
The role of trade-offs and feedbacks in shaping integrated plasticity and 

behavioral correlations  

Ned A. Dochtermann 
Department of Biological Sciences, North Dakota State University 
ned.dochtermann@gmail.com  
 
LAY SUMMARY 
Correlations between behaviors are common but observed patterns of these correlations 
are, at least superficially, inconsistent with expectations of trade-offs. This mismatch is 
potentially resolved via feedbacks between behaviors and energy availability, suggesting 
important new research directions. 
 
ABSTRACT 
How behaviors vary among individuals and covary with other behaviors has been a major 

topic of interest over the last two decades. Unfortunately, proposed theoretical and 

conceptual frameworks explaining the seemingly ubiquitous observation of behavioral 

(co)variation have rarely successfully generalized. Two observations perhaps explain this 

failure: First, phenotypic correlations between behaviors are more strongly influenced by 

correlated and reversible plastic changes in behavior than by “behavioral syndromes”. 

Second, while trait correlations are frequently assumed to arise via trade-offs, the observed 

pattern of correlations is not consistent with simple pair-wise trade-offs. A possible 

resolution to the apparent inconsistency between observed correlations and a role for 

trade-offs is provided by state-behavior feedbacks. This is critical because the 

inconsistency between data and theory represents a major failure in our understanding of 

behavioral evolution. These two primary observations emphasize the importance of an 

increased research focus on correlated reversible plasticity in behavior—frequently 

estimated and then disregarded as within-individual covariances.  
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INTRODUCTION 

Despite almost two decades of intensive research effort, overarching explanations for why 1 

behavioral responses are frequently correlated remain elusive. Here, I argue that this stems 2 

from two key empirical findings that have not been fully appreciated. First, behavioral 3 

correlations are more strongly influenced by within-individual correlations than they are 4 

by behavioral syndromes (Table 1A, Box1). Second, bivariate trade-offs are an insufficient 5 

explanation for—and inconsistent with—observed behavioral correlations. Instead, 6 

observed correlations are consistent with a combination of feedbacks (positive and 7 

negative) between behaviors and states. 8 

1. Understanding how among and within individual variation contribute to behavioral 

correlations 

Much of the research examining behavioral correlations over the last two decades has 9 

focused on among-individual correlations, i.e., “behavioral syndromes” (Figure 1A & 1B, 10 

Box 1; Sih et al. 2004a, Sih et al. 2004b, Dingemanse et al. 2010, Dingemanse et al. 2012). 11 

This interest has been reasonable because behavioral syndromes connect to both 12 

underlying genetic correlations and developmental processes. As such, behavior 13 

correlations can directly influence evolutionary outcomes (Dochtermann and Dingemanse 14 

2013, Royauté et al. 2020). This clearly embeds behavioral syndrome research into the 15 

broader realms of evolutionary biology. Unfortunately, this focus on syndromes ignores the 16 

fact that behavioral correlations are, instead, more strongly influenced by within-individual 17 

correlations (Box 1, Figure 1, Table 1A). This has led to a disconnect between research 18 

effort and biology. 19 

 Within-individual correlations represent the occurrence of correlated changes in 20 

behaviors at the level of an individual. For example, a negative within-individual 21 

correlation between aggression and exploratory propensity would mean that when an 22 

individual increases its aggression, it also decreases its activity (Figure 1). This correlated 23 

change can occur even if, on average, more aggressive individuals are also more active 24 

(Figure 1).  25 

That behavioral correlations at the phenotypic level are more strongly influenced by 26 

within-individual correlations than by behavioral syndromes is a necessary conclusion 27 

given observed behavioral repeatabilities. Due to the mathematical relationship of a 28 

phenotypic correlation to its constituent parts (Box 1), whenever repeatability is less than 29 

0.5, the phenotypic correlation is more strongly influenced by within-individual 30 

correlations than among-individual correlations (Dingemanse et al. 2012, Dingemanse and 31 

Dochtermann 2013). Bell et al.’s (2009) meta-analysis of repeatabilities—a keystone 32 
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contribution to our understanding of behavioral variation—found that the average 33 

repeatability of behaviors was about 0.4. Consequently, behavioral correlations are, on 34 

average, most strongly influenced by within-individual correlations (Box 1).  35 

Within-individual correlations include—but are not limited to (see Table 1B)—36 

correlated plastic responses to temporary environmental variation; specifically, responses 37 

to unmeasured or unmodeled environmental variation. This correlated reversible plasticity 38 

is akin to “phenotypic flexibility” (Piersma and Van Gils 2011) but correlated across 39 

multiple behaviors. Despite more strongly influencing behavioral correlations than do 40 

behavioral syndromes (Box 1), within-individual correlations have received much less 41 

direct theoretical or empirical attention from behavioral researchers. 42 

2. Interpreting patterns of correlations and indications, or lack thereof, of a role for trade-offs 

A possible factor shaping correlated plastic responses are trade-offs in investment of 43 

energy (or other resources) into behaviors. For example, energy used during agonistic 44 

interactions is not available for exploring new areas. Accordingly, we would expect that as 45 

individuals increase investment in one behavior, they decrease investment in another 46 

