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Abstract 

 The Adolescent Brain Cognitive Development (ABCD) Study is a longitudinal 

neuroimaging study of unprecedented scale that is in the process of following over 11,000 youth 

from middle childhood though age 20. However, a design feature of the study's stop-signal task 

violates "context independence", an assumption critical to current non-parametric methods for 

estimating stop-signal reaction time (SSRT), a key measure of inhibitory ability in the study. 

This has led some experts to call for the task to be changed and for previously collected data to 

be used with caution. We present a formal cognitive process model, the BEESTS-ABCD model, 

that provides a mechanistic explanation for the impact of this design feature, describes key 

behavioral trends in the ABCD data, and allows biases in SSRT estimates resulting from context 

independence violations to be quantified. We use the model to demonstrate that, although non-

parametric SSRT estimates generally preserve the rank ordering of participants’ SSRT values, 

failing to account for context independence violations can lead to erroneous inferences in several 

realistic scenarios. Nonetheless, as the BEESTS-ABCD model can be used to accurately recover 

estimates of SSRT and other mechanistic parameters of interest from ABCD data, the impact of 

such violations can be effectively mitigated. 
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Introduction 

 Response inhibition, the ability to stop prepotent responses or actions that are no longer 

contextually appropriate, is thought to be a foundational component of self-control (Miyake et 

al., 2000; Ridderinkhof et al., 2004; Verbruggen et al., 2014) and has long been of key interest in 

research on multiple clinical conditions, including Attention-Deficit/Hyperactivity Disorder 

(ADHD) and problematic substance use (Boonstra et al., 2010; Gorenstein & Newman, 1980; 

Mahmood et al., 2013; Nigg, 2017; J. L. Smith et al., 2014). The stop-signal paradigm (Logan et 

al., 1984; Verbruggen & Logan, 2008), one of the most widely employed laboratory measures of 

response inhibition, probes this ability in the context of a two-choice decision task. On a 

minority of “stop” trials a visual or auditory “stop signal”, which indicates that participants must 

withhold their response on that trial, is presented after a variable delay following the onset of the 

choice stimulus (the “stop-signal delay” or SSD). Depending on both the SSD and the 

participant’s inhibitory ability, either inhibition fails and a choice response is made (a “signal 

response”) or the response is successfully withheld.  

An appealing feature of the stop-signal paradigm is that it was explicitly designed with a 

cognitive model in mind that can be leveraged to precisely measure inhibitory ability: the 

“independent race model” (Logan, 1994; Logan et al., 1984; Logan & Cowan, 1984). This model 

posits that, on stop trials, a “go” process triggered by the choice stimulus races a “stop” process 

triggered by the stop signal. When the stop process wins the race, the response is inhibited, 

whereas inhibition fails when the go process finishes first. By making only limited assumptions 

about the distributions of times to complete these processes (e.g., symmetry, or that the stop 

process takes a fixed time) and the effect of the stop signal (e.g., “context independence”; that 

the go process is the same regardless of whether or not there is a stop signal), the speed of the 
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latent stop process, or “stop-signal reaction time” (SSRT), can be estimated (Logan, 1994; 

Matzke et al., 2018). Such “non-parametric” SSRT estimates are used to measure individuals’ 

response inhibition ability across many neuroscientific and clinical research applications [e.g., 

(Aron & Poldrack, 2006; Lipszyc & Schachar, 2010; Nigg et al., 2006)]. 

Given this task’s popularity and the ability of SSRT to precisely index the integrity of 

response inhibition, it is not surprising that the task has been included in one of the most 

ambitious research efforts of our time: the Adolescent Brain Cognitive Development (ABCD) 

Study (Casey et al., 2018; Garavan et al., 2018). The ABCD study is a multi-site collaboration in 

the United States that has recruited a diverse a sample of over 11,000 9- and 10-year-old children 

and aims to follow them prospectively through at least age 20 to acquire a rich array of 

longitudinal data from neuroimaging, cognitive, personality, psychiatric and sociocultural 

domains. Although initially conceived with the goal of assessing the impact of substance use on 

adolescents’ brains (Volkow et al., 2018), ABCD has grown into an unprecedented 

interdisciplinary collaboration and open data source that is beginning to drive new insights in 

areas as diverse as network neuroscience (Marek et al., 2019; Sripada et al., 2019), child 

psychopathology (Clark et al., 2021; Funkhouser et al., 2020; Mennies et al., 2020), and 

bilingualism (Dick et al., 2019). As several lines of work now underscore the importance of 

large, population-based samples for bolstering the reproducibility of behavioral and 

neuroscientific research (Button et al., 2013; Etz & Vandekerckhove, 2016; Falk et al., 2013; 

Loken & Gelman, 2017; Marek et al., 2020; Poldrack & Gorgolewski, 2014; Szucs & Ioannidis, 

2020), the ABCD Study presents a critical opportunity for scientists to characterize the clinical 

and neural correlates of response inhibition and related neurocognitive functions. 
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 However, concerns have recently been raised that the design of the ABCD stop-signal 

task invalidates non-parametric SSRT estimates (Bissett et al., 2021). In the ABCD task, which 

is completed during functional magnetic resonance imaging (fMRI), children are presented right- 

or left-facing arrows and instructed to respond with the direction of the arrows via a button box. 

On stop trials (60 of 360 total trials), an upward-facing arrow, serving as a visual stop signal, 

replaces the choice stimulus at an SSD determined by a staircase algorithm: increasing or 

decreasing by 50ms depending, respectively, on whether or not the last inhibition was successful 

(Logan, 1994). Replacement limits the availability of the choice stimulus to the SSD duration. 

For example, when SSD = 0, the choice stimulus is never presented, so signal-respond choice 

accuracy is necessarily at chance. Choice accuracy increases with SSD to an asymptotic level at 

SSDs of approximately 0.3-0.4s (Bissett et al., 2021). In contrast, on “go” trials (choices without 

a stop signal) the presentation time of the choice stimulus is set to the shorter of 1s or the 

participant’s response, so the information necessary for accurate responding is equally present on 

every go trial. This constitutes a violation of “context independence”, as the go process is clearly 

not the same across go and stop trials. Crucially, violations of this assumption can bias non-

parametric estimates of SSRT, leading Bissett et al. (2021) to suggest that the ABCD stop-signal 

task be changed and that previously collected data be interpreted with caution. 

Although this design feature presents specific problems for SSRT estimation in the 

ABCD Study, it is important to note that the non-parametric approach is also unable to address a 

more general problem that potentially affects all stop-signal tasks: “trigger failure”, in which 

inattention prevents the stop signal from triggering the inhibitory process, precluding it from 

entering the race. Trigger failures have long been recognized as a possibility (Band et al., 2003; 

Logan, 1994), but their prevalence has only recently been determined using new, parametric 
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approaches. Such approaches use cognitive-process models to provide detailed descriptions of 

the latent processes that contribute to task performance and allow measurement of these 

processes through parameter estimation. Matzke and colleagues (Matzke, Love, et al., 2017) 

extended the Bayesian parametric estimation of stop-signal reaction time distributions (BEESTS) 

framework (Matzke et al., 2013) to estimate the probability of trigger failures. They showed that 

failing to account for trigger failures can significantly bias non-parametric SSRT. Subsequent 

work found that trigger failures largely accounted for poor stop-signal task performance in 

schizophrenia (Matzke, Hughes, et al., 2017) and ADHD (Weigard et al., 2019) that had 

previously been attributed to inhibitory deficits due to the bias in non-parametric SSRT 

estimates. Hence, trigger failure illustrates the key advantages of a parametric approach, 

grounded in cognitive-process modeling, for describing the array of factors that contribute to 

stop-signal task performance and allowing their distinct contributions to effects of interest to be 

precisely measured. 

Here we combine BEESTS with evidence accumulation modeling (Donkin & Brown, 

2018), one of the most widely applied and validated cognitive model classes, and leverage 

previous models of visual-masking effects on perceptual choice (Ratcliff & Rouder, 2000; P. L. 

