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Abstract 25 
Understanding metabolic heterogeneity is critical for optimizing microbial production of valuable 26 
chemicals, but requires tools that can quantify metabolites at the single-cell level over time. Here, 27 
we develop longitudinal hyperspectral stimulated Raman scattering (SRS) chemical imaging to 28 
directly visualize free fatty acids in engineered Escherichia coli over many cell cycles. We also 29 
develop compositional analysis to determine the chain length and unsaturation of the fatty acids in 30 
living cells. Our method reveals substantial heterogeneity in fatty acid production among and 31 
within colonies that emerges over the course of many generations. Interestingly, the strains display 32 
distinct types of production heterogeneity in an enzyme-dependent manner. By pairing time-lapse 33 
and SRS imaging, we examine the relationship between growth and production at the single-cell 34 
level. Single-cell quantification does not show a significant growth-production tradeoff in a strain 35 
that exhibits high production heterogeneity. Our results demonstrate that cell-to-cell production 36 
heterogeneity is pervasive and provide a means to link single-cell and population-level production. 37 
 38 
Introduction 39 
Microbial production of chemicals has the potential to provide a sustainable source of products 40 
ranging from fuels to specialty materials (1–4). A major difficulty holding back the replacement 41 
of industrial chemicals with bio-based alternatives is that bioproduction often falls short in terms 42 
of conversion metrics that dictate economic feasibility, such as titer, rate, and yield. Over the past 43 
two decades, researchers have made great strides in identifying metabolic pathways capable of 44 
producing a diverse array of useful chemicals (5). However, the reality is that extensive 45 
engineering and optimization are required for any given chemical to compete as an alternative to 46 
those sourced from petroleum.  47 
 48 
Producing chemicals in cells offers many advantages, but presents unique industrial challenges. 49 
For example, cell-to-cell variation and genetic mutations can result in production heterogeneity 50 
during fermentation that limits overall process efficiency. Single-cell variation can stem from a 51 
variety of causes, such as stochasticity in the underlying biological processes (6, 7), variations in 52 
media environments within cultures (8), or selection pressures against high producing cells causing 53 
mutational escape variants (9, 10). However, the frequency and impact of production variation and 54 
how it changes over time are largely unknown. Methods that enable quantification of heterogeneity 55 
and its emergence are a prerequisite to understanding the root cause and implementing designs that 56 
mitigate its effect on overall efficiency.  57 
 58 
Here, we focus on fatty acid synthesis, which is an attractive pathway for metabolic engineering 59 
because it offers a biological means to synthesize linear hydrocarbons. Fatty acids and their 60 
derivatives are high demand chemicals that can be used as fuels, commodities, and specialty 61 
chemicals. Numerous studies have aimed at increasing the efficiency of fatty acid synthesis 62 
pathways as well as controlling the species of fatty acid produced (11–14). Termination enzymes 63 
that interface with this pathway can be used to produce a wide variety of high-value fatty acid 64 
derivatives such as alkanes, olefins, and alcohols (15).   65 
 66 
Current methods to measure production strain performance include mass spectrometry, fluorescent 67 
biosensors, and dyes. Mass spectrometry-based techniques provide exquisite chemical specificity 68 
but are limited in their ability to quantify single cells, which means they can overlook valuable 69 
information about population heterogeneity that is key to predicting population stability during 70 
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scale-up (16–18). Further, because the measurement process is destructive, it is not possible to 71 
follow production changes within the same cells over time. Biosensor-based fluorescent assays, in 72 
contrast, can capture dynamic, single-cell information. These systems are amenable to high 73 
throughput screens and are non-destructive (19). However, well-characterized biosensors are 74 
scarce in comparison to the number of chemicals metabolic engineers can produce. Additionally, 75 
significant optimization is often necessary to fine tune the concentration responsive range of a 76 
biosensor (20–22). In the case of fatty acid production, lipophilic dyes such as Nile red have been 77 
used to measure production (23), however these stains lack lipid specificity. Further, both 78 
biosensor and dye-based measurements are indirect readouts of chemical production. 79 
 80 
Given the drawbacks of current screening methods, we sought to develop an alternative approach 81 
that can capture production and composition information in single cells over time. Stimulated 82 
Raman scattering (SRS) is an ideal candidate, as it is a non-destructive, label-free vibrational 83 
spectroscopic imaging method that directly detects chemical compounds based on intrinsic 84 
molecular vibrations (24, 25). The ability of SRS to probe metabolic activities in live cells has 85 
been demonstrated on microalgae (26) and mammalian cells (27) for short periods of time. 86 
Although SRS imaging of industrially relevant microbes such as E. coli has been reported (28, 29), 87 
its use has been limited to conditions where cells were either fixed or where only a single timepoint 88 
was required. Performing longitudinal SRS for compositional chemical imaging on live microbes 89 
remains challenging. This is mainly attributed to their small size (e.g. E. coli are 1-2 μm in length), 90 
which shortens the axial signal integration length, and thus yields weaker SRS signals compared 91 
to larger cells. In the context of metabolic engineering, where compositional information on 92 
products is critical, one needs to perform hyperspectral SRS to generate pixel-wise Raman spectra 93 
for molecular fingerprinting. However, due to significant spectral overlaps between metabolites, 94 
especially in the carbon-hydrogen (C-H) region, existing hyperspectral SRS image processing 95 
methods only provide unsaturation levels of fatty acids (30). They also fail to deliver information 96 
on chain length, which is equally important for free fatty acid synthesis. 97 
 98 
Here, we introduce a longitudinal hyperspectral SRS method to study metabolically engineered E. 99 
coli, monitoring free fatty acid production and composition in live cells. We perform SRS in the 100 
C-H region which maximizes SRS signals. To overcome spectral cross-talk in the region, we 101 
develop a hyperspectral image analysis technique that generates chain length and unsaturation 102 
level predictions, allowing for chemical readouts that are analogous to GC-MS. First, we 103 
demonstrate that we can clearly distinguish fatty acid production strains from wild type E. coli by 104 
deconstructing images into maps of their chemical components. With the ability to measure 105 
production at the single-cell level, we examine heterogeneity in fatty acid production strains and 106 
observe both colony-level heterogeneity and substantial cell-to-cell differences in production. We 107 
optimize imaging parameters to enable longitudinal hyperspectral SRS imaging to capture fatty 108 
acid production over time in growing cells. Next, we use longitudinal measurements to 109 
demonstrate dynamic differences in fatty acid production and composition within the same strain. 110 
To the best of our knowledge, this is the first demonstration of longitudinal hyperspectral SRS 111 
imaging of live cells over many cell cycles. Lastly, we pair SRS microscopy with time-lapse phase 112 
contrast microscopy and automated segmentation analysis to examine relationships between 113 
production and growth.  114 
 115 
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Overall, our study presents two important advances of SRS microscopy, namely fatty acid chain 116 
length extraction and longitudinal imaging of proliferating cells. Upon these advances, we report 117 
discoveries of metabolic heterogeneity among different cells in a colony and temporal 118 
heterogeneity throughout colony formation.  119 
 120 
Results 121 
 122 
Hyperspectral SRS imaging of fatty acid production strains 123 
Spectral signals from Raman scattering correspond to vibrational energies of covalent bonds. This 124 
allows for direct imaging of chemicals without the need for labels such as fluorescent reporters or 125 
dyes. Here, we deploy hyperspectral SRS (31–33) to obtain chemical maps of protein and fatty 126 
acids. To achieve this, we chirp two broadband femtosecond laser beams (pump and Stokes) using 127 
high-dispersion glass rods, producing linear temporal separation of the frequency components (Fig. 128 
1a, Fig. S1). The beating frequency of the two beams is linearly correlated with the temporal delay 129 
between the two laser pulses. Using a two-dimensional galvo scanner, the combined laser beam is 130 
moved across the x and y dimensions of the sample to generate an image. This process is then 131 
repeated for a range of temporal delays, each of which produces a different wavenumber, 132 
ultimately producing a hyperspectral SRS image generated in a frame-by-frame manner. The 133 
spectral region surrounding the 2900 cm-1 wavenumber is typically referred to as the ‘C-H region’ 134 
and has a strong SRS signal. Biomolecules such as proteins and fatty acids, which contain many 135 
C-H bonds, show high Raman signal in this region. Importantly, SRS intensity scales linearly with 136 
molecular concentrations. The strong signal in the C-H region enables high fidelity SRS imaging 137 
with low optical powers that are compatible with live-cell imaging. Thus, this configuration can 138 
be used to acquire longitudinal images of live cells, resulting in data across four dimensions: space 139 
(x and y), wavenumber, and time. We set out to utilize SRS chemical imaging in the C-H region 140 
to measure fatty acid production in metabolically engineered strains of E. coli. 141 
 142 
Previous metabolic engineering efforts have focused on producing free fatty acids in E. coli using 143 
the native type II fatty acid synthesis pathway (14, 20, 34). Introducing a heterologously expressed 144 
acyl-acyl carrier protein (ACP) thioesterase can catalyze the formation and pooling of free fatty 145 
acids from elongating acyl hydrocarbon chains that would otherwise be incorporated into 146 
membrane phospholipids (35, 36) (Fig. 1b). We reasoned that SRS imaging could effectively 147 
capture fatty acid in production strains due to the C-H-rich carbon chains present in fatty acids. To 148 
test this hypothesis, we studied several production strains that were previously engineered to 149 
produce high quantities of free fatty acids (Tables 1 and 2). We first focused on the strain AbTE*, 150 
which expresses an acyl-ACP thioesterase from Acinetobacter baylyi, carrying G17R/A165R 151 
mutations that improve enzymatic activity in E. coli (37). SRS images of AbTE* show increased 152 
fatty acid production relative to the wild type strain, as evidenced by differences in both the 153 
chemical spectra and visible fatty acid droplets around the cells (Fig. 1c). Using spectral standards, 154 
SRS images can be decomposed into their major chemical components to produce chemical maps 155 
(Fig. 1d). We used standard spectra from pure protein (Bovine serum albumin, BSA), saturated 156 
fatty acids (C10:0 and C16:0), and unsaturated fatty acids (C16:1) to decompose the hyperspectral 157 
image (Fig. S2). To achieve this, we used a least absolute shrinkage and selection operator 158 
(LASSO) linear unmixing analysis to separate the hyperspectral image into its chemical 159 
components (Methods). This results in two dimensional chemical maps for protein and fatty acid 160 
components. Protein levels were comparable between wild type and AbTE* strains, with slightly 161 
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elevated levels in the engineered strain. In contrast, the fatty acid signal in the AbTE* strain was 162 
