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Abstract 

Deamidation of asparagine (ASN) and isomerization of aspartic acid (ASP) residues are among the most 

commonly observed spontaneous post-translational modifications (PTMs) in proteins. Understanding and 

predicting a protein sequence’s propensity for such PTMs can help expedite protein therapeutic discovery 

and development. In this study, we utilized proton-affinity calculations with semi-empirical quantum 

mechanics (QM) and µs long equilibrium molecular dynamics (MD) simulations to investigate mechanistic 

roles of structure and chemical environment in dictating spontaneous degradation of asparagine and 

aspartic acid residues in 131 clinical-stage therapeutic antibodies. Backbone secondary structure, side-

chain rotamer conformation and solvent accessibility were found as three key molecular indicators of ASP 

isomerization and ASN deamidation. Comparative analysis of backbone dihedral angles along with N-H 

proton affinity calculations provides a mechanistic explanation for the strong influence of the identity of the 

n+1 residue on the rate of ASP/ASN degradation. With these findings, we propose a minimalistic physics-

based classification model that can be leveraged to predict deamidation and isomerization propensity of 

therapeutic proteins. 
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Introduction 

Protein stability is at the center of biological mechanisms spanning molecular pathways and therapeutic 

interventions.[1-3] Proteins are subject to various post-translational modifications (PTM) that are essential 

for their function, e.g. glycosylation and acylation. Some of these PTMs are spontaneous chemical reactions 

that lead to degradation, e.g. deamidation of asparagine (ASN→ASP/iso-ASP), isomerization of aspartic 

acid (ASP→iso-ASP) and oxidation of MET/TRP residues.[4, 5] These spontaneous chemical modifications 

often serve as a key indicator of stress that elicits a physiological response.[6] Bio-manufactured 

therapeutic proteins such as peptides, vaccines, monoclonal and bispecific antibodies (mAbs), and viral 

capsids are subject to physical and chemical stressors during manufacturing that result in accumulation of 

various PTMs.[7-11] Spontaneous chemical modification can negatively impact the biomolecule’s 

therapeutic efficacy, quality and developability by altering the structure and/or molecular properties of the 

protein. For instance, isomerization of an ASP residue alters the backbone connectivity and deamidation 

of an ASN residue imparts a negative charge (Figure1), both of which can result in altered functional 

consequences.[12, 13] Often protein engineering strategies are employed to mitigate the negative impacts 

of such chemical modifications, but this process is often iterative which prolongs the development cycle of 

a successful therapeutic.[14-16] Understanding and predicting the propensity of a therapeutic protein to 

undergo chemical degradation under stress can be leveraged to expedite development timelines.[17-20] 

Deamidation of an ASN residue has been experimentally well characterized.[21-23] Among the multiple 

pathways that are feasible, pH-dependent base-catalyzed nucleophilic attack has been shown to be the!

predominant pathway.[23-26] The reaction is irreversible and proceeds via (Figure 1): 1) Base-catalyzed 

deprotonation of the n+1 amide 2) nucleophilic attack of the anionic nitrogen on the side chain carbonyl 

group and a subsequent ring closure that leads to the formation of a succinimide intermediate and 3) 

hydrolysis of the succinimide into ASP or iso-ASP. Similarly, the isomerization reaction can proceed from 

an ASN or ASP residue via the same succinimide intermediate pathway. There are mechanistic parallels 

and kinetic dissimilarities between the isomerization and deamidation reactions.[13, 27, 28] A 

comprehensive investigation of both reactions has revealed that the side chain of the neighboring n+1 

residue can explain fold differences in the !!
"
 of the reaction in peptides.[21, 29-32] Previous studies using 
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pentapeptides by Robinson et al.[33] have shown a higher likelihood of chemical degradation if the n+1 

neighboring residue of the ASN residue is a GLY, ALA, SER or THR. Based on this, the sequences NX and 

DX (where X could be G/A/S/T) are often considered as sequence hotspots in proteins. However, these 

peptide hotspots do not sufficiently predict the reaction propensity in 3D folded proteins; a recent 

experimental survey of 131 clinical stage therapeutic (CST) antibodies (henceforth referenced as the 

Adimab dataset) by Lu et al. [34] revealed vast discrepancies in the range of deamidation and isomerization 

propensities among antibodies that do not follow the hotspot rules. For instance, of the twenty-seven NG 

hotspots only fourteen underwent chemical degradation. Similarly, of the forty-four DG cases only sixteen 

were isomerized. In addition, chemical degradation was observed at the non-hotspot residue locations such 

as NY, NW, DR and DY. The discrepancy reported in Lu et al. indicates a gap in our knowledge of how 

neighboring residues contribute to the chemical degradation propensity.  

