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Abstract
Metagenomics is a powerful method for interpreting the ecological roles and physiological capa-
bilities of mixed microbial communities. Yet, many tools for processing metagenomic data are
not designed to consider eukaryotes, nor are they built for an increasing amount of sequence data.
EukHeist is an automated pipeline to retrieve eukaryotic and prokaryotic metagenome assembled
genomes (MAGs) from large-scale metagenomic datasets. We developed the EukHeist workflow to5

specifically process large amounts of both metagenomic and/or metatranscriptomic sequence data in
an automated and reproducible fashion. Here, we applied EukHeist to the large-size fraction data
(0.8-2000µm) from Tara Oceans to recover both eukaryotic and prokaryotic MAGs, which we re-
fer to as TOPAZ (Tara Oceans Particle-Associated MAGs). The TOPAZ MAGs consisted of >900
environmentally-relevant eukaryotic MAGs and >4,000 bacterial and archaeal MAGs. The bacterial10

and archaeal TOPAZ MAGs expand the known marine phylogenetic diversity through the increase in
coverage of likely particle- and host-associated taxa. We also demonstrate an approach to infer the
putative functional mode of the recovered eukaryotic MAGs. A global survey of the TOPAZ MAGs
enabled the identification of ecological cohorts, driven by specific environmental factors, and putative
host-microbe associations.15
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Importance - 150 words
Despite the ecological importance of single-celled eukaryotic organisms in marine environments, the
majority are difficult to cultivate in the lab. Sequencing genetic material extracted from environmen-
tal samples enables researchers to document naturally-occurring protistan communities. However,
conventional sequencing methodologies cannot separate out the genomes of individual organisms. To20

more completely capture the entire genomic content of mixed protistan community, we can create
bins of sequences that represent the same organism. We developed a pipeline that enables scientists
to bin individual organisms out of metagenomic reads, and show results that provide exciting insights
into what protistan communities are present in the ocean and what roles they play in the ecosys-
tem. Here, a global survey of both eukaryotic and prokaryotic MAGs enabled the identification of25

ecological cohorts, driven by specific environmental factors, and putative host-microbe associations.
Accessible and scalable computational tools, such as EukHeist, are likely to accelerate the identifica-
tion of meaningful genetic signatures from large datasets, ultimately expanding the eukaryotic tree of
life.
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Introduction30

Unicellular microbial eukaryotes, or protists, play a critical part in many ecosystems found on the
planet. In addition to their vast morphological and taxonomic diversity, protists exhibit a range of
functional roles and trophic strategies (1). Protists are centrally important to global biogeochemical
cycles, mediating the pathways for the synthesis and processing of carbon and nutrients in the envi-
ronment (2–4). Despite their importance across ecosystems and in the global carbon cycle, research35

on microbial eukaryotes typically lags behind that of bacteria and archaea (5, 6). Consequently, fun-
damental questions surrounding microbial eukaryotic ecological function in situ remain unresolved.
Novel approaches that enable genome retrieval from meta’omic data provide a means of bridging that
knowledge gap.

Assembled genetic fragments (derived from metagenomic reads) can be grouped together based on40

their abundances, co-occurrences, and tetranucleotide frequency to reconstruct likely genomic collec-
tions, often called bins (7–10). These bins can be further refined through a series of steps to ultimately
represent metagenome assembled genomes or MAGs (11–14). Binning metagenomic data into MAGs
has revolutionized how researchers ask questions about microbial communities and has enabled the
identification of novel bacterial and archaeal taxa and functional traits (15,16), but only recently have45

the recovery of eukaryotic MAGs become more common (17–19). The reason for this is arguably
twofold: (1) eukaryotic genomic complexity (20) complicates both metagenome assembly and MAG
retrieval; and (2) there is a bias in currently available metagenomic computational tools towards the
study of bacterial and archaeal members of the community. Much can be learned about the diversity
and role of eukaryotes in our environment from eukaryotic MAG retrieval (21).50

Here we developed and applied EukHeist, a scalable and reproducible pipeline to facilitate the re-
construction, taxonomic assignment, and annotation of prokaryotic and eukaryotic metagenome as-
sembled genomes (MAGs) from mixed community metagenomes. The EukHeist pipeline was ap-
plied to a metagenomic dataset from the Tara Oceans expedition protist-size fractions samples (22),
which encompasses more than 20Tb of raw sequence data. From large-size fraction metagenomic55

samples, over 4,000 prokaryotic MAGs and 900 eukaryotic MAGs were recovered, representing a
multi-domain approach for MAG retrieval for mixed microbial communities.

Results and Discussion
The EukHeist metagenomic pipeline was designed to automate the recovery and classification of
eukaryotic and prokaryotic MAGs from large-scale environmental metagenomic datasets. EukHeist60

was applied to the metagenomic data from the large-size fraction metagenomic samples (0.8-2000µm)
from Tara Oceans (22), which is dominated by eukaryotic organisms. We generated 94 co-assembled
metagenomes based on the ocean region, size fraction, and depth of the samples (Figure S1), which
totaled 180 Gbp in length (Supplementary Table 1). A total of 988 eukaryotic MAGs and 4,022
prokaryotic MAGs were recovered; these MAGs have been made available under the name Tara65

Oceans Particle Associated MAGs, or TOPAZ (Supplementary Tables 2 and 3). The TOPAZ MAGs
expand the current repertoire of publicly available eukaryotic genomic references for the marine envi-
ronment and complement other efforts to recover eukaryotic MAGs from the same large size-fraction
data set (17). Here, we use the information gained from a highly reproducible and automated approach
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to explore questions related to the biogeographical distribution and functional potential of eukaryotic70

marine communities.

Eukaryotic genome recovery from metagenomes covers major
eukaryotic supergroups
The EukHeist classification pipeline identified 988 putative eukaryotic MAGs following the refine-
ment of recovered metagenomic bins based on length (> 2.5 Mbp) and proportion of base pairs pre-75

dicted to be eukaryotic in origin by EukRep (23) (Figure S4). Protein coding regions in the eukaryotic
MAGs were predicted using the EukMetaSanity pipeline (24), and the likely taxonomic assignment
of each bin was made with MMSeqs (25) and EUKulele (26) (Supplementary Table 2). Of the 988
eukaryotic MAGs recovered, 713 MAGs were estimated to be more than 10% complete based on the
presence of core eukaryotic BUSCO orthologs (27). For the purposes of our subsequent analyses, we80

only consider the highly complete eukaryotic TOPAZ MAGs, or those that were greater than 30%
complete based on BUSCO ortholog presence (n=485) (Figure 1).

Eukaryotic genomes are known to be both larger and have higher proportions of non-coding DNA than
bacterial genomes (20). On average across sequenced eukaryotic genomes, 33.1% of genomic content
codes for genes (2.6% - 59.8% for the 1st and 3rd quartiles), while bacterial genomes have a higher85

proportion of coding regions (86.9%; 83.9% - 89.3%) (28). The high-completion TOPAZ eukaryotic
MAGs have an average of 73.7%± 14.3% gene coding regions (Figure S9). This trend of a higher
proportion of coding regions was consistent across eukaryotic groups, where Haptophyta and Ochro-
phyta TOPAZ MAGs had an average coding region of 80.3± 4.9% and 78.1± 6.3%, respectively.
Genomes from cultured Haptophyta (Emiliania huxleyi CCMP1516 with 31 Mb or 21.9% (29)), and90

Ochrophyta (Phaeodactylum tricornutum with 15.4 Mb or 57.3% (30)) had significantly lower pro-
portions of protein coding regions within their genomes compared to TOPAZ MAGs. The lowest
percentages of gene coding were within Metazoan and Fungal TOPAZ MAGs, with 52.6±9.8% and
58.8± 6.7%, respectively. As a point of comparison, the human genome is estimated to have ≈ 34
Mb or ≈ 1.2% of the genome coding for proteins (31). Globally, the higher gene coding percentages95

for the recovered eukaryotic TOPAZ MAGs likely reflect biases caused by the use of tetranucleotide
frequencies in the initial binning (9) as well as challenges inherent in the assembly of non-coding and
repeat-rich regions of eukaryotic genomes.