significantly stronger than in wild type. Wild type cells contain membrane phospholipids, however 163 
these signals are much weaker than those recorded in the AbTE* strain (Fig. S3). It should be noted 164 
that these strains were sampled from liquid culture, where free fatty acids are secreted and can 165 
aggregate in the media. As a consequence, the large fatty acid drops are not necessarily produced 166 
by the cells within the field of view, but could be an aggregate of fatty acid produced from many 167 
cells in the liquid culture. In subsequent studies we address this by growing cells on agarose pads 168 
to allow for affiliation of cells and the fatty acids they produce, however snapshots from liquid 169 
culture provide a view into the aggregate production. 170 
 171 
Characterization of enzymatic specificity, chain length distribution, and degree of 172 
unsaturation 173 
Analytical chemistry methods such as GC-MS are typically employed to measure chemical 174 
production because they offer precise chemical specificity information. For fatty acid 175 
quantification, gas chromatography effectively separates fatty acid esters based on chain length 176 
and, along with mass/charge spectra, can specifically read out fatty acid ester chain length and 177 
unsaturated bonds. From a metabolic engineering perspective, quantification of a fatty acid 178 
production strain’s chain length distribution and level of unsaturation are critical. For biofuel 179 
purposes, chain length and termination chemistry can be tuned to mimic characteristics of fuel 180 
sources such as gasoline, diesel, or jet fuel (38). Alternatively, medium chain fatty acids (C8-C12) 181 
and their derivatives can be sources of many specialty chemicals (39). With these end point 182 
applications in mind, we sought to extend SRS imaging capabilities to capture the specific profiles 183 
of free fatty acid production strains. 184 
 185 
Although pure fatty acids of different chain lengths have different spectra in the C-H region, they 186 
are too similar to accurately decompose using spectral unmixing with LASSO linear regression 187 
analysis. However, we expanded our analysis methodology to take advantage of spectral windows 188 
that correspond to CH2 or CH3 bonds, which are present in the 2832-2888 cm-1 and 2909-2967 cm-189 
1 wavenumber regions, respectively (40). Since a saturated fatty acid has an increasing number of 190 
CH2 bonds as the chain length increases, but the terminal CH3 bond number is constant, we 191 
reasoned that the ratio of the CH2/CH3 spectral windows would scale with chain length (Fig. 2a). 192 
Using pure saturated fatty acid standards of variable chain length, we observed a nearly linear (R2 193 
= 0.97) relationship between chain length and the ratio of CH2/CH3 area under the curve (Fig. 2b). 194 
We next tested whether we could use this relationship to estimate chain length production profiles. 195 
 196 
In E. coli, fatty acid biosynthesis is carried out through a multistep, enzymatic Claisen reduction 197 
(41). The enzymatic components of type II fatty acid synthesis in E. coli are encoded as separate 198 
proteins, creating a pathway in which two carbons are added to an elongating acyl-ACP chain with 199 
each cycle (Fig. 2c). The number of cycles around this pathway before the elongating acyl chain 200 
is cleaved by an acyl-ACP thioesterase determines the resulting fatty acid chain length. The 201 
primary factor driving chain length is thought to be  the enzymatic specificity of the heterologously 202 
expressed thioesterase (11, 42). Researchers have carried out numerous efforts to engineer 203 
specificity of acyl-ACP thioesterases in order to create desired chain length profiles (14, 37, 43–204 
45). Several thioesterases have been shown previously to produce a range of free fatty acid chain 205 
length profiles. Three examples are CpFatB1*, AbTE*, and ‘TesA. The CpFatB1* and AbTE* 206 
thioesterases originate from Cuphea palustris and A. baylyi, respectively, and the “ * ” denotes 207 
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mutants that were engineered to increase activity in E. coli (37, 46). ‘TesA is E. coli’s native 208 
thioesterase, where the “ ‘ ” denotes deletion of the leader sequence (35). Endogenously, TesA 209 
contains a leader sequence that localizes the enzyme to the periplasm; deleting the leader peptide 210 
sequence allows for interaction with cytosolic acyl-ACPs, enabling the production of free fatty 211 
acids (35) (Fig. S4).  212 
 213 
To test our ability to estimate chain length distributions using imaging, we examined strains 214 
CpFatB1*, AbTE*-FV50, and ‘TesA-FV50, which each express a different thioesterase (Table 1, 215 
Table 2). Strains AbTE*-FV50 and ‘TesA-FV50 additionally express heterologous fadR and 216 
vhb50, which have been shown to increase free fatty acid production (12, 47). FadR is a 217 
transcription factor that regulates many genes in the fatty acid synthesis pathway for increased free 218 
fatty acid titer when expressed alongside ‘TesA. Vhb50 is a Vitreoscilla hemoglobin that further 219 
increases fatty acid production by increasing oxygen uptake. We conducted an experiment in 220 
which each of the three strains were grown in liquid culture and thioesterase expression was 221 
induced for 24 hours to produce free fatty acids. Samples from each production culture were taken 222 
in parallel for GC-MS quantification and SRS hyperspectral imaging. As expected, GC-MS results 223 
show highly variable chain length distributions depending on the thioesterase expressed (Fig. 2d). 224 
CpFatB1* primarily produces octanoic acid (C8:0). AbTE*-FV50 produces a mix of medium- and 225 
long-chain saturated fatty acids with myristic acid (C14:0) as the largest component. Lastly, 226 
‘TesA-FV50 produces long-chain fatty acids with large contributions from both myristic (C14:0) 227 
and palmitic acid (C16:0). Since each production strain has a unique chain length profile, they 228 
serve as an ideal group of strains to test our ability to predict chain length distributions with SRS 229 
imaging. 230 
 231 
To implement chain length prediction, we first decomposed the spectra at each pixel into protein 232 
and representative fatty acid chemical maps (C10:0, C16:0, C16:1). The protein and unsaturated 233 
fatty acid maps were then subtracted from the raw SRS image to produce a hyperspectral SRS 234 
image of saturated fatty acids (Fig. S5), which can be used to estimate the average chain length at 235 
each pixel. We introduced a concentration weighting factor using the SRS spectral ensemble 236 
intensity at the same pixel. The SRS predicted chain length distributions closely matches the 237 
qualitative features of the GC-MS distributions (Fig. 2e). Importantly, the prediction captures 238 
whether the strain produces primarily medium- or long-chain fatty acids, or a mixture of both. In 239 
the case of ‘TesA-FV50, which produces primarily a mixture of C14 and C16, the SRS prediction 240 
results in either chain length largely dominating. This may stem from the binning needed during 241 
analysis to make a digital, even length prediction. For example, if a mixture of chain lengths is not 242 
spatially separated, a pixel prediction of 14.9 will result in a binary chain length prediction of all 243 
C14 (Methods). However, using several samples can correct for this type of issue, as seen in the 244 
average chain length prediction for ‘TesA-FV50. 245 
 246 
To gauge unsaturation levels, we utilized the presence of the Raman peak at ~3000 cm-1, which is 247 
unique to the C=CH2 bonds in unsaturated fatty acids (Fig. 2f). This peak serves as an identifier of 248 
unsaturation level and components from this fatty acid source can be unmixed with LASSO 249 
regression. To demonstrate our ability to predict unsaturation level from production strains, we 250 
tested the same three strains, which have different ratios of unsaturation to saturation (Fig. S4). 251 
The ratio of unsaturation from GC-MS data scales linearly with predicted unsaturated ratios from 252 
SRS images (Fig. 2g), giving an indication of the ability of this approach to predict the ratio of 253 
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unsaturation. With the ability to calculate unsaturation level in addition to chain length 254 
distributions from SRS images, we cover many aspects of free fatty acid production that are 255 
important for metabolic engineers, bringing SRS hyperspectral imaging closer to a form of optical 256 
mass spectrometry. 257 
 258 
We next applied our compositional analysis to AbTE*-FV50 seeded and grown on agarose pads 259 
(Fig. 2h). Highly productive strains will secrete end-products, making it difficult to track the source 260 
of produced chemicals back to the cells that generated them. Therefore, sampling from liquid 261 
culture for imaging does not accurately provide production heterogeneity information. To ensure 262 
that free fatty acid production is tracked to the cells responsible for production, we first grew cells 263 
on agarose pads such that production could be localized to the region containing the cells. We 264 
observed a large aggregate of fatty acid outside the cells that is primarily composed of saturated, 265 
long chain fatty acids. This differs from interpretations of GC-MS quantification where it is 266 
assumed that long chain fatty acids remain within the cell (37). Additionally, single-cell chain 267 
length maps display a relatively homogenous makeup of chain lengths between individual cells, 268 
which is consistent with current understanding of the fatty acid synthesis pathway and thioesterase 269 
specificity (15). However, without single-cell resolution it would not be possible to distinguish 270 
between this scenario and one where chain length mixtures produced from bulk culture originate 271 
from distinct subpopulations that produce primarily one chain length each. 272 
 273 
Quantification of heterogeneity in fatty acid production strains 274 
Given our ability to image production at the single-cell level, we asked whether our strains 275 
displayed production heterogeneity in the overall levels of fatty acid produced. Previous studies 276 
have reported sub-populations within production cultures that are less productive and lead to 277 
decreased overall performance of the population in a scaled up bioprocess (23, 48). Single-cell 278 
chemical imaging with SRS is uniquely suited to quantifying this phenomenon. We focused on 279 
strains AbTE*-FV50 and ‘TesA-FV50 for agarose pad experiments because CpFatB1* displayed 280 
poor growth in the agarose pad conditions. 281 
 282 
We first quantified fatty acid production from E. coli microcolonies of the wild type and ‘TesA-283 
FV50 production strain (Fig. 3a). Interestingly, ‘TesA-FV50 microcolonies exhibit a high level of 284 
colony-to-colony production variation. This intercolony heterogeneity is visible in the fatty acid 285 
chemical maps, with strains from the same original source exhibiting high and low producing 286 
microcolonies. One possible explanation for these differences in production is variable 287 
transcriptional regulation of key enzymes that are maintained through replication, leading to 288 
metabolic bottlenecks (7, 49). Alternatively, the ability to manage toxicity associated with 289 
production in the time frame following thioesterase induction may lead to divergent production 290 
outcomes (50).  291 
 292 
We also examined production heterogeneity in the fatty acid production strain, AbTE*-FV50. 293 
Strikingly, we observed a very different type of production variation in this strain (Fig. 3b). Unlike 294 
the intercolony heterogeneity in ‘TesA-FV50, the AbTE*-FV50 strain has high heterogeneity 295 
between cells in a single microcolony. We used the protein channel to segment the image into 296 
single cells for analysis (Fig. S6) and quantified single-cell production (Fig. 3c). Our quantification 297 
indicates that in this strain a small percentage of cells produce the vast majority of fatty acids. This 298 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2021.07.26.453865doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453865