Smith & Ratcliff, 2009; P. L. Smith & Sewell, 2013) to describe how replacement of the choice 

stimulus by the stop signal impacts performance on the ABCD task. We show that this new 

cognitive-process model (BEESTS-ABCD) provides an accurate description of key trends in 

ABCD stop trial data, including the SSD effect on signal-respond choice accuracy that is the 

hallmark of the context independence violation. We next use BEESTS-ABCD to demonstrate 

that this violation can, if unaccounted for, lead to consequential biases in non-parametric SSRT 

estimates. Crucially, we show that our model can overcome these measurement difficulties, 
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allowing existing data from the ABCD sample to be used to obtain unbiased estimates of SSRT 

(and other processes of interest) and allowing the same task design to continue to be used in 

future ABCD data collection, maintaining longitudinal comparability.  

The BEESTS-ABCD Model 

BEESTS models the times for each of the go and stop process runners to complete its 

race as an ex-Gaussian distribution, a form that provides an excellent descriptive account of 

response time (RT) distributions (Heathcote et al., 1991). It is the sum of a normal distribution 

(with mean, , and standard deviation, ) and an exponential distribution (with mean ), where 

the latter produces the positive skew characteristic of RT distributions. Parametric models such 

as BEESTS do not need to assume context independence in order to provide valid SSRT 

estimates when they are fit to only stop trial data (Matzke et al., 2021), but usually do so in order 

to leverage information provided by go trials to make estimation more efficient. Although 

estimating parameters from go and stop trials separately could, in principle, address context 

independence violations in ABCD, such estimates are unlikely to be sufficiently reliable because 

the design has relatively few stop trials. Fortunately, evidence accumulation processes can be 

incorporated into the BEESTS framework to provide a unified account of the ABCD choice task 

on go and stop trials, enabling reliable and valid estimation of both SSRT and trigger failures. 

There are a variety of different evidence accumulation models, including some 

compatible with a race-model framework  [e.g., (Brown & Heathcote, 2008; Tillman et al., 

2020)], but all assume choices are made by gradually collecting evidence for each option until a 

threshold (B) amount is obtained for a given option, triggering the corresponding response. RT is 

the sum of the time to reach threshold and non-decision time (t0), which is made up of the time to 

initially encode the stimulus into a form suitable for obtaining decision-relevant evidence and the 
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time to produce a motor response. For briefly presented visual stimuli that are followed by a 

mask, the encoding process is assumed to establish a representation in visual short-term memory 

that persists after the choice stimulus disappears. The strength of this representation, which 

determines the rate at which evidence accumulates (v), increases with presentation duration up to 

some asymptotic level (Ratcliff & Rouder, 2000; P. L. Smith & Ratcliff, 2009; P. L. Smith & 

Sewell, 2013).  

Evidence can be modeled as the sum of two parts, a discriminative component, which 

differentially favors the option that matches the stimulus over the option that mismatches the 

stimulus, and an urgency component, which favors each option equally and ensures that even 

very difficult choices produce a timely response (Mazurek et al., 2003; van Ravenzwaaij et al., 

2019). We assume that only urgency (with associated rate v0) is present when SSD = 0 and that 

the discriminative component gradually grows as SSD increases and the visual short-term 

memory representation strengthens. By assuming that asymptotic discrimination (likely achieved 

around 0.3-0.4s SSDs where choice accuracy is also asymptotic) and urgency are the same for go 

and stop trials, the model achieves efficient estimation by leveraging information obtained on the 

more common go trials to constrain estimates for stop trials. 

BEESTS-ABCD’s evidence accumulation component has the same independent-race 

architecture as BEESTS (Matzke et al., 2019), with one accumulator (“racer”) corresponding to 

each potential response. We estimate rates v+ and v- for accumulators that, respectively, match 

and mismatch the presented stimulus. Following a previously proposed stop-signal model (Logan 

et al., 2014), we assume the accumulators are single threshold diffusion processes, where an 

additive infinitesimal Gaussian noise causes the evidence total to fluctuate during accumulation 

(Tillman et al., 2020). In contrast to Logan et al. (2014), we do not make the same assumption 
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for the stop racer, as the resulting model is poorly identified and hence cannot be used for 

measurement purposes (Matzke et al., 2020).    

 
Figure 1. Key components of the BEESTS-ABCD model. (A) The “hybrid” modeling 

framework (Tanis et al., in preparation) that combines an evidence accumulation model of the 

“go” process with an ex-Gaussian model of “stop” process response times (RTs). Go process 

RTs result from a race between accumulators that gather noisy evidence for the choices matching 

and mismatching the stimulus (in this example, a right-facing arrow) at average rates of v+ and v-, 

respectively, until one accumulator crosses an upper response threshold. Stop process RTs are 

drawn from a Gaussian distribution specified by mean () and standard deviation () parameters 

and convolved with an exponential distribution with mean . (B) The model’s explanation for the 

impact of context independence violations on stop trials. Evidence signals for the matching and 

mismatching accumulators on stop trials of a given SSD are the sum of an urgency component 

that drives evidence accumulation for both choices equally and a discrimination component that 

favors the choice matching the presented stimulus. Urgency is determined by parameter v0 and is 

identical across all SSDs. The discrimination component is completely absent (equal to 0) at a 0s 

SSD, as the choice stimulus is not presented, but increases linearly at the same rate g for both 

matching and mismatching components until they reach the level of go trials. Therefore, the 

match and mismatch rates are identical on 0s SSD trials and gradually move apart from each 

other at longer SSDs until they become equal to their go trial levels. 
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Instead, we formed a hybrid of the model proposed by Logan et al. (2014) and the 

Matzke et al. (2019) BEESTS model by characterizing the finishing time of the stop racer with 

an ex-Gaussian distribution (Figure 1A). This avoids the cause of the estimation problems in 

Logan et al. (2014): having to estimate a non-decision time parameter for the stop racer that 

determines the finishing-time distribution’s lower bound1. This “hybrid” model can support 

accurate parameter estimation with practically achievable numbers of trials even in quite 

complex factorial designs (Tanis et al., in preparation). As illustrated in Figure 1B, we modeled 

the increase in discriminative information with longer presentation durations as linear increases 

and decreases, respectively, for matching and mismatching accumulators with the same absolute 

slope g, taking them both from v0 at SSD = 0 to their respective asymptotic values of v+ and v- at 

longer SSDs. 

In summary, BEESTS-ABCD has 11 parameters. Two accommodate the context-

independence violation: urgency (v0) and the rate of growth in discriminative perceptual 

information (g). The remainder are shared with the original hybrid model (Tanis et al., in 

preparation): asymptotic matching (v+) and mismatching (v-) rates, non-decision time (t0) and 

threshold (B) for the choice accumulators, the ex-Gaussian parameters for the stop runner (, , 

), the probability of trigger failure (ptf) and the probability of failing to respond to the go 

stimulus (“go failures”, pgf). Although relatively rare, go failures were included as, like trigger 

failures, they have been shown to bias estimates of inhibition if neglected (Matzke et al., 2019; 

Tannock et al., 1995).  

 
1 Given the ex-Gaussian can take on negative values we did, however, impose a fixed lower bound of 0.05s on the 

stop finishing-time distribution to avoid any possibility of implausible values: assuming bounds from 0-0.1s did not 

have any noticeable effect on our results. 
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Results 

In this section, we: 1) show that BEESTS-ABCD displays excellent fit to stop-signal task 

data from the ABCD Study; 2) provide examples illustrating how unaccounted for variation in 

the context-independence-violation parameters can confound inferences about inhibitory ability; 

and 3) demonstrate that BEESTS-ABCD can be effectively used to estimate SSRT and other 

parameters of interest with existing ABCD data. 

