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Abstract The advent of high-throughput techniques has greatly enhanced biological discov-
ery. Last years, analysis of multi-omics data has taken the front seat to improve physio-
logical understanding. Handling functional enrichment results from various biological data
raises practical questions.

We propose an integrative workflow to better interpret biological process insights in a multi-
omics approach applied to breast cancer data from The Cancer Genome Atlas (TCGA) re-
lated to Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC). Path-
way enrichment by Over Representation Analysis (ORA) and Gene Set Enrichment Analy-
sis (GSEA) has been conducted with both features information from differential expression
analysis or selected features from multi-block sPLS-DA methods. Then, comprehensive
comparisons of enrichment results have been carried out by looking at classical enrichment
analysis, probabilities pooling by Stouffer’s Z scores method and pathways clustering in
biological themes.

Our work shows that ORA enrichment with selected sPLS-DA features and pathways prob-
abilities pooling by Stouffer’s method lead to enrichment maps highly associated to physio-
logical knowledge of IDC or ILC phenotypes, better than ORA and GSEA with differential
expression driven features.
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1 Introduction

Last years, high throughput biological technologies have greatly increased amount of data. Nowa-
days, public data repositories such as TCGA, METABRIC, CCLE and TARGET provide multiple
types of omic data for the same samples[1]. A large number of multi-omics statistical data analysis
has been developed recently taking several omic data blocks into account for patient profiling, clus-
tering and biosignature detection[1].
Invasive Ductal carcinoma (IDC) and Invasive Lobular Carcinoma (ILC) patient data, from the TCGA
consortium, are used in this work since they are phenotypes based on histological types exhibiting
some molecular characteristics of breast cancer with many common disturbances expected[2].

Functional enrichment analysis is a very common method to reveal biological insights considering
molecular differences between two phenotypes. It consists of presenting one list of significant path-
ways (e.g. from wikiPathways or Reactome) or ontologies (e.g. GeneOntology) potentially impaired
between two sets of samples (e.g. sick and healthy patients). This method is based on a given list
of genes that are differentially expressed and its information (e.g. p-value or log fold change). This
Differential Expression Analysis (DEA) is implemented in some R packages such as DESEQ2, limma
or edgeR. In our work, DESEQ2 and limma have been used. Nevertheless, differential expression and
functional enrichment analysis are carried out for each block of omic data. Biologists and physiologists
might assess sometimes contradictory enrichment results. Thereby, extracting biological signal in this
situation where several blocks of omic data are available for each patient might be harder.

To the best of our knowledge, an integrative analysis to examine current potential of these methods
towards functional enrichment of multi-omics data has not be addressed so far. Our work presents
Stouffer’s pooling method and multi-block features selection benefits for altered biological pathways
understanding in a multi-omics context.
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2 Methods

RNAseq, RPPA (proteins) and clinical datasets from TCGA consortium were retrieved via fire-
browse.org for RNAseq with 20 532 gene raw counts, RPPA data with 226 proteins and clinical data
for 1097 samples. Only samples from primary tumor in common between three datasets have been
kept for further analysis giving 573 samples for rna, protein and clinical data relative to ILC and IDC
phenotypes.

Features with missing values and variance near to zero have been withdrawn. After this, datasets
are constituted of 573 rows and respectively, for rna and protein data, of 19894 and 216 features.

To build functional enrichment analysis, duplicated features in RPPA data were averaged to give
173 features. Then, differential expression analysis by DESeq2 [3] and limma[4] for respectively,
RNAseq and protein RPPA data, have been computed and considered 8602 genes and 94 proteins
as differential expressed features between IDC and ILC.

Biological knowledge database used in this work is Reactome[5], a free generalist database rich of
thousands of human pathways.

Pathway enrichment analysis have been led by two types of statistical methods: Over Representa-
tion Analysis (ORA)[6] and Gene Set Enrichment Analysis (GSEA)[7].

ORA with differential expression features (DEF) is a statistical method to determine whether
known biological processes (BP) are altered between experimental phenotypes. For a given biological
process, it tests whether any difference of proportions that we observe is significant between number of
DEFs in this BP relative to the number of the BP features and others DEFs regarding others features
in database. This approach is equivalent to a one-sided proportion Fisher’s exact test.

GSEA is a widely functional enrichment approach that exploits a comprehensive list of features a
metric ranking to sort list according to experimental phenotypes. Kolmogorov-Smirnov like statistic
is computed and lets to conclude the putative alteration of each pathways in a database. Here, for
RNAseq and protein RPPA data the ranking feature used were, respectively, statistic of DESeq2 and
log fold change from limma.

