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Abstract 
Engineered microbes can produce valuable chemicals, however production strains often require 
extensive optimization before they can be used at industrial scales. To quantify production, 
metabolic engineers typically employ mass spectrometry, which offers excellent chemical 
specificity. However, with this approach samples are derived from bulk cultures, obscuring 
potential cell-to-cell differences in production, and precluding selection methods that rely on 
measurements of a single cell’s phenotype, such as directed evolution. Here, we use stimulated 
Raman scattering (SRS) based chemical imaging to directly visualize free fatty acids in 
metabolically engineered Escherichia coli. We uncover substantial heterogeneity in fatty acid 
production among and within colonies. We then demonstrate longitudinal SRS imaging, allowing 
fatty acids to be linked with the cells that generated them. Further, using the hyperspectral images, 
we develop an approach for compositional analysis that determines the chain length and 
unsaturation of the fatty acids in living cells. Our results demonstrate that cell-to-cell heterogeneity 
in production of metabolic targets can be substantial and indicate that controlling this to eliminate 
low producers represents a critical area for future optimization. Further, because SRS imaging is 
rapid, chemically specific, and can be acquired longitudinally, it is a promising method for 
metabolic engineers, allowing for direct imaging of biosynthesis at the single-cell level. 
 
 
Introduction 
Microbial production of chemicals has the potential to provide a sustainable source of products 
ranging from fuels to specialty materials1–4. A major difficulty holding back the replacement of 
industrial chemicals with bio-based alternatives is that bioproduction often falls short in terms of 
conversion metrics that dictate economic feasibility, such as titer, rate, and yield. Over the past 
two decades, researchers have made great strides in identifying metabolic pathways capable of 
producing a diverse array of useful chemicals5. However, the reality is that extensive engineering 
and optimization are required for any given chemical to compete as an alternative to those sourced 
from petroleum. 
 
Fatty acid synthesis is an attractive pathway for metabolic engineering because it offers a 
biological means to synthesize linear hydrocarbons. Fatty acids and their derivatives are high 
demand chemicals that can be used as fuels, commodities, and specialty chemicals. Numerous 
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studies have aimed at increasing the efficiency of fatty acid synthesis pathways as well as 
controlling the species of fatty acid produced6–9. In particular, type II fatty acid synthesis in E. coli 
is a flexible pathway that creates hydrocarbons of variable length and unsaturation. Termination 
enzymes that interface with this pathway can be used to produce a wide variety of high-value fatty 
acid derivatives such as alkanes, olefins, and alcohols10.   
 
Producing chemicals in cells offers many advantages, but presents unique industrial challenges. 
For example, cell-to-cell variation and genetic mutations can result in production heterogeneity 
during fermentation that limits overall process efficiency. Single-cell variation can stem from a 
variety of causes, such as stochasticity in the underlying biological processes11,12, variations in 
media environments within cultures13, or selection pressures against high producing cells causing 
mutational escape variants14,15. However, the frequency and impact of production variation are 
largely unknown because studying heterogeneity in chemical production strains is technically 
difficult. Methods that enable quantification are a prerequisite to understanding the root cause and 
implementing designs that mitigate its effect on overall efficiency. 
 
Current methods to measure production strain performance include mass spectrometry, biosensor-
based fluorescent systems, and dyes. Gas or liquid chromatography-mass spectrometery (GC-
MS/LC-MS) are the current gold standard for quantification because they provide excellent 
chemical specificity and sensitivity. However, most mass spectrometry-based techniques are 
limited in their ability to quantify single cells, which means they can overlook valuable information 
that is key to predicting population stability during scale-up16–18. Single-cell production 
information obtained at the strain development stage could help to determine the potential for 
successful scale-up of a given strain. For free fatty acids specifically, derivatization to esters is 
necessary for GC-MS quantification, which adds a laborious step when screening strains19. In 
addition, this process separates the product from the cells through an organic phase extraction, 
which rules out directed evolution-based approaches that connect a desired phenotype, such as 
high production, to genotype contained within a cell.  
 
Biosensor-based fluorescent assays, in contrast, are amenable to high throughput screens and are 
non-destructive20. However, well-characterized biosensors are scarce in comparison to the number 
of chemicals metabolic engineers can produce and they only provide an indirect measurement of 
production. Additionally, significant optimization is often necessary to fine tune the concentration 
responsive range of a biosensor21–23. In the case of fatty acid production, lipophilic dyes such as 
Nile red have been used in strain engineering studies24, however, these stains lack lipid specificity, 
are indirect measurements of production, and do not account for product exported from cells. 
 
Given the drawbacks of current screening methods, we sought to develop an alternative approach 
that captures single-cell production information to better understand heterogeneity, while being 
amenable to high-throughput assays to compliment metabolic engineering workflows. Stimulated 
Raman scattering (SRS) offers the unique ability to directly capture chemical information from 
single living cells in a linear concentration-dependent manner. SRS is a high-speed vibrational 
spectroscopic imaging method that can directly detect chemical compounds based on intrinsic 
molecular vibrations25,26. With SRS, a Raman signal can be gathered in microseconds and provides 
molecular fingerprints for each biomolecular component, making it possible to perform label-free 
chemical imaging of several chemicals in near real-time. The speed and small sample sizes for 
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SRS imaging offer additional potential benefits that could be exploited, as there is an increasing 
need to scale down experiments to manage throughput with large libraries of variants27,28.  
 
Here, we use SRS microscopy to study metabolically engineered strains, imaging free fatty acid 
production in E. coli in the carbon-hydrogen (C-H) spectral window. First, we demonstrate that 
we can clearly distinguish fatty acid production strains from wild type E. coli by deconstructing 
hyperspectral images into maps of their chemical components. With the ability to measure 
production at the single-cell level, we examine heterogeneity in fatty acid production strains and 
uncover both colony-level heterogeneity and substantial cell-to-cell differences in production. 
Next, we optimize imaging parameters to achieve longitudinal SRS imaging to capture fatty acid 
production over time in growing cells, demonstrating differences in production within the same 
strain. Lastly, we develop a hyperspectral analysis technique that generates chain length and 
unsaturation level predictions, allowing for chemical readouts that are analogous to GC-MS. 
Together with synthetic biology methods, our system has the potential to answer fundamental 
questions relating to the production of biosynthetic targets at the single-cell level. Further, because 
the imaging approach is rapid and does not require engineered biosensors, it has the potential to 
serve as a widely useful platform to boost the pace of strain engineering for a broad range of 
metabolites.  
 
