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Abstract

Cell-cell interactions are vital for numerous biological processes including development,
differentiation, and response to inflammation. Currently most methods for studying
interactions on scRNA-seq level are based on curated databases of ligands and receptors.
While those methods are useful, they are limited to our current biological knowledge.
Recent advances in single cell protocols have allowed for physically interacting cells to
be captured and as such we have the potential to study interactions in a complimentary
way without relying on prior knowledge. We introduce a new method for detecting
genes that change as a result of interaction based on Latent Dirichlet Allocation (LDA).
We apply our method to synthetic datasets to demonstrate its ability to detect genes
that change in an interacting population compared to a reference population. Next, we
apply our approach to two datasets of physically interacting cells and identify genes
that change as a result of interaction, examples include adhesion and co-stimulatory
molecules which confirm physical interaction between cells. For each dataset we produce
a ranking of genes that are changing in subpopulations of the interacting cells. In
addition to genes, discussed in the original publications we highlight further candidates
for interaction in the top 100 and 300 ranked genes. Lastly, we apply our method to a
dataset generated by a standard droplet based protocol, not designed to capture
interacting cells and discuss its suitability for analysing interactions. We present a
method that streamlines the detection of interactions and does not require prior
clustering and generation of synthetic reference profiles to detect changes in expression.

Author summary

While scRNA-seq research is a dynamic area, progress is lacking when it comes to
developing methods that allow analysis of interaction that is independent of curated
resources of known interacting pairs. Recent advances of sequencing protocols have
allowed for interacting cells to be captured. We propose a novel method based on LDA
that captures changes in gene expression as a result of interaction. Our method does not
require prior information in the form of clustering or generation of synthetic reference
profiles. We demonstrate the suitability of our approach by applying it to synthetic and
real datasets and manage to capture biologically interesting candidates of interaction.
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Introduction 1

Over the past years single cell RNA-seq (scRNA-seq) has gained immense popularity as 2

it provides the capability to study rare cell types, heterogeneity of cell populations, and 3

disease and developmental trajectories [1]. 4

Cell-cell communication is vital for most biological processes, from maintaining 5

homeostasis to determining specific immune responses [2]. Malfunctioning cells can 6

induce secondary changes in their micro-environment which leads to reprogramming of 7

the niche to their advantage [3]. Improving understanding of essential interactions has 8

the potential to aid discovery of novel therapeutic targets [4]. 9

However, for cell-cell interaction most scRNA-seq studies focus on curated resources 10

of known interacting pairs. Examples of such methods, using a priori curated 11

interactions include: CellPhoneDb, NicheNet, and SingleCellSignalR [5], [6], [7]. 12

CellPhoneDB or variations of their method have been applied in practice to answer 13

questions about inter-cellular communication between cell types in a range of tissues. 14

For example, Cohen et al [8] consider the interaction of lung basophils with the immune 15

and non-immune compartment by examining known ligand-receptor pairs and how 16

those potentially link to development. As these methods are based on databases, they 17

do not allow for new interactions to be identified and results are limited to known 18

biology. Furthermore, most curated resources of ligands-receptor pairs are only available 19

for humans or mouse ortologs [5]. 20

In scRNA-seq, it is possible for two cells to be sequenced together, known as 21

“doublets”. Often doublets are a result of errors in cell sorting or capture but recently 22

two studies have shown that doublets can capture two physically interacting cells 23

(PICs), offering a valuable method to measure, without relying on prior knowledge, the 24

transcription pattern of interaction. Boisset et al [9] used mouse bone marrow (BM) to 25

demonstrate that cell-cell interaction can be studied by dissociating physically 26

interacting doublets. The two interacting cells are separated by needles and sequenced. 27

Further experiments also managed to infer interactions by sequencing intact doublets 28

which were then deconvoluted based on the gene expression of the sequenced singlets. 29

Giladi et al [10] developed a method for sequencing PICs, known as PIC-seq. With 30

other single cell technologies, information about cell-cell interactions are lost due to cell 31

dissociation while PIC-seq captures pairs of interacting cells. PICs are isolated by a 32

combination of tissue dissociation, staining for mutually exclusive markers, and flow 33

cytometry sorting. Single positive and PIC populations are then sequenced. The ability 34

to capture PICs allows Giladi et al [10] to go beyond interactions described in curated 35

databases and potentially identify novel ones. On the computational side of their 36

PIC-seq approach, they [10] cluster the mono-cultures and from these the gene 37

expression of each PIC is modeled as a doublet: α ∗A+ (1 − α) ∗B, where A and B are 38

the two cell types that make the PIC and α is the mixing parameter. α is estimated by 39

a linear regression model trained on synthetic PICs. This is followed by maximum 40

likelihood estimation (MLE) of A and B. By identifying what the two subtypes that 41

make the PIC are, expected expression can be computed. Expected and actual 42

expression of the PIC are compared to identify changes as a result of interaction [10]. 43