 8 

result is consistent across many fields of view within the microscopy images, suggesting that it is 299 
a general feature of this production strain (Fig. S7).  300 
 301 
Longitudinal SRS imaging of fatty acid production during growth of colonies 302 
Understanding the dynamics of chemical production with single-cell resolution can provide key 303 
insights into the emergence of heterogeneity, production bottlenecks, and can guide engineering 304 
strategies to maximize metabolic flux. To that end, we sought to adapt the SRS system for 305 
longitudinal imaging. While SRS imaging of living cells has been reported (26, 51, 52), its 306 
application to chemical production over long periods of growth has not been demonstrated. 307 
Previous work from Wakisaka, et al. achieved video rate SRS for short periods of time by reducing 308 
spectral acquisitions to four points in the C-H region (26). For metabolic engineering applications, 309 
however, spectral fidelity and time scales on the order of bioprocesses would provide a more useful 310 
form of longitudinal imaging. Therefore, we sought to develop parameters amenable to 311 
longitudinal imaging without loss of spectral information. We installed an incubator on the 312 
microscope stage and grew live cells on agarose pads for at least 16 hours at 31°C. First, we tested 313 
whether the routine laser powers we used for endpoint SRS imaging were damaging to live cells 314 
(75 mW for 1040 nm Stokes and 15 mW for 800 nm pump at the sample). At the beginning of 315 
longitudinal imaging, we captured a bright field transmission image and measured a hyperspectral 316 
SRS image in one field of view (Fig. S8a-b). After 16 hours of incubation, cells that were 317 
previously exposed to SRS imaging did not duplicate, nor did they produce significant levels of 318 
fatty acids. In contrast, cells in a region in the immediate vicinity that had not been exposed to 319 
imaging grew into a dense microcolony and produced fatty acid droplets (Fig. S8c-d). Although 320 
the laser exposure did not induce visible cell damage, the photodamage altered cell growth, 321 
indicating that these laser powers were too high. 322 
 323 
To optimize the imaging conditions to reduce phototoxicity, we performed the same live-cell 324 
experiment with lower laser powers. We obtained normal cell growth when we reduced the Stokes 325 
power from 75 to 25 mW, while the pump laser at 800 nm was kept as 15 mW (Fig. S9). To 326 
illustrate growth and fatty acid production, we measured transmission and SRS images for the 327 
same field of view after 3 and 5 hours of incubation, seeing clear evidence of replication even after 328 
SRS imaging. We took a final wide-field image at 6 hours, which showed that cells continued to 329 
replicate normally, demonstrating that these laser power parameters permit growth. To further 330 
probe how these imaging conditions impact cells, we utilized a stress-responsive promoter, PibpAB, 331 
to drive expression of mRFP1 (Fig. S10a). PibpAB is driven by the heat shock σ-factor (σ32) and is 332 
upregulated in response to stress (53). We first exposed cells to the 25 mW / 15 mW laser 333 
intensities describe above and compared promoter activity to cells that received no SRS exposure 334 
(Fig. S10b). Although these cells were able to grow, RFP expression indicates that intracellular 335 
stress was significantly upregulated in response to SRS exposure. To lower laser exposure further, 336 
we increased the step size of each laser scan from 150 nm to 230 nm, corresponding to fewer pixels 337 
per image. With the increased step size, RFP expression showed no significant difference relative 338 
to the cells that received no laser exposure (Fig. S10b). Therefore, we concluded that using both 339 
reduced laser powers and increased step size can allow for longitudinal SRS imaging. 340 
 341 
With these optimized imaging conditions, we first tracked fatty acid production within the strain 342 
‘TesA-FV50. In line with heterogeneity patterns we originally observed in this strain (Fig. 3a), the 343 
production trajectories varied across microcolonies (Fig. 4a-b). In one example, fatty acid signals 344 
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increased in cells starting ~12 hours after thioesterase induction (Fig. 4a). After the microcolony 345 
reached a high cell density on the agarose pad, we observed significant accumulation of fatty acids. 346 
In contrast, a second microcolony of the same strain produced only low levels of fatty acid (Fig. 347 
4b). For comparison, we also tracked the growth and fatty acid production of wild type cells under 348 
the same conditions, observing only low levels of fatty acid production (Fig. S11). Time-lapse 349 
wide-field transmission images for the wild type strain show that cells under SRS laser exposure 350 
grew well during the entire experiment period and at levels comparable to those regions not 351 
exposed to imaging, reaffirming that these conditions are non-toxic (Movie S1). We quantified 352 
fatty acid and protein levels of each microcolony and the wild type strain. Protein levels in each 353 
strain increased at comparable rates (Fig. 4c). Fatty acid levels in the wild type colony increased 354 
modestly while the high-producing ‘TesA-FV50 microcolony fatty acid levels increased 355 
dramatically (Fig. 4d). The low-producing ‘TesA-FV50 microcolony produced fatty acids at levels 356 
comparable to wild type.  357 
 358 
The activity in the high-producing ‘TesA-FV50 microcolony is in line with known regulation 359 
patterns in E. coli fatty acid synthesis. When high cell density is reached in wild type E. coli, the 360 
pathway is inhibited by a buildup of acyl-ACPs. This mechanism is reported to act through direct 361 
inhibitory interactions with key enzymes within the pathway, such as acetyl-CoA carboxylase, 362 
FabH, and FabI (54, 55). Additionally, acyl-ACP or acyl-CoA responsive transcription factors, 363 
FadR and FabR, respectively, act to regulate transcriptional responses that control fatty acid 364 
synthesis (56, 57). In the presence of a cytosolic thioesterase, as in the ‘TesA-FV50 strain, this 365 
inhibition is released through the conversion of accumulated acyl-ACPs to free fatty acids. 366 
However, thioesterase expression is induced starting at t = 0 hr, and significant accumulation of 367 
fatty acid does not happen until the microcolony is well established. Even with the ‘TesA 368 
thioesterase highly expressed, phospholipid metabolism may dominate metabolic flux through the 369 
fatty acid synthesis pathway until sufficient density is reached to suppress incorporation of acyl-370 
ACPs into phospholipids. A recent study from Noga et al. uncovered a post-translational 371 
mechanism that modulates phospholipid biosynthesis through PlsB acyltransferase and ppGpp, 372 
which may explain the delay in free fatty acid accumulation (58).  373 
 374 
Additionally, we measured the dynamics of the AbTE*-FV50 fatty acid production strain at the 375 
microcolony level, which produces a variety of medium- and long-chain fatty acids (Fig. S4), with 376 
significant heterogeneity in production among cells (Fig. 3b-c). We again observed fatty acid 377 
production over time, with similar delays in fatty acid accumulation despite thioesterase induction 378 
at t = 0 hr (Fig. S12a). In this strain, a few cells within the microcolony produce large amounts of 379 
fatty acid. The production dynamics for these few cells are similar to fatty acid production within 380 
the ‘TesA-FV50 strain, but the remainder of cells exhibit at low levels of production for the 381 
duration of imaging. 382 
 383 
To further understand the dynamics of fatty acid production, we tracked the composition of 384 
individual droplets from the high producing ‘TesA-FV50 microcolony and high producing cells 385 
from the AbTE*-FV50 microcolony. Both saturated and unsaturated fatty acid levels increase 386 
similarly within the droplets of the ‘TesA-FV50 strain (Fig. 4e-f). Interestingly, the high producing 387 
cells from the AbTE*-FV50 strain initially produce saturated fatty acids, but saturated fatty acid 388 
levels plateau in a subset of cells as the incubation continues (Fig. S12b). Alternatively, 389 
unsaturated fatty acid production continues to increase for the duration of the experiment (Fig. 390 
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S12c). Additionally, we analyzed the chain length composition for both strains longitudinally (Fig. 391 
S13a-b). Droplets from ‘TesA-FV50 ranged from C14-C16 in length, which is in line with bulk 392 
culture production. Chain lengths for AbTE*-FV50 high producer cells displayed high fluctuations 393 
over time and range from C7-C14, which is shorter than expected in comparison with bulk culture 394 
data. We believe the fluctuations and low chain length predictions stem from a decreased signal-395 
to-noise ratio using our low power parameters for longitudinal imaging. When the signal-to-noise 396 
ratio is increased for stronger SRS signals, such as for the large extracellular droplet within the 397 
AbTE*-FV50 microcolony, the chain length prediction increases to a range between C12-C14, 398 
which more closely matches bulk culture data (Fig. S12a, Fig. S13b). 399 
 400 
Single cell growth-production relationship 401 
Next, we asked whether cell-to-cell differences in fatty acid production correlate with differences 402 
in growth rates between cells. Production of a heterologous product is often associated with 403 
changes in cell physiology due to the consumption of resources and intermediate or end-product 404 
associated toxicities (59–61). Consequently, we asked whether growth rate is inversely correlated 405 
with fatty acid production. For this analysis, we focused on the AbTE*-FV50 strain because it 406 