Multiple computational strategies, from physics-based approaches (e.g. quantum mechanics/molecular 

mechanics (QM/MM) and Molecular Dynamics (MD) simulations) [29, 30, 35, 36] to machine-learning 

models,[17, 20, 37] have been developed over the past two decades to predict deamidation and 

isomerization in peptides and proteins. Several detailed computational models explored site specific effects 

using QM/MM calculations at the peptide level. For example, ab initio calculations on model compounds 

have revealed the contribution of backbone secondary structure affecting the proton-affinity (Figure 1a) of 

the n+1 amide.[38] However, it is as of yet unclear if these insights are generalizable to ASP and ASN 

residues with varied neighboring residues on a large set of proteins. Another noteworthy study[36] used 

MD and QM/MM to compute conformational and chemical free energy barriers along the deamidation 

reaction pathway. While this study provided detailed insights into the free energy changes, the method was 

only tested on a small number of degradation sites on a single molecule and thus would be computationally 

prohibitive for high throughput screening. Recently, multiple machine learning models have been proposed 

that were trained with a number of structure-based features such as secondary structure, local flexibility, 

size of the neighboring residue, and solvent exposure.[17, 20, 37, 38] While computationally facile and 

practical in nature, these models often ignore important mechanistic and structural details (such as 

conformational dynamics) that are important for the reaction’s feasibility. Besides, it remains unclear how 

broadly generalizable these models are, given that they were trained on a limited set of data points.  
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Here we have utilized microsecond long equilibrium molecular dynamics (MD) simulations and proton-

affinity calculations to understand the impact of neighboring residues in dictating the chemical degradation 

at ASP/ASN site of proteins. Based on the analysis of a large set of 131 CST antibodies, we propose a 

physics-based classifier model that can accurately predict the propensity of deamidation and isomerization 

of a protein sequence. The model relies on decomposing the major steps of the reaction (deprotonation, 

nucleophilic attack and hydrolysis) as conformational degrees of freedom and inferring the reaction 

propensity based on the thermodynamic feasibility of exploring those conformations. 

Results and Discussion 

Conformational Determinants of Deprotonation.       

QM calculations and crystal structure analysis.! Deprotonation of the amide nitrogen has been 

experimentally characterized to proceed via a base-catalyzed reaction that is quite spontaneous even at 

acidic conditions.[31, 39-41] Several studies have investigated the dependence of backbone amide acidity 

on the conformation and chemical environment using QM/QMMM calculations.[29, 30, 35-37] In one of the 

pioneering works, Radkiewicz et al. [26, 27] used N-formyl-glycinamide as a model compound representing 

a peptide bond to calculate the relative proton affinity as a function of the ϕ and ψ dihedral angles (using 

HF/6-31+G*//HF/3-21G). This analysis showed that the acidity of backbone amide is largely impacted by of 

the ψ dihedral angle; ϕ angle was found to have a small effect. Here, we carried out DFT calculation to 

estimate proton affinity for the same model compound at the M062X/6-311++G(d,p) level of theory in both 

gas phase and aqueous phase continuum SMD (Solvation model based on density) solvent environment. 

Our results are in agreement with the earlier studies: proton affinity of backbone amide deviates significantly 

with respect to changes in the backbone conformation, Figure 2b and the SI. Specifically, when ϕ and ψ  

are at angles observed within α-helices, the proton bonded to the amide experiences a repulsive force from 

the adjacent carbonyl carbon as a result of a di-electric instability with the amide nitrogen (Figure 2c) i.e. 

proton affinity of the model compound is lower in the α-helical conformation centered around -60°≤ψ≤60°, 

Figure 2b. The gas phase semi-empirical QM calculations using MOPAC with PM6-D3H4,47 PM7 and RM1 

Hamiltonians (see methods and the SI) are also consistent with DFT results. 
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We then sought to find the generalizability of this conformation-dependent amide acidity rules in the context 

of peptides. In order to do so we extended the proton affinity calculations to DX and NX dipeptides as a 

function of their backbone ϕ & ψ dihedral angles, Figure 3 and the SI. The goal was to investigate if proton 

affinity calculations can explain the fold differences of reaction half-lives observed in pentapeptides due to!

the variations in the n+1 residue. For instance, an interesting comparison can be made between Gly and 

