Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Increased aerosol transmission for B.1.1.7 (alpha variant) over lineage A variant of SARS-CoV-2

Julia R. Port, Claude Kwe Yinda, Victoria A. Avanzato, Jonathan E. Schulz, Myndi G. Holbrook, Neeltje van Doremalen, Carl Shaia, Robert J. Fischer, View ORCID ProfileVincent J. Munster
doi: https://doi.org/10.1101/2021.07.26.453518
Julia R. Port
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claude Kwe Yinda
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victoria A. Avanzato
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan E. Schulz
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Myndi G. Holbrook
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Neeltje van Doremalen
2Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carl Shaia
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Fischer
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincent J. Munster
1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vincent J. Munster
  • For correspondence: vincent.munster@nih.gov
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 µm traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.
Back to top
PreviousNext
Posted July 26, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Increased aerosol transmission for B.1.1.7 (alpha variant) over lineage A variant of SARS-CoV-2
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Increased aerosol transmission for B.1.1.7 (alpha variant) over lineage A variant of SARS-CoV-2
Julia R. Port, Claude Kwe Yinda, Victoria A. Avanzato, Jonathan E. Schulz, Myndi G. Holbrook, Neeltje van Doremalen, Carl Shaia, Robert J. Fischer, Vincent J. Munster
bioRxiv 2021.07.26.453518; doi: https://doi.org/10.1101/2021.07.26.453518
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Increased aerosol transmission for B.1.1.7 (alpha variant) over lineage A variant of SARS-CoV-2
Julia R. Port, Claude Kwe Yinda, Victoria A. Avanzato, Jonathan E. Schulz, Myndi G. Holbrook, Neeltje van Doremalen, Carl Shaia, Robert J. Fischer, Vincent J. Munster
bioRxiv 2021.07.26.453518; doi: https://doi.org/10.1101/2021.07.26.453518

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3701)
  • Biochemistry (7820)
  • Bioengineering (5695)
  • Bioinformatics (21343)
  • Biophysics (10603)
  • Cancer Biology (8206)
  • Cell Biology (11974)
  • Clinical Trials (138)
  • Developmental Biology (6786)
  • Ecology (10425)
  • Epidemiology (2065)
  • Evolutionary Biology (13908)
  • Genetics (9731)
  • Genomics (13109)
  • Immunology (8171)
  • Microbiology (20064)
  • Molecular Biology (7875)
  • Neuroscience (43171)
  • Paleontology (321)
  • Pathology (1282)
  • Pharmacology and Toxicology (2267)
  • Physiology (3363)
  • Plant Biology (7254)
  • Scientific Communication and Education (1316)
  • Synthetic Biology (2012)
  • Systems Biology (5550)
  • Zoology (1133)