In order to evaluate the taxonomic breadth represented in the TOPAZ MAGs, estimated taxonomy of
each MAG based on protein-consensus annotation was used for phylogenetic placement of TOPAZ100

MAGs (Figure 1). The recovered MAGs spanned 8 major eukaryotic supergroups: Archaeplastida
(Chlorophyta), Opisthokonta (Metazoa, Choanoflagellata, and Fungi), Amoebozoa, Apusozoa, Hap-
tista (Haptophyta), Cryptista (Cryptophyta), and the SAR supergroup (Stramenopiles, Alveolata, and
Rhizaria) (32), similar to other eukaryotic MAG recovery efforts from the Tara Oceans dataset (Fig-
ure S14) (17). Eukaryotic MAGs were retrieved from all ocean regions surveyed, with the largest105

number of high-completion TOPAZ MAGs recovered from the South Pacific Ocean Region (SPO)
(n=143) and the fewest recovered from the Southern Ocean (SO) (n=11) and Red Sea (RS) (n=12)
(Figure S8). These regional trends in MAG recovery and taxonomy aligned with the overall sequenc-
ing depth at each of these locations (Supplementary Table 1), with fewer, less diverse MAGs recovered
from the SO and RS (Figures S5 and S8).110
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Figure 1. [Continued on next page.]
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Figure 1. TOPAZ eukaryotic MAGs span the eukaryotic tree of life. The maximum likelihood
tree was inferred from a concatenated protein alignment of 49 proteins from the eukaryotic BUSCO
gene set that were found to be commonly present across at least 75% of the 485 TOPAZ eukaryotic
MAGs that were estimated to be >30% complete based on BUSCO ortholog presence. The MAG
names were omitted but the interactive version of the tree containing the MAG names can be accessed
through iTOL (https://itol.embl.de/shared/halexand). Branches (nodes) are colored based
on consensus protein annotation estimated by EUKulele and MMSeqs. The Ocean Region (OR),
Depth (D), and Size Fraction (SF) of the co-assembly that a MAG was isolated from is color coded
as colored bars. The completeness (comp) and contamination (cont) as estimated based on BUSCO
presence are depicted as a heatmap. Predicted Heterotrophy Index (H-index), which ranges from
phototroph-like (-300) to heterotroph-like (300) is shown as a heatmap. The predicted trophic mode
(T-pred) based on the trophy random forest classifier with heterotroph (pink) and phototroph (green),
is depicted. The number of proteins predicted with EukMetaSanity are shown as a bar graph along
the outermost ring.

The largest number of MAGs was recovered from the smallest size fraction (0.8− 5µm) (n=311)
(Figures 1 and S5), and yielded the highest taxonomic diversity, including MAGs from all the major
supergroups listed above (Figure S5). The groups which made up the largest proportion of small size
fraction MAGs were Chlorophyta (n=133), Ochrophyta (n=33), or taxa likely to be within the SAR
group (Stramenopiles, Alveolata, and Rhizaria; n=56). Chlorophyta MAGs were smaller and had115

fewer predicted proteins relative to other eukaryotic MAGs, despite demonstrating comparable com-
pleteness metrics; the average Chlorophyta MAG size was 13.9 Mbp with 7525 predicted proteins
(Figures S6 and S9). By contrast, Cryptophyta and Haptophyta had the largest average MAG size
with 50.8 Mbp and 44.4 Mbp with an average of 23500 and 24400 predicted proteins, respectively
(Figure S9). Fewer eukaryotic MAGs were recovered from the other size fractions 5−20µm (n=20),120

20−180µm (n=87), and 180−2000µm (n=39) (Figure S5), instead these larger size fractions recov-
ered a higher total number of metazoan MAGs. Metazoan MAGs had the lowest average completeness
(50±13%) (Figures S7 and S9); where the average size of recovered metazoan MAGs was 43.2 Mb
(6.5-177Mbp), encompassing an average of 14600 proteins (Figure S9). 76 of the 123 metazoan
MAGs likely belong to the Hexanauplia (Copepoda) class; copepod genomes have been estimated to125

be up to 2.5 Gb with high variation (10-fold difference) across sequenced members (33).

MAGs were also retrieved from all discrete sampling depths: surface, SRF (n=315), deep chloro-
phyll max, DCM (n=133), mesopelagic, MES (n=13), as well as samples with no discrete depth,
MIX (n=21) and the filtered seawater controls, FSW (n=3). Notably, the FSW included 1 Chloro-
phyta MAG (TOPAZ_IOF1_E003) that was estimated to be 100% complete with no contamination130

(Supplementary Table 2). These results suggest that variables such as in situ diversity, cell size (and
genomic size), and sampling protocols influence our ability to obtain high quality and highly complete
eukaryotic MAGs.

The composition of TOPAZ MAGs from basin-scale mesopelagic co-assemblies recovered a higher
percentage of fungi relative to other depths. This is similar to other mesopelagic and bathypelagic135

molecular surveys, where the biomass of fungi is thought to outweigh other eukaryotes (34–36).
Further, fungal MAGs had the highest overall average completeness (87±15%) (Figures S7 and S9).
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A total of 16 highly complete fungal MAGs were also recovered, of those, 11 originated from the
MES (Figures 1 and S8). Putative fungal TOPAZ MAGs were recovered from the phyla Ascomycota
(n=10) and Basidiomycota (n=1) and ranged in size from 12.5-47.8 Mb (Figure S9), which are within140

range of known average genome sizes for these groups, 36.9 and 46.5 Mb, respectively (37).

The metagenomic read recruitment to these TOPAZ MAGs paralleled MAG recovery, where meta-
zoan MAGs dominated the larger size fractions (20− 180µm and 180− 2000µm) across both the
surface and DCM for all stations, and Chlorophyta MAGs were dominant across most of the small
size fraction stations (0.8−5µm) (Figure S11). A notable exception were the stations from the South-145

ern Ocean, where Haptophyta and Ochrophyta were most abundant in all size fractions. Compared
to the samples from the photic zone, SRF and DCM, the average recruitment of reads from the
MES was far lower (24500± 34450 average CPM in the MES compared to 131000± 104000 and
136000± 85000 for the SRF and DCM, respectively Figure S11). This suggests that MAG binning
did not capture the complete eukaryotic community, which can be partly explained by low read re-150

cruitment from the highly diverse and distinct microbial populations across different mesopelagic
samples (35). Alternatively, this might suggest that the communities sampled were dominated by
prokaryotic biomass (38).

Prediction of trophic mode from MAG gene content
Eukaryotic microbes can exhibit a diversity of functional traits and trophic strategies in the marine155

environment (1, 39), including phototrophy, heterotrophy, and mixotrophy. Phototrophic protists are
responsible for a significant fraction of the organic carbon synthesis via primary production; these
phototrophs dominate the microbial biomass and diversity in the sunlit layer of the oceans (39, 40).
Phagotrophic protists (heterotrophs), which ingest bacteria, archaea, and smaller eukaryotes, and par-
asitic protists are known to account for a large percentage of mortality in food webs (1,39,41). Protists160

are also capable of mixed nutrition (mixotrophy), where a single-cell exhibits a combination of pho-
totrophy and heterotrophy (42). Typically, the identification of trophic mode has relied upon direct
observations of isolates within an lab setting, with more recent efforts including transcriptional pro-
filing as a means of assessing trophic strategy (43, 44). Scaling up these culture-based observations
to environmentally-relevant settings (45–47) has been an important advance in the field for exploring165

complex communities without cultivation. An outcome from these studies has been the realization
that trophic strategies are not governed by single genes (48); in reality, trophic strategy will be shaped
by an organisms’ physiological potential and environmental setting. Therefore larger genomic and
transcriptomic efforts to predict or characterize presumed trophic strategies among mixed micro-
bial communities will greatly contribute to our understanding of the role that microorganisms play170

in global biogeochemical cycles, by enabling the observation of functional traits and strategies in
situ.