Application to ABCD Stop-Signal Task Data and Model Fit 

 We fit the BEESTS-ABCD model to data from a randomly selected subsample (n=600) 

of ABCD participants using Bayesian estimation. A subsample, rather than the full ABCD 

sample, was analyzed because Bayesian estimation is computationally expensive. Priors for 

parameter estimation were informed by posteriors from a Bayesian hierarchical model fit to an 

independent subset of 300 individuals from the same ABCD Study sites. Procedures for creation 

of the subsamples, performance exclusion criteria, and model estimation are detailed in Materials 

and Methods. 

Table 1 displays group average parameter estimates for the BEESTS-ABCD model. The 

6 go parameters indicate that go failures are rare (2.7%), and that the mean times for matching 

and mismatching go accumulators to finish (t0 + B/v+ and t0 + B/v-, respectively) are 0.57s and 

3.67s. Correct responses associated with the matching accumulator winning have a mean RT of 

0.55s, whereas error responses have a mean of 0.58s. In comparison, when there is no 

discriminative information (v0 only), the mean finishing time for the go race is slightly faster, at 

0.52s. The 3.7% trigger failure rate is on the low end of previous findings with non-clinical 

groups, indicating that participants were generally attentive to the task. The average SSRT 

estimated by the model is 0.268s, considerably slower than most previous BEESTS estimates for 
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relatively easy go tasks in older participants (Matzke, Hughes, et al., 2017; Skippen et al., 2019), 

but comparable to estimates from children of similar age (0.243s for healthy 8-12 year-olds: 

Weigard et al., 2019). 

 Table 1. Average BEESTS-ABCD model parameter estimates and model-based mean stop 

signal reaction time (SSRT) estimates for the 600-participant group and the 99% posterior 

credible intervals for these group averages. The tight credible intervals for all parameters reflect 

the large (600 person) sample size on which the group average is based. 

 

Parameter 

Name 

Parameter 

Definition 
Group 

Average 

Credible Interval 

0.50% 99.50% 

t0 Go non-decision time 0.137 0.134 0.138 

B Go evidence threshold 1.417 1.407 1.427 

v+ Go match rate 3.285 3.270 3.308 

v- Go mismatch rate 0.401 0.383 0.441 

v0 Go urgency  2.713 2.662 2.767 

g Perceptual growth rate 2.953  3.060 

 Stop ExGaussian normal mean 0.229  0.232 

 Stop ExGaussian normal SD 0.076  0.090 

 Stop ExGaussian exponential mean 0.030 0.028 0.034 

pgf Probability of go failure 0.027 0.026 0.028 

ptf Probability of trigger failure 0.037 0.031 0.041 

SSRT 
Mean stop signal reaction time 

(computed by simulation) 
0.268 0.265 0.276 

 

Figure 2A shows how SSD in the ABCD stop trial design affects choice processing on 

average, and for 20 randomly selected individuals. Matching (v+) and mismatching (v-) 

accumulator rates grow from being identical at 0s SSDs to being equivalent to their go trial 

levels at SSDs of between 0.3s and 0.4s, consistent with the SSD region where accuracy 

becomes asymptotic (Bissett et al., 2021). Posterior predictive plots (Gelman et al., 1996), which 

represent model fit by comparing a Bayesian model’s predictions with key trends in empirical 

data, indicate that the BEESTS-ABCD model provides an excellent description of the increase in 

empirical choice accuracy with SSD (Figure 2B). In contrast, a “go independence” model – 
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identical to the BEESTS-ABCD model except that the go process is context independent (i.e., 

rates do not change with SSD) – displays increasingly gross misfits to empirical accuracy as SSD 

decreases from .35s (Figure 2C). Therefore, BEESTS-ABCD’s perceptual growth process 

generates a pattern of context independence violations that can explain the hallmark effect of 

SSD on choice accuracy in ABCD data. 

 
Figure 2. Results of the BEESTS-ABCD model application to a subsample of 600 ABCD 

participants. (A) Empirical growth patterns of matching (green lines increasing from SSD = 0) 
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and mismatching (red lines decreasing from SSD = 0) “go” process accumulator rates by stop-

signal delay (SSD) for the sample average parameter estimates (thick lines) and for parameter 

estimates from 20 randomly drawn participants (thin, faint lines) to illustrate individual 

variability. (B) The model’s median predictions (red line) and 99% credible interval (CI) of 

predictions (red shading) for accuracy rates across SSDs, overlayed with empirical values (dots). 

(C) Median (blue line) and 99% CI (blue shading) of the corresponding accuracy predictions of a 

“go independence” model, which assumes that the go process across all SSDs is identical to that 

on go trials, overlayed with empirical values (dots). (D) Median (red line) and 99% CI (red 

shading) of the model’s predictions for the “relative” inhibition function, for which SSDs are 

binned at the individual level to account for variation in performance, overlayed with empirical 

values (dots). (E) The model’s predictions for the “absolute” inhibition function, in which SSDs 

are binned across the group, overlayed with empirical values. (F) The model’s predictions for 

changes in median signal-respond response time (RT) by SSD with SSDs binned across the 

group, overlayed with empirical values. 

 

 We also sought to test whether BEESTS-ABCD explains other empirical trends that are 

conventionally used as benchmarks of goodness-of-fit in the stop-signal modeling literature 

(Matzke et al., 2018). The first is the pattern – predicted by the race model – in which the 

probability of responding increases with SSD. Following prior work (e.g., Weigard et al., 2019), 

we plotted this “inhibition function” using relative SSD bins based on quintiles (i.e., five equal 

groups of ordered SSDs) for each individual participant to account for individual variation in 

inhibitory performance (Figure 2D). Forming SSD bins based on absolute times confounds 

within- and between-participant performance (as different individuals have different ranges of 

SSDs due to the adaptive tracking algorithm), leading to a flatter inhibition function (Figure 2E). 

Regardless, in both cases the ABCD model provides a good description2.  

The second trend is that signal-respond RTs tend to increase with SSD because the “go” 

RT distribution is censored by successful stopping to a lesser degree at longer SSDs (Colonius et 

 
2 We note that when Bissett et al. (2021) used each specific SSD to form “absolute” bins they found that there was 

an apparent increase in responding on 0s SSD trials relative to other short SSD trials, which is unexpected given 

race model assumptions. However, we show in Supplemental Materials that this uptick in responding is an artifact of 

averaging across individuals who have different levels of inhibitory performance. We also show that the ABCD 

model can account for the uptick when it is unconstrained by priors, likely because this lack of constraint allows the 

model to be overfit to a subset of individuals with uncommonly poor performance. 
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al., 2001; Matzke et al., 2018) . Following prior work (Weigard et al., 2019), we plotted this 

trend using “absolute” quintile bins calculated from SSDs collapsed across the signal-respond 

trials of all individuals. Doing so allows the increase in median signal-respond RTs to be more 

clearly represented because individualized bins obscure this trend by collapsing over a wide 

range of absolute SSD values, and therefore a wide range of censoring. The resulting posterior 

predictive plot (Figure 2F) indicates that BEESTS-ABCD generally provides a good description 

of median signal-respond RTs, although it slightly underpredicts the slope of the increase and the 

absolute value of the highest SSD quintile. These misfits may indicate unexplained or 

contaminant processes at very long SSDs. However, as the absolute level of misfit is relatively 

small (about .025s at most), and as the general increasing trend is well described, the model 

appears to provide an adequate account of signal-respond RT3.  

 In sum, the BEESTS-ABCD model provides a plausible explanation of context 

independence violations on the ABCD task, accounting for both increasing choice accuracy rates 

by SSD – the hallmark of independence violations in the ABCD data – and other classic features 

of stop trials. We next quantify possible biases in non-parametric SSRT estimates that can occur 

if BEESTS-ABCD is the true data-generating process in order to gauge the impact of these 

biases on substantive inferences.  