There are several potential limitations of the outlined approach. Since the PIC-seq 44

algorithm relies on deconvoluting doublets, it cannot be applied to transcriptionally 45

similar cells, such as subtypes or same cell type. Furthermore, for the training of the 46

linear regression, synthetic PICs are created by pairing pooled cells from A and B that 47

are then downsampled to a predefined total number of unique molecular identifiers 48

(UMIs). While the approach of combining cell profiles to create a doublet has been used, 49

with some modifications, in a range of studies [11], [12], it simplifies how a doublet gets 50

created in practice [13]. Additionally, the method described in PIC-seq requires prior 51

clustering of cells before simulating artificial PICs and deconvolution. 52
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Initially developed for text, LDA has been applied to different types of omics 53

data [14]. In single cell, LDA has been applied to RNA-seq, ATAC-seq, and Hi-C data. 54

In the context of LDA, cells are equivalent to documents and genes (regions in 55

ATAC-seq and locus-pairs in Hi-C) are words. Topics can be described as groups of 56

genes whose expression co-varies [15], [16], [17]. When interpreting the identified topics, 57

they can be labelled as general, cell type specific or linked to technical quality of the 58

samples (e.g ribosomal or mitochondrial dominated topics might correspond to dying 59

cells). In addition to the standard implementation of LDA, work has been completed to 60

allow for simultaneous topic identification and cell clustering [18]. Furthermore, 61

CellTree [19] uses LDA for trajectory inference: the method takes LDA in its standard 62

form but computes chi-square distance between cells and uses the distance to build a 63

tree as a way of describing a branching proces. Most recently, a modified version of 64

LDA has been used to decontaminate counts from ambient RNA: DecontX assumes 65

counts come from two topics, native counts and ambient RNA. Using only the native 66

counts improves clustering and downstream analysis [20]. 67

In this article we propose a novel method based on LDA that allows for 68

identification of genes that change their expression as a result of cell-cell interaction. 69

Once trained on a reference population we can fit LDA on an interacting population 70

and capture changes that cannot be explained by the initially learned topics. Firstly, we 71

show how the proposed model behaves when fit on synthetic doublets with some 72

up-regulated genes. We also show new topics are needed to model the counts of genes 73

related to interaction even if they are not expressed in all interacting cells. We fit LDA 74

as described by [21] on a population of singlets or sorted cells. Then we fix the topics 75

from the singlets reference population and fit another LDA on the interacting cells 76

population. The second LDA allows us to rank the genes that have high probabilities in 77

the new topics. We apply our method to two datasets containing PICs and identify 78

genes that change their expression as a result of interaction, examples of genes include 79

adhesion and co-stimulatory molecules which is a direct evidence of physical interaction 80

between cells. Finally, we demonstrate the challenges of applying our method to a 10x 81

Chromium dataset bronchoalveolar lavage fluid (BALF) of patients with COVID-19 [22]. 82

We link our findings to how well the sequencing protocol can preserve interaction and to 83

what extent we can identify reference populations. However, as the work of [9] and [10] 84

has shown, there is a need to modify currently available scRNA-seq protocols to allow 85

for interactions to be captured. To our knowledge, this is the first paper that models 86

interaction using LDA based approach. Furthermore, our approach does not require 87

prior clustering or synthetic generation of doublets compared to the computational 88

approach previously used to identify genes related to interaction in the work of [10]. We 89

use the genes identified by [10] as a ground truth and show how the number of top 90

genes we select affects true positive and false positive rates. In addition to identifying 91

genes discussed by the original paper, we provide a comprehensive ranking of further 92

genes that might change as a result of interaction such as ones involved in cellular 93

response and adhesion. Taking the top 5 genes per topic in the PIC-seq data allows us 94

to identify 20 further known genes related to cell adhesion and immunity. Additionally, 95

our ranked list of genes includes genes lacking comprehensive annotation and as such 96

allows us to go beyond known interactions. While the analysis of Boisset et al [9] does 97

not consider specific genes that would change as a result of interaction but focuses on 98

cell types known to interact, we perform a literature survey to verify whether we can 99

identify known genes related to interaction in the BM, specifically we consider top 25 100

genes per topic and we identify over 90 genes linked to cell adhesion and response. 101

102
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Materials and methods 103