Large scale meta’omic results, such the TOPAZ MAGs recovered here, can be leveraged alongside
presently available reference data to enable the prediction of biological traits (such as trophic mode)
without a priori information. Machine learning (ML) applications can be implemented to access the175

potential of these large datasets. ML approaches have been recently shown to be capable of accurate
functional prediction and cell type annotation using genetic input, in particular for cancer cell predic-
tion (49–51), and functional gene and phenotype prediction in plants (52). Recently, these approaches
have been applied to culture and environmental transcriptomic data to predict trophic mode using cur-
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Figure 2. Estimated trophic status of TOPAZ eukaryotic MAGs. (Top) Trophic status was pre-
dicted for each high-completion TOPAZ eukaryotic MAG using a Random Forest model trained on
the presence and absence of KEGG orthologs and is shown as a color (green, phototroph, pink, het-
erotroph). The Heterotrophy Index (H-index) (Equation (8)) for each MAG is plotted with a box
plot showing the range of the H-index for each higher level group. (Bottom) The relative distribution
and abundance of Phototroph (green), non-Metazoan Heterotroph (Pink), and Metazoan Heterotroph
(Purple) is depicted across all surface samples. Plots are subdivided by size classes. ’SAR’ denotes
MAGs with taxonomy assignments that were not resolved beyond the SAR supergroup (Stramenopile,
Alveolate, or Rhizaria).
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rently available trophy annotations (53–55). Here, we apply an independent machine learning model180

to the eukaryotic TOPAZ MAGs to predict each organisms’ capacity for various metabolisms.

Using a reference set built from protistan transcriptomic data, we predicted the trophic mode of the
highly complete TOPAZ MAGs using machine learning and direct estimation via presence of im-
portant KEGG pathways (eq. (8)). As the gradient of trophic mode among protists is not strictly
categorical, we calculated a Heterotrophy Index (H-index) that places the TOPAZ MAGs on a scale185

of highly phototrophic (negative values) to highly heterotrophic (positive values) (Figures 1 and 2).
Thus, for all sufficiently complete (≥ 30%) TOPAZ MAGs we have predicted both a gross trophic
category (heterotrophic (n = 227), mixotrophic (n = 0), or phototrophic (n = 258) as well as the
quantitative extent of heterotrophy (H-index, eq. (8)). Broadly, the trophic predictions aligned well
with the putative taxonomy of each MAG (Figures 1 and 2). For example, TOPAZ MAGs that had190

taxonomic annotation of well known heterotrophic lineages (Metazoa, Fungi), were predicted as het-
erotrophs based on our model. Further, our data-driven trophic mode predictions correlate well with
an independent model designed to identify the presence of photosynthetic machinery and capacity for
phagotrophy (53, 54) (Figures S19 and S20).

Despite evidence that many lineages recovered include known mixotrophs, no TOPAZ MAGs were195

identified as mixotrophic using this approach. Instead, the utility of the H-index enables us to still
consider mixotrophic-capable MAGs. We explore the likely reasons for this more deeply in the Sec-
tion 2.3, but one potential explanation is that MAG recovery targets the genomic content of a eu-
karyotic lineage and the evolutionary history of phototrophy and heterotrophy is complicated and
varies with respect to species (56). Therefore, the genetic composition of MAGs may reflect encoded200

metabolisms that are not necessarily exhibited in situ. Mixotrophy is not a singular trait, but rather a
spectrum of metabolic abilities that are largely driven by the microorganisms’ nutritional needs and
surrounding environment.

This work demonstrates the value of large untargeted genetic approaches to gain insight into the in
situ metabolisms of less explored branches of the eukaryotic tree of life. Automated recovery of eu-205

karyotic MAGs, independent of a reference database, and the trophic mode prediction demonstrates
how we can begin to parse the metabolic contributions of individual eukaryotes to mixed microbial
communities. While we cannot confidently annotate beyond specific taxonomic levels or protein iden-
tities, our ML model approaches still allows us to capture predicted nutritional strategies alongside
the environmental context provided by the large-scale global sampling effort. Continued culturing ef-210

forts combined with large-scale meta’omic studies will continue to improve such ML models focused
on complex traits and ultimately our ability to predict trophic mode. We suggest that the integra-
tion of metagenomic and metatranscriptomic datasets might better reflect the active strategies being
used.

TOPAZ prokaryotic MAGs distinct from previous marine MAG recovery ef-215

forts
The vast majority of the retrieved prokaryotic MAGs belonged to Bacteria. High-quality non-redundant
TOPAZ (HQ-NR-TOPAZ) MAGs were comprised of 711 bacterial and 5 archaeal MAGs belonging
to 30 different phyla (Figure 3 and Supplementary Table 4); an additional 15 phyla were recovered
in the medium quality (MQ) MAGs. Of the 716 HQ-NR-TOPAZ MAGs, 507 were unique based220
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Figure 3. [Continued on next page.]
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Figure 3. Diversity of the high-quality non-redundant bacterial TOPAZ MAGs. The
approximately-maximum-likelihood phylogenetic tree was inferred form a concatenated protein
alignment of 75 proteins using FastTree and GToTree workflow. The MAG names were omitted
but the interactive version of the tree containing the MAG names can be accessed through iTOL
(https://itol.embl.de/shared/halexand). Branches (nodes) are colored based on taxonomic
annotations estimated by GTDBtk. The Ocean Region (OR), Size Fraction (SF), and Depth (D) of
the co-assembly that a MAG was isolated from is color coded as colored bars. The GC (%) content
is shown as a bar graph (in green), the genome size as bubble plot (the estimated size of the smallest
genome included in this tree is 1.00Mbp and the largest is 13.24Mbp) and the number of MAGs in
each genomic cluster (of 99 or higher %ANI) as a bar plot (in grey)

on a 99% ANI comparison threshold with MAGs generated from previous binning efforts from Tara
Oceans metagenomic data, including Delmont et al. (12) (TARA), Tully et al. (13) (TOBG), and Parks
et al. (11) (UBA) (Figure 3). The phylogenetic diversity captured by the TOPAZ MAGs was quan-
tified by a comparison to a "neutral" reference set of genomes; these neutral references approximate
the state of marine microbial genomes, dominated by isolate genomes, previous to the incorporation225

of the Tara Oceans-derived MAGs (Table 1). Relative to the neutral genomic references, the entire
TOPAZ NR (includes both HQ and MQ) set represented a 42.8% phylogenetic gain (as measured
by additional branch length contributed by a set of data) and 59.9% phylogenetic diversity (as mea-
sured by the total branch length spanned by a set of taxa), as compared to efforts focused solely on the
smaller size fractions such as TARA and UBA, which had a smaller degree of gain (31.0% and 25.8%,230

respectively) and diversity (44.4% and 40.5%, respectively) (Table 1). An inclusive tree containing
the neutral reference and all Tara Oceans MAGs (TOBG + UBA + TARA + TOPAZ), the TOPAZ
NR MAGs represented 14.4% of the phylogenetic gain and 44.7% phylogenetic diversity, suggesting
that the TOPAZ MAGs offer the largest increase in phylogenetic novelty when compared to MAGs
reconstructed from the metagenomes of the smaller size fractions (< 5.00µm). The TOPAZ MAGs235

primarily originated from the larger Tara Ocean size fraction samples, and thus include a higher pro-
portion of more complex host- and particle-associated bacterial communities. The novelty of the HQ-
and MQ-NR-TOPAZ MAGs here, suggests that these particle-associated MAGs are overlooked and
current genome databases are largely skewed towards free-living bacteria.