Ala as n+1 residue. In solution, GGNGG and GGNAG peptides show high propensity to adopt an α-helical 

conformation[41, 42] yet their deamidation half-lives are an order of magnitude different (1.03 and 21.1 

days respectively).[33] Our dipeptide proton affinity analysis suggests that the amides in both NG and NA 

are acidic dependent on the ψ angle, -60°≤ψ≤60° being acidic (Figure 3a). However, contrary to the model 

compound data, the proton affinity of the amide in the NA peptide significantly changes as a function of the 

ϕ angle. Specifically, the backbone amide of the NA residue is more acidic in conformations when ϕ>0 

compared to when ϕ<0 within the same boundary of -60°≤ψ≤60°. This indicates that the proton affinity NA 

peptide is also dependent on the type of the helical conformation (right-handed α-helix vs left-handed α-

helix). A right-handed α-helix conformation places the methyl sidechain group in close proximity to the 

backbone amide that offers protection from exposure to the base and/or hydrolysis (Figure 3c, conformation 

2). Similarly it can be inferred from the proton affinity plots (see SI) that: 1) the sidechain mediated protection 

increases with increasing the size of non-polar, hydrophobic groups (i.e. Phe > Ile > Leu > Val > Ala), and 

2)  the presence of a polar hydroxyl or carbonyl groups in the n+1 side-chain (as in Asp, Ser, Thr, Asn, Tyr) 

can facilitate the deprotonation of the amide by solvent mediated electrostatic interactions.  In the case of 

GLY or in any left-handed α-helix conformation the protection from the n+1 residue is completely lost (Figure 

3c, conformation 3).  

It must be noted that a large fraction of combinations of ϕ & ψ dihedral angles explored in the dipeptide 

models are energetically inaccessible in folded proteins. To identify the relevant secondary structures for 

the NX and DX motifs in proteins, we collected ϕ & ψ angle distribution from all the antibody crystal 

structures available from the PDB database. These distributions were analyzed using kernel density 

estimation (KDE) to arrive at the probability density function (PDF) of conformational preference for [N/D]G 

and [N/D]A residues in ϕ & ψ space (Figure 3b and SI). Comparing the proton affinity calculations with the 

conformational PDF reveals that [N/D]G sites mainly populate the acidic left-handed α-helical 
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conformations, whereas [N/D]A sites largely favor the basic right-handed helix (ϕ<0 region) and a beta 

sheet. The latter is in agreement with a previous work showing that a steric interaction between the methyl 

group and the terminal carbonyl oxygen destabilizes all structures with ϕ~120°, relative to glycine 

dipeptides.[43] These results clearly explain why [N/D]A sites are often orders of magnitude less prone to 

degradation than [N/D]G sites.  

A comprehensive analysis of the proton affinity calculations and conformational PDF in ϕ & ψ space for all 

the [N/D]X sites (SI) revealed that the frequency of observing a residue in the acidic region from the PDB 

is strongly correlated with the likelihood of the residues to undergo degradation. In particular, we observed 

that the most frequently modified [N/D]X sequences based on various publications (i.e. DG,[44-46] DS, [14, 

47, 48] DD,[48] DT,[20] DH,[49] NG, NS, NN, and NT[12, 20, 33, 44]) mainly favor the right-handed helix in 

the Ramachandran plot, i.e. the more acidic region. Interestingly, the strongest right-handed helix 

population is seen for DG and DS, followed by DD, DN and DT. Similarly, for deamidation motifs, a 

decreasing population of right-handed helix is observed in the order of NG, NS, NN and NT. These results 

correlate with the approximate hierarchy of these hotspots based on published studies.[34]  

Overall, these observations indicate that the ϕ & ψ backbone dihedral angle of the peptide bond at an 

[N/D]’s n+1 position can be used as a metric to identify sites that have higher propensity to deprotonate: 1) 

β-sheet conformation is less deprotonation prone, 2) the left-handed α-helix regions (-60°≤ψ≤60°, ϕ>0°) is 

acidic for all amino acids that have a non-polar (A, V, L, I) or bulkier side-chain groups (F, W), 3) On the 

contrary for small polar amino acids (G, S, T, D) both the left and right-handed α-helix (-60°≤ψ≤60°) 

conformations are acidic.       

Generalizability of the conformation dependent backbone acidity in proteins. To test the generalizability of 

the proton affinity data at the peptide-level, we explored the relationship between backbone conformations 

of all of the [N/D]X sites in the CDR region of 131 therapeutic monoclonal antibodies and their reported 

degradation rates. To obtain the backbone conformation preference, we calculated the conformational free 

energy surface (FES) in the ϕ & ψ space for the n+1 residue from microsecond long equilibrium molecular 

dynamics (MD) simulations of the Fab structures. We arbitrarily chose a value of 2KbT energy barrier or ~1 

kcal/mol to define energetically favorable conformations, i.e. in the FES a region whose energy values are 
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< 1 kcal/mol are likely to be sampled under equilibrium conditions.  This dataset corresponds to 1039 [N/D]X 

sites (498 ASP and 541 ASN) of which 30 DX and 39 NX sites were  prone to degradation (reactive).  