exhibits significant intracolony heterogeneity. At the bulk culture level, we do not observe a 407 
decrease in growth when production is induced through AbTE* expression (Fig. S14a-b). 408 
However, bulk culture measurements do not rule out slow growth of a high-producing 409 
subpopulation. To understand whether there exists a growth tradeoff in the high producer 410 
subpopulation, we measured growth at the single-cell level. Although we can resolve single cells 411 
using the longitudinal SRS conditions, the lowered resolution needed to avoid phototoxicity 412 
hinders single-cell segmentation to quantitatively probe growth at many time points. To avoid 413 
these limitations, we used a combination of time-lapse, phase contrast microscopy followed by 414 
endpoint SRS imaging (Fig. 5a). Using the high-resolution phase contrast images, we then 415 
segmented and quantified single-cell growth rates using an automated segmentation pipeline for 416 
microcolonies (62). Pairing growth quantification with endpoint SRS, we tracked the growth 417 
trajectories and lineages of single cells within the microcolony to their fatty acid production. 418 
Spectral decomposition of the endpoint SRS image allows the high fatty acid cells to be identified, 419 
along with other chemical composition information (Fig. 5b). Growth of the high producer cells 420 
in the microcolony, measured as cell length over time, did not correlate with lower growth rates 421 
(Fig. 5c, Fig. S15, Movies S2-4). We binned cells into two groups, low and high fatty acid 422 
producers, where we defined high producers as those with production in the top 15% of single 423 
cells in the distribution (Fig. S16). Examining the growth rates of each cell near the endpoint (16 424 
hr) and earlier in the time course (8 hr) shows that growth rate is not significantly different between 425 
the high and low producers. 426 
 427 
Given our ability to decompose the fatty acid signal into unsaturated and chain length components, 428 
we also analyzed the top 10 producer cells’ composition to gain further insight into the high fatty 429 
acid phenotype in this strain. In contrast with GC-MS measurements sampled from bulk culture, 430 
each cell is enriched with lauric acid (C12:0) relative to other saturated fatty acid chain lengths 431 
(Fig. 5e). Additionally, the unsaturation ratio of the top producers is significantly increased in high 432 
producer cells relative to bulk culture sampling (Fig. 5f, Fig. 2g). The decreased levels of myristic 433 
acid (C14:0) and palmitic acid (C16:0) present in the high fatty acid cells relative to bulk culture 434 
may be related to unsaturated fatty acid biosynthesis. In E. coli fatty acid synthesis, double bonds 435 
in the carbon tail of elongating fatty acids are formed specifically when the carbon chain has 436 
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reached decanoyl-ACP (C10), followed by further elongation to C12:1, C14:1, or C16:1 (63). It is 437 
possible that chain lengths that would have otherwise reached C14:0 and C16:0 are instead 438 
unsaturated.  439 
 440 
 441 
Discussion 442 
Chemical imaging can play a key role in the strain engineering process. Current quantification 443 
techniques rely either on methods like GC-MS, which are chemically-specific but where 444 
information about individual cells and their dynamics are lost, or on fluorescent reporters or dyes, 445 
which are indirect readouts and can be difficult to engineer or limited in their specificity. SRS 446 
imaging has the potential to dramatically improve this process by providing key insights into 447 
chemical production at the single-cell level. Thus, methods that were previously only accessible 448 
with single-cell readouts, such as directed evolution or cell-sorting approaches are in principle 449 
possible with SRS imaging. Further, the ability to track production changes over time can provide 450 
insight into the emergence of production heterogeneity and, ultimately, guide strategies to avoid 451 
low producers in the population. The landscape for strain engineering is expanding rapidly, with 452 
systems biology approaches to enzyme engineering and novel technologies for quantifying 453 
production offering great promise for improving designs. In this study we focus on fatty acid 454 
synthesis, which is an important pathway that can be engineered to produce a diversity of valuable 455 
chemicals. Development of this pathway towards near theoretical yields will be important to 456 
replace many industrial chemicals with sustainable bio-based alternatives (5). 457 
 458 
Here, we examined free fatty acid production strains of E. coli using SRS and demonstrated that 459 
hyperspectral imaging allows for image decomposition into major chemical components, with the 460 
ability to distinguish cells from their chemical product. By incorporating additional analysis, we 461 
also introduce an approach that can estimate chain length distribution and unsaturation degree, 462 
increasing the amount of information that can be extracted from SRS hyperspectral images. These 463 
advances can enable a metabolic engineer to examine fatty acid production strains using SRS 464 
imaging while maintaining important chemical specificity data. The ability to gauge enzyme 465 
specificity through imaging opens the possibility of screening mutant enzyme libraries in a high 466 
throughput fashion to select for optimal free fatty acid profiles. 467 
 468 
Visualizing chemical production at the single-cell level reveals important information that would 469 
otherwise be obscured by bulk culture quantification methods. We demonstrate this by examining 470 
production heterogeneity among different engineered strains, observing both intra- and inter-471 
colony differences in production within microcolonies. These results provoke fundamental 472 
questions about the mechanisms leading to cellular heterogeneity, and also suggest that 473 
engineering strategies that eliminate low-producers could improve yields. For example, it may be 474 
possible to gradually enhance the overall production levels of a strain of engineered E. coli through 475 
multiple cycles of growth and dilution, with a step that removes low-producers at the end of each 476 
cycle. 477 
 478 
Furthermore, we established parameters that allow us to extend SRS imaging for longitudinal 479 
studies in live cells. Unlike previous phototoxicity studies focusing on acute responses like 480 
membrane blebbing (64, 65), we directly observe long-term cell functions including cell 481 
replication, free fatty acid synthesis, and the absence of induction of stress response. SRS imaging 482 
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has been used to probe metabolic heterogeneity in live cells previously in an elegant study by 483 
Wakisaka et al. (26), and we extend these results in several critical ways. In our experiments we 484 
track the same cells over multiple hours, rather than sampling new cells from liquid culture at each 485 
timepoint. In addition, we use E. coli for our study while Wakisaka et al. use the alga Euglena 486 
gracilis. E. coli are highly amenable to metabolic engineering, but their small size makes both 487 
imaging and analysis more challenging (E. coli are 1-2 μm in length while E. gracillis are 35-50 488 
μm (66)). Thus, our results significantly extend prior findings, offering longitudinal imaging of a 489 
highly relevant engineered species. We envision production tracking at the single-cell level will 490 
be valuable for metabolic engineering studies by establishing how and when heterogeneity 491 
emerges. To quantify single-cell properties such as growth rate, however, higher resolution 492 
longitudinal imaging is needed to achieve time lapse data that can be processed with segmentation 493 
algorithms. Further development focused on mitigating phototoxicity without decreasing 494 
resolution may be able to overcome this challenge in the future.  495 
 496 
As we demonstrate, a hybrid approach using phase contrast imaging and endpoint SRS microscopy 497 
allows for fundamental questions to be examined, such as the growth-production tradeoff. 498 
Interestingly, in the AbTE*-FV50 strain that we studied using this hybrid approach, we observed 499 
no tradeoff between growth and production. This information, along with insights into the 500 
composition of the high fatty acid cells, can lead to novel hypotheses of the underlying cause of 501 
intracolony heterogeneity in this strain. These results underpin the utility of examining single-cell 502 
characteristics to increase performance of a given strain. For example, recent approaches to 503 
increase bioproduction involving dynamic regulation, either through transcriptional feedback 504 
circuits or optogenetic regulation, show promise to increase strain efficiency (67, 68). Imaging 505 
single-cell production dynamics in these strains could increase our understanding of how feedback 506 
systems can be used in the context of metabolic engineering. Together with synthetic biology 507 
methods, our system has the potential to answer fundamental questions relating to the production 508 
of biosynthetic targets at the single-cell level. Further, because SRS imaging does not require 509 
engineered biosensors, it has the potential to serve as a widely useful platform to boost the pace of 510 
strain engineering for a broad range of metabolites. 511 
 512 
Moving forward, it will be important to understanding the connection between production at the 513 
single-cell level and bulk culture output. Imaging fields of view sampled from bulk culture can 514 
potentially lead to biased overall titer prediction, especially if the product is not soluble in water. 515 
