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Abstract13

Intracellular transport is pivotal for cell growth and survival. Malfunctions in this process14

have been associated with devastating neurodegenerative diseases, posing a need for deeper15

understanding of the involved mechanisms. Here, we used an experimental methodology that16

lead neurites of di�erentiated PC12 cells in either of two con�gurations: an one-dimensional,17

where the neurites align along lines, or a two-dimensional con�guration, where the neurites18

adopt a random orientation and shape on a �at substrate. We subsequently monitored19

the motion of functional organelles, the lysosomes, inside the neurites. Implementing a20

time-resolved analysis of the mean-squared displacement, we quantitatively characterized21

distinct motion modes of the lysosomes. Our results indicate that neurite alignment gives22

rise to faster di�usive and super-di�usive lysosomal motion in comparison to the situation23

where the neurites are randomly oriented. After inducing lysosome swelling through an24

osmotic challenge by sucrose, we con�rmed the predicted slowdown in di�usive mobility.25

Surprisingly we found that the swelling-induced mobility change a�ected each of the (sub-26

/super-) di�usive motion modes di�erently and depended on the alignment con�guration27

of the neurites. Our �ndings imply that intracellular transport is signi�cantly and robustly28

dependent on cell morphology, which might be in part controlled by the extracellular matrix.29
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Introduction30

One critical function not only for the growth and maintenance of homeostasis, but also31

for the survival of a cell, is the transport of proteins, molecules, organelles and debris to32

speci�c locations within the cell. This allocation is of tremendous signi�cance, especially for33

neuronal cells due to the extreme size of their axons; for instance, axons of human motor34

neurons can reach the length of one meter, starting from the brain and extending till the end35

of the spine. Defects in the process of intracellular transport have long been associated with36

human diseases (Aridor and Lisa A. Hannan 2000; Aridor and Lisa A Hannan 2002; Sleigh37

et al. 2019; Appert-Rolland, Ebbinghaus, and Santen 2015; De Vos and Hafezparast 2017),38

but whether such defects are the cause or the consequence of pathological phenotypes, is still39

under debate in several cases (Moloney, Winter, and Verhaagen 2014; Prior et al. 2017).40

Intracellular distribution of molecules and organelles is achieved mainly via two mech-41

anisms: passive di�usion and active, motor-driven, transport along microtubules and actin42

�laments (Vale 2003). Cytoskeletal components, organelles and molecules crowd the cyto-43

plasm, thereby hindering or enhancing passive di�usion, thus leading to sub-di�usive and44

super-di�usive intracellular motion (Götz et al. 2015; Otten et al. 2012; Witzel et al. 2019;45

S Mogre, Brown, and Koslover 2020). In order to characterize intracellular dynamics and46

extract values such as the velocity of the motor-mediated transport or the di�usion coe�-47

cient of passive motion, several models have been implemented (Bresslo� and Newby 2013;48

Briane, Kervrann, and Vimond 2018; Norregaard et al. 2017).49

A frequently used approach exploits the Mean Squared Displacement (MSD) plotted as50

a function of lag time and subsequently �tted with a power law in the form of ∼2dDτα,51

where d is the dimensionality, D the di�usion coe�cient and τ the lag time (Gal, Lechtman-52

Goldstein, and Weihs 2013; Grady et al. 2017). The characteristic exponent (α) value reveals53

the type of motion, di�erentiating among Brownian di�usion (α = 1), from now on referred54
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to as di�usion, super-di�usion (α > 1) and sub-di�usion (α < 1). In the case of complex55

motion, such as intracellular transport, comprising a combination of alternating phases of56

sub-di�usion, free di�usion and motor-driven active transport, motion discriminating algo-57

rithms are essential to avoid averaging out dynamic information. Thus, local-MSD (lMSD)58

analysis can be performed instead of �tting the entire MSD curve, providing time-resolved59

information of the motion states within a trajectory. This analysis implements a rolling win-60

dow over the entire trajectory, thereby characterizing each data point with the α exponent61

value (Arcizet et al. 2008; Mahowald, Arcizet, and Heinrich 2009; Otten et al. 2012; Dupont62

et al. 2013; Götz et al. 2015).63

Although the MSD analysis is a well-established tool, a reliable and less noisy MSD curve64

requires many data points and long trajectories which, in the case of biological data, can65

be challenging to acquire (Michalet 2010). Additionally, selection of the model to �t is not66

always straightforward, especially in the instance of complex data with multiple underlying67

processes (Türkcan and Masson 2013). Furthermore, the MSD curve is sensitive to exper-68

imental parameters such as the acquisition frame rate and the size of the imaged particle69

(Gal, Lechtman-Goldstein, and Weihs 2013).70

Hence, the use of an additional method, the van Hove distribution (Van Hove 1954), for71

the analysis of intracellular data can counterweight the drawbacks described above and pro-72

vide a more in-depth view of intracellular transport than that gained from the MSD analysis73

alone. The van Hove distribution, alternatively called Jump Distance Distribution (JDD)74

was initially used for particle scattering experiments (De Bar 1963; Dahlborg, Gudowski,75

and Davidovic 1989). The JDD is plotted for a speci�c lag time and depicts the Euclidian76

displacement distribution of the observed particles within the given time lag, in the form of77

a Probability Distribution Function (PDF). Thus, this distribution reveals the displacement-78

dependent structure which is, otherwise, "hidden" in a single, averaged data point, for the79

respective lag time, of the MSD curve.80
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Already in 1997, Schütz et al. showed that by �tting the probability distribution of the81

squared displacements of single-molecules moving on membranes, one can extract individual82

di�usion constants and fractions of multiple-component samples (Schütz, Schindler, and83

Schmidt 1997). Along the same lines, Kues et al. analyzed single-molecule motion inside84

cell nuclei, distinguishing among three mobility states (Kues, Peters, and Kubitscheck 2001).85