(Figure 1A), generating negative within-individual correlations (Figure 1C). If individuals 47 

differ in their ability to acquire resources, this results in the familiar “big house, big car” 48 

scenario from life-history theory (Van Noordwijk and de Jong 1986, Reznick et al. 2000): 49 

high variation in acquisition (relative to variation in allocation) results in a positive among-50 

individual correlation despite underlying trade-offs. However, because behavioral 51 

researchers frequently change the sign of behavioral measures to aid in the ecological 52 

Box 1. The relationship of behavioral syndromes and reversible plasticity to behavioral 
correlations: the primacy of correlated reversible plasticity 

Behavioral correlations at the population and phenotypic level (rp) emerge from the joint contributions of 
among-individual correlations, i.e. behavioral syndromes (rA), and within-individual correlations (rw , 
Figure 1; (Dingemanse et al. 2012)). The relative influence of each of these on observed correlations is 
mediated by the repeatability of the behaviors of interest (τ1 and τ2): 

𝑟𝑝 = 𝑟𝐴√𝜏1𝜏2 +  𝑟𝑤√(1 − 𝜏1)(1 − 𝜏2) 

rA is the statistical definition of a behavioral syndrome (Dingemanse et al. 2012) and, as repeatability 
decreases, the contribution of behavioral syndromes to phenotypic correlations necessarily decreases. At 
the extreme, if τ for either behavior is 0, then rp is entirely determined by the rw. Moreover, rw contributes 
more strongly to rp than does rA when geometric mean repeatability is less than 0.5 (Dingemanse and 
Dochtermann 2013). Based on meta-analysis (Bell et al. 2009) we know that average τs are around 0.4 
and, consequently, rw, on average influences rp more strongly than does rA.  Put another way, within-
individual correlations have an average 1.5 times greater influence on phenotypic correlations than do 
behavioral syndromes.  

Importantly, rw includes correlated reversible plasticity (Figure 1), though this plasticity will not 
necessarily be adaptive and errors both in the response to cues by organisms or in measurement also 
contribute to rw (Table 1). 
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interpretation of behavioral assays, it is not the case that among-individual correlations are 53 

strictly expected to be positive and within-individual correlations be negative. Instead, if 54 

trade-offs underpin behavioral correlations, we would expect among-individual and 55 

within-individual correlations to be of opposite signs (Figure 1D; Downs and Dochtermann 56 

2014). 57 

Meta-analyses have examined behavioral correlations at the genetic, among-58 

individual, and within-individual levels (Dochtermann 2011, Brommer and Class 2017). 59 

These analyses have demonstrated that correlations across levels are generally concordant 60 

as to their signs and magnitudes (Figure 2). As suggested above, this concordance of signs 61 

suggests either a potential lack of trade-offs in the expression of behaviors or that variation 62 

in acquisition is low relative to variation in allocation. Of course, it is also possible that 63 

many of the analyzed behaviors should not be expected to trade-off due to naming fallacies 64 

obscuring that the same behavior is actually being measured in different ways (Carter et al. 65 

2013) or because limiting resources differ between behaviors. Moreover, because 66 

phenotypes consist of many, many behaviors and other traits, any trade-offs would not 67 

typically be expected to exist solely between two traits. Nonetheless, the results in Figure 2 68 

suggest that bivariate trade-offs alone are insufficient to explain patterns of among- and 69 

within-individual correlations alone. 70 

 
Figure 1. Example of how behavioral syndromes, i.e. among-individual correlations (rA) and 
correlated plasticity, i.e. within-individual correlations (rW), additively contribute to phenotypic 
correlations. A) Activity and aggressive behavior of four crickets are measured on two occasions 
(1 & 2). Crickets largely maintain their relative differences in each behavior (i.e. “personality”) 
and their behavior changes in a correlated manner (correlated plasticity). B) The relationship 
among crickets is due to a positive among-individual correlation (dashed blue line, rA). C) 
Behavioral plasticity is negatively correlated (within-individual correlation: solid orange line, 
rW): if an individual increases its activity, it decreases its aggression. D) The among- and within-
individual correlations additively determine average individual behaviors (dark circles) and 
how crickets vary from their averages (colored lines and smaller, lighter, circles). The influence 
of either rA or rW on the phenotypic correlation (solid black line in D) is determined by the 
repeatabilities of the behaviors. If repeatability is high (> 0.5), this phenotypic correlation is 
primarily determined by the behavioral syndrome, rA (Box 1). Here, with a repeatability of 0.37 
(Bell et al. 2009), the phenotypic correlation is more strongly influenced by the within-
individual correlation than the among-individual correlation but is ultimately quite modest. 
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3. Feedbacks as a potential component influencing behavioral correlations 