Figure 4 shows that the calculated conformational distribution (PDF) of reactive and non-reactive residues 

correspond very well with the expected conformational preference seen in proton affinity calculations. The 

experimentally reported non-reactive residues show preference to the right-handed α-helix or the β-sheet 

conformation while the reactive residues show large preference to the left-handed helical conformation. 

Figure 6 (D1) reveals a correlation between the rate of degradation and the probability of the backbone 

amide being found in the acidic regions. With an exception of two sites, the degradation rates fall below the 

desirable 5% cutoff for all the [N/D]X sites that are in a basic backbone conformation (i.e. Free Energy > 

1kcal, which corresponds to either a beta-sheet or a right-handed helix when the n+1 residue is non-polar). 

However, the results in Figure 4 suggest that when the backbone is in an acidic conformation (Free Energy 

< 1kcal), the [D/N]X site is not necessarily guaranteed to undergo degradation. In other words, a high 

propensity for a conformation with a basic backbone hydrogen can prevent the site from degradation but 

lack thereof is not sufficient for degradation.  

Overall, the backbone conformational preference of NX and DX residues under equilibrium conditions as a 

single descriptor was found to classify the reactive vs non-reactive residues at 65% accuracy (Table 1). 

This shows that proton affinity inferred from the secondary structure of n+1 residue is a good descriptor to 

predict degradation propensity of NX and DX sites. 

Conformational determinants of cyclization. 

Once deprotonation is enabled by the acidity of the backbone, the next step in the reaction is ring closure 

leading to succinimide formation via nucleophilic attack between N- atom of the n+1 residue and Cγ of the 

ASN/ASP residue (Figure 1). In order for the nucleophilic attack to be feasible the N- and Cγ should come 

closer than distances of 3.0 Å (near-attack conformation).[29, 30] In folded proteins sidechain interaction 

including hydrogen bond formation can limit the conformational flexibility of ASN/ASP residues to visit near 

attack conformations. This in turn can disfavor succinimide formation. Multiple sidechain orientations can 
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result in the near attack conformation (Figure 5a). Conformational degrees of freedom affecting the distance 

between Cγ and Nn+1 can be defined as a function of the two dihedral angles ψ & χ1.  

To identify the relevant conformations that enable a nucleophilic attack distance, we sampled the free 

energy space of ψ & χ angles in Ace-GGNAG-Nme pentapeptide using Metadynamics simulations. By 

applying an additive historical bias, Metadynamics pushes the system to explore conformations that are 

kinetically limited in an equilibrium simulation. There are six low energy states in the ψ & χ space (Figure 

5b), of which two regions are coincident with the near attack conformation distance (Figure 5c). 

 With this information, we looked at the correlation between the near attack side-chain conformation and 

the experimental rates reported in the adimab dataset. As with the backbone conformation, we looked at 

the FES from the equilibrium MD simulation. Figure 6, D2 shows that when the side-chain is not in a near-

attack conformation (i.e. Free Energy > 1kcal/mol), the reaction rates largely remain below the 5% cutoff, 

with a few exceptions. Otherwise, the residue may or may not be reactive, as suggested by the large 

number of data points below and above 5% for Free Energy < 1kcal/mol. Therefore, the side chain 

conformation indeed proved to be a useful descriptor in identifying reactive residues (Figure 6, D2). The 

overall accuracy of the prediction was at 40%, but when used in combination with the backbone 

conformation rule, i.e. both the acidic conformation and the near attack conformations are energetically 

feasible, the accuracy of the classification model improves to 75% (Table 1).  

Solvent Accessibility 

Water plays an important role in the deamidation and isomerization reaction as a proton donor/acceptor. 