Over time, application of this analysis for Brownian motion in �uids (Hopkins et al. 2010)86

and in - actual or simulated - biological systems increased (Ghosh et al. 2016; Menssen and87

Mani 2019; Grady et al. 2017; Bhowmik, Tah, and Karmakar 2018; Witzel et al. 2019),88

establishing it as a powerful tool for characterization of complex biological trajectories.89

Here, we set out to characterize trajectories of lysosomes inside neurites of di�erentiated90

PC12 cells (Lloyd A Greene and Tischler 1976; Lloyd A Greene 1978; Lloyd A. Greene et al.91

1987), commonly used as neuronal model (Wang et al. 2015; Christen et al. 2017; Pelzl et al.92

2009). Neurites are the precursors of dendrites and axons in immature neurons (Leterrier,93

Dubey, and Roy 2017) hence, motion analysis within neurites can provide signi�cant insight94

into axonal transport. Lysosomes are organelles that play a vital role in the autophagy95

pathway of cells and exhibit both di�usive motion and active transport via dynein and96

kinesin motor proteins along microtubules. Not only the autophagy pathway in general97

(Nixon 2013; Menzies, Fleming, and Rubinsztein 2015; Ramesh and Pandey 2017), but also98

the motion of lysosomes speci�cally appear to be implicated with neurodegenerative diseases99

and cancer (Lawrence and Zoncu 2019; Amick and Ferguson 2017; Burk and Pasterkamp100

2019; Oyarzún et al. 2019).101

We show that neurite alignment, achieved via chemical surface patterning, results in102

faster di�usive and super-di�usive lysosomal motion in comparison to the case where the103

neurites adopt a random orientation. Moreover, we introduce a perturbation in the cellular104

environment via incubation with sucrose and con�rm experimentally that the sucrose induces105

lysosomal enlargement, which leads to a proportionate decrease in the di�usion coe�cient.106
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Implementing lMSD analysis, we identify and extract the trajectory parts that belong into107

each of three classes of motion, namely sub-di�usive, di�usive and super-di�usive. By collec-108

tively analyzing the data points of the respective class, we gain quantitative insights for each109

motion mode. Our �ndings indicate that the incubation with sucrose results in a di�erent110

e�ect on each motion mode of the organelles, and this also depends on the con�guration of111

the neurites within which the motion occurs.112

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.26.453779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453779


Results113

We set out to characterize intracellular organelle transport and to compare motion features114

under two distinct neurite con�gurations. We investigated the motion of lysosomes inside115

neurites of di�erentiated PC12 cells, when those adopt a random orientation on the two-116

dimensional culture surface, versus when they are prompted to adhere to an one-dimensional117

con�guration by means of chemical surface patterning.118

microscale Plasma - Initiated Patterning (µPIP) of Laminin guides119

the neurites of di�erentiated PC12 cells along 2 µm-wide lines.120

We achieved one-dimensional neurite alignment by selective protein deposition on the cell121

substrate. The steps followed during the µPIP are schematically shown in Fig. 1.C-F. A122

polydimethylsiloxane (PDMS) mask bearing a ladder-shape pattern was used. Scanning-123

electron microscopy (SEM) images of the PDMS mask are shown in Fig. 1.A and B. The124

mask was inverted and pressed onto the cell substrate. The assay was then exposed to air125

plasma (Fig. 1.C), thereby altering the surface charge of the areas exposed via the mask and126

thus increasing their hydrophilicity. The rest of the surface, covered by the adhered PDMS127

mask, remained in its original hydrophobic state. Subsequent incubation with Pluronic F127128

and Laminin (Fig. 1.D and E, respectively), resulted in 2µm-wide Laminin lines, alternating129

with 18µm-wide Pluronic F127-coated stripes (Fig. 1.F).130

In order to obtain the second neurite geometry, the entire substrate was coated with the131

extracellular matrix (ECM) protein. PC12 cells were allowed to adhere on both substrates,132

as schematically shown in Fig. 1.G and I. Subsequently, the cells were di�erentiated to133

stimulate neurite growth (see Materials and Methods). Depending on the substrate used,134

patterned or un-patterned, the neurites either aligned along the lines or grew randomly on135

the 2D surface. Representative cells of both con�gurations are shown in Fig. 1.H and J,136
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Figure 1: Laminin µPIP for neurite guidance. (A) Scanning electron microscopy (SEM)
image of the PDMS mask used for the plasma-initiated patterning. The structure consisted
of two side lines, 50µm-wide and 6mm long, with 400µm distance in-between. The central
2mm of the 6mm blocks were intersected by 2µm-wide lines, repeated every 18µm. The
depth of the mask was 4µm. (B) Close-up of the area indicated by the black dotted-line
square in (A). (C-F) Steps followed for the µPIP: (C) The PDMS mask was placed on the
substrate, and the assay was exposed to air plasma. (D) The PDMS mask was removed and
the substrate was submerged in Pluronic F127 which adsorbed to the plasma-protected areas.
(E) The dish was immersed in Laminin, which adhered to the plasma-activated areas. (F)
The resulting pattern of Laminin-coated lines surrounded by Pluronic-covered regions. (G)
Schematic of the patterned substrate. Green color represents the ECM protein (Laminin) and
red color the Pluronic F127. (H) Representative bright-�eld image of a di�erentiated PC12
cell on the patterned substrate, with its neurites aligned along the line. (I) Schematic of the
un-patterned substrate, coated with Laminin (green color). (J) Representative bright-�eld
image of a di�erentiated PC12 cell with the neurites randomly oriented on two-dimensions.
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respectively.137

Sucrose induces lysosomal enlargement in di�erentiated PC12 cells.138

Next, we wondered whether a perturbation in the cellular environment, that associates with139

lysosomes, could be deciphered by studying their motion and, if that was the case, whether140

the e�ect would di�er for the two di�erent neurite con�gurations. To investigate that ques-141

tion, we employed sucrose-induced swelling of lysosomes. Sucrose has long been known to142

trigger swelling of lysosomes; it enters the cytoplasm by pinocytosis but can not be degraded143

by lysosomal enzymes, thus causing osmotic pressure alterations in lysosomes, which in turn,144

attempting to maintain osmotic balance, allow water in�ux, thus swelling (Warburton and145