Quantification of Biases in Non-Parametric SSRT 

 We first assessed the relationship between the parametric SSRT estimates from the 

BEESTS-ABCD model and those from the recommended non-parametric integration method 

(Verbruggen et al., 2013) that also accounts for go trial omissions (Verbruggen et al., 2019). As 

 
3 It should also be noted that the large sample size here detects minor deviations that are less likely to be apparent in 

more typical experimental studies (e.g., even in relatively large sub-samples of 100 participants, none of the small 

misfits produced by the BEESTS-ABCD model in Figure 2 are evident). 
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shown in Figure 3, the two measures shared around 60% of their variance and had a close to one-

to-one relationship when the ABCD model was estimated with broad priors, but this shared 

variance was reduced, and the one-to-one relationship disappeared, when priors informed by the 

hierarchical model fit were used. The latter result reflects “shrinkage” (Efron & Morris, 1977; 

Gelman et al., 2013), a characteristic of hierarchical Bayesian estimation that is particularly 

advantageous when, as in the present case, measurement noise is high because each individual 

performs a relatively small number of trials. In these cases, shrinkage produces better estimates 

on average by pulling poorly constrained outlying estimates closer to the group mean, as is 

evident in the right panel of Figure 3. Regardless, these relations show that the rank ordering of 

participants’ parametric SSRTs was relatively well-preserved in the non-parametric estimates.  

 
Figure 3. Comparison of non-parametric SSRT estimates with parametric estimates obtained 

from the BEESTS-ABCD model, both when the model is estimated with broad, uninformative 

priors (A) and when it is estimated with narrower priors informed by a hierarchical model fit (B). 

The black line represents where dots would fall along if the relation between the two sets of 

estimates was perfect. Correlation coefficients (r) for each relation are displayed in the top left 

corner of each plot. 
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Although the ordinal correspondence between BEESTS-ABCD and non-parametric 

SSRT estimates suggests that the latter can be used to study individual differences in inhibition, 

confounding factors that are not accounted for in non-parametric methods may nonetheless lead 

to misleading inferences. Indeed, we found that biases in non-parametric estimates can be 

consequential for inferences at both the individual and group levels. We present an example at 

each level to demonstrate that differences in urgency (v0) and perceptual growth rate (g) can be 

mistaken for differences in SSRT, as estimated by the non-parametric method. Note that the 

parameter values, and ranges over which we vary parameters, used in the simulations are 

representative of those found in the ABCD data4.  

The first example shows that ignoring either parameter can lead to reversed SSRT effects 

when making pairwise comparisons among three individuals. Person A has a higher true 

parametric SSRT than the others, but roughly the same urgency as B and a similar perceptual 

growth rate to C. Figure 4 shows the results, where horizontal lines indicate the true parametric 

SSRT for each person, crosses correspond to the true urgency (left panel) and perceptual growth 

rate (right panel), and dots show non-parametric SSRT estimates for each simulated dataset. 

Varying urgency had hardly any effect on the non-parametric SSRT estimates of A, whereas a 

positive linear relation was found for B, creating two qualitatively different regions. When 

urgency was below approximately 4, A had a higher non-parametric SSRT than B, whereas this 

order was reversed when urgency exceeded four. By not taking urgency into account, the non-

parametric SSRTs would result in incorrect conclusions in the latter region. Similarly, varying 

 
4 We also point out that trigger failures are already known to bias non-parametric SSRT (Matzke et al., 2017) and, as 

the BEESTS-ABCD model includes a trigger failure parameter, this parameter can partially account for differences 

between BEESTS-ABCD and non-parametric SSRT estimates. However, simulation studies reported in this section 

hold this parameter constant; it is held at a single value, across conditions in which other parameters vary, for each 

individual featured in Figure 4 and held at a single value across all simulated individuals featured in Figure 5. 
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perceptual growth rate had different effects on A and C, and again created two qualitatively 

different regions below and above around 2.5. Non-parametric SSRT would lead to incorrect 

conclusions in the lower region. Both cases demonstrate that overlooking individual differences 

in urgency and perceptual growth rate can lead to incorrect inferences about the relative 

inhibitory abilities of two individuals. Unless individual differences in these factors are taken 

into account, as can be done using the BEESTS-ABCD the model, there is potential for the non-

parametric method to identify putative differences in inhibitory ability where none exist, and 

even for one individual to be identified as better at inhibition than another when in fact the 

opposite is true. 

 
Figure 4. A demonstration of the influence of urgency and perceptual growth rate on the non-

parametric SSRT of two individuals based on 15,000 simulated “go” and 5,000 simulated “stop” 

trials each. Persons A and B (left) have a similar level of urgency as indicated by the crosses, but 

a differing SSRT. When urgency is varied, the estimated non-parametric SSRT is affected even 

though this change should not lead to a different SSRT. Similarly, persons A and C (right) have a 

similar level of perceptual growth rate, and varying this rate also affects the estimated non-

parametric SSRT. Both cases result in two regions leading to qualitatively different conclusions. 

In reality, person A has a higher SSRT than persons B and C, and this true parametric SSRT 

(horizontal lines) is independent of both urgency and perceptual growth rate. Note that with the 
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large number of trials in these simulations BEESTS-ABCD parametric SSRT essentially are 

essentially perfect, and so the horizontal lines correspond to the true data generating values.  

 

The stop-signal task is often used to identify differences in SSRT between groups or 

experimental conditions, or to investigate whether a covariate (e.g., ADHD symptoms or activity 

in a particular brain region) is related to inhibitory ability. Our second simulation shows that a 

covariate related to both urgency (v0) and SSRT (through the 𝜇 parameter) may cause non-

parametric SSRT to provide reversed conclusions in a realistic analysis. Figure 5 shows an 

illustrative selection of results for 900 simulated participants. The top row shows two extreme 

situations in which SSRT was perfectly negatively correlated with the covariate, but there was 

alternately no (left plot) or a perfect positive (right plot) correlation between the covariate and 

urgency. Two situations with smaller, more realistic covariate correlations are presented in the 

bottom row. 
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Figure 5. Demonstrations of covariate confounds influencing non-parametric SSRT estimates in 

a correlational analysis. A covariate was created that has a relation with both urgency (v0) and 

SSRT (through the μ parameter) for 900 participants, each simulated, and results obtained, in the 

same way as for the first example. 

 

Both non-parametric and parametric SSRT correctly showed strong negative correlations 

with the covariate when only SSRT was perfectly related to the covariate (top-left). However, 

their results clearly diverged when urgency also had a perfect positive correlation with the 

covariate (top-right). In this case, parametric SSRT had the expected strong negative relation 

with the covariate, while non-parametric SSRT estimates hardly varied over different levels of 
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the covariate. Non-parametric SSRT estimates failed to pick up the negative relation between the 

covariate and true SSRT because of the counter-balancing effect of the positive urgency 

correlation on non-parametric SSRT. The bottom row of Figure 5 demonstrates that smaller 

covariate correlations, closer to those expected in empirical data, can also result in reversed 

effects. In both scenarios, BEESTS-ABCD accurately detected a small negative relation between 

the covariate and SSRT. From the non-parametric estimates, however, we would conclude that 

there is a positive relation between the covariate and SSRT because the positive correlation with 

urgency reverses this trend. These results provide a few examples of the many possible ways 

inhibition-related covariate effects (or the absence of such effects) can be confounded by 

urgency effects. Growth rate effects can produce similar confounding. Therefore, failing to take 

different levels of context-independence violation into account can, in realistic scenarios, lead to 

qualitatively wrong conclusions despite the ordinal correspondence between true and non-

parametric SSRT. 