Both the base catalyzed deprotonation and hydrolysis of succinimide intermediate to ASP/iso-ASP is only 

feasible in the presence of water molecules (Figure 1). In previous studies, solvent accessibility weakly 

predicted the reaction propensity.[19, 20, 33] These previous calculations were done on static protein 

structures that lacked proper structural relaxations that may affect solvent accessibility calculations. Our 

solvent accessibility calculations utilize a dynamic approach in combination with intuitions about the 

reaction. Here we calculated the solvent accessibility at a residue level. In order to capture the dynamic 

aspect of the solvent occupancy, we represented solvent accessibility as a fraction of time in which the 
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ASN/ASP residue remained accessible vs inaccessible (see methods). Using this value, we once again 

sought to classify the ASN/ASP residues in the adimab set as reactive vs non-reactive. Figure 6, D3 shows 

that solvent inaccessible side-chains (time fraction of solvent exposure < 75%) are indeed protected from 

the reaction. However, a large number of both reactive and non-reactive cases are seen in the solvent 

accessible region (time fraction of solvent exposure > 75%).  The overall accuracy in predicting the reactivity 

using SASA as a single descriptor is 39%, which is no better than the performance of the near attack 

conformation metric. 

Combined Model 

As discussed above, deamination and isomerization reactions can be described in the three consecutive 

steps: deprotonation, cyclization and hydrolysis. Utilizing a multiscale computational approach, we were 

able to test the propensity of degradation in the adimab dataset using these physics-based metrics. Since 

all three steps are essential for the reaction, we sought to check if a combination of the three metrics would 

improve the classification accuracy: D1) deprotonation – as represented by the free-energy profile of ϕ, ψ 

angles of the n+1 residue recovered from the MD simulation, D2) cyclization – as represented by the free-

energy profile of χ, ψ angles also recovered from the MD simulation, and D3) hydrolysis – as represented 

by the solvent accessibility calculated as the fraction of solvent occupied state in MD trajectory. The 

decision tree that we used to classify if an ASN/ASP residue is likely to degrade is shown in Figure 7. The 

adimab dataset discussed herein is disproportionately distributed toward true negatives (non-reactive) vs 

true positives (reactive), so this presented a challenge to interpreting common statistical measures such as 

accuracy. We instead chose to use balanced accuracy, Matthew’s correlation coefficient (MCC) and 

Cohen’s Kappa score (CKS) as the statistic to compare the three individual descriptors as well as 

combinations. We also created a naïve predictor that would predict all the residues as non-reactive; this 

naïve predictor will score 0 on both the MCC and CSK statistic. As can be seen from Table 1, the physics-

based classifier model based on the three descriptors offers an overall balanced accuracy of 83% in 

predicting the isomerization and deamidation sites. All three descriptors have a better MCC and CKS score 

compared to the naïve predictor. Similarly, any combination of two descriptors performed moderately better 

than a single predictor. The combined model using all three descriptors is better at predicting non-reactive 
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residues over reactive residues, which could be useful in a therapeutic manufacturing setting where the 

cost of predicting a reactive residue as non-reactive is higher. This combined mechanistic model acts as a 

good screening criterion in identifying antibodies that are prone to chemical degradation via deamidation or 

isomerization.  

Conclusion 

Spontaneous chemical degradation at the ASN/ASP residues is an important problem that affects the 

developability of the protein therapeutics. Typically, the issues of chemical degradation are encountered at 

later stages in the development at which point iterative protein-engineering efforts are employed to mitigate 

these modifications. Such iterative efforts prolong development timelines and delays lifesaving therapeutics 

reaching patients. Multiple computational strategies ranging from QM calculation to machine learning 

models have been proposed to predict degradation in ASP/ASN. Very few such tools (if any) generalize for 

high-throughput screening. We leveraged prior theoretical and experimental findings on the ASN/ASP 

degradation reactions to carry out multiscale analysis to comprehensively evaluate the chemical 

degradation in 1039 residues (498 ASP and 541 ASN) spanning 131 therapeutic mAbs. In doing so we 

have made some interesting findings: 1) sidechain steric interactions of the n+1 residue affected the proton 

affinity of backbone amide in the right-handed α-helix conformation, 2) NG and DG sites as well as the 

reactive N/DX sites are preferentially observed in the left-handed α-helix conformation that correlates with 

low proton affinity, and 3) there are specific regions of the sidechain conformational space are both 

energetically favorable and in a near-attack conformation. Utilizing an experimentally validated truth set we 

have been able to connect molecular intuition from the reaction mechanism to a real-life scenario. Utilizing 

just three descriptors that are fundamental to the protein structure one can heuristically classify the 

likelihood of the protein to undergo chemical degradation at the ASN/ASP sites. Although we have 

exclusively looked at mAbs in this study, we believe that the structural and chemical insights described 

herein are broadly applicable and generalizable to all proteins and protein-based therapeutics.  

