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Abstract 19 

Assessing how climate change affects the potential invasion risk of alien plants has garnered 20 

considerable interest in ecology. Although many studies have tested the direct effects of drought 21 

on alien plant invasion, less is known about how drought affects alien plant invasion indirectly 22 

via other groups of organisms such as soil fauna. To test for such indirect effects, we grew single 23 

plant of nine naturalized alien target species in pot mesocosms with a native community of five 24 

native grassland species under four combinations of two drought (well-watered vs drought) and 25 

two soil-fauna (with vs without) treatments. We found that drought decreased the absolute and 26 

the relative biomass production of the alien target plants, and thus reduced their invasion success 27 

in the native community. Inoculation with a soil fauna increased the biomass of the native plant 28 

community and thereby decreased the relative biomass production of the alien species. The 29 

increased invasion resistance due to soil fauna tended (p = 0.09) to be stronger for plants 30 

growing under well-watered conditions than under drought. Our multispecies experiment shows 31 

for the first time that soil fauna might help native resident communities to resist alien plant 32 

invasions, but that this effect might be diminished by drought.  33 

Key words: alien-native competition, biological invasion, climate change, exotic, 34 

plant-environment interactions, soil animals  35 
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INTRODUCTION 36 

With the rapid globalization, more and more plant species have been introduced to new 37 

regions outside their native range (van Kleunen et al. 2015; Seebens et al. 2018; van Kleunen et 38 

al. 2018). Some of these alien plants have become invasive, which could decrease native species 39 

diversity, change nutrient cycles, and thereby affect ecosystem functions (Hejda et al. 2009; Vilà 40 

et al. 2011; Pyšek et al. 2012; Linders et al. 2019; Pyšek et al. 2020). Forecasts show that the 41 

number of alien plant species per continent may increase on average by 18% from 2005 to 2050 42 

(Seebens et al. 2020), indicating that the impacts of plant invasions on ecosystems may become 43 

even more serious. However, as there are many potential drivers of invasions, there are many 44 

uncertainties about how invasions and their impacts will develop in the future (Essl et al. 2020). 45 

In this regard, particularly the potential effects of ongoing climate change on plant invasions 46 

have garnered interest (Liu et al. 2017; Bartz and Kowarik 2019). 47 

In many places, climate change is characterized by more frequent and more intense drought 48 

events (Dai 2013; Diffenbaugh et al. 2015; Yoon et al. 2015; Spinoni et al. 2018). Droughts do 49 

not only reduce water availability to the plants, but also decreases the nutrient absorption (da 50 

Silva et al. 2011; Bueno et al. 2020). Consequently, drought might affect the competition 51 

between alien and native plants (Werner et al. 2010; Manea et al. 2016; Bueno et al. 2020), and 52 

thereby affect invasion success of alien plants (Ahanger et al. 2016; Mohammad et al. 2016; 53 

Haeuser et al. 2019; Bueno et al. 2020). For example, Manea et al. (2016) found that drought 54 

could reduce biomass production of native grasses, and consequently enhance the establishment 55 

success of alien plants. However, many other studies also found that invasive plants may suffer 56 

more from drought than native species, indicating that drought could also suppress alien plant 57 

invasion (Werner et al. 2010; Copeland et al. 2016; Liu et al. 2017; LaForgia et al. 2018; Valliere 58 
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et al. 2019; Kelso et al. 2020). One of the reasons for the mixed findings could be that most 59 

studies only considered direct effects of drought on alien plant invasion (Copeland et al. 2016; 60 

Liu et al. 2017; Pintó-Marijuan et al. 2017; Valliere et al. 2019). Much less is known about the 61 

indirect effects, i.e. how drought affects alien plant invasion via other trophic levels.  62 

Soil fauna include several important belowground trophic levels, which are increasingly 63 

recognized to affect plant competition (Wardle et al. 2004; Bardgett et al. 2005; Eisenhauer and 64 

Scheu 2008; Eisenhauer et al. 2010). On the one hand, soil fauna could enhance nutrient 65 

mineralization, and thereby increase plant nutrient uptake (Smith and Steenkamp 1992; 66 

Marinissen and de Ruiter 1993; Bardgett and Chan 1999; Xu et al. 2003; Cole et al. 2004; Barot 67 

et al. 2007; Eisenhauer et al. 2010). Given that invasive plants frequently respond more 68 

positively to nutrient enrichment than native plants (Liu et al. 2017; Liu et al. 2018), the higher 69 

nutrient availability caused by soil fauna may increase the invasion success. On the other hand, 70 

soil fauna can also change alien-native competition via herbivory effects (Bonkowski et al. 2009; 71 

Korell et al. 2019). The enemy-release hypothesis poses that alien plants are released from most 72 

of their native enemies (Keane and Crawley 2002, Mitchell and Power 2003, Vilà et al. 2005, 73 

Liu and Stiling 2006). Following this logic, alien plants would be damaged less than natives by 74 

herbivorous soil fauna, and therefore soil fauna would promote alien plant invasion. However, 75 

until now very few studies have tested how soil fauna affects alien plant invasion into resident 76 

communities (Bonkowski et al. 2009; Korell et al. 2019). 77 

It has often been found that indirect effects of altered biotic interactions due to climate 78 

change on species populations are more pronounced than their direct effects (Ockendon et al. 79 

2014). For example, empirical studies indicated that belowground trophic interactions could alter 80 

the plant responses to drought (Erb et al. 2011; Guyer et al. 2018; Franco et al. 2020; Wilschut 81 
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and van Kleunen 2021). Consequently, it is likely that drought might indirectly affect alien plant 82 

invasion in resident communities via effects on soil fauna. Indeed, drought can reduce the 83 

abundance and diversity of soil fauna (Makkonen et al. 2011; Eisenhauer et al. 2012; Guyer et al. 84 