Alternatively, studying microcolonies grown on agarose pads is ideal for imaging but not 516 
necessarily predictive of bulk culture behaviors. For example, nutrient mixing, population 517 
selection, and secretion may differ between the two-dimensional growth conditions and a well-518 
stirred liquid culture. Additionally, SRS has sensitivity limits significantly higher than mass 519 
spectrometry (69) and thus requires a product to be produced at sufficient quantities before SRS 520 
can be used to guide further engineering. Given these limitations, we envision that SRS studies 521 
will be most useful for strain optimization rather than enzyme or pathway discovery.  522 
 523 
SRS imaging in different spectral regions, such as the fingerprint region (400-1800 cm-1), can be 524 
adapted to study strains producing non-fatty acid derived chemicals of interest, such as terpenes, 525 
to expand the scope of SRS imaging in metabolic engineering (29). In addition, because the 526 
approach is label-free it does not require biosensors with fluorescent reporter readouts, making it 527 
amenable to quantification of production in organisms that are recalcitrant to genetic modification. 528 
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Moreover, instrumentation advancements can enable SRS guided single-cell screening, such as 529 
SRS-based cell sorting, which has been demonstrated recently for cell phenotyping (70). The 530 
throughput we achieve in this study is limited by spectral tuning of the motorized delay stage and 531 
time spent manually focusing on samples. In future work, applying the ultrafast spectral tuning 532 
SRS system from Lin et al. (29), along with integrated autofocusing could drastically increase 533 
throughput. Much like the utility of fluorescence activated cell sorting in synthetic biology 534 
applications, we envision that SRS-based cell sorting could increase the throughput of strain 535 
screening and enable directed evolution based on chemical production. This work acts as a jumping 536 
off point for SRS imaging in metabolic engineering to aid in the development of more efficient 537 
strains for renewable chemical production. 538 
 539 
 540 
 541 
 542 
Methods 543 
 544 
Bacterial strains and plasmids 545 
Plasmid and strain information are listed in Tables 1 and 2. The pBbA5c-‘tesA-vhb50-8fadR 546 
plasmid was a gift from Dr. Fuzhong Zhang. The BW25113 ΔfadE strain is from the Keio 547 
collection (71), and we used the FLP recombination protocol from Datsenko and Wanner to cure 548 
the kanR cassette from the genome (72). We used golden gate cloning (73) to create the pBbA5c-549 
vhb50-8fadR plasmid by deleting the coding sequence of ‘tesA from pBbA5c-‘tesA-vhb50-8fadR. 550 
The pBbA5c-CpFatB1.2-M4-287 plasmid was also constructed using golden gate cloning, with 551 
the pBbA5c backbone amplified from the BglBrick plasmid library (74) and the coding sequence 552 
of CpFatB1.2-M4-287 derived from Hernández Lozada et al. (46) and synthetized by Twist 553 
Biosciences (South San Francisco, CA). pSS200 was a gift from Dr. Pamela Peralta-Yahya. pBbE-554 
ibpAB-mRFP1 was constructed using the pBbE5k BglBrick backbone (74) with the promoter 555 
region of the genomic ibpAB operon as in Ceroni et al (53). We constructed pBbA5c-‘tesA-sfGFP-556 
vhb50-8fadR and pSS200-sfGFP using golden gate cloning with pBbA5c-‘tesA-vhb50-8fadR and 557 
pSS200 as backbones, respectively, along with an sfGFP coding sequence containing a flexible 558 
GS linker to insert in frame with each thioesterase.  559 
 560 
Growth and induction of fatty acid production strains 561 
For fatty acid production experiments, pre-cultures were grown overnight in LB media and used 562 
to inoculate 3 mL M9 minimal media (M9 salts, 2mM MgSO4, 100 µM CaCl2) with 2% glucose 563 
and grown at 37°C with 200 rpm shaking. Antibiotics were added to the media where necessary 564 
for plasmid maintenance according to resistances in Table 1 (100 µg/ml for carbenicillin and 25 565 
µg/ml for chloramphenicol). The cultures were allowed to grow until approximately OD600 = 0.6 566 
before thioesterase expression was induced with IPTG. Induction levels were 500 µM for ‘TesA-567 
FV50 and 50 µM for AbTE*, AbTE*-FV50, and CpFatB1*. For imaging from liquid cultures, cells 568 
were grown for 24 hours after IPTG induction and then 3 µL of sample was taken for imaging. 569 
Samples from liquid culture were placed on 3% agarose pads (Promega) containing M9 minimal 570 
media and sandwiched between glass coverslips to immobilize the cells for imaging. Samples from 571 
liquid culture were allowed to dry on the agarose pads for ~15 minutes prior to imaging. For 572 
longitudinal imaging, production heterogeneity experiments, and phase contrast imaging, once 573 
cells reached OD600 = 0.6 in liquid culture, the sample was placed on a 3% low melting point 574 
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agarose pad containing M9 minimal media with 2% glucose, IPTG as specified above, and 575 
appropriate antibiotics for plasmid maintenance, as detailed in Table 1. Microcolonies were 576 
imaged after 18 hours of growth on the agarose pads at 31°C. 577 
 578 
For the chain length distribution prediction, cultures were induced with IPTG in liquid cultures for 579 
24 hours. At the 24 hour timepoint, we took 3 µL of sample for imaging and another sample of the 580 
culture was taken for GC-MS analysis to allow direct comparison of the same culture. Five fields 581 
of view were imaged for each culture. 582 
 583 
Fatty acid derivatization and quantification with GC-MS 584 
Samples for GC-MS quantification were taken at 24 hours post IPTG induction. 400 μL of 585 
vortexed culture was taken for fatty acid extraction and derivatization into fatty acid methyl esters 586 
as described by Sarria et al. (37) with the following minor modifications: Internal standards of 587 
nonanoic acid (C9) and pentadecanoic acid (C15) were added to the 400 μL sample at final 588 
concentrations of 88.8 mg/L each and vortexed for 5 sec. The following was then added to the 589 
sample for fatty acid extraction and vortexed for 30 sec: 50 μL 10% NaCl, 50 μL glacial acetic 590 
acid, and 200 μL ethyl acetate. The sample was then centrifuged at 12,000 g for 10 mins. After 591 
centrifugation, 100 μL of the ethyl acetate layer was mixed with 900 μL of a 30:1 mixture of 592 
methanol:HCl (12N) in a 2 mL microcentrifuge tube. The solution was vortexed for 30 sec 593 
followed by an incubation at 50°C for 60 mins for methyl ester derivatization. Once cooled to 594 
room temperature, 500 μL hexanes and 500 μL water were added to the 2 mL microcentrifuge 595 
tube, vortexed for 10 sec, and allowed to settle. 250 μL of the hexane layer was mixed with 250 596 
μL ethyl acetate in a GC-MS vial for quantification. 597 
 598 
The samples were analyzed with an Agilent 6890N/Agilent 5973 MS detector using a DB-5MS 599 
column. The inlet temperature was set to 300°C with flow at 4 mL/min. The oven heating program 600 
was initially set to 70°C for 1 min, followed by a ramp to 290°C at 30°C/min, and a final hold at 601 
290°C for 1 min. GLC-20 and GLC-30 FAME standard mixes (Sigma) were tested using this 602 
protocol to ensure proper capture of all chain lengths and to gauge retention times. Internal 603 
standards were used for quantification, with chain lengths C8-C12 quantified with the nonanoic 604 
acid internal standard and C14-C18 quantified with the pentadecanoic internal standard. 605 
 606 
Optical setup 607 
The SRS setup was driven by an 80 MHz femtosecond laser (Insight Deepsee+, Spectra Physics, 608 
USA) with two synchronized outputs. One output was fixed at 1040 nm with a pulse duration of 609 
~150 fs, while the other was tunable from 680 - 1300 nm with ~120 fs pulse width. We used the 610 
1040 nm beam as the Stokes and was modulated by an acousto-optical modulator (522c, Isomet, 611 
USA) at 2.5 MHz. We set the tunable output to 798 nm to excite the C-H region and spatially 612 
combined it with the Stokes by a dichroic mirror. Six 15 cm SF-57 glass rods were used to linearly 613 
chirp the femtosecond pulses to ~ 2 ps. Five of the rods were placed on the common path while 614 
one was placed on the Stokes path to parallelize the degree of chirping considering its longer 615 
wavelength. A motorized delay stage was used to scan the temporal delay between two pulses to 616 
tune the excitation frequency. The combined beams were sent to a pair of two-dimensional galvo 617 
scanners (GVSM002, Thorlabs, USA) to perform laser scanning imaging. We used a 40X oil-618 
immersion objective (RMS40X-PFO, Olympus, Japan) to focus the laser onto the sample. Powers 619 
on the sample were 15 mW for pump and 75 mW (or 25 mW for longitudinal imaging) for Stokes. 620 
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A home-built resonant amplifier photodiode collects and amplifies the stimulated Raman loss 621 
signal at the modulation frequency. We used a lock-in amplifier (UHFLI, Zurich Instruments, 622 
Switzerland) to extract the signal and send it to a data collection card (PCIe-6363, National 623 
Instruments, USA). We note that all elements described here are commercially available with the 624 
exception of the photodiode, which has been previously reported (75). Custom LabView (National 625 
Instruments, USA) software was used to synchronize the galvo scan with the delay line scan to 626 
obtain a hyperspectral SRS image stack in a frame-by-frame manner. 627 
 628 
Chemical map processing with LASSO 629 
To obtain concentration maps for chemicals, we perform linear unmixing on the raw hyperspectral 630 
image stack. Assuming the number of pure components as 𝐾 and the dimensions of a hyperspectral 631 
image as 𝑁! , 𝑁" , 𝑁#, the unmixing model can be written as: 632 
 𝐷 = 𝐶𝑆 + 𝐸, (1) 