Methods 

Experimental dataset 
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The validation data contained 498 ASP and 541 ASN residues in the CDR loops of 131 therapeutic mAbs 

published by Lu et al.[34] The isomerization events were analyzed at low pH stress (pH 5.5) for 2 weeks at 

40 °C. A total of 31 isomerization sites were identified with total modification measurements ranging from 

2.1 to 44.0%. The deamidation data was obtained at high pH stress (pH 8.5) for 1 week at 40 °C. A total of 

39 deamidation sites were reported with degradation levels ranging from 2.0% to 67.7%. We used a 

threshold cutoff of 5.0% for both isomerization and deamidation events to classify reactive versus non-

reactive.  

QM calculations  

Semi-empirical QM (SQM) calculations to calculate proton affinity were performed using GAUSSIAN09[50] 

and MOPAC2016[51] software packages. To rule out any uncertainties in the proton affinity calculations, 

we carried out DFT calculation of proton affinity for N-formyl-glycinamide at M062X/6-311++G(d,p) level of 

theory in both gas phase and aqueous phase continuum SMD solvent environment.[52] The gas phase 

calculations where then repeated in MOPAC with PM6-D3H4,[53] PM7 and RM1 semi-empirical methods 

(SI).[52] The regions of proton affinity qualitatively matched across DFT and SQM levels of theory albeit 

with variations in the energy values as expected due to variations in the theory and the Hamiltonian. 

Throughout the manuscript we tried to make only qualitative inferences from the QM calculations and we 

refrained from interpreting the exact energy as that is beyond the scope of the current study.  

Dipeptides of the Ace-NX-Nme and Ace-DX-Nme as well as their corresponding deprotonated anions 

(where X can be single letter code of all 20 amino acids) were generated using openbable.[54] The 

generated structures were subject to geometry optimization under PM6 level of theory to arrive at an initial 

structure. A 2D PES scan at PM6-D3H4, PM7 and RM1 levels of theory. The scan was performed at 10º 

intervals spanning the entire Ramachandran region. A total of 1369 data points were scanned for each 

dipeptide and its corresponding anion. At each step geometry optimization was requested to adhere to 

TIGHT convergence criterion while the angles being scanned would be kept constant. The resulting PES 

were used to arrive at the proton affinity expressed in the heat of formation for the forward reaction as 
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described in Figure 2. The discrete energy points were interpolated and plotted using linear spline 

interpolation as implemented in the matplotlib[55] python package. 

PDB Library  

We downloaded the pdb file repository of all the antibody (and antibody like Fab, scFV, ect…) that have 

crystal structure deposited in the PDB from SAbDab (The Structural Antibody Database 

http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/).[56, 57] We arrived at 3493 structures which were 

then cleaned, energy minimized and isolated from any other ligands. Using these structures, we calculated 

backbone dihedral angles of all Nx and Dx residues from the Fab domain. All the PDB handling was 

performed using MDanalysis[58] and PyTraj[59] python tools. The backbone dihedral angle distribution 

from this data was used for calculating 2D kernel density estimation using the SciKit-Learn python 

package.[60]  

KDE calculation 

In order to compare the KDEs that were calculated from the PDB database and the backbone dihedral 

angles observed in the MD simulations, we first classified each N/Dx site as reactive or non-reactive based 

on the deprotonation metric. We collected the ϕ & ψ angle distribution for all these sites across all MD 

trajectories. This data was used to calculate the second kernel density estimation plot in Figure 4, using the 

same SciKit-Learn package as before. 

Molecular Dynamics Simulation 

Molecular Operating Environment (MOE)[61] software from Chemical Computing Group was used to 

homology model each of the fragment antigen-binding (Fab) domain of all the antibodies accessed in the 

adimab set. The Fab structures were energy minimized to remove any steric clashes. The energy 

minimization was performed using SANDER program in Amber2015.[62] The protonation states at pH 5.5 

and 8.5 were assigned using the PDB2PQR tool. The two pH values mimic the buffer conditions in which 

the reactivity was estimated in the adimab experiment.  
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Energy minimized Fab structures were then prepared for equilibrium MD simulations by solvating the 

structure in a cubic box of TIP3P explicit water (model).[63] It was ensured such that the Fab was positioned 

at a minimum 10Å distance from the edge of the box.  The system was then adjusted to have a net neutral 

charge by adding Na+ and Cl- counter ions. Hydrogen Mass Repartitioning was performed on the solute 

atoms to enable long simulation time steps of 4fs.[64] 