Stouffer’s probabilities pooling method is based on Z scores computed according to several p-values.
Here, pathways p-values are obtained from enrichment analysis and each pathways shared by two omics
enrichment results will have a computed Stouffer’s value. Fisher’s approach could be observed in such
multi-omics context but Stouffer’s one is more reliable[8] and allows weights assignment for each data
set. Weight in our case is the proportion of unique features recognised in pathways in enrichment
results, regardless significance, out of total number of features in this omic data block.

For the ith p-value, where Φ is standard normal cumulative distribution, we have:

Zi = Φ−1(1 − pi)

.

Then, for k omic datasets we compute pooled Z score:

Z ∼
∑k

i=1wiZi√∑k
i=1w

2
i

Finally, probability after fusion pz is:

pz = 1 − Φ(Z)

To determine small subsets of biological features to enrich, sparse Partial Least Squares-Discriminant
Analysis (sPLS-DA)[9] from the R package mixOmics has been used. sPLS-DA approach identifies
highly correlated multi-omics signature between blocks and linked to phenotypes. Here, this statisti-
cal method computes a classification model based on RNAseq and RPPA data toward IDC and ILC
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phenotypes classification. This model is fitted by 80% of total number of samples (458 out of 573 sam-
ples) and forecasting performances is evaluated on external dataset of 20% (115 samples) remaining
data. The number of selected features per component has been assessed by cross-validation (10 folds,
repeated 20 times).

Enrichment results from ORA or GSEA analysis may be hard to interpret with the classical table
output format when the number of significant pathways is large. The EnrichmentMap Cytoscape
module[10] builds pathways network where nodes are pathways and bond thicknesses depend on pro-
portion of genes shared between two pathways. This visualisation, helped by AutoAnnotate module
as seen in [11] that computes network clusters, lets to detect biological themes for which more than
one pathways are found in enrichment results and to be focused on larger ones.

All selected features from upstream analysis have been converted to entrez id for enrichment
analysis.

3 Results

To assess our multi-omics workflow analysis (fig. 1), ORA and GSEA enrichments of Reactome
pathway database were conducted.
Firstly, towards ORA and GSEA enrichment, Differential Expression Analysis (DEA) has been com-
puted on two omic datasets RNA and RPPA. For ORA and for each omic data, a list of significant
features differently expressed between IDC and ILC is saved for feature p-values under 0.05 after
Benjamini-Hochberg correction. Then, features have been selected by sPLS-DA multi-block model to
compare biological insights with previous classical methods.

Secondly, classical functional enrichment analysis ORA and GSEA have been carried out for each
set of omic features. ORA was fed by selected features and GSEA by all features ranked by statistic
or log fold computed by DEA (see Methods).
In addition, for a given pathway shared in RNAseq and RPPA enrichment results, Stouffer’s probabil-
ities pooling method has been used to merge p-values and build a multi-omics table with significant
pathways harnessing multi-omics information. Finally, for each enrichment result (e.g. ORA with
RNAseq selected features, multi-omics table with pathways and Stouffer’s p-values) an enrichment
map has been drawn to visualise significant biological themes and to compare classical and multi-
omics analysis with Stouffer’s probabilities pooling and sPLS-DA selected features methods.

3.1 Over Representation analysis (ORA) of DESeq2/limma features

The first functional analysis used is ORA on the two sets of features obtained by Differential
Expression analysis. It consists in detecting the enriched, and so potentially altered, pathways by
Fisher’s exact test (see Methods).

In the first hand for RNAseq data, with 8602 selected genes after DESeq2 Differential Expression
analysis, 336 pathways have been detected as significantly enriched under 0.05 p-value threshold
after Benjamini-Hochberg multiple testing corrections (tab.1). To get a better sight of enrichment
results, EnrichmentMap Cytoscape module has been used in this case and further enrichment results
(e.g. GSEA) and for each omic dataset. Once enrichment map built, pathways clusters have been
computed and could be seen as biological themes.
On this enrichment map drawn with significant pathways of this ORA, we observe 41 functional
themes. The largest clusters with respectively, 95 and 45 pathways, are known in breast cancer:
regulation of mitotic cycle and NOTCH signaling [12]. In fact, a lot of significant pathways in ORA
are very general human pathways deregulated in cancers, leaving biological insights relative to ILC
and IDC phenotype hard to discover and interpret in this enrichment map.