 
Results 
 
Spectroscopic SRS imaging of fatty acid production strains 
Spectral signals from Raman scattering correspond to vibrational energies of covalent bonds. This 
allows for direct imaging of chemicals without the need for labels such as fluorescent reporters or 
dyes. Here, we deploy spectroscopic SRS29–31 to obtain chemical maps of protein and fatty acids. 
To achieve this, we chirp two broadband femtosecond laser beams (pump and Stokes) using high-
dispersion glass rods, producing linear temporal separation of the frequency components (Fig. 1a, 
Fig. S1). The beating frequency of the two beams is linearly correlated with the temporal delay 
between the two laser pulses. Using a two-dimensional galvo scanner, the combined laser beam is 
moved across the x and y dimensions of the sample to generate an image. This process is then 
repeated for a range of temporal delays, each of which produces a different wavenumber, 
ultimately producing a hyperspectral SRS image generated in a frame-by-frame manner. The 
spectral region surrounding the 2900 cm-1 wavenumber is typically referred to as the ‘C-H region’ 
and has a strong SRS signal. Biomolecules such as proteins and fatty acids, which contain many 
C-H bonds, show high Raman signal in this region. The strong signal in the C-H region enables 
high fidelity SRS imaging with low optical powers that are compatible with live-cell imaging. 
Thus, this configuration can be used to acquire longitudinal images of live cells, resulting in data 
across four dimensions: space (x and y), wavenumber, and time. We set out to utilize SRS chemical 
imaging in the C-H region to measure fatty acid production in metabolically engineered strains of 
E. coli. 
 
Previous metabolic engineering efforts have focused on producing free fatty acids in E. coli using 
the native type II fatty acid synthesis pathway9,21,32. Introducing a heterologously expressed acyl-
acyl coat protein (ACP) thioesterase can catalyze the formation and pooling of free fatty acids 
from elongating acyl hydrocarbon chains that would otherwise be incorporated into membrane 
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phospholipids33,34 (Fig. 1b). We reasoned that SRS imaging could effectively capture fatty acid in 
production strains due to the C-H-rich carbon chains present in fatty acids. To test this hypothesis, 
we studied several production strains that were previously engineered to produce high quantities 
of free fatty acids (Tables 1 and 2). We first focused on the strain AbTE*, which expresses an acyl-
ACP thioesterase from Acinetobacter baylyi, carrying G17R/A165R mutations that improve 
enzymatic activity in E. coli 35. SRS images of AbTE* show increased fatty acid production relative 
to the wild type strain, as evidenced by differences in both the chemical spectra and visible fatty 
acid droplets around the cells (Fig. 1c). Using spectral standards, SRS images can be decomposed 
into their major chemical components to produce chemical maps (Fig. 1d). We used standard 
spectra from pure protein (Bovine serum albumin, BSA), saturated fatty acids (C10:0 and C16:0), 
and unsaturated fatty acids (C16:1) to decompose the hyperspectral image (Fig. S2). To achieve 
this, we used a least absolute shrinkage and selection operator (LASSO) linear unmixing analysis 
to separate the hyperspectral image into its chemical components (Methods). This results in two 
dimensional chemical maps for protein and fatty acid components. Protein levels were comparable 
between wild type and AbTE* strains, with slightly elevated levels in the engineered strain. In 
contrast, the fatty acid signal in the AbTE* strain was significantly stronger than in wild type. Wild 
type cells contain membrane phospholipids, however these signals are much weaker than those 
recorded in the AbTE* strain (Fig. S3).  
 
Quantification of heterogeneity in fatty acid production strains 
One of the enabling features of chemical imaging applied to metabolic engineering is the ability 
to understand production at the single-cell level. Previous studies have reported sub-populations 
within production cultures that are less productive and lead to decreased overall performance of 
the population in a scaled up bioprocess24,36. Single-cell chemical imaging with SRS is uniquely 
suited to quantifying this phenomenon. However, highly productive strains will secrete end-
products, making it difficult to track the source of produced chemicals back to the cells that 
generated them. Therefore, sampling from liquid culture for imaging does not accurately provide 
production heterogeneity information. To ensure that free fatty acid production is tracked to the 
cells responsible for production, we first grew cells on agarose pads such that production could be 
localized to the region containing the cells. 
 
We first quantified fatty acid production from E. coli microcolonies of the wild type and ‘TesA-
FV50 production strain (Fig. 2a). The ‘TesA-FV50 strain expresses a leaderless native thioesterase 
(‘TesA) when induced with isopropylthio-β-galactoside (IPTG; Table 1)37. Endogenously, TesA 
contains a leader sequence that localizes the enzyme to the periplasm; deleting the leader peptide 
sequence allows for interaction with cytosolic acyl-ACPs, enabling the production of free fatty 
acids33 (Fig. S4). Additionally, this strain expresses heterologous fadR and vhb50, which have been 
shown to increase free fatty acid production7,37. FadR is a transcription factor that regulates many 
genes in the fatty acid synthesis pathway for increased free fatty acid titer when expressed 
alongside ‘TesA. Vhb50 is a Vitreoscilla hemoglobin that further increases fatty acid production 
by increasing oxygen uptake. 
 
Interestingly, ‘TesA-FV50 microcolonies exhibit a high level of colony-to-colony production 
variation. This intercolony heterogeneity is visible in the fatty acid chemical maps, with strains 
from the same original source exhibiting high and low producing microcolonies. One possible 
explanation for these differences in production is variable transcriptional regulation of key 
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enzymes that are maintained through replication, leading to metabolic bottlenecks12,38. 
Alternatively, the ability to manage toxicity associated with production in the time frame following 
thioesterase induction may lead to divergent production outcomes39.  
 