 An alternative mechanism for understanding behavioral correlations builds on a 71 

simple model of trade-offs by adding feedbacks between underlying state and behaviors. 72 

Sih et al. (2015) proposed that among-individual differences in behavior—i.e., 73 

“personality”—can be generated by feedbacks between behavior and underlying state. 74 

Specifically, Sih et al. (2015) proposed that positive feedbacks can explain the emergence of 75 

personality variation. This was supported by a model where the intensity of initial 76 

behavioral expression resulted in feedbacks that then shaped an individual’s future 77 

behavioral expression.  78 

To determine whether feedbacks similarly produce both behavioral syndromes and 79 

within-individual correlations, I extended the Sih et al. (2015) model to two traits following 80 

Houle’s (1991) classic y-model (Figure 3A). The y-model is a simple representation of 81 

trade-offs where “state” or some other proxy for energy (S1) is allocated to expression of 82 

one of two traits (B1 or B2, Figure 3A). Because energy allocated to one trait at a particular 83 

time (TO × S1,t) is not available for allocation to the other trait ((1-TO) × S2,t), a trade-off 84 

exists between them.  85 

Following this framework, I modeled the expression of two behaviors (B1 and B2) as 86 

emerging from the investment of energy (based on “state”) into each, with the amount of 87 

energy invested trading off between behaviors. In this model the two behaviors 88 

subsequently affect the gain of state/resources for use in the future expression of behavior 89 

 
Figure 2. Relationship of within-individual behavioral correlations (rW) with (A) among-

individual correlations (rA) and (B) genetic correlations (rG). The sign and magnitude of rA and rG 

are highly concordant with rW across behaviors and taxa.  Diagonal lines indicate 1:1 

relationship. Horizontal and vertical dashed lines divide plots into sign mismatches (top left, 

bottom right) and sign matches (top right, bottom left). Within-individual correlations were the 

same sign as among-individual and genetic correlations in 62% and 79% of cases respectively. 

Data in A are from Brommer and Class (2017). Data in B are from Dochtermann (2011). 
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via feedbacks (λ, the proportion of energy added back to S1, Figure 3A). Biologically, such 90 

feedbacks might arise if, for example, exploratory propensity is positively correlated with 91 

energy gain. In such a case, individuals with an initially high state can explore more, gaining 92 

more energy that can be invested in even greater exploration and energy gain in the 93 

future—a positive feedback.  94 

I modeled varied magnitudes of feedbacks, both positive and negative, and analyzed 95 

modeled populations to determine resulting the among- and within-individual correlations 96 

(Figure 3B). At the start of the model, state differed among individuals due to stochastic 97 

variation. This seeded the population with variation in initial acquisition. In natural 98 

populations, individuals may similarly initially differ due to developmental stochasticity, 99 

parental investment, genetic differences, and other environmental factors.  100 

In the absence of feedbacks (λ1 = λ2 = 0, Figure 3), this model reduces to the general 101 

structure of models developed by Houle (1991) and Van Noordwijk and de Jong (1986). 102 

Consequently, without feedbacks, the trade-off in allocation along with underlying 103 

 
Figure 3.  (A) Simple model structure combining Sih et al.’s (2015) feedback model with Houle’s 
(1991) y-model to include feedbacks between behavior and state. TO (the trade-off parameter) 
is the proportion of state energy (S1 at time t) allocated to behavior B1, making 1-TO the energy 
allocated to B2. λ is the feedback strength and the conversion rate of a behavior (B1 or B2) into 
energy that can be used at a later time. (B) Magnitude of among- (purple) and within-individual 
(green) correlations under feedbacks (λ) of different strength. Shaded regions indicate those 
feedback strengths that produce correlations of the same sign. Repeatability is not set a priori 
and is instead an emergent property of the model. Individuals within a population expressed 
behaviors according to A over ten time steps, with 250 individuals per population. Fifty 
populations were simulated at each of five levels of feebacks (λ in B). rA and rw were estimated 
using the MCMCglmm package in R (Hadfield 2010). 
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variation in initial acquisition results in positive among-individual (rA) and negative within-104 

individual correlations (rw, Figure 3B), i.e., negatively correlated plasticity plus different 105 

signs for the two correlations. In this case, within-individual variation is generated by 106 

stochasticity in how much is invested in one behavior and thus how much is available for 107 

the other. For example, individuals might differentially allocate energy to growth versus 108 

activity at different periods of their life.  109 

In contrast, with both negative and positive feedbacks (negative and positive values 110 

of λ respectively), the within-individual correlation becomes increasingly positive (Figure 111 