The ABCD Stop-Signal Model as a Measurement Model 

 Given that non-parametric estimates of SSRT may cause misleading inferences, it is 

natural to ask whether the BEESTS-ABCD model can be used to avoid such problems with data 

from the ABCD design. Even though the model provides a good description of empirical trends 

in the ABCD data, this feature alone does not necessarily mean that it can serve as measurement 

model. Measurement models must have a one-to-one mapping between data-generating model 

parameters and parameter estimates that can be obtained from a realistic design (Matzke et al., 

2020). This can be checked via simulation in a parameter-recovery study (Heathcote et al., 

2015). 
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 We conducted parameter-recovery studies using parameter estimates from our subsample 

to generate simulated individual data sets with same trial numbers and staircase algorithm as the 

empirical ABCD stop-signal data. We then used the same procedures as applied to the empirical 

data to estimate BEESTS-ABCD parameters from the simulated data. As priors can impact 

parameter recovery in Bayesian estimation, we repeated this procedure with both the informed 

and broad priors used with the empirical data. Figures 6 and 7 display scatterplots of the relations 

between the data-generating and estimated parameters, associated correlation coefficients (r),  

and posterior “coverage” (c), the proportion of data-generating parameter values that fall within 

the 95% posterior credible intervals provided by the Bayesian estimation procedure. If the 

coverage proportions are close to the nominal 95% value it indicates that estimation is calibrated 

in terms of uncertainty. 
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Figure 6. Results from the parameter recovery study in which informed priors were used to 

estimate parameters (both the initial parameter values estimated from empirical data and the 

parameter values recovered from simulated data). Scatterplots illustrate the relations between the 

simulated (“sim.”) and recovered (“rec.”) parameter values as compared to the diagonal solid 

line indicating perfect recovery. Numbers above each plot report the correlation coefficient (r) 

for each relation and the posterior coverage proportions (c) for each parameter, which indicate 

the proportion of data-generating parameter values that fall within the 95% posterior credible 

interval for the parameters recovered from the generated data. 
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Figure 7. Results from the parameter recovery study in which broad priors were used to estimate 

parameters (both the initial parameter values estimated from empirical data and the parameter 

values recovered from simulated data). Scatterplots illustrate the relations between the simulated 

(“sim.”) and recovered (“rec.”) parameter values as compared to the solid diagonal line 

indicating perfect recovery. Numbers above each plot report the correlation coefficient (r) for 

each relation and the posterior coverage proportions (c) for each parameter, which indicate the 

proportion of data-generating parameter values that fall within the 95% posterior credible 

interval for the parameters recovered from the generated data. 

 

As the points in Figures 6 and 7 do not fall systematically higher or lower than the line 

indicating perfect recovery for any parameter, there is little evidence of estimation bias5. 

Coverage of the recovered 95% credible intervals was nominal, or very close to nominal, in all 

 
5 We also conducted more intensive parameter recovery studies with a subset of individuals’ parameter values that 

were intended to identify possible biases or second modes in parameter ranges (see Materials and Methods; results 

available at osf.io/2h8a7/), and again found little evidence for bias. 
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cases, suggesting that inference based on credible intervals will be well calibrated. The 

parameters which characterize the go process, and its probability of being triggered (v+, v-, B, t0, 

and pgf), are all recovered quite precisely (r=0.80-0.97). Parameters that characterize the stop 

process and its probability of being triggered (, , , ptf) are less precise, but generally 

acceptable, except for  in the broad prior estimates, which is notably poor. Less precision for 

stop, relative to go, parameters is expected because stop trials are less frequent, and this loss of 

precision also occurs in standard paradigms for the BEESTS-trigger-failure model. Crucially, the 

BEESTS-ABCD model recovers mean SSRT and trigger failure values well (r=0.75-0.81). 

Given that 60 stop trials is barely above the minimal guideline for using non-parametric 

estimates in the standard stop-signal paradigm (Verbruggen et al., 2019) this represents excellent 

performance and suggests that the two key stop-related parameters estimated from BEESTS-

ABCD can be used effectively in applied research.  

Parameters for urgency (v0) and perceptual growth (g), which similarly depend on the 

sparse stop trial data, displayed poor recovery. However, as they are more likely to be considered 

nuisance parameters than of substantive interest, and as there were no apparent biases in 

estimates of these parameters, this is unlikely to limit applications of the model. Furthermore, the 

coverage values indicate that, even if a subset of parameters’ point estimates are not precisely 

recovered, the posterior distributions accurately reflect the uncertainty in these estimates and can 

therefore inform appropriately tentative inferences.  

Discussion 

 We proposed a new cognitive process model, BEESTS-ABCD, that accounts for context 

independence violations in the ABCD Study stop-signal task that are due to a design feature in 

which the visual stop signal replaces the go choice stimulus, effectively limiting the information 
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participants need to make a choice. By combining elements of prior parametric models of the 

stop-signal task (Logan et al., 2014; Matzke et al., 2013; Matzke, Love, et al., 2017) with 

accounts of masking effects on the processing of brief visual stimuli (Ratcliff & Rouder, 2000; P. 

L. Smith & Ratcliff, 2009; P. L. Smith & Sewell, 2013), the model assumes that the ABCD 

design feature impacts the quality of evidence used for discrimination of choice options. The 

model provides an excellent account of the pattern of increasing choice accuracy over SSDs, 

which is the “smoking gun” that the task violates context independence (Bissett et al., 2021), and 

a good account of other more standard features of stop trial performance. We found that the rank 

ordering of parametric SSRT values from this model is generally well-preserved in non-

parametric SSRT estimates, which do not account for the context independence violations. 

However, we also show in simulation studies that confounding factors can lead non-parametric 

estimates to reverse the ordering of SSRT differences at both the individual and group levels. 

Critically, parameter recovery studies demonstrate that, when fit to data from the ABCD design, 

BEESTS-ABCD can be used to avoid these problems by reliably and validly measuring SSRT, 

trigger failures and other processes of interest. 

 Given the unprecedented scientific opportunity afforded by the ABCD Study and the 

importance of unbiased SSRT estimates for researching inhibitory ability, these findings have 

several significant implications. First, they suggest that prospective ABCD data collection can 

continue without changing the task design, ensuring longitudinal comparability of the behavioral 

and fMRI data between data collection waves. SSRT measurement issues related to the violation 

are manageable using BEESTS-ABCD, and the practical difficulties of using the model are 

relatively minor compared to the problems introduced by breaking longitudinal comparability. 

Furthermore, even if alternate models that explain the context-independence violation with 
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different processes are proposed and supported, we believe our results provide a general 

demonstration that cognitive-model-based solutions can provide an effective way to overcome 

limitations related to the ABCD design.6   

 The implications of our work for analyses of already-collected ABCD data are nuanced. 

As we found that non-parametric SSRT estimates calculated using recommended best practices 

(Verbruggen et al., 2019) generally preserved the rank ordering, if not the absolute values, of 

participants’ SSRT, it is possible that inferences based on the non-parametric estimates may not 

be misleading in many situations. However, we also showed that non-parametric estimates can 

lead to incorrect (including reversed) inferences when a parameter that explains the context 

independence violations is confounded with a covariate of interest. It seems plausible that such 

confounding might occur in practice; for example, urgency has been linked to impulsivity, 

depression and Parkinson’s Disease (Carland et al., 2019). Rather than taking the chance of 

assuming that such confounding is not present, we recommend researchers to use parametric 

measurement models, such as the one we propose, that account for the context-independence 

violations evident in the ABCD data. 

We note that this trade-off between the precision of cognitive process modeling and the 

ease of using non-parametric SSRT estimates is not unique to the ABCD task. As outlined in the 

introduction, trigger failures in standard designs cannot be easily accommodated using non-

parametric methods and have already been shown to bias SSRT estimates (Matzke, Love, et al., 

 
6 Bissett et al. (2021) also point out potential limitations related to fMRI measurement, namely that the difference in 

stimulus presentation time between go and stop trials confounds fMRI contrasts that compare these trial types to 

isolate activity related to inhibition. However, as there are multiple existing confounds already inherent in these 

conventional stop-signal task contrasts (e.g., stop trials have shorter RTs, additional stimuli presented, and a lower 

rate of occurrence relative to go trials), we view the ABCD design feature as a minor addition to the more general 

problems with using subtraction logic in fMRI contrasts, which have been extensively discussed elsewhere 

(Poldrack & Yarkoni, 2016). Therefore, we think the limitations that the ABCD task design imposes on fMRI 

measurement are not substantially greater than limitations of fMRI measurement common to all stop-signal tasks.  
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2017) and distort substantive conclusions (Matzke, Hughes, et al., 2017; Weigard et al., 2019) if 

ignored. Indeed, current consensus recommendations for estimating SSRT from the stop-signal 

task (Verbruggen et al., 2019) acknowledge that cognitive process models, despite being difficult 

for researchers who are less technically adept to implement, provide less biased estimates of 

SSRT relative to even the best non-parametric methods. Our findings suggest parallel 

recommendations for analysis of the ABCD task; whenever possible, cognitive process models 

such as BEESTS-ABCD should be used to estimate SSRT and trigger failure while accounting 

for ABCD-specific context-independence violations. 