We also examined production heterogeneity in another fatty acid production strain, AbTE*-FV50. 
Similar to ‘TesA-FV50, this strain includes expression of fadR and vhb50 to boost production, 
however the ‘TesA thioesterase is replaced with AbTE*. Strikingly, we observed a very different 
type of production variation in AbTE*-FV50 (Fig. 2b). Unlike the intercolony heterogeneity in 
‘TesA-FV50, the AbTE*-FV50 strain has high heterogeneity between cells in a single 
microcolony. We used the protein channel to segment the image into single cells for analysis (Fig. 
S5) and quantified single-cell production (Fig. 2c). Our quantification indicates that in this strain 
a small percentage of cells produce the vast majority of fatty acids. This result is consistent across 
many fields of view within the microscopy images, suggesting that it is a general feature of this 
production strain (Fig. S6). It is possible that toxicity related to heterologous thioesterase 
expression may contribute to the unique production heterogeneity profile. Stochastic gene 
expression or improper thioesterase protein folding could also play a role in generating the cell-
to-cell differences. 
 
Longitudinal SRS imaging for production dynamics 
Understanding the dynamics of chemical production with single-cell resolution can provide key 
insights into the emergence of heterogeneity, production bottlenecks, and can guide engineering 
strategies to maximize metabolic flux. To that end, we sought to adapt the SRS system for 
longitudinal imaging. While SRS imaging of living cells has been extensively reported40–42, its 
application to chemical production over multiple generations of growth has not been demonstrated. 
We installed an incubator on the microscope stage and grew live cells on agarose pads for at least 
16 hours at 31°C. First, we tested whether the routine laser powers we used for endpoint SRS 
imaging were damaging to live cells (75 mW for 1040 nm Stokes and 15 mW for 800 nm pump at 
the sample). At the beginning of longitudinal imaging, we captured a bright field transmission 
image and measured a hyperspectral SRS image in one field of view (Fig. S7 a-b). After 16 hours 
of incubation, cells that were previously exposed to SRS imaging did not duplicate, nor did they 
produce significant levels of fatty acids (Fig. S7 c-d). In contrast, cells in a region in the immediate 
vicinity that had not been exposed to imaging grew into a dense microcolony and produced fatty 
acid droplets. Although the laser exposure did not induce visible cell damage, the photodamage 
altered normal cell functions, indicating that these laser powers were too high. 
 
To optimize the imaging conditions to reduce phototoxicity, we performed the same live-cell 
experiment with lower laser powers. We obtained normal cell growth when we reduced the Stokes 
power from 75 to 25 mW, while the pump laser at 800 nm was kept as 15 mW (Fig. S8). To 
illustrate growth and fatty acid production, we measured transmission and SRS images for the 
same field of view after 3 and 5 hours of incubation, seeing clear evidence of replication even after 
SRS imaging (Fig. S8). We took a final wide-field image at 6 hours, which showed that cells 
continued to replicate normally and suggested that these laser power parameters permit growth 
and are applicable to longitudinal imaging.  
 
With these optimized imaging conditions, we first tracked fatty acid production within the strain 
‘TesA-FV50. In line with heterogeneity patterns seen in this strain, the production trajectories of 
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different microcolonies were significantly different (Fig. 3a-b). In one example, fatty acid signals 
increased significantly in cells by ~12 hours after thioesterase induction (Fig. 3a). After the 
microcolony reached a high cell density on the agarose pad, we observed significant accumulation 
of fatty acids. In contrast, a second microcolony of the same strain produced only low levels of 
fatty acid (Fig. 3b). For comparison, we also tracked the growth and fatty acid production of wild 
type cells under the same condition (Fig. 3c). Time-lapse wide-field transmission images for the 
wild type strain show that cells under SRS laser exposure grew well during the entire experiment 
period (Movie S1). We quantified fatty acid and protein levels of each microcolony. Protein levels 
in each strain increased at comparable rates (Fig. 3d). Fatty acid levels in the wild type colony 
increased modestly while the high-producing ‘TesA-FV50 microcolony fatty acid levels increased 
dramatically (Fig. 3e). The low-producing ‘TesA-FV50 microcolony produced fatty acids at levels 
comparable to wild type.  
 
The activity in the high-producing ‘TesA-FV50 microcolony is in line with known regulation 
patterns in E. coli fatty acid synthesis. When high cell density is reached in wild type E. coli, the 
pathway is inhibited by a buildup of acyl-ACPs. This mechanism is reported to act through direct 
inhibitory interactions with key enzymes within the pathway, such as acetyl-CoA carboxylase, 
FabH, and FabI 43,44. Additionally, acyl-ACP or acyl-CoA responsive transcription factors, FadR 
and FabR, respectively, act to regulate transcriptional responses that control fatty acid 
synthesis45,46. In the presence of a cytosolic thioesterase, as in the ‘TesA-FV50 strain, this 
inhibition is released through the conversion of accumulated acyl-ACPs to free fatty acids. 
However, thioesterase expression is induced starting at t = 0 hr, and significant accumulation of 
fatty acid does not happen until the microcolony is well established. Even with the ‘TesA 
thioesterase highly expressed, phospholipid metabolism may dominate metabolic flux through the 
fatty acid synthesis pathway until sufficient density is reached to suppress incorporation of acyl-
ACPs into phospholipids. A recent study from Noga et al. uncovered a post-translational 
mechanism that modulates phospholipid biosynthesis through PlsB acyltransferase and ppGpp, 
which may explain the delay in free fatty acid accumulation47.  
 
Additionally, we measured the dynamics of the AbTE*-FV50 fatty acid production strain, which 
produces a variety of medium- and long-chain fatty acids (Fig. S4), with significant heterogeneity 
in production among cells (Fig. 2b-c). We again observed fatty acids production over time, with 
similar delays in fatty acid accumulation despite thioesterase induction at t = 0 hr (Fig. S9). In this 
strain, a few cells within the microcolony produce large amounts of fatty acid. The production 
dynamics for these few cells are similar to fatty acid production within the ‘TesA-FV50 strain, but 
the remainder of cells remain at low levels of production for the duration of imaging. 
 