3B). Simultaneously, negative and positive feedbacks lead to a reduction in among-112 

individual correlations, with these correlations becoming negative and trade-offs becoming 113 

particularly apparent at the among-individual level with strong positive feedback. 114 

Importantly, this model identifies both positive and negative feedbacks in two disjunct 115 

ranges that result in among-individual correlations and integrated plasticity of the same 116 

sign (shaded regions of Figure 3B). This suggests that feedbacks might partially explain the 117 

patterns of correlations observed in Figure 2.  118 

The potential for state-behavior feedbacks combined with trade-offs to explain 119 

observed patterns of correlations adds to several prior models that suggested state might 120 

generate consistent individual differences and phenotypic behavioral correlations (Dall 121 

2004, Wolf et al. 2007, Luttbeg and Sih 2010, Dall et al. 2012). However, these prior models 122 

did not separately examine among- and within-individual correlations nor the relationship 123 

between them. State-behavior feedbacks are also implied in existing conceptual 124 

frameworks, such as the pace-of-life syndrome hypothesis (Réale et al. 2010), though 125 

support for such overarching explanations remains elusive (e.g. Niemelä and Dingemanse 126 

2018, Royauté et al. 2018). 127 

4. Conclusions 

Given that within-individual correlations more strongly influence observed 128 

correlations between behaviors than do behavioral syndromes, the mismatch in effort to 129 

understand these correlations over the last fifteen years has hindered our general 130 

understanding of behavioral correlations. While considerably more investigation is 131 

required, the simple model presented here suggests that feedbacks might play a role in 132 

shaping both behavioral syndromes and integrated plasticity. This potential for feedbacks 133 

to shape correlations can be empirically addressed via manipulation of food availability 134 

(e.g. MacGregor et al. 2021), manipulating population densities, and longitudinal 135 

measurements of both state and behavior (Sih et al. 2015). Importantly, within-individual 136 

correlations can only be estimated with specific study designs (Dingemanse and 137 
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Dochtermann 2013). Regardless, whether focused on feedbacks or other potential causes, 138 

our understanding of behavioral correlations can only advance if more—and careful—139 

attention is paid to within-individual correlations.  140 
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Table 1. A. Parameters characterizing behavioral associations. B. Some possible contributors to 

within-individual behavioral correlations. If either active or passive plasticity are elicited in 

response to known and measured environmental parameters, they can be explicitly modeled. 

Otherwise, they will contribute to within-individual variation and covariation. Similar processes 

contribute to the irreversible plasticity (aka developmental plasticity), which contributes to 

among-individual correlations (Dingemanse and Dochtermann 2014). The contribution of each 

component of within-individual correlations can be determined by breaking rw down into 

constituent parts, similar to how a phenotypic correlation was broken down in Box 1. 

 

A. Also known as Definition  

Phenotypic 

correlations 
 

The standardized covariance 

between two behaviors. 

Describes the strength and 

direction of association. 

(Sih et al. 2004a, Sih et 

al. 2004b, Dingemanse 

et al. 2010) 

Among-

individual 

correlations 

Behavioral 

syndromes 

Correlations in an individual’s 

behavioral responses (Dingemanse et al. 

2012, Dingemanse and 

Dochtermann 2013) 
Within-

individual 

correlations 

Residual 

correlations 

Correlations in changes in an 

individual’s responses 

B.  Definition   

Active 

reversible 

plasticity 

changes in an individual’s behavior expressed in 

response to environmental cues indicative of selective 

pressures 

(Piersma and Drent 

2003, Piersma and Van 

Gils 2011) 

Passive 

reversible 

plasticity 

changes in response to environmental conditions 

rather than specific cues of selective pressures; 

includes passive responses to abiotic conditions, such 

as hypoxia 

(Whitman and Agrawal 

2009) 

Reversible 

organismal 

error 

changes to an organism’s phenotype in response to an 

incorrectly processed cue 
(Westneat et al. 2015) 

Measurement 

error 

error in quantification of behaviors; can be correlated 

due to bias an 
(Westneat et al. 2015) 

for a discussion of additional contributors to within-individual (co)variation see: (Piersma and 

Drent 2003, Whitman and Agrawal 2009, Piersma and Van Gils 2011, Westneat et al. 2015, 

Berdal and Dochtermann 2019) 
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