On the other hand, protein data gives similar results with 226 pathways under statistical threshold
after ORA of 93 features (tab.1). For instance, 42 clusters in enrichment map with 35 pathways in
overexpressed ERBB2, 16 pathways in regulation of mitotic cycle, 11 pathways in moderate kinase
BRAF, 10 pathways in MAPK, PI3K/Akt signaling and 8 pathways for RB1 signaling clusters are
related to breast cancer or cancer biology in literature[13,14]. They are not very specific to ILC
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Fig. 1. Multi-omics analysis workflow. Expression data for several biological actor (e.g. RNAseq and RPPA)
and for the same patients begets a multi-omics context. To reveal altered pathways between patient phenotypes
we are aiming at enrichment analysis by ORA or GSEA. Before this step, Differential Expression Analysis
(DEA) is carried out for classical ORA and GSEA by DESeq2 and limma analysis or features are selected by
sPLS-DA for a multi-omics driven ORA. Then, each enrichment results from omic blocks are merged by p-values
using Stouffer’s probabilities pooling method. All these enrichment results are visualised by enrichment map to
interpret easily highlighted biological themes.

and IDC phenotypes according to our knowledge except overexpressed ERBB2 with key ERBB2 gene
known to be expressed differently between ILC and IDC samples[15]. Others biological clusters are
made up of 7 to 2 pathways, for a mean of 3.5 nodes by clusters. Thus, these clusters are not discussed
with assumption that little clusters are more susceptible to be false positive ones.

In this case, 43 pathways are in common between these two enrichment result tables from RNAseq
and RPPA (protein) features. We may think overlapped significant pathways between several omic
data is a good point to start biological interpretation but it would miss not significant pathways in
several data block could be a relevant information. For instance, 2 pathways could have both 0.06 of
significance. Classical analysis would reject these pathways for each block.
To get a better biological vision taking into account statistical information shared in several omic
blocks and to explain altered pathways between complex phenotypes, we propose here Stouffer’s
pooling method (see Methods) as seen in different multi-omics tools[16,17]. Therefore, pathways in
common between RNAseq and protein enrichment results lead to a multi-omics enrichment table where
best pathways are those with best probabilities taking two omic datasets into account.

We observe 118 pathways according to Stouffer’s value under the statistical 0.05 threshold (tab.1).
Thus, 85 more pathways are significant compared to retrieving only overlapped pathways between sig-
nificant enrichment results of RNAseq and protein data. Enrichment map obtained by these Stouffer’s
values consists in 20 clusters and helps to remark regulation of mitotic cycle theme with g1 transition
degradation, cycle anaphase mitotic, MAPK signaling theme with diseases signal transduction and
mitotic G2 phase clusters with respectively, 46, 8, 5 and 4 pathways. These biological themes are also
relative to breast cancer[14] but not very specific to ILC or IDC biology. Other clusters are 3 or 2
nodes driven, among them Rho GTPases signaling could be interesting according to[18] but hiv life
cycle is also present and seems to be false positive biological theme. We prefer not to comment these
little clusters regarding this statement and high number of pathways found significant.
Great amount of pathways as seen in this section may be only false positive ones due to statistical
hypothesis and method used. To address this, GSEA was carried out on same datasets and with same
analysis procedure to compare new enrichment results with Stouffer’s values and enrichment maps.
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3.2 Gene Set Enrichment Analysis (GSEA) of DESeq2/limma information

GSEA has been undertaken as ORA with Reactome database with significant RNAseq and protein
features given by Differential Expression analysis (see Methods). Firstly, 145 pathways are considered
significant according to adjusted p-values from RNAseq features functional analysis (tab.1). Among
them, after enrichment map clustering, we find two major themes: 96 pathways are clustered in
regulation of mitotic cell cycle and 16 in Rho GTPases signaling. These two biological sets are
correlated to breast cancer where revamped Rho GTPases pathway plays a critical role in mitotic cell
cycle, cellular transformation and cancer cell proliferation[18]. More, RhoA seems to be associated
with collective cell invasion in IDC subtype carcinoma[19].

Secondly, protein features GSEA has no signal: 0 significant pathways have been found significant
(tab.1). The nature of the data, two subtypes of the same disease, could explained protein expression
differences too tiny to be distinguished. This case, where overlap between significant pathways from
RNAseq and RPPA features GSEAs is of course null, illustrates weakness to look only significant
pathways in common between several enrichment results obtained by several omic data.