Prediction of enzymatic specificity, chain length distribution, and degree of unsaturation 
SRS imaging uncovers unique information that would otherwise be lost by bulk culture 
quantification techniques such GC-MS. However, GC-MS offers precise chemical specificity 
information. For fatty acid quantification, gas chromatography effectively separates fatty acid 
esters based on chain length and, along with mass/charge spectra, can specifically read out fatty 
acid ester chain length and unsaturated bonds. From a metabolic engineering perspective, 
quantification of a fatty acid production strain’s chain length distribution and level of unsaturation 
are critical. For biofuel purposes, chain length and termination chemistry can be tuned to mimic 
characteristics of fuel sources such as gasoline, diesel, or jet fuel48. Alternatively, medium chain 
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fatty acids (C8-C12) and their derivatives can be sources of many specialty chemicals49. With these 
end point applications in mind, we sought to extend SRS imaging capabilities to capture the 
specific profiles of free fatty acid production strains. 
 
Although pure fatty acids of different chain lengths have different spectra in the C-H region, they 
are too similar to accurately decompose using spectral unmixing with LASSO linear regression 
analysis. However, we expanded our analysis methodology to take advantage of spectral windows 
that correspond to CH2 or CH3 bonds, which are present in the 2832-2888 cm-1 and 2909-2967 cm-

1 wavenumber regions, respectively50. Since a saturated fatty acid has an increasing number of 
CH2 bonds as the chain length increases, but the terminal CH3 bond number is constant, we 
reasoned that the ratio of the CH2/CH3 spectral windows would scale with chain length (Fig. 4a). 
Using pure saturated fatty acid standards of variable chain length, we observed a nearly linear 
relationship between chain length and the ratio of CH2/CH3 area under the curve (Fig. 4b). We 
next tested whether we could use this relationship to estimate chain length production profiles. 
 
In E. coli, fatty acid biosynthesis is carried out through a multistep, enzymatic Claisen reduction51. 
The enzymatic components of type II fatty acid synthesis in E. coli are encoded as separate 
proteins, creating a pathway in which two carbons are added to an elongating acyl-ACP chain with 
each cycle (Fig. 4c). The number of cycles around this pathway before the elongating acyl chain 
is cleaved by an acyl-ACP thioesterase determines the resulting fatty acid chain length. The 
primary factor driving chain length is the enzymatic specificity of the heterologously expressed 
thioesterase 6,52. Researchers have carried out numerous efforts to engineer specificity of acyl-ACP 
thioesterases in order to create desired chain length profiles9,35,53–55. Several thioesterases have 
been shown previously to produce a range of free fatty acid chain length profiles. Three examples 
are CpFatB1*, AbTE*, and ‘TesA. The CpFatB1* and AbTE* thioesterases originate from Cuphea 
palustris and A. baylyi, respectively, and the “ * ” denotes mutants that were engineered to increase 
activity in E. coli35,56. ‘TesA is E. coli’s native thioesterase, where the “ ‘ ” denotes deletion of the 
leader sequence33. 
 
To test our ability to estimate chain length distributions using imaging, we examined strains 
CpFatB1*, AbTE*-FV50, and ‘TesA-FV50, which each express a different thioesterase (Table 2). 
We conducted an experiment in which each of the three strains were grown in liquid culture and 
thioesterase expression was induced for 24 hours to produce free fatty acids. Samples from each 
production culture were taken in parallel for GC-MS quantification and SRS hyperspectral 
imaging. Since these experiments focus on endpoint analysis, we returned to the routine laser 
powers to increase the spectral resolution of our measurements (75 mW for 1040 nm Stokes, 15 
mW for 800 nm pump). As expected, GC-MS results show highly variable chain length 
distributions depending on the thioesterase expressed (Fig. 4d). CpFatB1* primarily produces 
octanoic acid (C8:0). AbTE*-FV50 produces a mix of medium- and long-chain saturated fatty 
acids with myristic acid (C14:0) as the largest component. Lastly, ‘TesA-FV50 produces long-
chain fatty acids with large contributions from both myristic (C14:0) and palmitic acid (C16:0). 
Since each production strain has a unique chain length profile, they serve as an ideal group of 
strains to test our ability to predict chain length distributions with SRS imaging. 
 
To implement chain length prediction, we first decomposed the spectra at each pixel into protein 
and representative fatty acid chemical maps (C10:0, C16:0, C16:1). The protein and unsaturated 
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fatty acid maps were then subtracted from the raw SRS image to produce a hyperspectral SRS 
image of saturated fatty acids (Fig. S10), which can be used to estimate the average chain length 
at each pixel. We introduced a concentration weighting factor using the SRS spectral ensemble 
intensity at the same pixel. The SRS predicted chain length distributions closely matches the 
qualitative features of the GC-MS distributions (Fig. 4d). Importantly, the prediction captures 
whether the strain produces primarily medium- or long-chain fatty acids, or a mixture of both. 
 
To gauge unsaturation levels, we utilized the presence of the Raman peak at ~3000 cm-1, which is 
unique to the C=CH2 bonds in unsaturated fatty acids (Fig. 4e). This peak serves as an identifier 
of unsaturation level and components from this fatty acid source can be unmixed with LASSO 
regression. To demonstrate our ability to predict unsaturation level from production strains, we 
tested the same three strains, which have different ratios of unsaturation to saturation (Fig. S4). 
The ratio of unsaturation from GC-MS data scales linearly with predicted unsaturated ratios from 
SRS images (Fig. 4f), giving an indication of the ability of this approach to predict the ratio of 
unsaturation. With the ability to calculate unsaturation level in addition to chain length 
distributions from SRS images, we cover many aspects of free fatty acid production that are 
important for metabolic engineers, bringing SRS hyperspectral imaging closer to a form of optical 
mass spectrometery. 
 