where 𝐷 ∈ ℝ$!$"×$# is the raw data reshaped as a two dimensional matrix in raster order, 𝐶 ∈633 
ℝ$!$"×&  is the collection of concentration maps, 𝑆 ∈ ℝ&×$#  contains SRS spectra of all the 634 
components, while 𝐸  is the residual term with error and noise. Given the prior knowledge of 635 
spectra for all the pure components, the task is reduced to generating chemical maps 𝐶 via least 636 
square fitting. To avoid crosstalk between spectrally overlapped components, we add a 𝐿1 norm 637 
sparsity constraint by observing that at each spatial position, a few components dominate the 638 
contribution. The solution for 𝐶 is found in a pixel-by-pixel manner by solving for the following 639 
optimization problem known as the least absolute shrinkage and selection operator (LASSO): 640 
 𝐶.' = argmin

($
{
1
2	
‖𝐷(𝑖, : ) − 𝐶'𝑆‖) + 𝛽‖𝐶'‖*}		, 

(2) 

where 𝑖  represents a specific pixel in the hyperspectral image, 𝐶.'  stands for the estimated 641 
concentrations for all components at pixel 𝑖, and 𝛽 is a hyperparameter controlling the level of 𝐿1 642 
norm regularization at each pixel.  643 
 644 
For each imaging experiment, we measured spectra of pure chemical standards for analysis. 645 
Specifically, we input the spectra from the following pure components to perform linear unmixing: 646 
We use BSA as the protein standard, palmitic acid (C16:0) and capric acid (C10:0) as 647 
representative saturated fatty acids, and palmitoleic acid (C16:1) as an unsaturated fatty acid 648 
standard. All standards were sourced from Sigma Aldrich, USA. 649 
 650 
Chain length and unsaturation prediction 651 
To predict chain length distribution, we first processed images with linear unmixing as described 652 
above. However, this analysis outputs two-dimensional chemical maps whereas a three-653 
dimensional hyperspectral image is needed for chain length prediction. We created a hyperspectral, 654 
saturated fatty acid map by subtracting the protein and unsaturated fatty acid components from the 655 
original background-subtracted hyperspectral image (Fig. S5). We then calculated the area under 656 
the curve ratio of CH2 to CH3 for each pixel, using 2832 to 2888 nm for CH2 and 2909 to 2967 nm 657 
for CH3. 658 
 659 
We used the linear relationship of ratio to chain length produced from standards (C6-C20, Sigma 660 
Aldrich, USA) to calculate a predicted chain length for each pixel. This prediction was then 661 
multiplied by a concentration weighting factor that corresponds to the SRS spectral summation at 662 
the same pixel. Thus, if the raw SRS signal from a region is low then its weight in the overall 663 
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prediction is also low relative to pixels with strong SRS signal. All pixels’ in a field of view 664 
concentration-weighted chain lengths were compiled to create the fatty acid chain length 665 
distribution. To calculate the unsaturation ratio, the sum of the C16:1 chemical map generated 666 
through linear unmixing was divided by the sum of the hyperspectral saturated chemical map. For 667 
the tracking of fatty acids production and composition dynamics (Fig. 4e-f, Fig. S12, Fig. S13), 668 
we manually segmented significant fatty acid droplets using the fatty acid concentration map in 669 
the last time stamp. Each droplet was manually traced and segmented frame-by-frame in all earlier 670 
time stamps until no fatty acid was found (Movies S5-6). 671 
 672 
Single cell segmentation 673 
Segmentation of single cells within SRS images was implemented in two steps. The protein 674 
segmentation map was first sent to CellProfiler to generate an initial segmentation (76). A 675 
customized pipeline was used for the analysis, including illumination correction, background 676 
subtraction, and edge enhancements based on the Laplacian of the Gaussian. Then a custom Matlab 677 
program was used to manually correct errors in the automated segmentation analysis using the raw 678 
SRS and protein chemical maps as a guide. When SRS images are segmented, we normalize the 679 
fatty acid channel by cell area instead of the protein channel. This normalization more accurately 680 
represents the single cell production, whereas the protein channel normalization at the microcolony 681 
level accounts for cells growing on top of each other. Since the primary source of heterogeneity in 682 
the AbTE*-FV50 is at the single-cell level, we utilize the fatty acid intensity normalized to cell 683 
area metric. Alternatively, heterogeneity seen in the ‘TesA-FV50 strain is at the microcolony level 684 
and we use the fatty acid intensity normalized to protein intensity to represent microcolony level 685 
production. 686 
 687 
Segmentation and tracking of phase contrast images was performed using the DeLTA 2.0 pipeline 688 
(62). Segmentation errors were corrected manually prior to downstream analysis. We calculated 689 
growth rate of single cells using the logarithmic derivative of cell length with the following 690 
formula: 691 