Latent Dirichlet Allocation 104

Our approach is based on LDA, originally developed by [21] that allows data to be 105

explained by unobserved, latent groups. Those latent groups are called topics and each 106

topic is a multinomial distribution over a set vocabulary. A document can contain 107

words sampled from different topics. This assumption overcomes the limitations of 108

standard mixture models where each document is generated by a single mixture 109

component. As such, LDA allows for documents and biological data to be modeled in a 110

less restrictive way. LDA also allows for different document-topic proportions. 111

In the context of scRNA-seq, cells correspond to documents and genes to words. 112

Word frequencies are replaced by counts. We obtain a set of topic distributions over 113

cells and a per-topic gene distribution. Given D cells (indexed d = 1,...,D), N genes 114

(indexed n = 1,...,N), and K topics, we can define the generative process as follows: 115

φk ∼ Dir(β), k = 1...K

θd ∼ Dir(α), d = 1...D

zdn ∼Multinomial(θd)

wdn ∼Multinomial(φzdn)

(1)

where α and β are vectors of lengths K and V where V is the size of the vocabulary (all 116

genes in the dataset). α and β are Dirichlet priors that control the number of topics per 117

cell and number of genes per topic. Those priors control the sparsity of the model. 118

In our proposed approach, we initially fit LDA on a reference population: co-cultures 119

of a single cell type in the PIC-seq dataset, sorted BM cells in the case of the Boisset’s 120

dataset and what we identify as singlets in the case of the COVID-19 BALF data. The 121

assumptions of LDA fit well in the context of scRNA-seq as at any given point we can 122

observe multiple processes in a cell, as such a cell can be described as a contribution 123

from multiple topics, some specific to a cell type and some shared across all cells. Those 124

processes can be described as genes that co-vary. As words can be in multiple topics, 125

genes can be part of multiple processes. By fitting LDA on the co-cultures of one cell 126

type in a dataset, we obtain for each topic a distribution over genes that we then fix 127

before we fit another LDA on the population of PICs, dissociated BM doublets, or 128

DoubletFinder identified doublets respectively for the three datasets discussed in the 129

results. The initial LDA captures a reference state of cells, a state without interaction. 130

Fixing some of the topics learned from the reference, not interacting populations, allows 131

us to capture in the new topics any changes as a result of interaction due to the setting 132

of the datasets analysed. 133

We use variational inference to estimate the parameters of the posterior distribution 134

of LDA. As LDA has been extensively discussed in literature, an explanation of the 135

inference procedure can be found in [21]. 136

Identifying topics linked to a cell type 137

In order to aid interpretation of the identified topics, we link the topics to celltypes. For 138

each topic we group together cells from the same cell type and perform Mann–Whitney 139

U test. To correct for multiple testing, we use the Benjamini-Hochberg procedure with 140

alpha set to 0.05. 141
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Finding the number of topics 142

To select a suitable number of topics, we compute average cosine distance, r, within 143

topics as defined by [23]. A lower value indicates a more stable model. For example, 144

when trying to choose the number of topics for our PIC-seq dataset, we run LDA on the 145

co-cultures several times with the following number of topics: 30, 50, 70, and 100. The 146

table below shows the average cosine distance for each model: 147

Number of Topics Average Cosine Distance
30 0.001842
50 0.002025
70 0.002728
100 0.001874

Table 1. Average cosine distance between topics for several topic configurations for a
model trained on two co-cultures, one of T-cells and another of DCs. Based on the
cosine distance, the most suitable number of topics for this dataset would be 30.

Motivating the need for new topics 148

Consider a cell n being one of the PICs. Cell n decomposes into θn where
∑

k θnk = 1 149

(probability distribution for cell n over all k topics). Some of the topics come from the 150

mono-culture LDA fit, those are the topics we fixed before fitting the second LDA, and 151

some topics come from the PICs. We want to compare a fit with all topics with a fit 152

where we do not use any new topics. Let ∆nk = θnk but we set the contribution of all 153

topics that come from the PICs to 0 and re-normalise, so that
∑

k ∆nk = 1 . Let βk = 154

topic probability for topic k and
∑

m βkm = 1. If we are only interested in the 155

probability of picking the counts for one gene versus all other genes, the multinomial 156

distribution reduces to a binomial. For each topic distribution, we compute the 157

probability P (X >= x) for a binomial distribution defined as X ∼ Binomial(n, p) 158

where n is the total counts for cell n, p is the probability for that gene in that topic, and 159

x is the counts for a particular gene in the current cell. Once we have computed the 160

probability for a gene for each topic, we multiply them by θnk and ∆nk, topic 161

weightings for cell n, and sum on k. We expect the probability of observing counts 162

greater or equal to the actual count for gene changed as a result of interaction to be 163

higher under θnk where all topics are included compared to ∆nk which is based only on 164

the initial topics. Probabilities should be similar for genes not involved in interaction. 165