The GPU implementation of Amber 2015 MD software package with the SPFP precision model was used 

for the MD simulation. The simulations proceeded by relaxing the system with 2000 steps of conjugate-

gradient energy minimization. Harmonic restraining potentials with the force constant of 10 kcal/mol/Å^2 

were imposed to restrain the solute to its initial structure. Post which the system was brought to an NPT 

ensemble with the pressure maintained at 1 atm and the thermostat set to 300K over the course of 200 ps, 

while the protein was restrained using a harmonic positional restraint of 10 kcal/mol/Å^2.  The system was 

then equilibrated for 1 ns with a restraint force constant of 1 kcal/mol/Å^2 on the protein structure 

maintaining the pressure and temperature at the same levels. The system was then subject to equilibrium 

MD simulation at NPT ensemble without any restraints at a time step of 4 fs. Long range interactions were 

cut off at 9Å and restricted range limited interactions. Coulombic interaction was calculated using the 

Particle Mesh Ewald algorithm for long-range electrostatics. The thermostat was maintained at 300K with 

Langevin dynamics and collision frequency set to 1 ps-1. The simulation was carried out for 500 ns during 

which the SHAKE algorithm was applied to constrain all bonds involving hydrogen atoms. Two other 

replicates of the 500 ns simulation were performed instantiated with a different random number to bring the 

combined sampling time to 1.5 "#. Trajectory snapshots were saved at 10 ps intervals and used for 

downstream analysis. The combined trajectories from three simulations were used for the analysis.   

CPPTRAJ software in AmberTools was used to analyze the trajectories. The free energy surface (FES) in 

the space of dihedral angles were calculated from bin populations using Gi=-kB T ln(Ni/Nmax), where kB 

is Boltzmann’s constant, T is the temperature, Ni is the population of bin i and Nmax is the population of 

the most populated bin. Bins with no population were given an artificial barrier equivalent to a population of 

0.5. Solvent accessible surface area (SASA) was calculated using the MSMS package[65] using a probe 

radius of 1.4 and triangle density of 3. 
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Advanced Sampling Using Metadynamics 

Metadynamics simulations were carried out using the GROMACS2018[66] MD engine patched to interface 

with PLUMED.[67] Metadynamics was performed in the well-tempered[68] scheme along the 

conformational space of ψ & χ angles of the pentapeptide Ace-GGNAG-Nme. The simulations utilized the 

same forcefield and MD parameters with 2 fs time steps. Bias was added at every 500 steps with a sigma 

of 0.1 and bias of 1.0 kcal/mol. The simulation was carried out for 1 μs and the trajectory was analyzed 

after unbiasing the simulation using the standard reweighting[69] procedure implemented in PLUMED. The 

free energy surface and corresponding distance distribution was plotted using matplotlib.   
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Figure 1. Deamidation (1a) and Isomerization (1b) reaction mechanisms showing deprotonation (1) of the 

n+1 amide leading to the formation of succinimide intermediate (2) and hydrolysis of succinimide (3) into 

aspartic acid (3a) or iso-aspartic acid (3b).  
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Figure 2. Backbone conformation dependence for proton affinity. (a) the deprotonation reaction and the 

calculation of proton affinity as the heat of formation of the forward reaction, (b) the proton affinity distribution 

of the small molecule N-formyl-glycinamide as a function of the backbone dihedral angles, and (c) the most 

acidic and basic conformations based on the proton affinity distribution.  
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Figure 4. Kernel density estimation plots for the backbone conformation of all 1039 n+1 residues that 

neighbor an ASP (top) or ASN (bottom) in the adimab dataset. The ϕ & ψ angle distribution was collected 

from μs long equilibrium MD simulations and classified as reactive (left) and non-reactive (right) based on 

the report from the adimab set. A clear pattern emerges around the left-handed α-helix conformation in 

reactive cases that is distinct from the non-reactive cases on the right. The right most panel shows the 

Ramachandran plot boundaries labelled with the α-helix and β-sheet conformations. 
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Figure 5. Conformational space for the near-attack conformation that enables succinimide formation. a) 

The structural orientation of the reactive (1a and 2a) and non-reactive sidechain conformations (2b and 3) 

of an aspartic acid residue is shown in ball and stick representation. b) Free-energy surface of the side-

chain conformation in ψ & χ dihedral angle space and c) the corresponding distance between Cγ and the 

n+1 amide nitrogen calculated from metadynamics simulation of Ace-GGNAG-Nme pentapeptide.  
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Figure 6.  Performance of individual descriptors in discriminating degraded ASP (top) and ASN (bottom) residues from the adimab dataset. The 

percentage degradation values reported in the adimab study are represented on the X-axis. The Y-axis in the leftmost panel (D1) is the free-energy 