 To reduce technical barriers to the adoption of BEESTS-ABCD, we have shared, on the 

Open Science Framework (osf.io/2h8a7), the code we used to specify and fit the model within 

Dynamic Models of Choice (DMC), a free set of R functions for Bayesian estimation of evidence 

accumulation models (Heathcote et al., 2019). Researchers can freely use our code to estimate 

parameters of our model for any subset of ABCD participants they wish using identical 

procedures to those implemented in the current study. However, a centralized effort to estimate 

parameters from our model, for the whole sample, that can be included in future ABCD Study 

data releases would be ideal. We would be look forward to contributing to such an effort if the 

ABCD community agrees that doing so is appropriate.  

 We used priors generated from a hierarchical model fit to an independent subsample of 

ABCD participants to inform individual-level estimation because this method provides the key 

benefit of a fully hierarchical approach (shrinkage informed by group distributions) without 

some of its drawbacks. Specifically, fitting hierarchical models to very large data sets is 

demanding in terms of computational resources and technical expertise, although it has been 

done for other large-scale projects (PISA, 2018). We believe developing such large-scale 
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hierarchical cognitive-process models is a worthwhile aim for not only the stop-signal task, but 

also the other tasks used in the ABCD project. However, here we focused on individual-analysis 

methods that require only a modern multi-core PC, so that the benefits of BEESTS-ABCD are 

more immediately available. Another drawback is that individual-level estimates from 

hierarchical models are unsuited for follow-up frequentist or Bayesian inferential methods 

(Boehm et al., 2018). “Plausible values” analyses have been proposed as a solution for bivariate 

correlations with hierarchical cognitive-model parameters (Ly et al., 2017), but until this 

approach is extended to the multi-level modeling, structural equation modeling, and multivariate 

prediction methods commonly used with ABCD data (which is another critical area for future 

work), individual-level estimation with informed priors provides a good alternative solution.  

Further work may also be required to develop a more detailed understanding of the 

mechanisms mediating the brief-presentation effects in the ABCD design. There is a hint in some 

elements of apparent BEESTS-ABCD model misfit, such as underprediction of signal-respond 

RTs at long SSDs, that a more fine-grained account may require the model to be extended or a 

different approach developed, perhaps based on the preliminary modeling frameworks outlined 

by Bissett et al. (2021).  However, a key strength of the current model is its parsimony; it 

provides a precise account of choice accuracy across SSDs and of inhibition functions by only 

adding two parameters to account for context independence violations. We focused on this 

relatively simple model because we suspect that data from the ABCD design is not suitable for 

developing more complex models of individual performance, as a much larger number of trials is 

typically necessary to estimate parameters from such models (P. L. Smith & Little, 2018).  Even 

if such a refined model were developed, then following the aphorism summarizing the message 

of Box (Box, 1976) that “all models are wrong, but some are useful”, it would still need to be 
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established whether it provides a markedly better measurement model for the ABCD design than 

BEESTS-ABCD does.  

 In summary, we propose a cognitive-process model that explains the impact of context-

independence violations on the ABCD Study’s stop-signal task and, in doing so, accounts for key 

trends in the ABCD data. We show that failing to account for context-independence violations 

can produce misleading inferences, and that the proposed model provides a practical remedy, 

enabling unbiased and reliable estimation of SSRT and other key process parameters that 

contribute to task performance. We suggest that the model can advance ABCD Study research 

efforts by improving the measurement of inhibition and other cognitive processes (e.g., trigger 

failure and choice evidence accumulation) with existing ABCD stop-signal task data and by 

allowing for longitudinal data collection to move forward without a need for major changes to 

the task design. More broadly, this work highlights the critical strengths of a cognitive-process-

modeling approach for increasing the precision of both theories and measures of neurocognitive 

phenomena. 

Materials and Methods 

Participants, Inclusion Criteria and Subsample Selection 

The ABCD Study is a multi-site collaboration that has recruited a diverse sample of 

11,875 children between the ages of 9 and 10 from 21 study sites across the United States. 

Details of the general study design, recruitment procedure, and fMRI protocol (including the 

stop-signal task design) are available elsewhere (Casey et al., 2018; Garavan et al., 2018). The 

ABCD data repository, which is openly available via the National Institute of Mental Health 

Data Archive (NDA), grows and changes over time. As the Bayesian estimation procedures that 

we used to fit the proposed cognitive process model to data from the ABCD stop-signal task are 
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computationally intensive, fitting the model to the full sample during model development and 

testing would be unnecessarily time intensive. Therefore, we randomly selected a subset of 900 

individuals (300 for the derivation of informed priors and 600 for the primary analyses) whose 

baseline session stop-signal data met our performance-based inclusion criteria. We selected this 

subset from the set of individuals whose baseline stop-signal data were included in the ABCD 

Annual Release 1.1 dataset (n=4,521, NDA Study 576, DOI 10.15154/1412097, available at: 

https://ndar.nih.gov/study.html?id=576). 

Of the 4,521 individuals in Release 1.1, we found that 3,436 had complete behavioral 

data available from the stop-signal task that met basic validity checks (two imaging runs, 360 

recorded trials, and participant responses detected for one or more go trials). We then applied the 

following performance exclusion criteria to ensure that individuals included in our analyses were 

adequately engaged in the task and had behavioral data that were broadly consistent with race 

model assumptions: 

a) Choice accuracy rate <.55, indicating inattention or misunderstanding of the 

choice task (1.9% of the sample). 

b) Excessive rate of omission (>.25) on go trials (4.2% of the sample). 

c) Low overall rate of successful inhibition (<.25) on stop trials (1.2% of the 

sample). 

d) Mean RT on stop trials was greater than mean RT on go trials, indicating gross 

violations of race model assumptions (6.0% of the sample). 

e) Following Weigard et al. (2019), we assessed whether individuals’ mean RT 

changed substantially (>.500s) over the course of the task, which would violate 

race model assumptions, by fitting a linear model in which RT on a given trial 
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was predicted by trial number (1-360). The resulting coefficient was multiplied by 

360 to estimate the total RT change over the course of the task, and individuals 

with an absolute RT change value of 0.5s were excluded (0.2% of the sample).  

f) The race model cannot explain inhibition functions in which probability of 

responding decreases as SSDs get longer. To evaluate whether individuals 

displayed evidence of decreasing inhibition functions, we fit a logistic regression 

model to individuals’ stop trial data in which probability of responding was 

predicted by SSD. Individuals with negative regression coefficients, indicating 

that overall probability of responding decreased as SSDs grew longer, were 

excluded (5.0% of the sample). 

g) Presence of the rare tracking algorithm glitch noted by Bissett et al. (2021; “Issue 

3”), which incorrectly causes SSDs to remain stuck at the minimum value of 0s 

(2.1% of the sample). 

h) Presence of SSDs >0.7s, which, as noted by Bissett et al. (2021; “Issue 4”) causes 

the visual stop signal presentation time to be truncated (3.9% of the sample). 