Thereby, to handle multi-omics interpretation, a multi-omics enrichment table based on Stouffer’s
probabilities merging both adjusted p-values from GSEAs was calculated. This multi-omics table
presents 15 significant pathways under 0.05 Stouffer’s value threshold (tab.1) leading biological in-
terpretation possible where both omic data are taken in account whereas classical enrichment results
from GSEA of protein features gives no signal.

Enrichment maps obtained by RNA features enrichment table and multi-omics table are quite
different with 150 nodes and 16 respectively. Enrichment map based on multi-omics table enables to
visualise pathways sharing features in common. We can observe two previous themes about mitotic
cell cycle and rho GTPases signaling with 13 and 2 pathways respectively, giving a easier biological
knowledge graph to interpret. As seen with enrichment map from rna features GSEA, these two
biological themes are related to complex biological phenotypes ILC and IDC carcinomas[18,19]. The
use of Stouffer’s method has reinforced interpretation given by RNAseq analysis with a multi-omics
insight.

Classical enrichment results, using DEA to feed ORA and GSEA, have shown pathways related to
breast cancer and one or two biological themes really associated to ILC or IDC carcinomas.
Multi-omics tables based on Stouffer’s probabilities pooling method has led to more targeted and
confident biological interpretation taking both enrichment results into account from each kind of omic
features. It is now a question of completing the multi-omics approach by assessing a multi-omics
variable selection method substituting the DEA.

RNA Protein multi-omics table
ORA (DESeq2 /limma) 336 (1827) 226 (788) 118 (1827)
GSEA (DESeq2 /limma) 150 (1473) 0 (109) 14 (1477)
ORA (sPLS-DA) 5 (280) 128 (522) 47 (653)

Tab. 1. Number of significant pathways (out of all pathways with at least one gene enriched) according to
features selection method and enrichment results. ”DESeq2 /limma” means features were selected based on
differential expression analysis and probabilities under 0.05 threshold. Multi-omics table presents a Stouffer’s
pooled p-value for each pathway shared by RNAseq and RPPA enrichment results. Statistical significance is
defined, once Benjamini-Hochberg multiple testing correction has been applied, by each pathway probability
below the 0.05 threshold.

3.3 ORA of sPLS-DA features

Last but not least, multi-omics as a research theme is rich in statistical methods developed or
adapted toward better biological understanding[1]. Some of methods harnessing discriminant features
and correlations at the same time (e.g. sPLS-DA[9], RGGCA[20]). As such, sPLS-DA from mixOmics
R package has been used for further analysis. sPLS-DA is dedicated to select features from several
numerical matrices with discriminant power and correlated between datasets and phenotypes. Here we
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wish assess enrichment tables and enrichment map computed with these multi-omics selected features
and how this kind of method could lead to a better biological understanding.

Selected features of each latent variables given by sPLS-DA model and for each omic dataset are
stored. 49 genes and 39 proteins have been selected in this process. More, to evaluate specificity of
these features toward ILC and IDC carcinomas phenotypes, phenotype forecasting performances has
been evaluated. An accuracy of 76% has been obtained with test on external dataset of RNAseq and
RPPA data. Thus, these selected features are considered specific to the biological problem. Therefore,
ORA enrichment analysis has been carried out for rna and protein features to detect putative altered
biological pathways. ORA enrichment results has given 5 and 128 pathways for, respectively, rna
and protein features selected by sPLS-DA. Relative enrichment maps computed by EnrichmentMap
Cytoscape module present these pathways as biological themes in network clusters.

Firstly, with 49 rna features, we detect 5 significant pathways (tab.1) and only one biological
cluster by enrichment map with 3 pathways. This one describes signaling nuclear receptors theme
with ESR-mediated signaling pathways known to be altered in breast cancer namely with ESR gene
mutation[14,15].
Secondly, 128 significant pathways have been found by ORA with 39 selected proteins (tab.1). Same
as before, enrichment map has been drawn to visualise biological themes. Among 29 biological clus-
ters, some of them are especially correlated to ILC and IDC carcinomas literature. Indeed, Tie2
overexpressed ERBB2 (16 pathways) and AKT network PI3K (5 pathways) biological themes seen in
protein features ORA, regulation signaling kit (6 pathways) and extra nuclear ESR (3 pathways) have
central mutated genes and differently expressed between ILC and IDC subtypes[14,15].
More, cell-cell junction organisation pathways are highlighted in a cluster. The latter is directly con-
sistent with the known biology of ILC carcinoma characterised by lack of CDH1 expression driving
dysregulation of cell–cell adhesion[21] seen previously in rna features ORA as an ILC characteristic.
Others clusters as kinase BRAF mutants (10 pathways) or MAPK signaling (4 pathways) detected in
ORA and activated downstream FGFR3 with FGRF1, FGFR2 and FGFR3 signaling pathways could
be linked to general breast cancer biology[13,14].
To reinforce insights discovery from several type of omic data enrichment results, Stouffer’s probabil-
ities pooling method have been used as before for each pathways corrected p-value shared between
enrichment results.

