Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail

Sophie Quintin, Théo Aspert, View ORCID ProfileGilles Charvin
doi: https://doi.org/10.1101/2021.07.26.451501
Sophie Quintin
1Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
2Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
3Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
4Université de Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: quintin@igbmc.fr
Théo Aspert
1Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
2Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
3Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
4Université de Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gilles Charvin
1Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
2Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
3Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
4Université de Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gilles Charvin
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Environmental oxidative stress threatens cellular integrity and should therefore be avoided by living organisms. Yet, relatively little is known about environmental oxidative stress perception. Here, using microfluidics, we show that the tail phasmid PHA neurons function as oxidative stress sensing neurons in C. elegans, and act in a complementary manner to I2 pharyngeal neurons: both can detect H2O2, but with different sensitivities; and both are light sensing, but with distinct responses. We uncovered that while different but related receptors, GUR-3 and LITE-1, mediate H2O2 signaling in I2 and PHA neurons, the peroxiredoxin PRDX-2 is essential in both and may promote H2O2-mediated receptor activation. Altogether, our data suggest that oxidative stress sensing relies on the integration of inputs from head and tail neurons which use partially distinct H2O2 signaling pathways. We propose that this might broaden the sensory repertoire of the nematode to respond appropriately to a large range of oxidative stressors.

Figure
  • Download figure
  • Open in new tab

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • https://github.com/gcharvin/viewworm

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 26, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail
Sophie Quintin, Théo Aspert, Gilles Charvin
bioRxiv 2021.07.26.451501; doi: https://doi.org/10.1101/2021.07.26.451501
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail
Sophie Quintin, Théo Aspert, Gilles Charvin
bioRxiv 2021.07.26.451501; doi: https://doi.org/10.1101/2021.07.26.451501

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cell Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4866)
  • Biochemistry (10824)
  • Bioengineering (8069)
  • Bioinformatics (27386)
  • Biophysics (14030)
  • Cancer Biology (11167)
  • Cell Biology (16107)
  • Clinical Trials (138)
  • Developmental Biology (8809)
  • Ecology (13333)
  • Epidemiology (2067)
  • Evolutionary Biology (17401)
  • Genetics (11706)
  • Genomics (15964)
  • Immunology (11064)
  • Microbiology (26173)
  • Molecular Biology (10686)
  • Neuroscience (56751)
  • Paleontology (422)
  • Pathology (1737)
  • Pharmacology and Toxicology (3012)
  • Physiology (4570)
  • Plant Biology (9671)
  • Scientific Communication and Education (1617)
  • Synthetic Biology (2699)
  • Systems Biology (6997)
  • Zoology (1515)