Discussion 
Chemical imaging can play a key role in the strain engineering process. Current quantification 
techniques rely either on methods like GC-MS, which are chemically-specific but where 
information about individual cells and their dynamics are lost, or on fluorescence reporters or dyes, 
which are indirect readouts and can be difficult to engineer or limited in their specificity. SRS 
imaging has the potential to dramatically improve this process by providing key insights into 
chemical production at the single-cell level. Thus, methods that were previously only accessible 
with single-cell readouts, such as directed evolution or cell-sorting approaches are in principle 
possible with SRS imaging. The landscape for strain engineering is expanding rapidly, with 
systems biology approaches to enzyme engineering and novel technologies for quantifying 
production offer great promise for improving designs. In this study we focus on fatty acid 
synthesis, which is an important pathway that can be engineered to produce a diversity of valuable 
chemicals. Development of this pathway towards near theoretical yields will be important to 
replace many industrial chemicals with sustainable bio-based alternatives5. 
 
Here, we examined several free fatty acid production strains of E. coli using SRS and demonstrated 
that hyperspectral imaging allows for image decomposition into major chemical components, with 
the ability to distinguish cells from their chemical product. Visualizing chemical production at the 
single-cell level reveals important information that would otherwise be obscured by bulk culture 
quantification methods. We demonstrate this by examining production heterogeneity among 
different engineered strains, observing both intra- and inter-colony differences in production 
within microcolonies. These results provoke fundamental questions about the mechanisms leading 
to cellular heterogeneity, and also suggest that engineering strategies that eliminate low-producers 
could improve yields. For example, it may be possible to gradually enhance the overall production 
levels of a strain of engineered E. coli through multiple cycles of growth and dilution, with a step 
that removes low-producers at the end of each cycle. 
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Furthermore, we established parameters that allow us to extend SRS imaging for longitudinal 
studies in live cells. Unlike previous phototoxicity studies focusing on acute responses like 
membrane blebbing57,58, we directly observe long-term cell functions including cell replication and 
free fatty acid synthesis. We envision production tracking at the single-cell level will be valuable 
for metabolic engineering studies. The tradeoff between growth and chemical production could 
also be examined with unprecedented detail using this approach. Likewise, recent approaches to 
increase bioproduction involving dynamic regulation, either through transcriptional feedback 
circuits or optogenetic regulation, show promise to increase strain efficiency59,60. Imaging single-
cell production dynamics in these strains could increase our understanding of how feedback 
systems can be used in the context of metabolic engineering.  
 
By incorporating additional analysis, we also introduce an approach that can estimate chain length 
distribution and unsaturation degree, increasing the amount of information that can be extracted 
from SRS hyperspectral images. These advances enable a metabolic engineer to examine fatty acid 
production strains using SRS imaging while maintaining important chemical specificity data. The 
ability to gauge enzyme specificity through imaging opens up the possibility of screening mutant 
enzyme libraries in a high throughput fashion to select for optimal free fatty acid profiles. These 
methodologies, both experimental and analytical, lay the groundwork for future SRS-guided 
metabolic engineering efforts. 
 
Understanding the connection between production at the single-cell level and bulk culture output 
will be required to use SRS imaging as a means of screening strains for their overall production. 
Imaging fields of view sampled from bulk culture can lead to biased overall titer prediction, 
especially if the product is not soluble in water. Additionally, SRS has sensitivity limits 
significantly61 higher than mass spectrometry and thus requires a product to be produced at 
sufficient quantities before SRS can be used to guide further engineering. Given this limitation, 
we envision that SRS studies will be most useful for strain optimization rather than enzyme or 
pathway discovery. 
 
SRS imaging in different spectral regions, such as the fingerprint region (400-1800 cm-1), can be 
adapted to study strains producing non-fatty acid derived chemicals of interest, such as terpenes, 
to expand the scope of SRS imaging in metabolic engineering62. In addition, because the approach 
is label-free it does not require biosensors with fluorescent reporter readouts, making it amenable 
to quantification of production in organisms that are recalcitrant to genetic modification. 
Moreover, instrumentation advancements can enable SRS guided single-cell screening, such as 
SRS-based cell sorting, which has been demonstrated recently for cell phenotyping63. Much like 
the utility of fluorescence activated cell sorting in synthetic biology applications, we envision that 
SRS-based cell sorting can increase the throughput of strain screening and enable directed 
evolution based on chemical production. This work acts as a jumping off point for SRS imaging 
in metabolic engineering to aid in the development of more efficient strains for renewable chemical 
production. 
 
 
Methods 
 
Bacterial strains and plasmids 
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Plasmid and strain information are listed in Tables 1 and 2. The pBbA5c-‘tesA-vhb50-8fadR 
plasmid was a gift from Dr. Fuzhong Zhang. The BW25113 ΔfadE strain is from the Keio 
collection64, and we used the FLP recombination protocol from Datsenko and Wanner to cure the 
kanR cassette from the genome65. We used golden gate cloning66 to create the pBbA5c-vhb50-
8fadR plasmid by deleting the coding sequence of ‘tesA from pBbA5c-‘tesA-vhb50-8fadR. The 
pBbA5c-CpFatB1.2-M4-287 plasmid was also constructed using golden gate cloning, with the 
pBbA5c backbone amplified from the BglBrick plasmid library67 and the coding sequence of 
CpFatB1.2-M4-287 derived from Hernández Lozada et al.56 and synthetized by Twist Biosciences 
(South San Francisco, CA). pSS200 was a gift from Dr. Pamela Peralta-Yahya. 
 