To confirm the hypothesis that the prokaryotic TOPAZ MAGs included particle-associated members,240

we examined the genomic features of several selected groups that were well-recovered here and in
single-cell amplified genomic datasets (i.e., GORG) (57). To avoid potential biases related to com-
pleteness and contamination of the genomes, only the HQ-NR MAGs were compared to the GORG
SAGs, and analyses were limited to groups with sufficient representation within both datasets (Bac-
teriodota, Cyanobacteria, and Proteobacteria). For these well represented groups, the average GC%245

and estimated genome size of the TOPAZ MAGs were significantly higher than the ones typically
reported in free-living marine bacteria (58–60) and those observed within the GORG dataset (57).
TOPAZ MAGs were found to encode more tRNAs on average per genome than GORG (39.5 vs
30). Additionally, Carbohydrate-Active Enzymes (CAZy) and peptidases were enriched within the
TOPAZ MAGs relative to GORG (Figure S22). Larger genomes have been considered diagnostic250

for a copiotrophic lifestyle in bacteria (61), since the more extended and flexible gene repertoire can
facilitate substrate catabolism in organic rich niches such as particles. Genomes of copiotrophs are
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also commonly found to have higher copy numbers of genes associated with replication and protein
biosynthesis such as tRNAs and rRNAs (62) which facilitate higher growth rates. In contrast, the
streamlined genomes of SAR11 and other groups that have free-living oligotrophic lifestyles require255

fewer resources to maintain and replicate their genomes and have higher carbon-use efficiency (63).
Similarly, G and C have higher energy cost of production and more limited intracellular availabil-
ity compared to A and T (60, 64). The genomic trends observed support our findings that TOPAZ
MAGs represent both particle associated and free-living microbes, and are relatively enriched for
copiotrophic microbes.260

Table 1: Phylogenetic diversity and gain of various MAGs originating from Tara Oceans. Phy-
logenetic diversity and gain of prokaryotic MAGs was assessed for this study (TOPAZ), TOBG (13),
UBA (11), and TARA (12) relative to each other as well as a "Neutral" tree comprised of relevant
marine bacteria.

Base tree MAGs
of interest

No. of
MAGs

Phylogenetic
diversity*

Phylogenetic
gain°

Neutral TOPAZ (MQ, NR) 1,571 59.9% 42.8%
Neutral TOPAZ (HQ, NR) 634 41.6% 25.8%
Neutral TOBG 1,974 61.3% 46.7%
Neutral UBA 1,052 40.5% 25.8%
Neutral TARA 722 44.4% 31.0%
Neutral TOBG + UBA + TARA 3,750 66.6% 51.8%

Neutral + Tara
Oceans MAGsHQ TOPAZ (HQ, NR) 634 26.1% 6.2%

Neutral + Tara
Oceans MAGsMQ TOPAZ (MQ, NR) 1,572 44.7% 14.4%

Neutral + Tara
Oceans MAGsMQ TOBG 1,977 48.5% 11.1%

Neutral + Tara
Oceans MAGsMQ UBA 1,055 23.8% 1.6%

Neutral + Tara
Oceans MAGsMQ TARA 722 28.0% 3.4%

* total branch length spanned by a set of taxa
° additional branch length contributed by a set of taxa
HQ includes Neutral, TOBG, UBA, TARA, and TOPAZ HQ, NR MAGs
MQ includes Neutral, TOBG, UBA, TARA, and TOPAZ MQ, NR MAGs

Environmental factors structure TOPAZ MAG co-occurrence
The co-retrieval of eukaryotic and prokaryotic MAGs from across the global ocean allows the unique
opportunity to assess the biogeographical and ecological associations and potential co-occurrence of
these organisms while also being able to infer likely function. To identify communities of associated
organisms that co-occur across the surface ocean metagenomes, we performed a correlation clustering265

based on the abundances of the eukaryotic TOPAZ MAGS and the HQ-NR-TOPAZ MAGs (Figure 4
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Figure 4. Distinct communities recovered from the TOPAZ MAGs. a) A network analysis per-
formed on the metagenomic abundance of all recovered eukaryotic and prokaryotic TOPAZ MAGs
based on Spearman Correlation analysis, identifying 5 distinct communities (see Materials and Meth-
ods). A force-directed layout of the seven communities is shown with eukaryotes (circles) and bacteria
(triangles). Only linkages between eukaryotes are visualized. b) The connectedness and taxonomic
composition of each community is depicted. Connectedness was calculated based on Equation (4).
c) A Spearman correlation between the summed metagenomic abundance of each community and
environmental parameters from the sampling (65), modeled mesoscale physical features based on
d’Ovidio et al. (66) (indicated with *), and averaged remote sensing products (indicated with **).
Significant Spearman correlations, those with a Bonferroni adjusted p < 0.01, are indicated with a
dot on the heatmap.
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a). We employed a modularity optimization algorithm to the correlation analysis (67) to identify
distinct communities of co-occurring organisms. This approach identified five distinct communities
(Figure 4 b). The communities were variably connected to each other, as defined by Equation (4),
with highest connectedness between communities 1 and 2 and 4 and 5 (Figure 4 b; the maximum270

connectedness between 1 and 2 was 0.233 and the maximum connectedness between 4 and 5 was
0.448). Community 3 showed the lowest degree of connectivity within community members and to
other communities (mean=0.108; remaining community mean=0.248), suggesting that members of
this community co-occur less consistently across samples.

The five communities that we identified based on metagenomic abundance correlations also signif-275

icantly correlated with environmental factors, which consequently define the environmental niches
where the communities were most abundant (Figure 4 c, Supplementary Table 13). Temperature was
a primary factor defining the community correlations, significantly correlating with four of the five
communities. Communities 2 and 4 correlated with colder temperatures (Figure 4 c). For Community
4, there was a significant positive correlation with chlorophyll (Chla: ρ = 0.236, p = 3.69e− 11),280

while we found negative correlations with “residence time” (ρ =−0.438, p = 1.61e−24), indicating
a likely occurrence in newly formed eddies (according to the calculation by (66) as reported in the
Tara Oceans metadata (65) as “residence time”). This aligns with the finding that Community 4 was
typically found within colder, productive regions, and had higher metagenomic abundances in the
Southern Ocean and the North Atlantic (Figure S24). The composition of Community 4 MAGs in-285

cluded Chlorophyta, Cryptophyta, Haptophyta, and Ochrophyta, the major groups containing primar-
ily phototrophic eukaryotic microbes. 14 prokaryotic MAGs were also contained in this community,
including both photosynthetic (Synechococcales) and non-photosynthetic lineages (e.g. Myxococ-
cota and Planctomycetota). This guild of MAGs comprises likely photosynthesizers often found in
cold, but not necessarily nutrient-rich, environments. Communities 1 and 3 correlated with warmer290

temperatures (Figure 4 c), which was attributed to their presence in longer-lived eddies (Figure 4 c;
Community 1: ρ = 0.349, p= 1.19e−14, Community 3: ρ = 0.345, p= 2.51e−14). However, these
two communities differed both in their association with nutrients and their taxonomic compositions.
Community 1 was dominated by Metazoa and bacteria and correlated with oligotrophic conditions
(nitrate and nitrite: ρ = −0.218, p = 3.36e − 9, phosphate: ρ = −0.218, p = 3.39e − 9, silica:295

ρ = −0.157, p = 1.96e− 4), and was most abundant in the larger size fraction samples (20-2000
µm) (Figure S24). In contrast, Community 3 was largely comprised of phototrophic chlorophytes
and bacteria and was not significantly correlated with nutrient conditions, and was most abundant in
smaller size fraction samples (0.8-20 µm), particularly around the tropics (Figure S24). Community
5 was weakly associated with warmer water (ρ = 0.108,p = 9.10e− 2) and comprised by SAR and300

bacteria (Figure 4 b). Additionally, Community 5 was negatively correlated with nutrient concentra-
tions (nitrate and nitrite: ρ =−0.348, p = 2.14e−25, phosphate: ρ =−0.407, p = 7.36e−36, silica:
ρ =−0.310, p = 7.62e−20), suggesting that this community thrives in oligotrophic regions.