Wynn 1976). Lysosome enlargement, along with its e�ect on lysosomal transport has been146

quanti�ed in BS-C-1 monkey kidney epithelial cells (Bandyopadhyay et al. 2014).147

Along the same lines, we incubated the di�erentiated PC12 cells with sucrose prior to148

data acquisition. Representative images of �uorescent lysosomes inside di�erentiated PC12149

cells in normal (control) media and in media containing sucrose are displayed in Fig. 2. A150

small e�ect on the size of the lysosomes can be observed by visual inspection. To quantify151

this, we measured the diameters of lysosomes for the two conditions and the distributions of152

the values, are shown in Fig. 2.E. The mean diameter was found to be equal to:153

< dc >= 0.82± 0.02µm for lysosomes of cells in normal media (control) and154

< ds >= 1.15± 0.02µm for lysosomes of cells in sucrose-containing media.155

resulting in an increase of 0.33µm for the average lysosome diameter caused by incubation156

with sucrose.157
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B

D

A E

C

Figure 2: Sucrose induces increase of lysosome diameter. (A, B) Fluorescent lyso-
somes of a cell in media without sucrose (control). (C, D) Fluorescent lysosomes of a cell in
media with sucrose. Scale bar in (A, C) is 5µm and the square indicates the location shown
in higher magni�cation in (B, D), respectively, with scale bar 1µm. (E) Boxplot of lysosomes
diameters for di�erentiated PC12 cells in media without sucrose (control) versus in media
with sucrose, with mean values equal to < dc >= 0.82±0.02µm and < ds >= 1.15±0.02µm
respectively. The statistical signi�cance between the two means was determined using the
Wilcoxon ranksum test; *** corresponds to p < 0.001.

Lysosomes inside aligned neurites exhibit higher displacements.158

Fluorescently-labeled lysosomes were tracked for up to 30 seconds, inside both neurite con-159

�gurations. The MSDs and JDD PDFs were calculated for all lysosomal trajectories of each160

condition (using eq. 5 and 10, respectively), for the x- and y- displacements, and are dis-161

played in Fig. 3. The x-axis coincided with the neurite alignment axis, in the corresponding162

experimental con�guration.163

As can be observed in Fig. 3.A, the MSD curve along the x- axis exhibits signi�cantly164

higher values for lysosomes inside aligned neurites, especially for the control condition. It165

is noteworthy, that even in the presence of the sucrose-induced perturbation, the x-MSD166

values of lysosomes inside aligned neurites are higher than those of the control condition167

in randomly oriented neurites. Moreover, the decrease in the displacement observed in the168
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ΒA

DC

Figure 3: Larger MSD and JDD PDF values observed for lysosomes moving inside

aligned neurites. (A) MSD curves along the x- axis and (B) MSD curves along the y- axis
of lysosomal trajectories. Data points show time-averaged MSD ± standard error of the
mean. (C) JDD PDFs along the x- axis and (D) JDD PDFs along the y- axis of lysosomal
trajectories. Color-coding indicates lysosomes inside aligned (1D) or randomly oriented (2D)
neurites of di�erentiated PC12 cells in media without (control) or with sucrose.
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presence of sucrose, is more signi�cant for lysosomes inside aligned neurites, as compared169

to randomly oriented neurites. These �ndings are consistent with the JDD PDFs along the170

x-axis (Fig. 3.C).171

The MSD and JDD PDF along the y-axis (Fig. 3.B and D) clearly indicate the underlying172

neurite alignment of the corresponding experimental condition. On the other hand, the y-173

MSD and JDD PDF values of lysosomes inside randomly oriented neurites, are similar to174

those for the x-axis. This result is expected, since there is no directionality preference for175

lysosomes moving inside randomly oriented neurites.176

Local MSD analysis of lysosomes trajectories distinguishes among177

sub-di�usive, di�usive and super-di�usive motion modes.178

The shape of the MSD and JDD PDF curves presented in Fig. 3 indicates that the motion179

analyzed here consists of more than one type of transport, as explained previously. To180

characterize each transport mode, we performed a lMSD analysis for every single lysosomal181

trajectory. Previous studies have implemented this time-resolved analysis, however either182

distinguishing only between active and passive transport (Ahmed, Williams, et al. 2013;183

Ahmed and Saif 2014), or without afterwards analyzing collectively the trajectory parts of184

each motion category (Arcizet et al. 2008; Götz et al. 2015; Mahowald, Arcizet, and Heinrich185

2009).186

Here, we di�erentiated among the three modes of lysosomal motion, characterized each187

trajectory data point, and subsequently analyzed collectively the trajectory parts of each188

motion type. Fig. 4.A shows the bright-�eld image of a di�erentiated cell, with its neurite189

aligned along the Laminin line, overlayed with recorded trajectories of lysosomes. Fig. 4.B190

displays the lysosomal trajectory indicated by the dotted black square in Fig. 4.A. The191

trajectory parts are color-coded, indicating either of sub-di�usive (black), di�usive (blue) and192
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super-di�usive (green) transport. For each mode of motion in this trajectory, the respective193