barrier at the deprotonation prone backbone helical conformation of the n+1 residue. The Y-axis in the middle panel (D2) is the free-energy barrier 

at the near-attack conformation defined by the ψ & χ angles. The Y-axis in the rightmost panel (D3) is the time fraction when the ASP/ASN residue 

remains solvent accessible. The red cut-off markers indicate the values that determine if a residue is prone to degradation or not. The blue shaded 

regions indicate the false negative predictions (experimentally observed to degrade but classified as non-reactive) and the grey shaded region 

indicates the false positives (predicted reactive but not evidenced experimentally) 
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Figure 7. Flowchart showing the decision scheme used to determine if a given ASN/ASP residue is likely to degrade in folded proteins. 
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Table 1. Performance statistic for the physics-based classifier model when different descriptors are used: D1- backbone dihedral conformation of 

the n+1 residue, D2- side-chain dihedral conformation of ASP/ASN residue, D3- fraction of time the ASN/ASP residue remains solvent accessible. 

Combinations are represented by DXX where the X represents the descriptors. The true distribution of the adimab set is 47 TP and 992 TN. 

Type TP* FN* FP* TN* Accuracy Accuracy† Precision Recall F1 Score F0.5 Score MCC‡ CKS§ 

ASN-D1 20 3 173 345 0.67 0.77 0.95 0.67 0.77 0.87 0.23 0.12 

ASN-D2 21 2 301 217 0.44 0.67 0.95 0.44 0.57 0.75 0.14 0.05 

ASN-D3 23 0 316 202 0.42 0.69 0.96 0.42 0.54 0.73 0.16 0.05 

ASN-D12 19 4 130 388 0.75 0.79 0.95 0.75 0.83 0.90 0.26 0.16 

ASN-D13 20 3 92 426 0.82 0.85 0.96 0.82 0.87 0.92 0.34 0.24 

ASN-D23 21 2 183 335 0.66 0.78 0.96 0.66 0.76 0.86 0.23 0.12 

ASN-naïve 0 23 0 518 0.96 0.50 0.92 0.96 0.94 0.92 0.00 0.00 

ASN-D123 19 4 62 456 0.88 0.85 0.96 0.88 0.91 0.94 0.40 0.32 

ASP-D1 22 2 186 288 0.62 0.76 0.95 0.62 0.73 0.84 0.23 0.11 

ASP-D2 22 2 318 156 0.36 0.62 0.94 0.36 0.48 0.68 0.11 0.03 

ASP-D3 21 3 312 162 0.37 0.61 0.94 0.37 0.49 0.68 0.10 0.03 

ASP-D12 20 4 118 356 0.76 0.79 0.95 0.76 0.82 0.89 0.28 0.18 

ASP-D13 20 4 133 341 0.72 0.78 0.95 0.72 0.80 0.88 0.26 0.16 

ASP-D23 20 4 205 269 0.58 0.70 0.94 0.58 0.69 0.82 0.17 0.08 

ASP-naïve 0 24 0 474 0.95 0.50 0.91 0.95 0.93 0.91 0.00 0.00 

ASP-D123 19 5 77 397 0.84 0.81 0.95 0.84 0.88 0.92 0.34 0.26 

ALL-D1 42 5 359 633 0.65 0.77 0.95 0.65 0.75 0.86 0.23 0.12 

ALL-D2 43 4 619 373 0.40 0.65 0.95 0.40 0.53 0.72 0.13 0.04 

ALL-D3 44 3 628 364 0.39 0.65 0.95 0.39 0.52 0.71 0.13 0.04 

ALL-D12 39 8 248 744 0.75 0.79 0.95 0.75 0.83 0.90 0.27 0.17 

ALL-D13 40 7 225 767 0.78 0.81 0.95 0.78 0.84 0.90 0.30 0.19 

ALL-D23 41 6 388 604 0.62 0.74 0.95 0.62 0.73 0.85 0.20 0.10 

ALL-naïve 0 47 0 992 0.95 0.50 0.91 0.95 0.93 0.92 0.00 0.00 

ALL-D123 38 9 139 853 0.86 0.83 0.95 0.86 0.89 0.93 0.37 0.29 
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* TP – True positive, FN – False Negative, FP – False positive and TN – True Negative 
† Balanced accuracy calculated with weighted distribution of positives and negatives. 
‡ Matthew’s Correlation Coefficient ranges from -1.0 to +1.0, where the negative values indicate a bad predictor. 
§ Cohen Kappa Score ranges from -1.0 to +1.0, similar to the MCC statistic but a better indicator to compare an imbalanced dataset. 
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