Ranking genes potential candidates of interaction 166

One of the outputs from our LDA is a probability distribution for a gene in a cell across 167

all topics. Let N be the doublets/interacting population of interest, then for a gene G 168

and a topic k we find how many cells require topic k to explain the expression of gene G. 169

For a newly identified topic k, for each gene we count how many cells have highest 170

probability for this gene in topic k. For each topic, we produce a ranking of genes based 171

on the number of cells that require this topic to explain the expression of that gene. 172

The rankings for each newly identified topic can then be analysed. We choose different 173

number of top genes from each topic in subsequent experiments. For example, in the 174

case of our synthetic experiments, we plot how choosing between 2 and 20 genes per 175

topic affect the true positive and false positive rates. 176
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Evaluation datasets 177

• PIC-seq of T-cells and DCs: Count matrix and metadata downloaded from the 178

Gene Expression Omnibus (GEO) under accession number GSE135382. Metadata 179

file was used to filter for co-cultures of the same cell type and co-culture of T-cells 180

and DCs. Reference population consists of cells tagged in the metadata as: 181

Co-culture TCRb+ (T-cells) and Co-culture CD11c+ (DCs). All three timepoints 182

for the mono-cultures were used. PICs: Co-culture, TCRb+ CD11c+, all three 183

timepoints. 184

• BM dataset: Count data was acquired from GEO under accession number 185

GSE89379. Sorted cells were used as reference and the dissected doublets were 186

used for analysing interactions. Cells with prefix JC20 to JC47 denote 187

micro-dissected cells. Cells with prefix JC4 denote sorted hematopoietic stem cells 188

(used as reference). 189

• COVID-19 BALF dataset: Data were downloaded from GEO, accession number 190

GSE145926, in the form of h5 files, CellRanger output. Next subsection describes 191

how reference and potentially interacting populations are identified. 192

Pre-processing and analysis before LDA 193

PIC-seq and BM dataset 194

PIC-seq: Since the PIC-seq dataset was generated using the MARS-seq platform 195

which has higher sequencing depth than standard 10x Chromium, we set higher filtering 196

cutoffs for number of unique features per cell. As we are not relying on clustering, we 197

can also set a higher cutoff for number of cells a gene is captured in. Genes appearing in 198

fewer than 200 cells were filtered away. Cells with more than 500 features were taken for 199

downstream analysis. Similar to the original publication we exclude ribosomal genes. 200

BM dataset: This dataset has been sequenced using CEL-seq. Only genes with 201

expressed in more than 10 cells were considered for downstream analysis. Resulting in 202

over 10 000 total genes. 369 sorted cells and 1546 dissected doublets were used. No 203

other pre-processing was performed before fitting LDA. 204

For both datasets filtering steps are performed independently of any scRNA-seq 205

pipeline. 206

COVID-19 BALF 207

Quality control, filtering, normalisation, integration, and clustering were done in R, 208

using Seurat, version 3.1.2. Filtering decisions are dataset dependent and are based on 209

three main metrics: number of genes per cell, number of cells a gene is expressed in, and 210

fraction of mitochondrial genes. It is typical to filter for cells with a very high number 211

of genes expressed to prevent including doublets in the data. For example, cells with 212

low counts and high mitochondrial fraction indicate the mRNA has leaked out through 213

a broken membrane. As such, samples were filtered for cells with fewer than 500 genes. 214

Since we are interested in doublets, which are often assumed to have higher counts than 215

singlets, the maximum cut-off was relaxed [24]. To exclude dying cells we also set a 216

mitochondrial gene expression cut-off to 25. Full list of filtering cut-offs for the different 217

COVID-19 samples can be found in Supplementary Table 1. 218

Seurat’s NormalizeData and FindVariableFeatures functions were used before 219

integration. Samples were integrated first by condition and then all conditions were 220

integrated using FindIntegrationAnchors. Since compared to the original paper we are 221

not interested in the subtypes of macrophages or T-cells, but the general populations, 222
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clustering resolution was set to 0.5. Based on the cluster identification, a subset of the 223

BALF cells were taken forward for the LDA analysis. 224

To confirm cells we identified as doublets, we use DoubletFinder. Since 225

DoubletFinder can only be used on a single sample and not integrated data, patient 226

samples C143 and C145 were analysed separately [11]. Those two samples were chosen 227

based on amount of cells in what we define as doublet cluster. Supplementary Fig 1 228

shows the annotated clusters for sample C145. Complete preliminary analysis available 229

at https://github.com/alexpancheva/ldapaper. 230

Results and Discussion 231

Validation using synthetic doublets 232

Before testing our method on a real dataset of interacting cells, we apply it on a dataset 233

containing synthetic doublets in order to show that we are able to detect genes that 234

change in interacting cells. We simulate doublets by merging the expression profiles of 235

singlets using different ratios: 50/50 (equal contribution of each cell type), 60/40, and 236