MSD curve is displayed in Fig. 4.C. In the same plot, dashed lines indicate theoretical MSD194

curves of super-di�usion (α ∼ 1.5) and sub-di�usion (α ∼ 0.5).195

~𝜏1,5

CA

B

~𝜏0,5

Figure 4: Time-resolved characterization of motion, based on local MSD analy-

sis. (A) Bright-�eld image of a di�erentiated PC12 cell with its neurite aligned along the
patterned Laminin line. Recorded trajectories of lysosomes are overlayed and color-coded
based on the type of motion (sub-di�usive for α ≤ 0.9, di�usive for 0.9 ≤ α ≤ 1.1 and super-
di�usive for α ≥ 1.1). The α value was determined using the local MSD analysis. Scale bar
equals 100µm. (B) Close-up of the trajectory indicated by the black dotted square in (A).
(C) Mean-squared displacement of the three motion modes, from the parts comprising the
trajectory shown in (B). The dotted lines indicate the theoretical sub-di�usive (α ∼ 0.5) and
super-di�usive (α ∼ 1.5) MSD curves.
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Neurite alignment associates with more e�cient (sub-/ super-) dif-196

fusive transport of lysosomes.197

After characterizing every individual trajectory in a time-resolved manner using the lMSD198

analysis, we analyzed collectively all trajectory data points of each transport type. The199

MSD curves of the sub-di�usive, di�usive and super-di�usive parts of lysosomal trajectories200

in neurites of di�erentiated PC12 cells for the four experimental conditions, are displayed in201

Fig. 5. The sub-di�usive MSD curves were �tted using the power law describing anomalous202

di�usion (eq. 7). To �t the di�usive MSDs, the Brownian motion model was used (eq. 8).203

Lastly, for the super-di�usive MSDs we implemented the model of Brownian motion with204

drift (eq. 9) (Briane, Kervrann, and Vimond 2018). The resulting �tting parameters are205

summarized in Table S.1.206

Lysosomes exhibit a higher (vectorial) mean-squared displacement inside aligned neurites207

than in randomly oriented neurites, for all three motion modes studied. This alignment-208

associated e�ect appears to be consistent also in the case of the sucrose-induced perturbation,209

except for the sub-di�usive trajectory modes. As the resulting experimental values indicate210

(Table S.1), the di�usion coe�cient of the di�usive trajectory modes is higher for lysosomes211

inside aligned neurites, without or with the presence of the perturbation (0.0065 µm2/sec and212

0.0054 µm2/sec, respectively) as compared to lysosomes inside randomly oriented neurites213

(0.0047 µm2/sec and 0.0029 µm2/sec, respectively). Similarly, the drift velocity of the super-214

di�usive trajectory parts is higher for the lysosomes moving inside the aligned neurites, both215

in the media without and with sucrose (0.538 µm/sec and 0.397 µm/sec, respectively), in216

comparison to the respective values for randomly oriented neurites (0.460 µm/sec and 0.343217

µm/sec, respectively). These �ndings are in agreement with the results for the x- and y-218

axis presented in Fig. 3, further con�rming the association between neurite alignment and219

larger lysosomal displacements.220
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BA C

Figure 5: MSD per transport mode. (A) Sub-di�usive, (B) di�usive and (C) super-
di�usive MSD plots of the respective lysosomal trajectories data points, as determined using
the lMSD analysis. Color-coding indicates lysosomes inside aligned (1D) or randomly ori-
ented (2D) neurites of di�erentiated PC12 cells in media without (control) or with sucrose.

Sucrose accumulation enhances crowding in aligned neurites.221

The experimental value of the sub-di�usive α exponent is found equal to 0.92 and 0.66 for222

lysosomes inside aligned neurites without and with sucrose, respectively. Thus, the decrease223

in the sub-di�usive α value, attributed to sucrose accumulation, is approximately equal to224

0.26, that is twice the respective decrease observed inside randomly oriented neurites. The225

decrease in the di�usion coe�cient, attributed to the incubation of the cells with sucrose,226

is approximately equal to 17% for lysosomes inside aligned neurites, almost half of the227

respective 35% for lysosomes inside randomly oriented neurites. Interestingly, our results228

indicate a sucrose-associated decrease in the drift velocity of the super-di�usive trajectory229

modes, approximately equal to 25%, which is the same for lysosomes inside both neurite230

con�gurations.231
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Sucrose-induced lysosomal swelling results in proportionate decrease232

of the di�usion coe�cient.233

Previously we found the mean diameter of lysosomes to be equal to < dc >= 0.82± 0.02µm234

and < ds >= 1.15± 0.02µm for di�erentiated PC12 cells in media without sucrose (control)235

versus in media with sucrose, respectively (Figure 2.E). According to the Stokes-Einstein236

equation (Albert 1905), the di�usion coe�cient D of a spherical particle with radius r,237

through a liquid with low Reynolds number, is given by238

D =
kBT

6πηr
(1)

where kB the Boltzmann constant, T the temperature and η the viscosity. Assuming the239

temperature and viscosity remain constant, we expect the ratio of two di�usion coe�cients240

D1 and D2 of two particles to be analogous to the inverse ratio of their respective diameters241

d1 and d2:
D1

D2
= d2

d1
. Thus, supposing there is no di�erence in the average temperature242

or viscosity of the cytoplasm between the cells in normal media and the cells in media243

containing sucrose, we expect the average di�usion coe�cients and diameters of lysosomes244

in media without (control) versus with sucrose, to satisfy:245

< ds >

< dc >
= 1.4 =

< Dc >

< Ds >
(2)

The experimental di�usion coe�cients of the lysosomes inside cells in normal media and246

in sucrose-containing media, for the two con�gurations (Table S.1) yield:
(
<Dc>
<Ds>