µ+ =	
1
2Δt 𝑙𝑛

𝐿+,*
𝐿+-*

 692 

Where µ is growth rate, k is the current frame, Dt is the time between frames, and L is cell length. 693 
 694 
Phase contrast imaging 695 
Cells were imaged with a Nikon Ti-E microscope using a 100x objective with phase contrast 696 
imaging. Images were collected every 20 minutes with the microscopy chamber held at 31°C.  697 
Production strains were grown on agarose pads containing M9 minimal media as described above 698 
for SRS imaging. After 18 hours of growth, the position of the tracked microcolony was recorded 699 
and the slide was moved to the SRS microscope for endpoint hyperspectral imaging. 700 
 701 
Stress responsive reporter strain 702 
Cells containing the stress reporter plasmid pBbE-ibpAB-mRFP1 were grown on agarose pads. 703 
The cells were allowed to recover on the agarose pads for 3 hours at 31°C prior to SRS exposure. 704 
After recovery, a field of view on the pad containing several microcolonies was subject to SRS 705 
scanning at various step sizes (150 nm or 230 nm) with power held at 25mW for the Stokes laser 706 
and 15mW for the pump laser. Red fluorescent protein (RFP) images were taken of the scanned 707 
field of view and a nearby, un-scanned field of view every 30 minutes. Since the RFP is 708 
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photobleached from the SRS scan, the change in RFP of each microcolony was calculated for each 709 
condition. To account for focus differences between fluorescent images at different time points, 710 
the scanned field of view was normalized to the RFP of the nearby, un-scanned microcolonies. 711 
 712 
 713 
Acknowledgements 714 
This work was supported by the Office of Science (BER) at the U.S. Department of Energy (DE-715 
SC0019387 to MJD, JXC, WWW), the National Science Foundation (1804096 to MJD), and NIH 716 
R35 GM136223 to JXC. We thank Dr. Normal Lee and the Chemical Instrumentation Center for 717 
assistance with GC-MS experiments. Dr. Joshua Finkelstein provided valuable input on the 718 
manuscript. 719 
 720 
 721 
Author Contributions 722 
N.T. and H.L. performed experiments and conducted data analysis. M.J.D., J.X.C., and W.W.W. 723 
provided overall guidance on the project. N.T. was responsible for strain construction, production 724 
quantification, and sample preparation. H.L. performed SRS imaging.  J.B.L. performed pilot 725 
experiments with a production strain. O.M.O. helped with single-cell segmentation and tracking 726 
of phase contrast imaging experiments. D.B. helped to develop the GC-MS protocol and quantified 727 
strain production. N.T., H.L., and M.J.D. wrote the manuscript with input from J.B.L., W.W.W., 728 
and J.X.C. 729 
 730 
Competing Interests 731 
The authors declare no competing interests. 732 
 733 
Data Availability  734 
The datasets generated during and/or analyzed during the current study are available from the 735 
corresponding author on reasonable request. 736 
 737 
Code Availability 738 
The code for spectral analyses used in this study is available from the corresponding author on 739 
reasonable request. 740 
 741 
 742 
  743 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2021.07.26.453865doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453865


 18 

Figures 744 
 745 

 746 
Figure 1. SRS imaging of E. coli production strains shows single-cell free fatty acid levels. (a) 747 
Schematic of the optical setup for SRS imaging to produce hyperspectral images using a Stokes 748 
and pump laser focused on a live sample. Hyperspectral SRS images contain three-dimensional 749 
data: x and y coordinates and wavenumber, which provides spectral information. Longitudinal 750 
SRS imaging adds a fourth dimension, time. (b) Schematic of free fatty acid production in E. coli. 751 
Expression of a cytosolic thioesterase results in free fatty acid accumulation through the type II 752 
fatty acid synthesis (FAS) pathway. Free fatty acids can vary in chain length and unsaturation, 753 
largely dictated by thioesterase specificity. (c) Representative raw SRS data from wild type E. coli 754 
and a strain overexpressing a cytosolic thioesterase (AbTE*). The summation of Raman spectra at 755 
each pixel is shown. Representative regions are outlined in red with the corresponding Raman 756 
spectra shown below the image. Fatty acids and proteins emit strong Raman signals in the C–H 757 
region (~2900 cm-1). Note that the y-axis scales are different; Fig. S3 shows them on the same 758 
scale. Scale bar, 10 µm. (d) Spectra at each pixel of the SRS image can be decomposed to generate 759 
chemical maps. Protein and fatty acid components are decomposed using spectral standards to 760 
produce chemical maps. Spectral standards shown in schematic are Bovine serum albumin (cyan), 761 
palmitoleic acid (C16:1, orange), capric acid (C10:0, red), and palmitic acid (C16:0, yellow). 762 
Protein and fatty acid chemical maps for both strains are shown. Scale bar, 10 µm. 763 
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Figure 2. Chain length distribution prediction from different thioesterase enzymes. (a) The 767 
ratio of internal CH2 and terminal CH3 bonds within a fatty acid is a function of chain length. 768 
Raman spectra of pure fatty acid standards are shown for different chain lengths. Specific spectral 769 
windows correspond to each bond. (b) The ratio of area under the curve (AUC) of CH2/CH3 bonds 770 
scales approximately linearly with chain length. Error bars show standard deviation of n = 6 771 
replicates. (c) Schematic of the type II fatty acid synthesis pathway in E. coli. Introduction of an 772 
acyl-ACP thioesterase pulls out elongating acyl-ACPs to form free fatty acids. Enzymatic 773 
specificity of the thioesterase largely determines the distribution of the fatty acid chain length 774 
profile. (d) Chain length distribution prediction with GC-MS compared to (e) SRS using CH2/CH3 775 
ratio analysis (n = 2 biological replicates using 5 fields of view for each replicate, errors bars show 776 
standard error). Strains shown are: CpFatB1*, AbTE*-FV50, and ‘TesA-FV50 (Table 2). (f) SRS 777 
spectra of saturated and unsaturated fatty acid standards (C16:0, C16:1). The unique peak at ~3000 778 
cm-1 allows for spectral decomposition of unsaturation content. (g) Comparing GC-MS 779 
unsaturation ratio of produced free fatty acids to SRS production based on spectral analysis. Error 780 
bars show standard deviation from n = 5 fields of view for each strain. (h) Spectral decomposition 781 
and chain length prediction of AbTE*-FV50 grown on an agarose pad. Scale bars, 10 µm. 782 
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 784 
 785 
Figure 3. Inter- and intra-colony heterogeneity profiles of production strains. (a) Production 786 
from replicate ‘TesA-FV50 microcolonies (n = 105) are compared to wild type microcolonies (n 787 
= 56), revealing inter-colony production heterogeneity. Each data point represents fatty acid 788 
production from a single microcolony. Protein and fatty acid chemical maps are shown for 789 
representative high and low producing microcolonies. Scale bar, 10 µm. (b) Representative protein 790 
and fatty acid chemical maps are shown for a microcolony of the production strain AbTE*-FV50. 791 
(c) Intra-colony production is quantified for single cells within the microcolony (n = 213) (Fig. 792 
S6). Each data point represents a single cells’ production. Scale bar, 10 µm. Box plot overlays 793 
contain median (white circle), first and third quartiles (gray box) and 1.5x interquartile range (thin 794 
gray line) for each distribution. 795 
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 798 
 799 
Figure 4. Longitudinal SRS imaging of production dynamics. Time-lapse images of (a) a 800 
‘TesA-FV50 high producing microcolony and (b) a ‘TesA-FV50 low producing microcolony 801 
under the same conditions, shown with the raw SRS images (spectral summation of the SRS image 802 
stack) and chemical maps corresponding to protein and fatty acid content. Scale bars, 10 µm. 803 
Quantification of (c) protein and (d) fatty acid over time from the microcolonies in (a-b and Fig. 804 
S11). (e) Saturated and (f) unsaturation content of individual droplets from the ‘TesA-FV50 high 805 
microcolony shown in (a). Droplets are numbered in order of their final fatty acid levels and 806 
numbers are consistent between (e) and (f).  807 
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 810 
Figure 5. Single cell growth-production relationship. (a) Time-lapse phase contrast imaging of 811 
an AbTE*-FV50 microcolony followed by (b) endpoint SRS imaging and spectral decomposition. 812 
(c) Single-cell lengths as a function of time within the microcolony shown in (a-b), with high 813 
producer trajectories highlighted in red (n = 68 cells). Sharp decreases in length mark a cell 814 
division. High producers are defined as the top 15% of producer cells (Fig. S16). (d) Growth rate 815 
comparisons of high and low producer trajectories at 8 and 16 hours (p = 0.0507 and p = 0.714, 816 
respectively; two tailed unpaired t-test). Growth rate is calculated from cell length data in (c) (see 817 
methods). (e) Saturated chain length prediction of high producer cells. (f) Unsaturation ratio 818 
(unsaturated/saturated) of high producer cells. 819 
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Tables 821 
 822 
Table 1. List of plasmids used in this study. 823 
 824 
Plasmid Origin Overexpressed operon Resistance Reference 
pSS200 pMB1 Ptrc-Abte:G17R/A165R AmpR Sarria et al. 