While many of the communities recovered appeared to be driven largely by environmental forces, the
genomic signatures of Community 1 members suggest that this community was comprised by MAGs305

from hosts and likely microbiome-associated microbes. Community 1 was comprised primarily of
Metazoa, specifically Hexanauplia, and bacterial MAGs (Figure 4 b). Many of the bacterial MAGs
in Community 1 had genes that suggest adaptations to microaerophic niches such as those which
might be experienced when living in close host association (e.g. high affinity oxygen cytochromes,
and reductases) (Figure S26). The bacterial MAGs in Community 1 could be broadly broken into310
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two apparent functional types: those with larger genomes typical of copiotrophic bacteria and those
with small genomes indicative potentially of reductive evolution. The first group was comprised of
MAGs from family Saprospiraceae in phylum Bacteriodota (n=2, 3.0 Mbp average genome size), the
order Opitutales in phylum Verrucomicrobiota (n=2, 3.4Mbp), and the family Vibrionaceae (n=2, 4.5
Mbp) in phylum Gammaproteobacteria (Figure S26). In addition to their relatively large size, the315

Saprospiraceae and Vibrionaceae MAGs were found to encode for genes involved in the hydrolysis
and utilization of various complex carbon sources including chitin and other carbohydrates (Fig-
ure S26), such as those that might be shed or excreted by zooplankton such as copepods (68). By
contrast, the second group of bacterial MAGs within Community 1 with smaller genomes, included
MAGs from the Proteobacteria order Rickettsiales (n=3, 0.6-1.2 Mbp) and Gammaproteobacteria320

family Francisellaceae (n=1, 1.2 Mbp) Figure S26). The smaller genome sizes exhibited by these
groups may be indicative of a genome streamlining which occurred with reductive evolution due to
obligate or facultative symbiosis (63). Rickettsiales and Francisellaceae contain well-described obli-
gate intracellular symbionts (69–71) and zoonotic pathogens (70, 72).

Conclusion325

Sequence datasets are revolutionizing how we form new hypotheses and explore environments on the
planet. Here, we demonstrated a critical advance in the recovery of MAGs from environmentally-
relevant eukaryotic organisms with EukHeist. The retrieval and study of MAGs to study the role
of microorganisms in environmentally significant biogeochemical cycling is promising; however the
current lack of eukaryotic reference genomes and transcriptomes complicates our ability to interpret330

the eukaryotic component of the microbial community. We recovered 988 total eukaryotic MAGs,
485 of which were deemed highly complete. Our findings demonstrate that specific branches of the
eukaryotic tree were more likely to be resolved at the MAG-level due to their smaller genome size,
distribution in the water column, and biological complexity. A substantial portion of the recovered
eukaryotic MAGs were distinct from existing sequenced representatives, demonstrating that these335

large-scale surveys are a critical step towards characterizing less-resolved branches of the eukaryotic
tree of life.

The continuing expansion of global-scale meta’omic surveys, such as BioGeoTraces (73), Bio-GO-
SHIP (74), and the continuation of the Tara Oceans work highlights the importance of developing scal-
able and automated methods to enable more complete analysis of these data. Metagenomic pipelines340

that specifically integrate steps for handling eukaryotic biology, such as the EukHeist pipeline, are
vital as eukaryotes are important members of microbial communities, ranging from the ocean, to
soil (75) and human- (76) and animal-associated (77) environments. Additionally, we aim to con-
tribute computational tools that can be integrated or customized, including EUKulele, EukMetaSan-
ity, and eukrhythmic (24, 26, 78). The application of eukaryotic-sensitive methods such as EukHeist345

to other systems stands to greatly increase our understanding of the diversity and function of the
"eukaryome".
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Materials and Methods

Data acquisition
The metagenomic and metatranscriptomic data corresponding to the size fractions dominated by eu-350

karyotic organisms ranging from microbial eukaryotes and zooplankton (0.8 − 2000µm) as origi-
nally published by (22) were retrieved from the European Molecular Biology Laboratory-European
Bioinformatics Institute (EMBL-EBI) under the accession numbers PRJEB4352 (large size fraction
metagenomic data) and PRJEB6603 (large size fraction metatranscriptomic data) on November 20,
2018. Only samples with paired end reads (forward and reverse) were used in the subsequent analyses355

(Supplementary Table 1). After an initial sample-to-sample comparison with sourmash (sourmash
compare -k 31 -scaled 10000) (79) (Figure S3), it was determined that samples largely clus-
tered by depth and size fraction. Samples were grouped for co-assembly by size fraction (0.8−5µm,
5−20µm, 20− 180µm, and 180− 2000µm) as per (22), depth or sample type (surface (SRF), deep
chlorophyll maximum (DCM), mesopelagic (MES), mixed surface sample (MIX), and filtered seawa-360

ter (FSW)), and geographic location (Supplementary Table 1). In cases where a sample did not fall
directly within one of the size classes, it was assigned to an existing size class based on the upper µm
limit of the sample. This grouping resulted in the combination of 824 cleaned, paired FASTQ files
samples into 94 distinct co-assembly groups, which were used downstream for co-assembly (Supple-
mentary Table 1).365

EukHeist pipeline for metagenome assembly and binning
The metagenomic analysis, assembly, binning, and all associated quality control steps were carried
out with a bioinformatic pipeline, EukHeist, that enables user-guided analysis of stand-alone metage-
nomic or paired metagenomic and metatranscriptomic sequence data. EukHeist is a streamlined and
scalable pipeline currently based on the Snakemake workflow engine (80) that is configured to facil-370

itate deployment on local HPC systems. Figure S2 outlines the structure and outputs of the existing
EukHeist pipeline. EukHeist is designed to retrieve and identify both eukaryotic and prokaryotic
MAGs from large, metagenomic and metatranscriptomic datasets (Figure S2). EukHeist takes in-
put of sequence meta-data, user-specified assembly pairings (co-assembly groups), and raw sequence
files, and returns MAGs that are characterized as either likely eukaryotic or prokaryotic.375

Here, all raw sequences accessed from the EMBL-EBI were quality assessed with FastQC and Mul-
tiQC (81). Sequences were trimmed using Trimmomatic (v. 0.36; parameters: ILLUMINACLIP:
2:30:7, LEADING:2, TRAILING:2, SLIDINGWINDOW:4:2, MINLEN:50) (82). Passing mate paired
reads were maintained for assembly and downstream analyses. Quality trimmed reads co-assembled
based on assembly groups (Supplementary Table 1) with MEGAHIT (v1.1.3, parameters: k= 29,380

39, 59, 79, 99, 119) (83). Basic assembly statistics were assessed for all co-assemblies with Quast
(v. 5.0.2) (84) (Supplementary Table 1). Cleaned reads from assembly-group-associated metage-
nomic and metatranscriptomic samples were mapped back against the assemblies with bwa mem
(v.0.7.17) (85). The bwa-derived abundances were summarized with MetaBat2 (v. 2.12.1) script
jgi_summarize_bam_contig_depths (with default parameters). The output contig abundance ta-385

bles were used along with tetranucleotide frequencies to associate contigs into putative genomic bins
using MetaBat2 (v. 2.12.1) (9). The Snakemake profile used to conduct this analysis is available at
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https://www.github.com/alexanderlabwhoi/tara-euk-metag. A generalized version of the
Snakemake pipeline (called EukHeist) that might be readily applied to other datasets is available at
https://www.github.com/alexanderlabwhoi/EukHeist. MAGs here are subsequently named390

and referred to as Tara Oceans Particle Associated MAGs (TOPAZ) and are individually named
based on their assembly group (Supplementary Tables 2 and 3).