Growth and induction of fatty acid production strains 
For fatty acid production experiments, pre-cultures were grown overnight in LB media and used 
to inoculate 3 mL M9 minimal media (M9 salts, 2mM MgSO4, 100 µM CaCl2) with 2% glucose 
and grown at 37°C with 200 rpm shaking. Antibiotics were added to the media where necessary 
for plasmid maintenance according to resistances in Table 1 (100 µg/ml for carbenicillin and 25 
µg/ml for chloramphenicol). The cultures were allowed to grow until approximately OD600 = 0.6 
before thioesterase expression was induced with IPTG. Induction levels were 500 µM for ‘TesA-
FV50 and 50 µM for AbTE*, AbTE*-FV50, and CpFatB1*. For imaging from liquid cultures, cells 
were grown for 24 hours after IPTG induction and then 3 µL of sample was taken for imaging. 
Samples from liquid culture were placed on 3% agarose pads containing M9 minimal media and 
sandwiched between glass coverslips to immobilize the cells for imaging. For longitudinal imaging 
and production heterogeneity experiments, once cells reached OD600 = 0.6 in liquid culture, the 
sample was placed on a 3% low melting point agarose pad (Promega) containing M9 minimal 
media with 2% glucose, IPTG as specified above, and appropriate antibiotics for plasmid 
maintenance, as detailed in Table 1. 
 
For the chain length distribution prediction, cultures were induced with IPTG in liquid cultures for 
24 hours. At the 24 hour timepoint, we took 3 µL of sample for imaging and another sample of the 
culture was taken for GC-MS analysis to allow direct comparison of the same culture. Five fields 
of view were imaged for each culture. 
 
Fatty acid derivatization and quantification with GC-MS 
Samples for GC-MS quantification were taken at 24 hours post IPTG induction. 400 μL of 
vortexed culture was taken for fatty acid extraction and derivatization into fatty acid methyl esters 
as described by Sarria et al.35 with the following minor modifications: Internal standards of 
nonanoic acid (C9) and pentadecanoic acid (C15) were added to the 400 μL sample at final 
concentrations of 88.8 mg/L each and vortexed for 5 sec. The following was then added to the 
sample for fatty acid extraction and vortexed for 30 sec: 50 μL 10% NaCl, 50 μL glacial acetic 
acid, and 200 μL ethyl acetate. The sample was then centrifuged at 12,000 g for 10 mins. After 
centrifugation, 100 μL of the ethyl acetate layer was mixed with 900 μL of a 30:1 mixture of 
methanol:HCl (12N) in a 2 mL microcentrifuge tube. The solution was vortexed for 30 sec 
followed by an incubation at 50°C for 60 mins for methyl ester derivatization. Once cooled to 
room temperature, 500 μL hexanes and 500 μL water were added to the 2 mL microcentrifuge 
tube, vortexed for 10 sec, and allowed to settle. 250 μL of the hexane layer was mixed with 250 
μL ethyl acetate in a GC-MS vial for quantification. 
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The samples were analyzed with an Agilent 6890N/Agilent 5973 MS detector using a DB-5MS 
column. The inlet temperature was set to 300°C with flow at 4 mL/min. The oven heating program 
was initially set to 70°C for 1 min, followed by a ramp to 290°C at 30°C/min, and a final hold at 
290°C for 1 min. GLC-20 and GLC-30 FAME standard mixes (Sigma) were tested using this 
protocol to ensure proper capture of all chain lengths and to gauge retention times. Internal 
standards were used for quantification, with chain lengths C8-C12 quantified with the nonanoic 
acid internal standard and C14-C18 quantified with the pentadecanoic internal standard. 
 
Optical setup 
The SRS setup is driven by an 80 MHz femtosecond laser (Insight Deepsee+, Spectra Physics, 
USA) with two synchronized outputs. One output is fixed at 1040 nm with a pulse duration of 
~150 fs, while the other is tunable from 680 - 1300 nm with ~120 fs pulse width. The 1040 nm 
beam is used as the Stokes and is modulated by an acousto-optical modulator (522c, Isomet, USA) 
at 2.5 MHz. The tunable output is set to 798 nm to excite the C-H region and is spatially combined 
with the Stokes by a dichroic mirror. Six 15 cm SF-57 glass rods are used to linearly chirp the 
femtosecond pulses to ~ 2 ps. Five of the rods are placed on the common path while one is placed 
on the Stokes path to parallelize the degree of chirping considering its longer wavelength. A 
motorized delay stage is used to scan the temporal delay between two pulses to tune the excitation 
frequency. The combined beams are sent to a pair of two-dimensional galvo scanners (GVSM002, 
Thorlabs, USA) to perform laser scanning imaging. A 40X oil-immersion objective (RMS40X-
PFO, Olympus, Japan) is used to focus the laser onto the sample. Powers on the sample are 15 
mW for pump and 75 mW (or 25 mW for longitudinal imaging) for Stokes. A home-built resonant 
amplifier photodiode collects and amplifies the stimulated Raman loss signal at the modulation 
frequency. A lock-in amplifier (UHFLI, Zurich Instruments, Switzerland) is used to extract the 
signal and send it to a data collection card (PCIe-6363, National Instruments, USA). Custom 
LabView (National Instruments, USA) software is used to synchronize the galvo scan with the 
delay line scan to obtain a hyperspectral SRS image stack in a frame-by-frame manner. 
 
Chemical map processing with LASSO 
To obtain concentration maps for chemicals, we perform linear unmixing on the raw hyperspectral 
image stack. Assuming the number of pure components as 𝐾 and the dimensions of a hyperspectral 
image as 𝑁! , 𝑁" , 𝑁#, the unmixing model can be written as: 
 𝐷 = 𝐶𝑆 + 𝐸, (1) 

where 𝐷 ∈ ℝ$!$"×$# is the raw data reshaped as a two dimensional matrix in raster order, 𝐶 ∈
ℝ$!$"×&  is the collection of concentration maps, 𝑆 ∈ ℝ&×$#  contains SRS spectra of all the 
components, while 𝐸  is the residual term with error and noise. Given the prior knowledge of 
spectra for all the pure components, the task is reduced to generating chemical maps 𝐶 via least 
square fitting. To avoid crosstalk between spectrally overlapped components, we add a 𝐿1 norm 
sparsity constraint by observing that at each spatial position, a few components dominate the 
contribution. The solution for 𝐶 is found in a pixel-by-pixel manner by solving for the following 
optimization problem known as the least absolute shrinkage and selection operator (LASSO): 
 𝐶.' = argmin

($
{
1
2	
‖𝐷(𝑖, : ) − 𝐶'𝑆‖) + 𝛽‖𝐶'‖*}		, 

(2) 

where 𝑖  represents a specific pixel in the hyperspectral image, 𝐶.'  stands for the estimated 
concentrations for all components at pixel 𝑖, and 𝛽 is a hyperparameter controlling the level of 𝐿1 
norm regularization at each pixel.  
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For each imaging experiment, we measured spectra of pure chemical standards for analysis. 
Specifically, we input the spectra from the following pure components to perform linear unmixing. 
We use BSA as the protein standard, palmitic acid (C16:0) and capric acid (C10:0) as 
representative saturated fatty acids, and palmitoleic acid (C16:1) as an unsaturated fatty acid 
standard. All standards were sourced from Sigma Aldrich, USA. 
 