30/70. In order to obtain a ground truth for genes that change as a result of interaction, 237

we modify the expression of some genes by adding 10 to their total counts. We chose to 238

modify the following genes in the synthetic doublets: (Sell, Mif, Bcl2l1, Cd40, Myc, Ncl, 239

Cst3, Ly6a, Ctla4, Ccl22, Cd69, Dll4, Lgals1 ). We trained our first LDA on a randomly 240

sampled subset of T-cells and DCs mono-culture from the [10] paper. After fixing the 241

topic from the reference, we fit a second LDA on the doublets with upregulated genes. 242

We expect those genes to require contributions from the new topics to model their 243

counts. 244

We applied the approach described to the datasets of upregulated doublets. We 245

expect the probability of observing counts greater or equal to the actual counts of the 246

list of upregulated genes (e.g. Ly6a, Sell) to be higher when we use all topics and we 247

compute the probability under θnk where k is topics learned from singlets and simulated 248

interacting doublets. On the other hand, for genes we chose not to upregulate, the 249

probabilities under ∆nk and θnk should be similar. This is shown in Fig 1, where we 250

plot the probability of observing counts higher or equal to the actual counts in doublets 251

with modified expression of some genes. Sell ’s counts in the modified doublets can be 252

explained better if the new topics are included. However, in the case of my-Cytb, a gene 253

we haven’t modified, probabilities given all topics or only the initial ones are similar. 254

For each of the three simulated doublets experiments, we rank the genes based on 255

whether they require contribution from the new topics to explain their expression. We 256

plot true positive rate vs false positive rate using different cutoff values for the top 257

ranked genes. Our final synthetic experiment aims to show we can identify genes that 258

change in a subset of the PICs. We upregulate the expression of Gbp4, Gbp7, Gzmb, 259

Il2ra, Psma4 in 20 cells (10% of the total PICs). To identify genes of interest we follow 260

the same approach mentioned above and plot a ROC curve, Fig 2, to see how the 261

results are affected by picking a different number of top genes per topic. In all four 262

experiments, using up to 15 top genes per topic resolves the list of upregulated genes we 263

use as ground truth. 264

PIC-seq dataset 265

The first real dataset we use for evaluation has been generated by PIC-seq and includes 266

interacting T-cells and DCs (gated for TCRβ+CD11c+) as well as two co-cultures of a 267

single celltype (T-cells: TCRβ+ and DCs: CD11c+) across three different timepoints. 268

The original [10] work uses a metacell model to cluster the cultures of a single cell type. 269
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Fig 1. Using the synthetic data, we evaluate how likely it is to observe counts for some
genes under θ and ∆. For 200 upregulated doublets, we plot the probability of observing
the counts of a gene that has been upregulated, Sell, and a gene that has not, mt-Cytb,
under a model using all topics or using only the topics learned from the singlets
populations. In the case of Sell, a gene with modified expression in the doublets, the
probability of observing the actual counts or higher in the upregulated doublets using
all topics is higher compared to the probability of observing those counts if we only use
the initial topics. However, for my-Cytb that we have not upregulated the probabilities
under the two models of observing the actual counts or higher are similar. Thus, we can
conclude that the additional topics are required to model the genes that change.

Fig 2. For each of our 4 synthetic experiments, we plot a ROC curve using different
number of top genes based on our ranking. In all cases the genes we have modified the
expression of appear at the top of the newly identified topics. For all synthetic
experiments, using up to top 15 genes per topic resolves the list of upregulated genes we
consider as ground truth. However, as it can be seen from the plots even if slightly
higher number of top genes used, the false positives are gradually increasing.
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Then each PIC is modeled as a combination of metacells and a mixing proportion, α, is 270

estimated by a linear regression model trained on synthetic PICs. The metacells are 271

identified using MLE. Genes of interest are identified by comparing expected expression 272

based on the inferred cell types contributing to the interacting pair and actual 273

expression of the PICs. 274

Our model does not require prior clustering and generation of synthetic reference 275

profiles and as a first step we train one LDA on the co-cultures of T-cells and DCs using 276

them as a reference. With the first LDA we manage to capture topics specific to T-cells 277

and DCs (groups of genes co-varying in one cell type over the other). As can be seen 278

from Fig. 3 topics 0, 1, 5, and 12 are specific to DCs. We identify topics specific to a 279

cell type as described in Methods. To explore what the top genes are in some of those 280

topics, we pick topics 12 and 23 and order the genes in those topics by probability. We 281

see DC specific genes Fscn1, Ccl22, Tmem123, and Cd74 in topic 12. Similarly, some of 282

the genes with highest probability in the T-cell specific topic include Trac, Mif, Ncl, 283

Nmp1 (see Fig. 4). 284

Fig 3. Heatmap of topics expression in the reference populations of T-cells and DCs.
To map topics to a cell type, we group together cells from the same cell type and
perform Mann–Whitney U test for each topic. Results are corrected using the
Benjamini-Hochberg procedure for multiple testing.