Identification of putative Eukaryotic MAGs
The binning process described above recovered a total of 16,385 putative bins. These bins were
screened to identify high completion eukaryotic and prokaryotic bins. All bins were first screened395

for length, assuming that eukaryotic bins would likely be greater than 2.5Mbp in size (modeled off
of the size of the smallest known eukaryotic genome, ∼ 2.3Mbp Microsporidian Encephalitozoon
intestinalis (86)). Bins larger than 2.5Mbp were screened for relative eukaryotic content using EukRep
(23), a k-mer based strategy that estimates the likely domain-origin of metagenomic contigs. EukRep
was used to classify the relative proportion of eukaryotic and prokaryotic content in each bin in a400

contig-by-contig manner. This approach identified 907 candidate eukaryotic bins that were greater
than 2.5Mb in length and estimated to have more than 90% eukaryotic content by length. Protein
coding domains were predicted in all 907 putative eukaryotic bins using EukMetaSanity (24).

Protein prediction in Eukaryotic MAGs with EukMetaSanity
Taxonomy. The MMseqs2 v12.113e3 (25,87,88) taxonomymodule (parameters: -s 7 –min-seq-id405

0.40 -c 0.3 –cov-mode 0) was used to provide a first-pass taxonomic assignment of the input
MAG for use in a downstream element of EukMetaSanity pipeline that requires an input NCBI taxon
id or a taxonomic level (i.e. Order, Family, etc.). We created a custom database comprising both Or-
thoDB (89) and MMETSP (43) protein databases (OrthoDB-MMETSP) that integrates NCBI taxon
ids. MMseqs2 was used to query each MAG against the OrthoDB-MMETSP database to identify410

a first-pass taxonomic assignment. The lowest common ancestor of top scoring hits was identified
to provide taxonomic assignment to each candidate eukaryotic bin. The taxonomyreport module
generates a taxon tree that includes the percent of MMseqs mappings that correspond to each taxo-
nomic level. A taxonomic identifier and scientific name are selected to the strain level or when total
mapping exceeds 8%, whichever comes first. The assigned NCBI taxon id is retained for downstream415

analyses.

Repeats identification. RepeatModeler (90, 91) was used to provide ab initio prediction of trans-
posable elements, including short and long interspersed nuclear repeats, as well as other DNA trans-
posons, small RNA, and satellite repeats. RepeatMasker (92) was then used to hard-mask these
identified regions, as well as any Family-level (as identified above) repeats from the DFam 3.2420

database (93). RepeatMasker commands ProcessRepeats (parameter: -nolow) and rmOutToGff3
(parameter: -nolow) were used to output masked sequences (excluding low-complexity repeat DNA
from the mask) as FASTA and gene-finding format (GFF3) files, respectively.

Ab initio prediction. GeneMark (94) was used to generate ab initio gene predictions with the repeat-
masked eukaryotic candidate bin sequences output from the prior step. The GeneMark subprogram425
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ProtHint attempts to use Order-level proteins from OrthoDB-MMETSP database to generate intron
splice-site predictions for ab initio modeling using GeneMark EP (95). If ProtHint fails to gener-
ate predictions, then GeneMark will default to ES mode. Due to the fragmented nature of metage-
nomic assemblies, the prediction parameter stringency was drastically reduced relative to what is rec-
ommended for draft genome projects (parameters: –min_contig 500 –min_contig_in_predict430

500 –min_gene_in_predict 100). These parameters can be easily modified within the EukMetaSan-
ity config file. GeneMark outputs predictions of protein coding sequences (CDS) and exon/intron
structure as GFF3 files.

Integrating protein evidence. MetaEuk (96) was used to directly map the repeat-masked eukary-
otic candidate bins sequences against proteins from the MMETSP (43, 97) and eukaryotes included435

in the OrthoDB v10 dataset (89), hereafter referred to as the OrthoDB-MMETSP database. MetaEuk
easy-predict (parameters: –min-length 30 –metaeuk-eval 0.0001 -s 7 –cov-mode 0 -c
0.3 -e 100 –max-overlap 0) used Order-level proteins to identify putative CDS and exon/intron
structure. MetaEuk encodes this output as headers in FASTA sequences that are then parsed into
GFF3 files.440

Merging final results. GFF3 output from the previous ab initio and MetaEuk protein evidence
steps were input into Gffread (98) (parameters: -G –merge) to localize predictions from both lines
of evidence into a single GFF3 output file. Each locus was then merged together using a Python (99)
script and the BioPython API (100) within EukMetaSanity. The set of ab initio generated exons
in each locus is used as a prediction of the underlying exon/intron structure of the gene locus to445

which it is assigned. If there are any protein-evidence-generated exons present at the same locus, and
if the total numbers of exons predicted by each line of evidence have ≥ 70% agreement, ab initio
generated exons lacking a corresponding protein-evidence-generated exon are removed (the first and
last exon(s) of a locus are not removed). Conversely, any protein-evidence-generated exon present
that lacks a corresponding ab initio generated exon is added to the predicted exon/intron structure.450

The final gene structure for each locus is then processed into GFF3 and FASTA format.

Functional and taxonomic annotation of eukaryotic MAGs
Predicted proteins from EukMetaSanity were annotated for function against protein families in Pfam
with PfamScan (101) and KEGG using kofamscan (102, 103) (Supplementary Tables 7 and 8). The
relative completeness and contamination of each putative Eukaryotic MAG was assessed based on455

protein content using BUSCO v 4.0.5 against the eukaryota_odb10 gene set using default parameters
(27) and EukCC v 0.2 using the EukCC database (created 22 October 2019 (104)). Annotation and
completeness assessment were carried out using a EukHeist-Annotate (https://www.github.com/
halexand/EukHeist-annotate). EukCC (104) was also used to calculate MAG completeness and
contamination. The average completeness across groups increased in all cases with EukCC except for460

metazoans, which on average had a lower estimated completeness (Figure S10).

The taxonomic affiliation of the high- and low-completion bins was estimated using MMSeqs taxon-
omy through EukMetaSanity and EUKulele (26), an annotation tool that takes a protein-consensus
approach, leveraging a Last Common Ancestor (LCA) estimation of protein taxonomy, as well as
MMSeqs2 taxonomy module (25, 87, 88). Taxonomic level estimation in EUKulele was assessed465
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based on e-value derived best-hits, where percent id was used as a means of assessing taxonomic
level, with the following cutoffs: species, >95%; genus, 95-80%; family, 80-65%; order, 65-50%;
class, 50-30% modeled off of Carradec et al. (2018). All MAGs were searched against the MarMet-
Zoan combining the MarRef, MMETSP, and metazoan orthoDB databases (43, 89, 97, 105). MAGs
with taxonomy assignment that did not resolve beyond SAR (Stramenopile, Alveolate, Rhizaria) are470

classified as SAR. This database is available for download through EUKulele.