Simultaneous application of all the above criteria led to the exclusion of 16.8% of the 

initial sample of 3,436, leaving 2,859 participants available for modeling analyses. Out of this 

remaining sample, we sought to randomly select a subsample of non-sibling participants from 

across multiple data collection sites. We first determined, for each data collection site, how many 

individual family identification numbers (family IDs) had stop-signal data available for modeling 

from at least one child. We then selected the 6 data collection sites with the greatest number of 

available family IDs and randomly sampled (without replacement) 150 family IDs from each of 

these 6 sites. We included single children from each family for which only one child was 
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available and randomly sampled a sibling from each family for which multiple children’s data 

were available. This led to a subsample of 900 participants from independent families (150 per 

site) that was further split into a 300 participant (50 per site) subsample included in hierarchical 

model fits to estimate parameter priors and a 600 participant (100 per site) subsample included in 

the main analyses. Table 2 displays basic demographic characteristics of the 900 participants 

selected for analysis. 

Table 2. Demographic characteristics of the 900 ABCD participants meeting performance-based 

inclusion criteria whose data was randomly selected for modeling analyses. k = $1,000 (United 

States) of annual income; GED = General Educational Development test passed, equivalent to a 

High School education. 

Demographic Category n % 

Sex Female 422 46.9 

 Male 478 53.1 

Household <50k 270 30.0 

Income >=50k & <100k 286 31.8 

 >=100k 266 29.6 

Highest <High School 42 4.7 

Parental  High School / GED 78 8.7 

Education Some College 260 28.9 

 Bachelor 214 23.8 

 Post-Graduate 300 33.3 

Household Married 594 66.0 

Marital Status Not married 299 33.2 

Race White 602 66.9 

 Black 73 8.1 

 Asian 17 1.9 

 Other/Mixed 184 20.4 

Ethnicity Hispanic 299 33.2 

 Not Hispanic 591 65.7 

 

Model Estimation  

Details of model parameterization are outlined above in the main text. We implemented 

the 11-parameter BEESTS-ABCD model within Dynamic Models of Choice (DMC), a free set 

of R functions for Bayesian estimation and simulation of evidence accumulation and stop-signal 

task models (Heathcote et al., 2019). Following previous work (Matzke, Hughes, et al., 2017; 
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Weigard et al., 2019), parameters for the probability of trigger failure (ptf) and “go” failure (pgf) 

were projected onto the real line during model estimation using a probit transformation and later 

transformed back to the natural scale for interpretability (e.g., in Figures 6 and 7, above). Before 

all modeling analyses, trials with RTs <0.15s were excluded as fast guesses and trials with RTs 

>1.5s were excluded as abnormally slow responses (these exclusions removed data from <1% of 

trials). The model was fit, using individual-level Bayesian estimation (specific procedures 

described below), to the main 600-participant subsample twice: once with broad, relatively 

uninformative priors and a second time with informative priors derived from hierarchical model 

fits to the independent subsample of 300 participants. All priors were truncated normal 

distributions with the bounds and distributional parameters listed in Table 3.  

 

Table 3. Prior probability distributions used for Bayesian estimation of the ABCD stop-signal 

model parameters. All priors were truncated normal distributions with the bounds, location 

parameters and scale parameters listed here. Location and scale parameters for the “Broad” prior 

distributions were selected a priori. Location and scale parameters for the “Informative” prior 

distributions were derived from a hierarchical Bayesian version of the ABCD stop-signal model 

that was fit to a subset of 300 ABCD participants using procedures described in the text. Note 

that priors for the pgf and ptf parameters are represented on the probit scale. 

 

 Bounds 

Broad 

Prior Distribution 

Informative  

Prior Distribution 

Parameter lower upper location scale location scale 

t0 0.100 1.000 0.150 0.100 0.027 0.068 

B 0.000 ∞ 1.000 1.000 1.444 0.308 

v+ 0.000 ∞ 3.000 2.000 3.334 0.550 

v- 0.000 ∞ 1.000 2.000 -0.045 0.525 

v0 0.000 ∞ 2.000 2.000 2.732 0.634 

g -∞ ∞ 3.000 2.000 2.958 0.862 

 0.000 2.000 0.500 0.300 0.226 0.036 

 0.000 0.500 0.050 0.100 0.012 0.095 

 0.000 0.500 0.100 0.100 0.014 0.032 

pgf -∞ ∞ 0.000 1.000 -1.944 0.517 

ptf -∞ ∞ 0.000 1.000 -1.892 0.764 
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The hierarchical modeling approach that was used to obtain informative priors treats 

individual-level parameters as random effects described by group-level truncated normal 

distributions that are defined by a location hyperparameter and a scale hyperparameter. Priors for 

the location hyperparameters were the same broad prior distributions displayed in Table 2 while 

priors for all scale hyperparameters consisted of exponential distributions with a scale of 1. 

Following the estimation of posterior distributions from the hierarchical model for the 300-

person subsample, we collapsed the individual-level posterior samples across all 300 individuals 

into a single vector for each model parameter. We then fit a truncated normal distribution (with 

bounds for each parameter specified in Table 2) to the distribution of samples in each parameter 

vector using maximum likelihood. The resulting location and scale parameters of the fitted 

truncated normal distributions (Table 2) were used to specify informative priors for the fits to the 

remaining 600 participants.  

All hierarchical and individual-level Bayesian parameter estimation procedures used the 

differential-evolution Markov chain Monte Carlo (DE-MCMC) algorithm to sample from the 

posterior, as this sampling method is more efficient for the estimation of evidence accumulation 

models and similar models that tend to have correlated parameters (Turner et al., 2013). These 

simulations included a number of chains that, by DMC default, was three times the parameters in 

the model (e.g., 33 chains for the 11-parameter ABCD stop-signal model). Each simulation 

featured an initial burn-in period that included a migration (Turner et al., 2013) step (with 5% 

probability in individual-level fits and 2.5% probability in hierarchical fits) and lasted until no 

chains were repeatedly “stuck” in one location for many iterations, as determined by an 

automated function in DMC with default settings. Next, a second burn-in period was started with 

migration turned off and lasted until chains for all parameters had converged on a stable 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453872
http://creativecommons.org/licenses/by-nc/4.0/


 36 

 

 

posterior. Final convergence was defined as values of <1.10 for the Gelman-Rubin diagnostic 

statistic (Gelman et al., 1992), and was corroborated via visual inspection of the chains (Lee & 

Wagenmakers, 2014). Following initial sampling, mean SSRT samples were computed by 

simulating 10,000 finishing times from ex-Gaussian distributions defined by each set of , , and 

 samples and taking the mean of finishing times over the .05s lower bound.  

The same procedures outlined above were also used to estimate a “go independence” 

model for comparison of its ability to describe choice accuracy on stop trials (shown in Figure 

2C) with the ability of the ABCD stop-signal model (Figure 2B). This model had an identical 

structure to the ABCD stop-signal model except that it assumed that the go process across stop 

trials of all SSDs had identical accumulation rates to the go process on go trials (i.e., v0 and g 

were not estimated). The fits shown in Figure 2C were from individual-level Bayesian estimation 

of this model that, similar to the fits of the main ABCD stop-signal model shown throughout 

Figure 2, used informative priors derived from a hierarchical fit of the “go independence” model 

to the separate subset of 300 participants.  

Posterior predictions were generated by drawing 100 samples from the 11-parameter joint 

posterior and simulating data predicted by the model for each participant and each of the 100 sets 

of parameter samples. The predicted data for each of the 100 sample sets were averaged across 

participants within each set to obtain summary values of interest (e.g., average accuracy rates 

and probability of inhibition at specific SSDs). The medians and 99% credible intervals (CIs) of 

these group-average predictions were then estimated with 100 draws of posterior samples and 

plotted against the empirical group-average values in Figure 2.  

Comparisons to Non-parametric Methods 
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We set up two simulation studies to demonstrate how the BEESTS-ABCD model SSRTs 

and non-parametric estimates can differ when not accounting for context-independence-

violation. The first simulation is set up at the individual level, and the second at the group level.  