(37) 
pBbA5c-‘tesA-
vhb50-8fadR 

p15a PlacUV5-‘tesA-vhb50, PBAD-
fadR 

CmR Liu et al. (47) 

pBbA5c-vhb50-
8fadR 

p15a PlacUV5-vhb50, PBAD-fadR CmR This study 

pBbA5c-
CpFatB1.2-M4-
287 

p15a PlacUV5-CpfatB1.2-M4-287 CmR This study, 
mutant enzyme 
from 
Hernandez 
Lozada et al. 
(46) 

pBbA5c-‘tesA-
sfGFP-vhb50-
8fadR 

p15a PlacUV5-‘tesA-sfGFP-
vhb50, PBAD-fadR 

CmR This study 

pSS200-sfGFP pMB1 Ptrc-Abte:G17R/A165R-
sfGFP 

AmpR This study 

pBbE-ibpAB-k-
mRFP1 

ColE1 PibpAB-mRFP1 KanR This study, 
based on 
promoter from 
Ceroni et al. 
(53) 

 825 
Table 2. List of E. coli strains used in this study. 826 
 827 
Strain Relevant genotype Reference 
BW25113 (wild 
type) 

F- Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ- rph-
1 Δ(rhaD-rhaB)568 hsdR514 

Baba et al. (71) 

BW25113 ΔfadE E. coli BW25113 ΔfadE, cured from Keio 
collection 

Baba et al. (71) 

MG1655 F-, λ-, rph-1 Blattner et al. (77)  
AbTE* E. coli MG1655; pSS200 Sarria et al. (37) 
‘TesA-FV50 E. coli BW25113 ΔfadE; pBbA5c-‘tesA-vhb50-

8fadR 
Liu et al. (47) 

AbTE*-FV50 E. coli MG1655; pBbA5c-vhb50-8fadR, pSS200 This study 
CpFatB1* E. coli MG1655; pBbA5c-CpfatB1.2-M4-287 This study 
‘TesA-FV50-
sfGFP 

E. coli BW25113 ΔfadE; pBbA5c-‘tesA-sfGFP-
vhb50-8fadR 

This study 

AbTE*-sfGFP-
FV50 

E. coli MG1655; pBbA5c-vhb50-8fadR, 
pSS200-sfGFP 

This study 
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SUPPLEMENTARY INFORMATION 1010 
 1011 
Supplementary Figures 1012 
 1013 
 1014 
 1015 
 1016 
 1017 

 1018 
 1019 

Figure S1. Hyperspectral SRS setup. (a) Concept of hyperspectral SRS using spectral focusing. 1020 
The pump and Stokes lasers are linearly chirped by high dispersion glass rods to temporally 1021 
separate the spectral components. Each temporal delay between the two pulses corresponds to a 1022 
Raman vibrational mode. (b) Optical setup. AOM, acousto-optic modulator; MS, motorized stage; 1023 
DM, dichroic mirror; GM, galvo mirrors; O, objective; C, condenser; F, filter; PD, photodiode; 1024 
LIA, lock-in amplifier.  1025 
 1026 
  1027 
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 1028 
 1029 
 1030 

 1031 
 1032 

Figure S2. SRS spectra of pure standards used to analyze hyperspectral images to produce 1033 
chemical maps. (BSA: bovine serum albumin, C10:0: decanoic acid, C16:0: palmitic acid, C16:1: 1034 
palmitoleic acid). 1035 
 1036 
 1037 
 1038 
 1039 
 1040 
 1041 
 1042 

 1043 
 1044 

Figure S3. Raw SRS images shown in Fig. 1c of wild type and a strain overexpressing a cytosolic 1045 
thioesterase (AbTE*), but with both images scaled with the same color axis for direct comparison. 1046 
  1047 
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 1048 
 1049 

 1050 
Figure S4. Fatty acid production quantification for strains in this study. GC-MS quantified fatty 1051 
acid production data for each strain. Cells were grown 24 hours post thioesterase induction in 1052 
liquid culture. For chain length prediction, these exact cultures were taken for SRS imaging at the 1053 
same timepoint.   1054 
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 1055 

 1056 
 1057 
Figure S5. Analysis workflow for chain length prediction from hyperspectral SRS images. (a) 1058 
Raw SRS images are first background subtracted. (b) Background subtracted images are unmixed 1059 
using chemical standards. Protein, BSA; unsaturated fatty acid, C16:1; medium chain fatty acid, 1060 
C10; and long chain fatty acid, C16. C10 and C16 maps are used to represent a mixture of saturated 1061 
fatty acids. (c) Protein and unsaturated fatty acid maps are multiplied by their respective standard 1062 
spectra and subtracted from the background-subtracted hyperspectral image to produce a three-1063 
dimensional saturated fatty acid map. (d) Ratio analysis is performed on each pixel to calculate 1064 
chain length and weighted by raw intensity to predict chain length distribution of the field of view. 1065 
  1066 
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 1067 

 1068 
Figure S6. Single cell segmentation of a microcolony. (a) Raw SRS images are used to segment 1069 
microcolonies to perform single cell analysis shown in Fig. 3c. (b) Segmentation of microcolony 1070 
in (a). (c) Segmentation of the top 25 highest producing cells overlaid on the fatty acid map of the 1071 
microcolony.  1072 
 1073 
 1074 
 1075 

 1076 
 1077 

Figure S7. Intra-colony heterogeneity of the AbTE* strain. (a) Three additional fields of view 1078 
(FOV) of the AbTE*-FV50 strain shown in Fig. 3b. Raw SRS, protein, and fatty acid chemical 1079 
maps are shown for all. Scale bars, 10 µm. 1080 
 1081 

 1082 
  1083 
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 1084 

 1085 
 1086 

Figure S8. Testing photodamage of live E. coli cells. (a) Wide-field transmission image of E. coli 1087 
cells at the start of the cell incubation (t = 0 hr). (b) Hyperspectral SRS image of the region 1088 
highlighted with a yellow rectangle in (a). (c) Wide-field transmission image of the same field of 1089 
view after incubation (t = 16 hr). (d) Hyperspectral SRS images of the previously scanned region 1090 
(yellow rectangle in (c)) and an adjacent region without previous SRS laser exposure (blue 1091 
rectangle in (c)). Scale bars, 10 µm. 1092 
 1093 
 1094 

 1095 
 1096 
Figure S9. Optimized SRS laser powers enable live cell imaging of E. coli. Wide-field 1097 
transmission image of E. coli, with raw hyperspectral SRS images of the same region for the t = 3 1098 
and 5 hr timepoints. Spectral summation is shown. Scale bars, 10 µm. 1099 
 1100 
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 1102 
Figure S10. Stress response of longitudinal SRS imaging conditions. (a) Schematic of stress 1103 
reporter, PibpAB, driving expression of mRFP1. (b) Fluorescent response of cells containing the 1104 
reporter after SRS exposure. Low power SRS (15mW pump and 25 mW Stokes) was tested using 1105 
steps sizes of 150nm and 230nm. P-values compare 150nm step size to no laser exposure (n = 9; 1106 
two tailed unpaired t-test). Error bars show standard error of the mean. 1107 
 1108 
 1109 
 1110 

 1111 
Figure S11. Time-lapse images of a wild type control strain, shown with the raw SRS images 1112 
(spectral summation of the SRS image stack) and chemical maps corresponding to protein and 1113 
fatty acid content. 1114 
  1115 
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 1116 

 1117 
Figure S12. Time-lapse images of fatty acid production in the AbTE*-FV50 strain. (a) Raw SRS 1118 
images, protein, and fatty acid chemical maps are shown. Time values represent time grown on 1119 
the agarose pad after IPTG induction. Scale bars, 10 µm. (b) Saturated and (c) unsaturated content 1120 
of high producer single cells from the time-lapse images in (a). 1121 
  1122 
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 1123 
 1124 
Figure S13. (a) Longitudinal chain length predictions of droplets from the ‘TesA-FV50 high 1125 
microcolony from Fig. 4a. (b) Longitudinal chain length predictions of the large droplet (ribbon 1126 
#1) and high producing cells (ribbons #2-21) in the AbTE*-FV50 microcolony from Fig. S12. 1127 
  1128 
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 1129 
Figure S14. (a) GC-MS quantification of fatty acid production and (b) growth of AbTE*-FV50 1130 
at varying IPTG induction levels (n = 3). Error bars, standard deviation.  1131 
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 1132 
 1133 

 1134 
Figure S15. (a-b) Endpoint SRS imaging and spectral decomposition of AbTE*-FV50 1135 
microcolonies tracked with time-lapse phase contrast imaging. (c-d) Single-cell lengths of 1136 
individual cells in (a-b), with high producer trajectories (top 15%) highlighted in red. 1137 
 1138 
 1139 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2021.07.26.453865doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453865


 40 

 1140 
Figure S16. Endpoint fatty acid distribution of the AbTE*-FV50 microcolony in Fig. 5. The red 1141 
line indicates the threshold set to define high producer cells.   1142 
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Supplementary Movies 1143 
 1144 
Movie S1. Time-lapse wide-field transmission images of the wild type strain during the live cell 1145 
SRS imaging shown in Fig. 3c. The white box indicates the SRS imaging region. 1146 
 1147 
Movie S2. Time-lapse phase contrast images of the AbTE*-FV50 microcolony from Fig. 5. 1148 
 1149 
Movie S3.  Time-lapse phase contrast images of the AbTE*-FV50 microcolony from Fig. S15a. 1150 
 1151 
Movie S4. Time-lapse phase contrast images of the AbTE*-FV50 microcolony from Fig. S15b. 1152 
 1153 
Movie S5. Manually segmented droplets of the ‘TesA-FV50 strain used for compositional tracking 1154 
in Fig. 4e-f and Fig. S13a. 1155 
 1156 
Movie S6. Manually segmented droplets of the AbTE*-FV50 strain used for compositional 1157 
tracking in Fig. S12b-c and Fig. S13b. 1158 
 1159 
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