Phylogeny of eukaryotic MAGs
A total of 49 BUSCO proteins were found to be present across 80% or more of the highly com-
plete eukaryotic TOPAZ MAGs and were selected for the construction of the tree. Amino acid
sequences from all genomes and transcriptomes of interest were collected and aligned individually475

using mafft (v7.471) (parameters: –thread -8 –auto) (106). Individual protein alignments were
trimmed to remove sections of the alignment that were poorly aligned with trimAl (v1.4.rev15)
(parameters: -automated1) (107). Protein sequences were then concatenated and trimmed again
with trimAl (parameters: -automated1). A final tree was then constructed using RAxML (v 8.2.12;
parameters: raxmlHPC-PTHREADS-SSE3 -T 16 -f a -m PROTGAMMAJTT -N 100 -p 42 -x 42)480

(108). The amino acid alignment and construction was controlled with a Snakemake workflow:
https://github.com/halexand/BUSCO-MAG-Phylogeny/. Trees were visualized and finalized
with iTOL (109).

Prokaryotic MAG assessment and analysis
The 15,478 bins that were not identified as putative eukaryotic bins based on length and EukRep met-485

rics were screened to identify quality prokaryotic bins. The quality and phylogenetic-association of
these bins was assessed with a modified version of MAGpy (110), which was altered to include tax-
onomic annotation with GTDB-TK v.0.3.2 (111). Bins were assessed based on single copy ortholog
content with CheckM v (112) to identify 2 different bin quality sets: 1) high-quality (HQ) prokaryotic
bins (>90% completeness, <5% contamination), and 2) medium-quality (MQ) prokaryotic bins (90-490

75% completeness, <10% contamination). A total of 4022 prokaryotic MAGs met the above criteria.
A final set of 2,407 non-redundant (NR) HQ-MQ MAGs were identified using dRep v2.6.2 (113),
which performs pairwise genome comparisons in two steps. First, a rapid primary algorithm, Mash
v1.1.1 (114) is applied. Genomes with Mash values equivalent to 90% Average Nucleotide Identity
(ANI) or higher were then compared with MUMmer v3.23 (115). Genomes with ANI ≥ 99% were495

considered to belong to the same cluster. The best representative MAGs were selected based on the
dRep default scoring equation (113). Out of the final set of 2,407 NR MAGs, 716 were HQ. The
same pipeline was used to determine the HQ and MQ NR MAGs reconstructed from the Tara Oceans
metagenomes in previous studies (11–13).

Phylogeny of bacterial non-redundant high-quality MAGs500

Only 5 out of the 716 HQ NR MAGs were found to belong to Archaea, thus only bacterial MAGs
were used for the construction of the phylogenetic tree with GToTree v.1.4.10 (116) and the gene
set (HMM file) for Bacteria (74 targets). GToTree pipeline uses Prodigal v2.6.3 (117) to retrieve the
coding sequences in the genomes, and HMMER3 v3.2.1 (118) to identify the target genes based on
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the provided HMM file. MUSCLE v3.8 (119) was then used for the gene alignments, and Trimal505

v1.4 (107) for trimming. The concatenated aligned is used for the tree constructions using FastTree
v2.1 (120). Three genomes were excluded from the analysis due to having too few of the target genes.
The tree was visualized using the Interactive Tree of Life (iToL) (109).

Prokaryote MAG phylogeny comparison
A set of 8,644 microbial genomes were collected from the MarDB database (105)(accessed 31 May510

2018) encompassing the publicly available marine microbial genomes. Genomes were assessed us-
ing CheckM v1.1.1 (112)(parameters: lineage_wf) and genomes estimated to be <70% complete
or >10% contamination were discarded. The remaining genomes (n = 5,878) were assessed using
CompareM v0.0.23 (parameters: aai_wf; https://github.com/dparks1134/CompareM) and near
identical genomes were identified using a cutoff of ≥ 95% average amino acid identity (AAI) with515

≥ 85% orthologous fraction (determined as one standard deviation from the average orthologous
fraction for genomes with 97−100% AAI). Based on CheckM quality, the genome with the highest
completion and/or lowest contamination were retained. From the remaining genomes (n = 3,843), all
MAGs derived from the Tara Oceans dataset, specifically from Tully et al. (13) and Parks et al. (11),
were removed. The remaining genomes (n = 2,275) would be used to form the base of a phylogenetic520

tree representing the available genome diversity prior to the release of previous Tara Oceans related
MAG datasets (11–13), termed the “neutral“ component of subsequent phylogenetic trees.

For the comparisons, phylogenetic trees were constructed using GToTree v1.4.7 (116) (default pa-
rameters; 25 Bacteria_and_Archaea markers). Any genome added to a tree that did not meet the
default 50% marker presence requirement was excluded from that tree. Five iterations of phyloge-525

netic trees were constructed using the neutral genomes paired with each Tara Oceans MAG dataset,
the high-quality TOPAZ prokaryote MAGs, and the medium-quality TOPAZ prokaryote MAGs, in-
dividually, and two larger trees were constructed containing all neutral genomes and Tara Oceans
MAGs, with additions of either high- or medium-quality TOPAZ MAGs. Phylogenetic trees were as-
sessed using genometreetk (parameter: pd; https://github.com/dparks1134/GenomeTreeTk) to530

determine the phylogenetic diversity (i.e., the total branch length traversed by a set of leaves) and phy-
logenetic gain (i.e., the additional branch length added by a set of leaves) (11) for each set of MAGs
compared against the neutral genomes and for the TOPAZ prokaryote MAGs compared against the
neutral genomes and the other Tara Oceans MAGs.

MAG abundance profiling535

Raw reads from all metagenomic and metatranscriptomic samples were mapped against the eukaryotic
and prokaryotic TOPAZ MAGs to estimate relative abundances with CoverM (v. 0.5.0; parameters:
–min-read-percent-identity 0.95 –min-read-aligned-percent 0.75 –dereplicate
–dereplication-ani 99 –dereplication-aligned-fraction 50
–dereplication-quality-formula dRep –output-format dense –min-covered-fraction540

0 –contig-end-exclusion 75 –trim-min 0.05 –trim-max 0.95 –proper-pairs-only;
https://github.com/wwood/CoverM). The total number of reads mapped to each MAG was then
used to calculate Reads Per Kilobase Million (RPKM), where for some MAG, i : RPKMi =Xi/liN109,
with X = total number of reads recruiting to a MAG, l = length of MAG in Kb, N = total number
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of trimmed reads mapping to a sample in millions. We also calculated counts per million (CPM), a545

normalization of the RPKM to the sum of all RPKMs in a sample. CPM, a modification of transcripts
per million (TPM) was first proposed by (121) as an alternative to RPKM that reduces statistical
bias. The metric has since been applied to metagenomics data, sometimes called GPM (genes per
million) (122). We chose not to more stringently cluster MAGs on the basis of genome content due
to the documented utility of preserving population-specific genes (123); we show a comparison of the550

CoverM-based dereplication approach using fastANI to the dnadiff function of the MUMmer paper
in Figure S25.

Nutritional modelling
To predict the trophic mode of the high quality TOPAZ eukaryotic MAGs (n=485), a Random Forest
model (124) was constructed and calibrated using the ranger (125) and tuneRanger packages in R555

(126), respectively. The model was trained using KEGG Orthology (KO) annotations (102) from a
manually-curated reference trophic mode transcriptomic dataset consisting of the MMETSP (43) and
EukProt (127) (Supplementary Table 5). 644 of the transcriptomes in this reference dataset came
from the MMETSP (43), after 22 transcriptomes were removed due to low coverage of KEGG and
Pfam annotations (101). The remaining 266 came from the EukProt database (127), after 162 were560

removed due having fewer than 500 present KOs. Nutritional strategy (phototrophy, heterotrophy,
or mixotrophy) was assessed for each reference transcriptome individually based on the literature,
25% of the combined reference transcriptomes were excluded from model training as testing data
(Figure S16).