)
1D
≈ 1.2247

and
(
<Dc>
<Ds>

)
2D
≈ 1.7, a result close to the expected value, with the case of the aligned248

con�guration exhibiting lower deviation from the expected result.249
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JDD analysis yields same characteristic values as MSD analysis for250

di�usive motion modes.251

The JDD is increasingly used for the characterization of intracellular trajectories (Ahmed252

and Saif 2014; Grünwald et al. 2008; Gal, Lechtman-Goldstein, and Weihs 2013). Thus, as253

a last step of our analysis, we investigated how the results of these distributions and the254

characteristic values extracted from their �ts relate to the respective ones extracted from255

the MSD analysis.256

In Fig. 6, the X- and Y- MSD curves of the di�usive and super-di�usive parts of lysosomal257

trajectories in neurites of di�erentiated PC12 cells for the four experimental conditions are258

displayed, along with the �tting curves. The respective probability distribution functions259

and corresponding �tting curves of the jump distances along the X- and Y- axis are presented260

in Fig. 7. Consistent with the MSD, the JD displacement along the X- axis (same as the261

neurite alignment axis) is larger in the case of the aligned neurites, for both without and262

with sucrose incubation conditions. Additionally, incubation with sucrose appears to be263

associated with smaller displacements, as compared to the control case.264

All di�usion coe�cient and velocity values, resulting from the �ts of the MSD and JDD265

curves are summarized in Table S.2 and S.3. It is remarkable how similar the resulting values266

of the X- and Y- component of the di�usion coe�cient for the di�usive trajectory modes267

are. The resulting values of the X- component of the drift velocity of the super-di�usive268

trajectory modes exhibit small di�erences; the values extracted via �tting the JDD PDFs269

are systematically smaller than the respective ones derived from the MSD �ts. This is of no270

surprise since, as can be seen, the �tting curves neglect the longer tails. However the trend271

observed among the experimental conditions is maintained: in the presence of sucrose the272

velocity is smaller than the control case, regardless the neurite con�guration, and the 1D273

alignment indicates higher values than the random orientation case, regardless the presence274
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of the perturbation. The Y- component of the drift velocity of the super-di�usive trajectory275

modes, estimated via �tting the JDD PDF, deviates from the other values by two orders of276

magnitude.277

Discussion278

Cell survival, growth and conservation of homeostasis rest upon �ne tuning and interplay of279

a plethora of processes. One such vital process is the transport of organelles, proteins or de-280

bris within the cellular environment. Malfunctioning intracellular motion is associated with281

neurodegenerative diseases (Aridor and Lisa A. Hannan 2000; Aridor and Lisa A Hannan282

2002; Sleigh et al. 2019; Appert-Rolland, Ebbinghaus, and Santen 2015; De Vos and Hafez-283

parast 2017), emphasizing the signi�cance of this process for neuronal cells more than other284

cell types. However, a deeper insight is of essence, to determine whether faulty intracellular285

transport underlies or gives rise to the pathology of these diseases.286

Here, we employ a model system of neuron-like cells (Lloyd A Greene and Tischler 1976)287

to characterize the motion of lysosomes inside their neurites. As the cell shape a�ects the288

organization of the cytoskeleton and thereby the intracellular transport, we investigate this289

e�ect by guiding the neurites of di�erentiated PC12 cells towards two distinct geometries:290

either randomly oriented on a surface, or aligned along chemically-patterned lines. In par-291

allel, to mimic a pathological cellular phenotype, we perturb the cellular homeostasis via292

sucrose accumulation and induced lysosome swelling, and detect via motion analysis how its293

e�ect varies with the neurite geometry.294

The overall MSD and JDD plots of lysosomal trajectories indicate enhanced transport295

when the neurites are aligned. The length scale of the observed trajectories is small, com-296

pared to the neurite width or curvature. Thus, this e�ect on the transport can be attributed297

to a global rearrangement of the cytoskeletal components, resulting from the alignment of298
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BA

DC

Figure 6: X- and Y- MSDs of di�usive and super-di�usive trajectory parts. MSDs
calculated collectively for all di�usive trajectory parts along (A) the X- and (B) Y- axis.
MSDs calculated collectively for all super-di�usive trajectory parts along (C) the X- and
(D) Y- axis. Color coding indicates data of lysosomes inside aligned (1D) and randomly
oriented (2D) neurites of di�erentiated PC12 cells in media without (control) or with sucrose.
Di�usive MSDs (A, B) were �tted using equation 8. Super-di�usive MSDs (C, D) were �tted
using equation 9. The �tting parameters are summarized in Table S.2.
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BA

C D

Figure 7: X- and Y- JDD PDFs of di�usive and super-di�usive trajectory parts.
JDD PDFs calculated collectively for all di�usive trajectory parts along (A) the X- and (B)
Y- axis, for τ = 240.5ms. JDD PDFs calculated collectively for all super-di�usive trajectory
parts along (C) the X- and (D) Y- axis, for τ = 758.5ms. Color coding indicates data of
lysosomes inside aligned (1D) and randomly oriented (2D) neurites of di�erentiated PC12
cells in media without (control) or with sucrose. Di�usive JDD PDFs (A, B) were �tted
using equation 11. Super-di�usive JDD PDFs (C, D) were �tted using equation 12. The
�tting parameters are summarized in Table S.3.
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the neurites, con�rming the hypothesis that the cell shape impacts intracellular transport.299

Implementing local MSD analysis, we separately characterize the sub-di�usive, di�usive300

and super-di�usive transport phases of the recorded lysosomal trajectories (Arcizet et al.301

2008; Mahowald, Arcizet, and Heinrich 2009; Götz et al. 2015). We �nd that both di�usive302

and super-di�usive motion of lysosomes is enhanced inside aligned neurites. In addition,303

this result is maintained in the case where the homeostasis has been impaired via sucrose304

incubation, suggesting a global e�ect of neurite alignment on organelle transport. For the305

sub-di�usive trajectory parts, the di�erence is smaller, as seen from the alpha-exponent306

values of the MSD curves �ts, which are slightly larger for lysosomes inside aligned neurites.307

Our �ndings complement previous studies, which used lMSD analysis to investigate the308

e�ect of cytoskeleton organization on intracellular dynamics of Dictyostellium Discoideum309

cells (Otten et al. 2012; Götz et al. 2015; Grady et al. 2017; Mahowald, Arcizet, and Heinrich310

2009), demonstrating the potential of this analysis also for mammalian intracellular organelle311

motion.312

In addition, we con�rm that sucrose induces swelling of lysosomes inside di�erentiated313