Chain length and unsaturation prediction 
To predict chain length distribution, we first processed images with linear unmixing as described 
above. However, this analysis outputs two-dimensional chemical maps whereas a three-
dimensional hyperspectral image is needed for chain length prediction. We created a hyperspectral, 
saturated fatty acid map by subtracting the protein and unsaturated fatty acid components from the 
original background-subtracted hyperspectral image (Fig. S10). We then calculated the area under 
the curve ratio of CH2 to CH3 for each pixel, using 2832 to 2888 nm for CH2 and 2909 to 2967 nm 
for CH3. 
 
We used the linear relationship of ratio to chain length produced from standards (C6-C20, Sigma 
Aldrich, USA) to calculate a predicted chain length for each pixel. This prediction was then 
multiplied by a concentration weighting factor that corresponds to the SRS spectral summation at 
the same pixel. Thus, if the raw SRS signal is low then the prediction is also low. All pixels’ 
concentration-weighted chain lengths were compiled to create the fatty acid chain length 
distribution. To calculate the unsaturation ratio, the sum of the C16:1 chemical map generated 
through linear unmixing was divided by the sum of the hyperspectral saturated chemical map. 
 
Single cell segmentation 
Segmentation of single cells was implemented in two steps. The protein segmentation map was 
first sent to CellProfiler to generate an initial segmentation68. A customized pipeline was used for 
the analysis, including illumination correction, background subtraction, and edge enhancements 
based on the Laplacian of the Gaussian. Then a custom Matlab program was used to manually 
correct errors in the automated segmentation analysis using the raw SRS and protein chemical 
maps as a guide. 
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Figures 
 
 

 
 
Figure 1. SRS imaging of E. coli production strains shows single-cell free fatty acid levels. (a) 
Schematic of the optical setup for SRS imaging to produce hyperspectral images using a Stokes 
and pump laser focused on a live sample. Hyperspectral SRS images contain three-dimensional 
data: x and y coordinates and wavenumber, which provides spectral information. Longitudinal 
SRS imaging adds a fourth dimension, time. (b) Schematic of free fatty acid production in E. coli. 
Expression of a cytosolic thioesterase results in free fatty acid accumulation through the type II 
fatty acid synthesis (FAS) pathway. Free fatty acids can vary in chain length and unsaturation, 
largely dictated by thioesterase specificity. (c) Representative raw SRS data from wild type E. coli 
and a strain overexpressing a cytosolic thioesterase (AbTE*). The summation of Raman spectra at 
each pixel is shown. Representative regions are outlined in red with the corresponding Raman 
spectra shown below the image. Fatty acids and proteins emit strong Raman signals in the C–H 
region (~2900 cm-1). Note that the y-axis scales are different; Fig. S3 shows them on the same 
scale. Scale bar, 10 µm. (d) Spectra at each pixel of the SRS image can be decomposed to generate 
chemical maps. Protein and fatty acid components are decomposed using spectral standards to 
produce chemical maps. Spectral standards shown in schematic are Bovine serum albumin (cyan), 
palmitoleic acid (C16:1, orange), capric acid (C10:0, red), and palmitic acid (C16:0, yellow). 
Protein and fatty acid chemical maps for both strains are shown. Scale bar, 10 µm. 
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Figure 2. Inter- and intra-colony heterogeneity profiles of production strains. (a) Production 
from ‘TesA-FV50 microcolonies (n = 105) are compared to wild type microcolonies (n = 56), 
revealing inter-colony production heterogeneity. Protein and fatty acid chemical maps are shown 
for representative high and low producing microcolonies. Scale bar, 10 µm. (b) Representative 
protein and fatty acid chemical maps are shown for a microcolony of the production strain AbTE*-
FV50. (c) Intra-colony production is quantified for single cells within the microcolony (n = 213) 
(Fig. S5). Scale bar, 10 µm. 
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Figure 3. Longitudinal SRS imaging of production dynamics. Time-lapse images of (a) a 
‘TesA-FV50 high producing microcolony, (b) a ‘TesA-FV50 low producing microcolony, and (c) 
a wild type control strain, shown with the raw SRS images (spectral summation of the SRS image 
stack) and chemical maps corresponding to protein and fatty acid content. Quantification of (d) 
protein and (e) fatty acid over time from the microcolonies in (a-c). Scale bars, 10 µm. 
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.26.453865doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453865


 17 

 
 
Figure 4. Chain length distribution prediction from different thioesterase enzymes. (a) The 
ratio of internal CH2 and terminal CH3 bonds within a fatty acid is a function of chain length. 
Raman spectra of pure fatty acid standards are shown for different chain lengths. Specific spectral 
windows correspond to each bond. (b) The ratio of area under the curve (AUC) of CH2/CH3 bonds 
scales approximately linearly with chain length. (c) Schematic of the type II fatty acid synthesis 
pathway in E. coli. Introduction of an acyl-ACP thioesterase pulls out elongating acyl-ACPs to 
form free fatty acids. Enzymatic specificity of the thioesterase largely determines the distribution 
of the fatty acid chain length profile. (d) Chain length distribution prediction with GC-MS 
compared to SRS using CH2/CH3 ratio analysis (n = 2 biological replicates using 5 fields of view 
for each replicate). Strains shown are: CpFatB1*, AbTE*-FV50, and ‘TesA-FV50 (Table 2). (e) 
SRS spectra of saturated and unsaturated fatty acid standards (C16:0, C16:1). The unique peak at 
~3000 cm-1 allows for spectral decomposition of unsaturation content. (f) Comparing GC-MS 
unsaturation ratio of produced free fatty acids to SRS production based on spectral analysis Error 
bars show standard deviation from n = 5 fields of view for each strain. 
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Tables 
 
Table 1. List of plasmids used in this study. 
 