A subset of KEGG Orthologs (KOs) that were predictive for trophic mode classification was deter-565

mined computationally with the vita variable selection package in R (128) (Supplementary Table 6),
which has been tested and justified for this use case (129). This process was carried out by the algo-
rithm without regard to the predicted function of the KOs, but we found that many of these KOs were
implicated in carbohydrate and energy metabolism, with preference for those KOs that differ strongly
between heterotrophs and phototrophs (particularly for energy metabolism; Figure S18). The model570

was built using the selected KOs (n = 1787 of a total 21585 KOs) with the 75% of the combined
database assigned as training data.

Additionally, we developed a secondary metric for assessing the extent of heterotrophy of a transcrip-
tome or MAG. As opposed to the trinary classification scheme of the Random Forest model, this
approach quantifies the extent that the MAG aligns with heterotrophic, phototrophic, or mixotrophic575

references by assigning a composite score. We calculated the likelihood of vita selected KOs used
in the Random Forest model above to be present within heterotrophic, phototrophic, or mixotrophic
reference transcriptomes. Three scores (h, p, m), one corresponding to each trophic mode, were hence
calculated for each vita-selected KO (k) (n = 1787) (Supplementary Table 6). In Equation (1), K is
the number of references the KO was present in for each trophic mode category, while n is the total580

number of references available for each trophic mode category.
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hk = g
(

Khet

nhet

)
(1)

pk = g
(

Kphoto

nphoto

)
(2)

mk = g
(

Kmixo

nmixo

)
(3)

where, g(a) =

{
a if a > 0.5
−(0.5−a) otherwise

(4)

If a given KO occurred in fewer than 50% of the reference transcriptomes for a trophic mode, it was
considered not to be characteristic of that trophic mode and as such the score, which we represent as
the variable a, the ratio of the present KOs to the total for the subset of transcriptomes annotated some
trophic mode (Equation (4)), was transformed (−(0.5−a), if a < 0.5), to reflect the absence without585

valuing absence over presence. In the test transcriptome dataset, the ratio-transformed scores were
negated when a given KO was absent from the transcriptome. For instance, if a KO was absent from
90% of reference transcriptomes assigned to heterotrophy (a = 0.1), and absent in the MAG or tran-
scriptome being evaluated, it would receive a score of hk =−1∗ (−(0.5−0.1)) = 0.4 (Equation (1))
for that KO. This reflects that the absence of the KO in the evaluated MAG or transcriptome aligned590

well with the high probability that the KO was absent among the reference transcriptomes.

The scores for all KOs selected by vita were then used to scale the presence/absence patterns observed
across transcriptomes and MAGs. Thus, for each transcriptome or MAG a single score was calculated
for each trophic mode heterotrophy (H), phototrophy (P), and mixotrophy (M) for all KOs present
within the transcriptome or MAG (K):595

H = ∑
k∈K

hk (5)

P = ∑
k∈K

pk (6)

M = ∑
k∈K

mk (7)

These calculated values can then be aggregated to a composite heterotrophy score (Hind) (Supplemen-
tary Table 9). The score was computed as follows:

Hind =

{
−1(H−P)

√
(H −P)2, if M−max(H,P)< 50,

−1(H−P)
√

(H−P)2

M , if M−max(H,P)≥ 50
(8)

Network Analysis600

To identify co-occurring MAGs across the stations surveyed by Tara Oceans, the CPM abundance
of each highly-complete eukaryotic MAG (> 30% BUSCO completeness) and each non-redundant,
highly complete bacterial MAG was assessed at each station at all available depths and size fractions
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as described above. CPM was used because of the power of this metric for comparing samples di-
rectly: the sum of all CPM values per sample will be the same, as sequencing depth is accounted605

for after gene length. This makes it easier to compare the abundances of MAGs originally recov-
ered from different sites (122). A Spearman correlation matrix was generated to identify monotonic
relationships between MAGs. Correlations were filtered based first on p-value, using the Šidák cor-
rection (130), a slightly less stringent metric than the Bonferroni correction. The Šidák correlation
adjusts for multiple comparisons and is given by p < 1− (1−α)1/n, where n is the total number of610

comparisons, and α is the significance value, in this case 0.05. We considered only those correlations
within the 90th percentile of CPM correlations, thus correlations with absolute value less than 0.504
were removed from the analysis. Subsequently, we further filtered interactions to those with coeffi-
cient of correlation > 0.70 for the construction of the network diagram. Because it was expected for
several of the eukaryotic MAGs to be closely related (based on ANI), the relationships in the network615

were further filtered to exclude interactions between MAGs of exceedingly high similarity (having
both 99% ANI similarity and > 0.70 coefficient of correlation in the network analysis) (Supplemen-
tary Table 12). ANI-based group members tended to have identical taxonomic classifications: only 2
of 94 clusters had different classifications at the order level per EUKulele (??).

We generated a network from this reduced set of labeled interactions (cut off at > 0.70 coefficient of620

correlation, focusing on interactions between eukaryotes and prokaryotes or eukaryotes and eukary-
otes, and using ANI-based clusters instead of MAG names when applicable) using igraph (131,132)
(Supplementary Table 11). Communities of highly associated MAGs were identified using a modu-
larity optimization algorithm introduced in (67) and implemented in igraph (131).

We assessed the connectedness within and between communities by calculating a connectedness met-625

ric as follows. For the connectedness within a community (one community to itself), we identified the
number of “dense” connections by counting up the total number of links found between community
members, regardless of how many times the particular MAG had been connected to its own commu-
nity, and divided that number by the total possible “dense”, meaning the number of connections which
would exist if all community members were connected to all other community members. Between630

different communities, we defined connectedness by qualifying that a “connection” is made the first
time each MAG from a given community is linked to another community, and calculated this quantity
by dividing the number of realized links between community members by the maximum total size of
the two involved communities (Figure 4 b; Equation (9) - Equation (11)).

Cx,x =
Σ

nx
x=1Σ

ny
y=1 f (x,x)

nx(ny−1)
2

(9)

Cx,y =
Σ

nx
x=1Σ

ny
y=x+1 f (x,y)

max(nx,ny)
(10)

f (a,b) =

{
1 if a and b are connected
0 otherwise

(11)

We calculated Spearman correlation coefficients for the relationship between the abundance of com-635

munities between stations and several environmental parameters of interest from the Tara Oceans
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metadata (65, 133) (Figure 4). We considered the measured physical and chemical parameters, the
modeled mesoscale physical oceanographic parameters, and averaged remote sensing products (65,
66, 133). We adjusted the p-value of these comparisons using a Bonferroni adjustment within the
statistics package in R (132).640

Data and code availability
The eukaryotic and prokaryotic TOPAZ MAGs and Supplementary Tables 1-13 are available through
the Open Science Framework (OSF) at https://osf.io/gm564/with the DOI: 10.17605/OSF.IO/GM564.
EukHeist, which was used to recover the reported TOPAZ MAGs can be found at https://github.
com/AlexanderLabWHOI/EukHeist and EukMetaSanity which was used for protein prediction in645

eukaryotic MAGs can be found at https://github.com/cjneely10/EukMetaSanity. Code used
to generate the figures in this paper can be found at https://github.com/AlexanderLabWHOI/
2021-TOPAZ-MAG-Figures. An interactive visualizer for the TOPAZ eukaryotic MAGs is available
at https://share.streamlit.io/cjneely10/tara-analysis/main/TARAVisualize/main.py
with source code at https://github.com/cjneely10/TARA-Analysis.650
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