PC12 cells with an associated increase of their average diameter by 0.33 µm, and this leads314

to a proportionate decrease in their di�usion coe�cient, as estimated by �tting the MSD315

curves of the di�usive trajectory modes. However, the neurite alignment seems to alleviate316

the sucrose e�ect in the case of the di�usive motion, resulting in half the respective decrease317

of the di�usion coe�cient of lysosomes inside non-aligned neurites. Contrary to the �ndings318

reported by Bandyopadhyay et. al. (Bandyopadhyay et al. 2014), our analysis indicates a319

sucrose-associated decrease in the drift velocity of the super-di�usive transport modes, same320

for both neurite con�gurations. Furthermore, our results reveal a decrease in the alpha-321

exponent of the sub-di�usive trajectory modes, suggesting a crowding e�ect due to sucrose322

incubation (Weiss et al. 2004), more prominent inside aligned neurites.323

Lastly, the JDD analysis of the di�usive motion modes resulted in values surprisingly324
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close to the respective ones extracted from the MSD analysis. This was not the case for325

the super-di�usive trajectory parts, where the resulting values deviated signi�cantly from326

the respective ones estimated using the MSD curve �tting. In future studies, it would be327

interesting to investigate whether this might be resolved after further discrimination of super-328

di�usive trajectory parts with α values between 1.1 and ∼1.7 and active transport parts,329

with α values ∼2 ±0.3, as the long tails in the JDD PDFs are neglected in the �ts.330

In summary, the experiments presented here are the �rst to quantitatively characterize331

the motion of functional organelles inside neurites of two di�erent geometries, and compare332

the e�ect of sucrose-induced swelling on lysosomal motion, inside each neurite con�gura-333

tion and for each of the three transport modes. We con�rm that the dimensionality of the334

neurites distinctly a�ects lysosome transport, with a positive correlation between 1D- neu-335

rite alignment, and higher di�usion coe�cient and drift velocity of the lysosomal motion336

modes. Additionally we show that disruption of homeostasis via sucrose accumulation and337

induced lysosomal swelling, has larger e�ect when the motion occurs inside randomly ori-338

ented neurites. Our �ndings imply that, in physiological conditions, alterations in the ECM339

organization, which could for instance cause more branching of neurons' axons, may enhance340

potential intracellular disrupted homeostasis, leading faster to pathological phenotypes. It341

would be interesting, in future research, to investigate the interplay between cell geometry342

and disease onset.343
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Materials and Methods344

Laminin µPIP345

The mold for the patterning mask was fabricated with a Nanoscribe Photonic professional346

GT 3D laser printer (Nanoscribe, Germany), with two-photon polymerization (2PP) of IP-S347

photoresist (Nanoscribe n.d.). Prior to �rst use and after each subsequent use, a layer of348

trichloro(1H,1H,2H,2H-per�uorooctyl)silane, (Sigma-Aldrich) was deposited on the silicon349

mold (silanization), to reduce stiction (Srinivasan et al. 1998).350

Poly dimethyl-siloxane (PDMS, Sylgard 184, Dow Corning, USA) was prepared by mixing351

the cross-linking agent with the elastomer base at a ratio of 1:10. The mixture was pipetted352

on the silicon mold and allowed to cross-link for 1 hour at 120oC. Subsequently, the hardened353

PDMS bearing the structure was peeled from the wafer.354

For Plasma-Initiated Patterning, the PDMS mask was placed on an ibidi dish (ibidi355

GMBH, µ-Dish, 35 mm high, polymer coverslip bottom), with the structure-bearing side356

adherent to the bottom of the dish and was exposed to air plasma for 6 min 20 sec at 100357

Watts (Diener Electronic Femto Plasma system).358

Subsequently, the PDMS mask was removed and the substrate was �ooded with 0.1%359

Pluronic F127 (Sigma-Aldrich) diluted in Phosphate Bu�er Saline (PBS) for 45 minutes360

at room temperature. The dish was then washed 3 times with PBS and once with RPMI361

(GibcoTM) and subsequently incubated with 25µg/ml Laminin (Sigma-Aldrich) diluted in362

RPMI, for 1 hour at 37oC. Prior to seeding cells, the substrate was washed 3 times with363

RPMI.364

Cell Culture365

PC12 cells (CH3 BioSystems) were cultured in dishes coated with rat-tail Collagen (CH3366

BioSystems). Their growth medium consisted of 85% RPMI-1640 with Glutamax (GibcoTM),367
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10% heat-inactivated Horse Serum (HS) (Sigma-Aldrich), 5% Fetal Calf Serum Heat Inacti-368

vated (FCS HI, Thermo Scienti�c) and 200µg/mL pennicilin/streptomycin (PS). Media were369

refreshed three times per week, and the cells were split once per week at ratio 1:3-1:6. The370

cells were kept at 37oC and 5% CO2 in humidi�ed atmosphere.371

To induce di�erentiation, PC12 cells were seeded in ibidi uncoated dishes (ibidi GMBH,372

µ-Dish, 35 mm high) coated with Laminin (Sigma-Aldrich). For whole surface Laminin373

coating, the dish was exposed to air plasma for 6 min 20 sec at 100Watts (Diener Electronic374

Femto Plasma system). Subsequently, the dish was incubated for 1 hour at 37oC and 5%375

CO2 with 25 µg/ml Laminin diluted in RPMI.376

Cells were seeded at a density of 30.000 cells/cm2 in full media and after they had adhered,377

they were washed once with PBS and then the media were replaced with di�erentiation378

media consisting of Opti-MEMTM Reduced Serum Medium (GibcoTM) supplemented with379

0.5% Fetal Bovine Serum (GibcoTM) and Nerve Growth Factor (NGF-2.5S Sigma-Aldrich)380

at �nal concentration of 100ng/ml. The di�erentiation media were refreshed three times per381

week.382

To induce swelling of lysosomes, 50mM sucrose (Sigma-Aldrich) was added in the di�er-383

entiation media 18 hours before imaging. At the end of the incubation, the cells were washed384

once with PBS and submerged again in normal culture or di�erentiation media.385

Prior to imaging, the cells were incubated with 50-150nM Lysotracker (InvitrogenTM) in386