We fix the topics we learned from the co-cultures of the two cell types, T-cell 285

co-culture and DCs co-culture, before we fit another LDA on the physically interacting 286

populations of PICs. As described earlier, in order to rank interesting genes, for each 287

topic we learned from the PICs, we count how many cells use this topic for a particular 288

gene. Then we rank the genes based on number of cells. Our PICs population contains 289

over 3000 cell and we filter our rankings for genes needing particular topic for fewer 290

than 10 cells. 291

To validate our findings, we check whether the top genes in each of the newly learned 292

topics have also been highlighted by Giladi et al [10] in Supplementary figure 4 of their 293

paper. Due to differences in filtering, we have not retained 10 genes they identify to 294

change as a result of interaction and we take the remaining 81 genes present in our data 295
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Fig 4. Heatmap of top genes based on probability in that topic (for each topic we can
obtain the probability of the genes in that topic) from topics 12 and 23. Topic 12
contains genes that tend to have higher expression in DCs compared to T-cells. Topic
23 contains genes co-varying in the T-cells co-culture. Results similar to Figure 1 from
the [10] manuscript

as a ground truth. In order to evaluate how results are affected by number of top genes 296

per topic we select, we plot true positive rate vs false positive rate, see Fig 5. 297

Fig 5. ROC curve using genes from [10] as ground truth based on top genes cutoff for
each topic. It’s important to note that some of our false positive values correspond to
true interacting genes that have not been presented in the [10] paper amongst their
Supplementary fig 4 genes.

While the analysis done in the original publication [10] groups cells by the types of 298

the singlets involved in the interaction and the timepoint of capture before performing 299

log fold change (results in Supplementary figure 4d of the original paper) we show that 300

some of the new topics we identify correspond to the timepoints of capture and reveal 301

genes with temporal patterns as shown on Fig 6. For example, Ldha, Ptma, Pcna, Trac, 302

Mif, Dut are needed by a subset of cells and captured in the same topics. Their pattern 303

of expression is higher after the first 3h. Ncl,Fscn1, Stat4 have higher expression during 304
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the first timepoints and appear as top ranked genes for a subset of cells. On the other 305

hand Tnfrsf4, Tnfrsf9, Tnfrsf18 seem expressed across all timepoints and the shift of 306

their expression is captured by the same topics. The expression of new topics across the 307

cells can be seen on Supplementary Fig 2. 308

Fig 6. Log transformed expression of genes identified by both [10] and our ranking
approach (top 40) and showing the possible temporal expression pattern. For example,
genes Ldha, Ptma, Pcna, Trac, Mif, Dut have highest probability in the same new
topics and their expression increases after the first 3h, while Tnfrsf4, Tnfrsf9, Tnfrsf18
do not seem to show temporal pattern and the shift in their expression compared to the
single cell type co-cultures is captured by the same topics.

While for the purposes of the ROC analysis, we are considering genes not amongst 309

the ones discussed by Giladi et al [10] as false positives, for some of those genes there is 310

evidence they could be involved in interaction. Taking the top 5 genes per topic 311

considered as false negatives previously, we find genes related to immunity and cell 312

adhesion, ligand-receptor pairs (over 20 genes in the first 100 ranked). Examples include 313

Ighm, Cd48, Ighm, Ly6e. Additionally, while some known genes appear high in the 314

ranking, some of the genes in our list are not well annotated. This makes them 315

potential targets for further analysis to elucidate their role. Genes can be found in 316

Supplementary Table 2. 317

BM dataset 318

The original work by Boisset et al [9] is focused on identifying significant interactions 319

between cell types, using sorted BM cells and needle dissected doublets. We 320

hypothesised our approach should be able to identify genes involved in the main 321

interactions discussed by [9]. Firstly, we fit our LDA on the sorted BM cells and fix the 322

learned topics. Next, we fit the second LDA on the needle dissected doublets. 323

