro et al. (2017) to the 24 MAGs. Comparison of of the putative metabolic capa-
bilities of the predicted phototrophic versus heterotrophic MAGs was conducted in R3.6.1, where680

MAGs were clustered using the average distance between MAGs based on the presence and ab-
sence of known orthologs (KO annotations (Kanehisa, 2019)). Principle coordinate analysis of cen-
ter log-ratio transformed TPM abundances of mapped reads from the smallest size fraction (0.8−
5.00µm) of all surface samples revealed the degree of overlap between Dictyochophyceae and closely-
related Stramenopile MAGs. Specific genes shared among all MAGs, shared across predicted trophic685

modes, and those vita selected KOs used in the trophic model (described above) were further tar-
geted. All analyses described above are available at https://alexanderlabwhoi.github.io/
2021-TOPAZ-MAG-Figures/.

Network Analysis
To identify co-occurring MAGs across the stations surveyed by Tara Oceans, the CPM abundance690

of each highly-complete eukaryotic MAG (> 30% BUSCO completeness) and each non-redundant,
highly complete bacterial MAG was assessed at each station at all available depths and size fractions
as described above. CPM was used because of the power of this metric for comparing samples di-
rectly: the sum of all CPM values per sample will be the same, as sequencing depth is accounted
for after gene length. This makes it easier to compare the abundances of MAGs originally recovered695
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from different sites (Gradoville et al., 2017). A Spearman correlation matrix was generated to identify
monotonic relationships between MAGs. Correlations were filtered based first on p-value, using the
Šidák correction (Šidák, 1967), a slightly less stringent metric than the Bonferroni correction. The
Šidák correlation adjusts for multiple comparisons and is given by p < 1− (1−α)1/n, where n is
the total number of comparisons, and α is the significance value, in this case 0.05. We considered700

only those correlations within the 90th percentile of CPM correlations, thus correlations with absolute
value less than 0.504 were removed from the analysis. Subsequently, we further filtered interactions
to those with coefficient of correlation > 0.70 for the construction of the network diagram. Because
it was expected for several of the eukaryotic MAGs to be closely related (based on ANI), the rela-
tionships in the network were further filtered to exclude interactions between MAGs of exceedingly705

high similarity (having both 99% ANI similarity and > 0.70 coefficient of correlation in the network
analysis) (Supplementary Table 12). ANI-based group members tended to have identical taxonomic
classifications: only 2 of 94 clusters had different classifications at the order level per EUKulele
(Figure S30).

We generated a network from this reduced set of labeled interactions (cut off at > 0.70 coefficient of710

correlation, focusing on interactions between eukaryotes and prokaryotes or eukaryotes and eukary-
otes, and using ANI-based clusters instead of MAG names when applicable) using igraph (Csardi
and Nepusz, 2006; Team) (Supplementary Table 11). Communities of highly associated MAGs were
identified using a modularity optimization algorithm introduced in Blondel et al. (2008) and imple-
mented in igraph (Csardi and Nepusz, 2006).715

We assessed the connectedness within and between communities by calculating a connectedness met-
ric as follows. For the connectedness within a community (one community to itself), we identified the
number of “dense” connections by counting up the total number of links found between community
members, regardless of how many times the particular MAG had been connected to its own commu-
nity, and divided that number by the total possible “dense”, meaning the number of connections which720

would exist if all community members were connected to all other community members. Between
different communities, we defined connectedness by qualifying that a “connection” is made the first
time each MAG from a given community is linked to another community, and calculated this quantity
by dividing the number of realized links between community members by the maximum total size of
the two involved communities (Figure 5 b; Equation (9) - Equation (11)).725

Cx,x =
Σ

nx
x=1Σ

ny
y=1 f (x,x)

nx(ny−1)
2

(9)

Cx,y =
Σ

nx
x=1Σ

ny
y=x+1 f (x,y)

max(nx,ny)
(10)

f (a,b) =

{
1 if a and b are connected
0 otherwise

(11)

We calculated Spearman correlation coefficients for the relationship between the abundance of com-
munities between stations and several environmental parameters of interest from the Tara Oceans
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metadata (Pesant et al., 2015; Tara Oceans Consortium and Tara Oceans Expedition, 2016) (Fig-
ure 5). We considered the measured physical and chemical parameters, the modeled mesoscale phys-
ical oceanographic parameters, and averaged remote sensing products (Tara Oceans Consortium and730

Tara Oceans Expedition, 2016; d'Ovidio et al., 2010; Pesant et al., 2015). We adjusted the p-value of
these comparisons using a Bonferroni adjustment within the statistics package in R (Team).

Data and code availability
The eukaryotic and prokaryotic TOPAZ MAGs and Supplementary Tables 1-13 are available through
the Open Science Framework (OSF) at https://osf.io/gm564/with the DOI: 10.17605/OSF.IO/GM564.735

EukHeist, which was used to recover the reported TOPAZ MAGs can be found at https://github.
com/AlexanderLabWHOI/EukHeist and EukMetaSanity which was used for protein prediction in
eukaryotic MAGs can be found at https://github.com/cjneely10/EukMetaSanity. Code used
to generate the figures in this paper can be found at https://github.com/AlexanderLabWHOI/
2021-TOPAZ-MAG-Figures. An interactive visualizer for the TOPAZ eukaryotic MAGs is available740

at https://share.streamlit.io/cjneely10/tara-analysis/main/TARAVisualize/main.py
with source code at https://github.com/cjneely10/TARA-Analysis.
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