RPMI for 30 minutes.387

Optical Microscopy388

Optical microscopy images were acquired with a Nikon Ti Eclipse inverted microscope389

(NIKON corporation, Japan) equipped with a Yokogawa CSU-X1 spinning disc unit (10,000rpm,390

Andor Technology Ltd., United Kingdom). The samples were imaged with a 100x objec-391

tive (Nikon CFI Plan Apo Lamda, NA 1.45). Excitation at 405nm, 488nm and 647nm was392
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achieved via an Agilent MLC400 monolithic laser combiner (Agilent Technologies, Nether-393

lands). The excitation light was �ltered by a custom-made Semrock quad-band dichroic394

mirror for excitation wavelengths 400-410, 486-491, 460-570, and 633-647nm. The emit-395

ted light was �ltered using a Semrock quad-band �uorescence �lter (TR-F440-521-607-700),396

which has speci�c transmission bands at 440±40nm, 521±21nm, 607±34nm and 700±45nm397

and by Semrock Brightline single band �uorescence �lters at 447±60nm (TR-F447-060) and398

525±60nm (TR-F525-030). Images were captured with an Andor iXon Ultra 897 High-speed399

EM-CCD camera. Image acquisition was automated using NisElements software (LIM, Czech400

Republic). Time-lapse images were acquired every 18 ms, for up to 30 seconds. During data401

acquisition, the cells were kept in a humidi�ed atmosphere at 37oC and supplied with 5%402

CO2 via the use of a Tokai Hit stage incubator.403

Data Analysis404

The Feret diameter of lysosomes was calculated using FIJI (Schindelin et al. 2012). The405

selection of lysosomes in untreated cells was performed using an area mask between 0.1µm2
406

and 1.5µm2. Lysosomes in cells that had been treated with sucrose were selected with a407

mask of area between 0.5µm2 and 5.0µm2. Threshold values were the same for all images408

and clustered lysosomes were discarded from the analysis.409

Trajectories of �uorescent lysosomes were tracked using the FIJI plugin, TrackMate (Tin-410

evez et al. 2017), which returned the x− and y−coordinates of the center of the lysosomes,411

with a sub-pixel localization. During the tracking we included all three populations of412

lysosomes: those that appeared to be con�ned, di�usive and motile, with bigger (motor-413

mediated) displacements.414

Further processing was performed using home-made Matlab algorithms. The x− and y−415

coordinates as a function of time for each trajectory were represented by a series of vectors416
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at each time point t:417

r(t) = x(t) + y(t) (3)

and the displacement ∆r at time t was calculated as follows:418

∆r(t) = r(t+ ∆t)− r(t) (4)

where ∆t is the inverse frame rate.419

The Mean Squared Displacement (MSD) for lag time τ = k∆t was calculated according420

to:421

MSD(τ) =
〈
∆r2(τ)

〉
=

1

N − k

N−k∑
i=1

(r(ti + τ)− r(ti))
2 (5)

where N the number of data points in the trajectory and k = 1, 2, ..., N − 1. The average422

MSD per condition is the average of the squared displacements of all lysosome trajectories423

for each lag time τ .424

The local Mean Squared Displacement (lMSD) was calculated for each trajectory as425

described previously (Arcizet et al. 2008). Brie�y, the MSD was calculated for each data426

point of the entire trajectory using a rolling window of 2.22 seconds (N=120, in eq. 5) and427

�tted for the interval 0-555ms (k=30 in eq. 5) with a power law:428

MSD(τ) = Aτα (6)

Tha alpha exponent as a function of time was subsequently used to partition the transport429

states as sub-di�usive for α < 0.9, di�usive for 0.9 ≤ α ≤ 1.1, or super-di�usive for α > 1.1.430

In order to characterize more closely each type of motion, we analyzed collectively the431

respective trajectory parts, for each experimental condition (cells in media without (control)432

or with sucrose and in neurites that were aligned or randomly oriented).433

The average MSD curve for each motion mode was calculated again according to eq. 5.434
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The sub-di�usive trajectory modes MSD was �tted with the power law describing anomalous435

di�usion436

MSD(τ) = Aτα + 2dσ2 (7)

thereby obtaining the value of the anomalous α exponent (A is a constant). The MSD curve437

was �tted for all lag times (up to 30 sec).438

The di�usive trajectory modes MSD was �tted using the equation describing Brownian439

motion440

MSD(τ) = 2dDτ + 2dσ2 (8)

thus extracting the experimental value of the di�usion coe�cient D. The MSD curve was441

�tted for lag times 1 to 10 (18.5-185 ms).442

The super-di�usive trajectory modes MSD was �tted using the model of Brownian motion443

with drift (Briane, Vimond, and Kervrann 2019).444

MSD(τ) = 2dDeffτ + V 2
driftτ

2 + 2dσ2 (9)

where Vdrift, the constant drift parameter models the velocity of the molecular motors. The445