Plasmid Origin Overexpressed operon Resistance Reference 
pSS200 pMB1 Ptrc-Abte:G17R/A165R AmpR Sarria et al. 35 
pBbA5c-‘tesA-
vhb50-8fadR 

p15a PlacUV5-‘tesA-vhb50, PBAD-
fadR 

CmR Liu et al. 37 

pBbA5c-vhb50-
8fadR 

p15a PlacUV5-vhb50, PBAD-fadR CmR This study 

pBbA5c-
CpFatB1.2-M4-
287 

p15a PlacUV5-CpfatB1.2-M4-287 CmR This study, 
mutant enzyme 
from 
Hernandez 
Lozada, et al. 56 

 
Table 2. List of E. coli strains used in this study. 
 
Strain Relevant genotype Reference 
BW25113 (wild 
type) 

F- Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ- rph-
1 Δ(rhaD-rhaB)568 hsdR514 

Baba et al. 64 

BW25113 ΔfadE E. coli BW25113 ΔfadE, cured from Keio 
collection 

Baba et al. 64 

MG1655 F-, λ-, rph-1 Blattner, et al. 69  
AbTE* E. coli MG1655; pSS200 Sarria et al. 35 
‘TesA-FV50 E. coli BW25113 ΔfadE; pBbA5c-‘tesA-vhb50-

8fadR 
Liu et al. 37 

AbTE*-FV50 E. coli MG1655; pBbA5c-vhb50-8fadR, pSS200 This study 
CpFatB1* E. coli MG1655; pBbA5c-CpfatB1.2-M4-287 This study 
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Supplementary Figures 
 
 
 
 
 

 
 

Figure S1. Hyperspectral SRS setup. (a) Concept of hyperspectral SRS using spectral focusing. 
The pump and Stokes lasers are linearly chirped by high dispersion glass rods to temporally 
separate the spectral components. Each temporal delay between the two pulses corresponds to a 
Raman vibrational mode. (b) Optical setup. AOM, acousto-optic modulator; MS, motorized stage; 
DM, dichroic mirror; GM, galvo mirrors; O, objective; C, condenser; F, filter; PD, photodiode; 
LIA, lock-in amplifier.  
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Figure S2. SRS spectra of pure standards used to analyze hyperspectral images to produce 
chemical maps. (BSA: bovine serum albumin, C10:0: decanoic acid, C16:0: palmitic acid, C16:1: 
palmitoleic acid). 
 
 
 
 
 
 
 

 
 

Figure S3. Raw SRS images shown in Fig. 1c of wild type and a strain overexpressing a cytosolic 
thioesterase (AbTE*), but with both images scaled with the same color axis for direct comparison. 
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Figure S4. Fatty acid production quantification for strains in this study. GC-MS quantified fatty 
acid production data for each strain. Cells were grown 24 hours post thioesterase induction in 
liquid culture. For chain length prediction, these exact cultures were taken for SRS imaging at the 
same timepoint.  
 
 
 
 
 
 
 

 
Figure S5. Single cell segmentation of a microcolony. (a) Raw SRS images are used to segment 
microcolonies to perform single cell analysis shown in Fig. 2c. (b) Segmentation of microcolony 
in (a). (c) Segmentation of the top 25 highest producing cells overlaid on the fatty acid map of the 
microcolony.  
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Figure S6. Intra-colony heterogeneity of the AbTE* strain. (a) Three additional fields of view 
(FOV) of the AbTE*-FV50 strain shown in Fig. 2b. Raw SRS, protein, and fatty acid chemical 
maps are shown for all. Scale bars, 10 µm. 
 
 
 

 
 

Figure S7. Testing photodamage on live E. coli cells. (a) Wide-field transmission image of E. coli 
cells at the start of the cell incubation (t = 0 hr). (b) Hyperspectral SRS image of the region 
highlighted with a yellow rectangle in (a). (c) Wide-field transmission image of the same field of 
view after incubation (t = 16 hr). (d) Hyperspectral SRS images of the previously scanned region 
(yellow rectangle in (c)) and an adjacent region without previous SRS laser exposure (blue 
rectangle in (c)). Scale bars, 10 µm. 
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Figure S8. Optimized SRS laser powers enable live cell imaging of E. coli. Wide-field 
transmission image of E. coli, with raw hyperspectral SRS images of the same region for the t = 3 
and 5 hr timepoints. Spectral summation is shown. Scale bars, 10 µm. 
 
 
 
 
 
 

 
 
Figure S9. Time-lapse images of fatty acid production in the AbTE*-FV50 strain. (a) Raw SRS 
images, protein, and fatty acid chemical maps are shown. Time values represent time grown on 
the agarose pad after IPTG induction. Scale bars, 10 µm. 
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Figure S10. Analysis workflow for chain length prediction from hyperspectral SRS images. (a) 
Raw SRS images are first background subtracted. (b) Background subtracted images are unmixed 
using chemical standards. Protein, BSA; unsaturated fatty acid, C16:1; medium chain fatty acid, 
C10; and long chain fatty acid, C16. C10 and C16 maps are used to represent a mixture of saturated 
fatty acids. (c) Protein and unsaturated fatty acid maps are multiplied by their respective standard 
spectra and subtracted from the background-subtracted hyperspectral image to produce a three-
dimensional saturated fatty acid map. (d) Ratio analysis is performed on each pixel to calculate 
chain length and weighted by raw intensity to predict chain length distribution of the field of view. 
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Supplementary Movies 
 
Movie S1. Time-lapse wide-field transmission images of the wild type strain during the live cell 
SRS imaging shown in Fig. 3c. The white box indicates the SRS imaging region.  
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