Only 3 pathways with corrected p-values under 0.05 threshold are shared between two sets of rna
and protein enrichment results by sPLS-DA features selection. Once again, this shows that considering
only pathways overlap from enrichment results in a multi-omics context is too conservative.
Thereby, to merge p-values from enrichment tables for same pathways, Stouffer’s values are calcu-
lated and 47 significant pathways are found (tab.1). Enrichment map drawn with multi-omics table
(fig.2) has built 11 biological clusters whose several directly related to phenotypes: Tie2 overexpressed
ERBB2, negative PI3K AKT, cell junction organization and estrogen dependent expression clusters
built with, respectively, 10, 4, 4 and 4 pathways. In fact, we know ERBB2 gene expression is different
between ILC and IDC samples[15], PI3K is a mutated gene with single nucleotide variation and at
high expression level in particular in IDC subtype[2,14], 55–72% of IDCs being estrogen receptor posi-
tive compared with 70–92% of ILCs[15] and cell-cell junction organization theme is directly consistent
with the known biology of ILC carcinoma with dysregulation of cell–cell adhesion[21]. The latter is
retrieved only with sPLS-DA features enrichment, not with ORA and GSEA computed on DESeq2
and limma features information. We found also breast cancer related biological clusters such as MAPK
signaling cluster with 4 pathways.

Thereby, sPLS-DA driven feature selection enables a more phenotype-targeted functional enrich-
ment. Based on Reactome database, biological themes associated to ILC and IDC carcinomas differ-
ences are highlighted in enrichment maps after pathways clustering. Moreover, Stouffer’s probabilities
pooling method shows great benefits to more easily interpret several enrichment results in a multi-
omics context.
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Fig. 2. Enrichment Map of significant pathways obtained by features selected by sPLS-DA method. Statistical
significance is defined according to Stouffer’s value under the 0.05 threshold calculated for each pathways shared
by RNAseq and RPPA enrichment results and corrected according to Benjamini-Hochberg method.

4 Discussion

To boil down results, using Stouffer’s probabilities pooling method, to build multi-omics enrichment
table, leads to make easier biological interpretation between several enrichment analysis carried out
on omic datasets. Moreover, using multi-omics features selection by sPLS-DA reveals better biological
insights associated to complex histological phenotypes than classical functional analysis such as ORA
and GSEA fed by DEA information.

Nevertheless, some points could be explored to reinforce these statements.
Firstly, carrying out same analysis on other datasets from TCGA with sufficient number of common
samples between several kind of omics and by adding other biological actors as microRNAs or methy-
lation data.
Secondly, we may check results with other databases. For instance, other related to pathways (e.g.
KEGG, wikiPathways), Gene Ontology to investigate molecular functions, or more detailed about
biological domains (PANTHER, MSigDB). Moreover, some solutions to merge generalist pathways
databases have shown good results, and it would be interesting to implement in this workflow, such as
MPath[22] where KEGG, Reactome and wikiPathways are merged toward better covering of biological
pathways.
Finally, sPLS-DA is one a plenty of multi-omics statistical analysis developed last years[1]. In fact, it
could be also interesting to investigate this workflow with other unsupervised or supervised multi-block
methods.

5 Conclusion

We present assessing of our multi-omics workflow based on sPLS-DA selected features, enriched
pathways probabilities pooling and enrichment mapping. We show good results towards the efficient
management of functional enrichment results in a multi-omics approach. Method considering signif-
icant pathways overlap between several omics enrichment results is too conservative and does not
take account advantage of multi-omics context whereas Stouffer’s probabilities method leads to more
efficient pathways highlighting. Moreover, features information from differential expression analysis
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tends to enrich pathways associated to breast cancers but not very specific to IDC or ILC. In con-
trasts, pathways enriched by sPLS-DA features are clustered in biological themes highly related to
these histological types.
To conclude, pathways enrichment results of sPLS-DA features pooled by Stouffer’s method seems to
lead to better biological processes discovery in a multi-omics context.
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