MSD curve was �tted for lag times 1 to 55 (0.0185-1 sec).446

In equations 7, 8 and 9 σ is the localization precision, τ the lag time and the parameter447

d refers to the dimensionality. d was set equal to 1 for the �t of the MSD along the x- or y-448

axis, and equal to 2 for the �t of the 2D- MSD curve.449

The Jump Distance Distribution (JDD) was calculated according to the self-part of the450

van Hove correlation function (Van Hove 1954):451

Gs(∆r, τ) =
1

k

k∑
i=1

〈δ (∆r− r(ti + τ) + r(ti))〉 (10)

for displacements in both the x− and y− direction, and a speci�c lag time τ . δ here denotes452
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the Dirac delta function in two dimensions and k = 1, 2, ..., N − 1, with N the number of453

data points in the trajectory. The bin size was (arbitrarily) set to 1µm and the JDD was454

normalized into a probability density function.455

The di�usive and super-di�usive trajectory parts for each experimental condition were456

used to calculate the respective JDD PDF, for lag times of 0.2405 ms and 0.7585 ms re-457

spectively. The PDFs were �tted to extract characteristic values of the motion, using the458

analytical expressions calculated in (Menssen and Mani 2019). Particularly, the di�usive459

trajectory modes JDD PDF was �tted for the x- direction, using460

JDDPDF =
1√
πDτ

exp

(
−x2

4Dτ

)
(11)

thereby estimating the experimental value of the di�usion coe�cient D. Similarly, for the461

y-direction. The super-di�usive trajectory modes JDD PDF was �tted for the x- direction,462

using463

JDDPDF =
1√

4πDeffτ
exp

(−x2 + V 2
driftτ

2

4Deffτ

)(
exp

(
Vdriftx

2Deff

)
+ exp

(
−Vdriftx
2Deff

))
(12)

estimating the experimental value of the drift velocity Vdrift and e�ective di�usion coe�cient464

Deff . Likewise for the y-direction.465
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Supplementary Information466

Motion mode Sub-di�usive Di�usive Super-di�usive

α exponent D (µm2/sec) Vdrift (µm/sec) Deff (µm
2/sec)

Control 1D 0.92± 0.01 0.0065± 0.0013 0.538± 0.008 5E − 8± 0.002

Control 2D 0.90± 0.03 0.0047± 0.0015 0.460± 0.010 0.005± 0.002

Sucrose 1D 0.66± 0.03 0.0054± 0.0007 0.397± 0.004 0.004± 0.001

Sucrose 2D 0.77± 0.03 0.0029± 0.0003 0.343± 0.006 0.002± 0.001

σ (µm) σ (µm) σ (µm)

Control 1D 0.030± 0.003 0.022± 0.012 0.022± 0.022

Control 2D 0.025± 0.003 0.020± 0.012 0.016± 0.028

Sucrose 1D 0.018± 0.004 0.013± 0.009 0.015± 0.014

Sucrose 2D 0.016± 0.004 0.012± 0.005 0.011± 0.015

Table S.1: Motion parameters resulting from �tting the sub-di�usive, di�usive and super-

di�usive trajectory parts MSD curves (demonstrated in Fig. 5), using eq. 7, 8, and 9,

respectively.

Motion mode Di�usive Super-di�usive

D (µm2/sec) σ (µm) Vdrift (µm/sec) Deff (µm2/sec) σ (µm)
X- MSD

Control 1D 0.0112± 0.0025 0.016± 0.011 0.525± 0.002 2E − 9± 1E − 9 0.012± 0.017
Control 2D 0.0051± 0.0015 0.013± 0.009 0.351± 0.006 0.004± 0.002 0.014± 0.015
Sucrose 1D 0.0091± 0.0015 0.009± 0.009 0.393± 0.004 0.006± 0.001 0.013± 0.013
Sucrose 2D 0.0034± 0.0004 0.009± 0.004 0.283± 0.002 0.001± 0.001 0.011± 0.009

Y- MSD

Control 1D 0.0018± 0.0004 0.015± 0.004 0.103± 0.003 0.002± 0.0003 0.014± 0.005
Control 2D 0.0042± 0.0014 0.014± 0.008 0.298± 0.009 0.007± 0.003 0.007± 0.018
Sucrose 1D 0.0017± 0.0002 0.010± 0.003 0.057± 0.005 0.002± 0.0003 0.010± 0.006
Sucrose 2D 0.0024± 0.0002 0.008± 0.003 0.195± 0.007 0.003± 0.001 0.0001± 0.013

Table S.2: Motion parameters resulting from �tting the di�usive and super-di�usive tra-
jectory parts x- and y- MSD curves (demonstrated in Fig. 6), using eq. 8 and 9.
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Motion mode Di�usive Super-di�usive

D (µm2/sec) Vdrift (µm/sec) Deff (µm
2/sec)

X - JDD

Control 1D 0.0112± 0.0016 0.388± 0.060 0.019± 0.009
Control 2D 0.0054± 0.0006 0.205± 0.024 0.005± 0.002
Sucrose 1D 0.0060± 0.0007 0.243± 0.055 0.010± 0.007
Sucrose 2D 0.0033± 0.0003 0.158± 0.026 0.005± 0.002
Y - JDD

Control 1D 0.0026± 0.0003 0.001± 17931 0.004± 12.785
Control 2D 0.0042± 0.0009 0.007± 5425 0.032± 30.580
Sucrose 1D 0.0016± 0.0007 0.001± 3958 0.002± 3.556
Sucrose 2D 0.0021± 0.0002 0.001± 79828 0.012± 78.405

Table S.3: Motion parameters resulting from �tting the di�usive and super-di�usive tra-
jectory parts x- and y- JDD PDFs (demonstrated in Fig. 7), using eq. 11 and 12.

# Cells # Trajectories # Data Points

Control 1D 19 167 188542

Control 2D 16 178 230196

Sucrose 1D 7 128 188494

Sucrose 2D 9 160 241500

Table S.4: Data Statistics. Number of cells imaged, number of total lysosomal trajectories

tracked and number of total data points per experimental condition (di�erentiated PC12 cells

in media without (control) and with sucrose, with their neurites aligned (1D) or randomly

oriented (2D)).
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Sub-di�usive Di�usive Super-di�usive

# Modes # Data Points # Modes # Data Points # Modes # Data Points

Control 1D 352 154732 334 5484 135 8254
Control 2D 307 196326 257 4504 117 8029
Sucrose 1D 365 154513 426 7110 185 10941
Sucrose 2D 600 187570 777 14336 323 20111

Table S.5: Data Statistics of trajectories modes. Number of trajectory modes and
number of total data points falling for each transport category (sub-di�usive, di�usive and
super-di�usive), as determined with lMSD analysis.
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