For the individual example, we picked three individuals (persons A, B, and C) from a 

subset of ABCD data, and used their parameters obtained from fitting BEESTS-ABCD to their 

data. The parameter estimates used here and in the group example were obtained using broad 

priors, but similar results are possible from estimates obtained using informed priors. Person A 

had a higher parametric SSRT than the others, but roughly the same urgency as B and similar 

perceptual growth rate to C. To demonstrate the potential effect of urgency, we used the 

parameter estimates of person A and B to simulate new data sets with a large number of trials 

(15,000 simulated “go” and 5,000 simulated “stop” trials) so that results are clear. All 

parameters, except urgency, were fixed to their estimates for both persons. Urgency was varied 

over a realistic range (i.e., within the range found in our fits to ABCD data). For each level of 

urgency, we simulated new datasets for each person while keeping all other parameters constant. 

We followed a similar approach to inspect the potential effect of perceptual growth rate. Instead 

of varying urgency, we varied the perceptual rate and compute non-parametric SSRT in each 

data set. For each generated dataset, we computed non-parametric SSRT estimates and compared 

these estimates to the BEESTS-ABCD SSRTs used to generate the data. 

For the group example, we generated new datasets in which both urgency and SSRT were 

correlated with a covariate to varying degrees (r = -1 to r = 1 in steps of .2). To ensure that all 

data-generating parameters had realistic values, we set (i) the mean and standard deviation of v0 

and to the values found in the BEESTS-ABCD fits to a subset of ABCD data; (ii) all other data-

generating parameters to the median of estimates from ABCD data; and (iii) perceptual growth 
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rate to a slightly lower, but still realistic, value. From these parameter settings, we simulated new 

datasets with 900 participants in the same way as for the first example, for each combination of 

correlations between the covariate and v0, and the covariate and 𝜇. Again, non-parametric SSRT 

estimates were computed and compared to the BEESTS-ABCD SSRTs used to generate the data. 

Parameter Recovery Studies 

 We conducted two different parameter recovery studies based on parameter estimates 

from all participants in the main 600-person subsample. The first study used the posterior 

medians of individual-level Bayesian parameter estimates obtained under the informative priors 

derived from the earlier hierarchical model fit. The second study used the posterior medians of 

individual-level Bayesian parameter estimates obtained under the broad, relatively uninformative 

priors. In both recovery studies, the 600 sets of posterior median parameter estimates were used 

to simulate 600 individual-level data sets that each had identical trial numbers (300 “go”, 60 

“stop”) and an identical staircase tracking procedure to the empirical ABCD data. Next, 

individual-level Bayesian estimation was used to estimate parameters from the simulated data 

sets, with the informative priors and broad priors used in the first and second recovery studies, 

respectively (i.e., the priors used to fit the original empirical data and the corresponding 

simulated data were identical in each case). Posterior medians of the resulting parameter 

estimates were then compared with the data-generating parameter values in each case (see 

Figures 6 and 7). Recovered posterior medians of mean SSRT were computed using the same 

simulation procedure, outlined above, that was used to compute mean SSRT for the empirical 

data. 

 We also completed more intensive parameter recovery studies, similar to those conducted 

in Matzke et al. (2020), to better assess the possibility of biases or second modes within the 
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parameter space. We randomly drew participants who had B, t0, ptf, , , v0 and g posterior 

median parameter estimates within each of the 4 quartiles that characterized individual variation 

in each parameter, leading to 28 unique parameter sets. We then used each of these parameter 

sets to simulate 200 individual-level data sets with identical features to the ABCD stop-signal 

task and re-estimated parameters from each of these data sets using individual-level Bayesian 

estimation. Plots comparing the values of each data-generating model parameter to posterior 

median parameter estimates obtained from the 200 simulated data sets, which are available for 

download on our OSF project page (osf.io/2h8a7/), indicated little evidence for substantial biases 

or for second modes in the parameter space.  

Supplemental Materials 

0-Second SSD Responding Uptick Noted by Bissett et al. (2021) 

As stated in the Results section, Bissett et al. (2021) show that when stop trials are binned 

by specific SSDs there is a gradual decrease in the average probability of responding as SSDs get 

shorter, as predicted by the race model, but also a slight uptick in responding on 0s SSD trials 

relative to other short-SSD trials, which is unexpected given the assumptions of the race model. 

We did not see any evidence of this uptick in our initial analyses because of our strategy of 

plotting inhibition functions while using the individual-level binning procedure outlined in the 

Results section (and implemented in Figure 2D), which has the advantage of accounting for 

individual differences in inhibitory performance. However, after seeing the 0s SSD uptick 

highlighted in a revised version of the Bissett et al. (2021) preprint manuscript, we generated 

posterior predictive plots of the inhibition function with trials binned by individual SSDs and 

found that the 600 participants in our analytic subsample also displayed this group-average 

pattern. Curiously, we found that the BEESTS-ABCD model we propose can account for this 
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uptick on 0s SSD trials when it is fit with broad, uninformative priors (Supplemental Figure 1A), 

but has more difficulty accounting for it when the model is fit with informative priors derived 

from a hierarchical model (Supplemental Figure 1B). This was particularly surprising given that 

we typically found improvements in the model’s fit to most other group-average trends in 

posterior predictive plots when informative priors, relative to broad priors, were used. 

The sensitivity of this group-average trend to priors, combined with the fact that the 

uptick was not apparent in inhibition function plots that used our individual-level binning 

procedure, led us to suspect that the apparent increase in responding on 0s SSD trials may not 

represent a mechanistic pattern occurring at the level of individual subjects. Rather, we thought 

the uptick may be an artifact that appears when data are aggregated by SSD across individuals of 

very different levels of performance because the participants with the worst performance have 

both: i) the most 0s SSD trials and ii) the highest probability of responding on those trials. To 

assess the validity of this hypothesis, Supplemental Figure 1C compares the group-average trend 

(black dots) with the average response probabilities of three subgroups stratified by their number 

of 0s SSD trials: 1) subjects with no 0s SSD trials (blue line), 2) subjects with “few” (1-9) 0s 

SSD trials (orange line), and 3) subjects with “many” (>=10) 0s SSD trials (red line). The 

“many” subgroup represents only 10% of the sample but accounts for the majority (61%) of the 

0s SSD trials. The “few” subgroup represents about a third (34%) of the sample and only 

accounts for a minority (39%) of the 0s SSD trials. These proportions suggest that the “many” 

subgroup, which has the worst inhibitory performance, has a disproportionate influence on the 

group average for responding at 0s SSDs. As expected, the comparison plot shows that there is 

no evidence for a 0s SSD uptick when the three subgroups are considered separately. 

Furthermore, the plot demonstrates that the apparent uptick is caused by the fact that individuals 
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with no 0s SSD trials (the majority of the sample) have an inhibition function that decreases to 0 

at .05s SSD trials (as expected due to tracking algorithm) but individuals with 0s SSD trials tend 

to have high response rates on these trials because of their poorer inhibitory performance.  

This led us to conclude that the uptick noted by Bissett et al. (2021) is an artifact of group 

averaging rather than a mechanistic feature of performance at the individual level that must be 

accounted for by a process model. The BEESTS-ABCD model is able to account for this group 

average trend when it is unconstrained by priors, but likely has more difficulty doing so when 

constrained by hierarchical-model-informed priors because of “hierarchical shrinkage” (Gelman 

et al., 2013), which prevents overfitting by pulling parameter estimates of the worst performing 

participants (i.e., those with the greatest number of 0s SSD trials) closer to the group mean. 
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Supplemental Figure 1. Plots characterizing the inhibition function when trials are binned 

across participants by specific SSDs. A) Posterior predictive plot of the median predictions (red 

line) and 99% credible interval (CI) of predictions (red shading) of the ABCD stop-signal model 

when it is fit with broad, uninformative priors, overlayed with empirical data (dots). B) Posterior 

predictive plot of the median (red line) and 99% CI (red shading) of predictions of the ABCD 

stop-signal model when it is fit with informative priors derived from the hierarchical model fit, 

overlayed with empirical data (dots). C) Plot comparing the group average probability of 

inhibition at each SSD (dots) with the average probability of inhibition of subgroups stratified by 

their number of 0s SSD trials: 0 (blue line), 1-9 (orange line) and >=10 (red line) 
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