We hypothesised our approach should be able to identify genes involved in the main 324

interactions discussed by [9]. Their work looked at three specific interacting pairs: 325

macrophages and erythroblasts, plasma cells and myeloblasts/promyelocytes, and 326

megakaryocytes and neutrophils. Macrophages and erythroblasts have been known to 327

interact and erythroblastic islands are considered an important niche for the maturation 328

of red blood cells. In addition to anchoring erythroblasts within island niches, 329

macrophages also provide interactions important for erythroid proliferation and 330

differentiation [25]. When describing physical interactions, adhesion molecules are of 331

particular interest. In our analysis, we identify Vcam-1 and Itgam which are known to 332

support adhesive interactions in macrophages. 333
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Boisset et al [9] also identify and validate the interaction between megakaryocytes 334

and neutrophils. Their findings support other studies that have looked at emperipolesis 335

(neutrophils are engulfed by BM megakaryocytes) as a process mediated by both 336

lineages. This interaction is important for production of platelets. [26] identified that 337

emperipolesis is mediated by β2 integrin Cd18 and Icam-1 interaction. Blocking β2 338

integrin Cd18 (Itgb2) impairs emperipolesis [26]. This is another integrin we identify in 339

our analysis. Elane and Igj are two other genes discussed by Boisset et al [9] that we 340

identify to require additional topics to model their expression. The genes shown in Fig 7 341

are identified by taking the top 25 genes from each topic. Overall, based on top 25 342

genes ranking per new topic (over 300 genes in total), we identify genes linked to cell 343

adhesion, innate immunity, and immune response. The full list of genes can be found in 344

the supplementary information, Supplementary Table 2. While some of the genes are 345

known to be linked to neutrophils (Cd177, Prtn3, Serpinb1a, Lsp1 ), other genes are less 346

well-annotated in terms of function and as such this demonstrates the benefits of using 347

an approach that is not based on curated resources of known interactions. 348

Fig 7. Heatmap of genes chosen based on their ranking in the new topics and evidence
from literature that they are linked to interactions in the BM. Amongst the examples
we see genes linked to neutrophils adhesion such as S100a8, S100a9, and Cd177. Elane
and Igj are two genes confirmed by [9].

COVID-19 Data 349

Previously, we used datasets generated by modifying standard protocols to allow for 350

PICs to be generated. However, here we explore the ability of our method to identify 351

genes that change as a result of interaction in datasets generated with the 10x 352

Chromium platform which does not have the ability to preserve interacting cells as 353

there is no specific way of capturing doublets. We took a recently published COVID-19 354

BALF dataset containing several cell types like T-cells, macrophages, B-cells, DCs, and 355

neutrophills. There are samples from patients with moderate COVID-19, severe 356

infection, and healthy controls. During cluster annotation, the authors labelled several 357

clusters as doublets [22]. We hypothesised some of those doublets might represent 358

interaction as macrophages are known to interact with T-cells. To confirm the identity 359

of the doublet cluster in the severe patient samples, we looked at marker gene 360

expression followed by analysis with DoubletFinder. 361

We use the populations labelled as singlets by DoubletFinder as reference for LDA. 362

We fix those topics and fit a second LDA on the doublets population. Identification of 363

potential interacting genes was performed similarly to the datasets analysed earlier by 364

ranking genes within each new topic based on how many cells require this particular 365
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topic to explain the gene expression. Additionally, as we only have just over 200 366

doublets, we only consider genes using a specific topic in at least 10 cells. As we can see 367

from Fig 8, some of the genes that require contribution from the new topics to model 368

their expression include cytokines and chemokines which might suggest interaction. A 369

subset of the cells also seem to require new topics for genes related to interaction. We 370

refer to work by Takada et al [27] and Magee et al [28] that discuss physical interactions 371

to identify suitable candidates. As not all doublets require new topics, it is possible we 372

have a mix of interacting and technical doublets. While we are capturing a shift in the 373

expression of some genes, our results are inconclusive due to the quality of our reference 374

population as the reference is constructed based on the cells DoubletFinder annotated 375

as singlets. Depending on the amount of cells loaded, a standard 10x Chromium 376

experiment can result to the formation of over 0.7% technical multiplets with doublets 377

being predominant. While with DoubletFinder we have managed to label some of the 378

doublets, computational tools for doublet detection do not achieve perfect sensitivity 379

and specificity scores, so it is possible the reference population contains technical 380

doublets or interaction cells. Our approach can identify genes that change as a result of 381

interaction and is suitable for datasets where the reference population is clearly labelled 382

as in the PIC-seq and dissociated BM examples discussed earlier. 383

Fig 8. Heatmap of the COVID-19 data showing the expression of top ranked genes
needing new topics for a subset of the doublets population. As none of genes are
uniquely expressed in the doublets population, we are capturing a shift in the expression
of those genes. While some doublets can represent biologically interacting ones as top
ranking genes include cytokines and chemokines, due to the quality of the reference
population our results are inconclusive.

Conclusion 384

In this article we have demonstrated the suitability of LDA for analysing PICs. We 385

have shown that our model is sensitive to changes in gene expression that cannot be 386

explained by the not interactive populations and thus new topics are needed to model 387

the expression of genes that change as a result of interaction. Our model has been 388

applied to two datasets of sequenced PICs and a dataset generated by standard 10x 389

Chromium. Our approach assumes there is a reference population that can be used to 390

fit the first LDA; for example this could be populations before an interaction has 391

occurred. In addition to genes known to be involved in interaction and discussed by [9] 392

and [10], we also rank further candidates for interaction that might be of interest for 393

validation. We demonstrate the challenges of applying our approach to a dataset where 394
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a reference population cannot be clearly labelled in the case of the COVID-19 BALF 395

analysis as with the standard 10x Chromium protocol. However, amongst the top genes 396

we rank there are cytokines and chemokines, genes known to be regulated by physically 397

interacting cells, which might suggest the doublet population includes both technical 398

and interacting doublets. While this is informative, the current setup of the 10x 399

Chromium protocol is fully suitable for studying cellular crosstalk of physically 400

interacting cells and as such the likes of PIC-seq should be considered when studying 401

interactions. 402

As seen from the datasets discussed here, modeling interactions based on doublets 403

can be very useful. As such, distinguishing technical from biologically significant 404

doublets poses an interesting challenge. While we have applied our LDA approach to 405

PICs, there is a potential for our work to allow for distinguishing technical doublets 406

from transitioning cells as long as the transition is described by a unique set of genes, so 407

that a new topic can be defined. While there are cell hashing methods that allow for 408

mitigation of batch effects and overloading of sequencers, those methods help identify 409

doublets between different samples/patients while intra-donor doublets remain 410

undiscovered. On the computational side of doublet detection, methods make a range of 411

assumptions that pose challenges to using them in practice. For example, 412

DoubletFinder requires doublet rate which is not available in all experiments. The 413

accuracy of all methods is affected when applied to transcriptionally similar cells and 414

DoubletDecon would not allow a doublet cluster to be present in the data. 415

DoubletDecon is the only one able to distinguish technical doublets from transitioning 416

cells. As such, there is a clear need for methods that can eliminate technical noise but 417

not at the expense of biological significance [11], [12], [29], [30], [31]. 418

As PIC-seq is a very powerful approach, it can be used to potentially generate data 419

including physically interacting doublets as well as singlets. It would be of interest to 420

identify whether some of the singlets in fact show signs of interaction. Are they cells that 421

have interacted but separated? Or maybe they have not interacted at all? Such datasets 422

could easily be analysed following the methodology described earlier. We would expect 423

to see signs of interacting topics in some singlets but maybe not all and as such we 424

should be able to distinguish between singlets and singlets that have interacted before. 425

As there is a demand for understanding PICs, we believe methods like PIC-seq will 426

be used more often in future and further work will be done to develop sequencing 427

protocols that allow for capturing physical interactions that have the potential to 428

become therapeutic targets. When such datasets are generated, there should be 429

techniques that allow for their analysis and are not limited to knowledge captured in 430

biological databases. The method described here is one such example that does not 431

require any prior information such as clustering of the cell types involved and generation 432

of synthetic reference profiles. As further such datasets are generated, fields that would 433

benefit from more in depth understanding of interactions include: understanding 434

parasite-host interactions, crosstalk between immune cells and other lineages, and effect 435

of cell-cell interaction in cancer progression. 436
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Supporting information 437

S1 Table. Filtering parameters used for each sample in the COVID-19 438

dataset. Upper cutoffs for nFeatures has been set to relatively high values 439

as we are interested in potential doublets. The percent.mt (% mt) cutoff 440

allows us to exclude dying cells. 441

Sample Name features lower cutoff features upper cutoff % mt
C51 500 3000 25
C52 500 2000 20
C100 500 6000 25
C141 500 7000 25
C142 500 6500 25
C144 500 4000 25
C143 500 6000 25
C145 500 4500 20
C146 500 4500 25
C148 500 7500 25
C149 500 7000 25
C152 500 6000 25

S1 Fig. C145 cluster annotation: COVID-19 BALF, UMAP projection of 442

patient sample C145. We have identified the cluster containing doublets 443

based on expression of marker genes and annotation by DoubletFinder 444

445

S2 Table Added as a separate table: Top genes from the PIC-seq and the 446

bone marrow datasets 447

S2 Fig. New topics and PICs heatmap. While some topics have higher 448

probabilities associated with a timepoint. Other topics appear expressed 449

across all timepoints, so the gene expression shift is linked to the cell types 450

that contribute to the PICs. 451
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