2018; Aupic-Samain et al. 2020; Wilschut and Geissen 2020). Given that soil fauna, in particular 85 

some of the root herbivores might affect competition between native and alien plants, indirect 86 

effects of drought on alien plant invasion in resident community would occur via the cascading 87 

effect of drought suppression on soil fauna (Bonkowski et al. 2009; Korell et al. 2019). However, 88 

it has not been tested yet how drought could indirectly, via effects on soil fauna, affect plant 89 

invasion. 90 

To test the direct and indirect effects (i.e. via soil fauna) of drought on alien plant invasion 91 

into a native resident community, we performed a mesocosm-pot experiment. We grew single 92 

plants of nine alien target species in a community of five native grassland species under four 93 

combinations of two drought (well-watered vs drought) and two soil-fauna (with vs without) 94 

treatments. By comparing the absolute aboveground biomass production of the alien target 95 

species as well as their biomass production relative to the biomass production of the native 96 

competitors, we addressed the following specific questions: (1) Does drought suppress the 97 

absolute and relative biomass of alien species? (2) Does the presence of soil fauna promote or 98 

suppress the absolute and relative biomass of alien species? (3) Does the presence of soil fauna 99 

change the effect of drought on the absolute and relative biomass of alien species? 100 
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MATERIAL AND METHODS 101 

Study species 102 

To test the effects of drought, the presence of soil fauna, and their interaction on alien plant 103 

invasion in a native grassland community, we chose nine naturalized alien species as targets and 104 

five native species as competitors from the herbaceous flora of China (see Supporting 105 

Information Table S1). We classified the species as naturalized alien or native to China based on 106 

information in the book “The Checklist of The Naturalized Plants in China” (Yan et al. 2019) and 107 

the Flora of China database (www.efloras.org). To cover a wide taxonomic breadth, the nine 108 

alien species were chosen from eight genera of four families. The five native species, used to 109 

create the native community, included two forbs and three grasses that are all very common and 110 

do co-occur in grasslands in China. Seeds of all species, except one whose seeds were bought 111 

from a commercial seed company, were collected from natural populations growing in grasslands 112 

(Table S1). 113 

Soil-fauna collection 114 

To provide a live soil-fauna community as inoculum for the pot mesocosms, we collected 115 

soil fauna from a grassland site at the Northeast Institute of Geography and Agricultural Ecology, 116 

Chinese Academy of Sciences (125°24'30"E, 43°59'49"N) on 21 July 2020. In the grassland, we 117 

removed aboveground plant materials from each of 100 sampling locations (30cm × 30cm), and 118 

then collected from each location a soil sample of 1-L (10cm × 10cm× 10cm) using a shovel. 119 

Each sampling location was at least 10m apart from the others. Then, we brought the 100 soil 120 

samples back to the laboratory, where we extracted the soil fauna communities of each soil 121 

sample separately using the Macfadyen method (Macfadyen 1962). In brief, we put all soil 122 

samples on top of 100 stainless steel soil-sieves with a 2mm mesh size, and then waited 12 days 123 
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so that many of the soil organisms would fall through the holes, via stainless steel funnels, into 124 

plastic bottles filled with 50 ml potting soil (Pindstrup Plus, PindstrupMosebrug A/S, 125 

103Denmark; pH 6; 120 mg/L N; 12 mg/L P; 400 mg/L K; 28 mg/L Mg; 0.4 mg/L B; 2.0 mg/L 126 

Mo; 1041.7 mg/L Cu; 2.9 mg/L Mn; 0.9 mg/L Zn; 8.4 mg/L Fe). On 2 August 2020, we finished 127 

the soil-fauna-community collection. We then randomly chose ten of the 100 soil-fauna 128 

communities for soil-fauna investigation (see Supporting Information Table S2), and used the 129 

remaining 90 soil-fauna communities for inoculating of the soil in the experimental pot 130 

mesocosms. 131 

Experimental set-up 132 

To compare the growth performance of alien plants when growing in a resident native 133 

grassland community under different drought and soil-fauna treatments, we did a mesocosm-pot 134 

experiment in a greenhouse of the Northeast Institute of Geography and Agricultural Ecology, 135 

Chinese Academy of Sciences. We grew each of the nine alien species in the centre of a matrix of 136 

the native community under two water availabilities (well-watered vs drought) and two soil 137 

fauna treatments (with vs without).  138 

Form 15 May to 5 July 2020, we sowed the seeds of each species separately into plastic 139 

trays (195 × 146 × 65 mm) filled with the same potting soil as used for soil-fauna collection. As 140 

previous experiments had shown that the time required for germination differs among the species, 141 

we sowed the species on different dates (Table S1) to get similarly sized seedlings at the start of 142 

the experiment. On 3 August 2020, we filled 180 2.5-L circular plastic pots (top diameter × 143 

bottom diameter × height: 18.5 × 12.5 × 15 cm, Yancheng Tengle Plastics Co., Ltd, China) with 144 

the same potting soil as used for germination. To avoid nutrient limitation during plant growth, 145 

we mixed each pot with 5 g slow-release fertilizer (Osmocote® Exact Standard; 15% N + 9.0% 146 
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P2O5 + 12% K2O + 2.0% MgO + 0.02% B + 0.05% Cu + 0.45% Fe + 0.09% chelated by EDTA + 147 

0.06% Mn + 0.02% Mo + 0.015% Zn, Everris International B.V., Geldermalsen, The 148 

Netherlands). To create the native community, we selected similarly sized seedlings from each of 149 

the five native species, and transplanted one seedling of each native species at equal distance in a 150 

circle (diameter = 11 cm) around the centre of each pot. We then planted into the centre of each 151 

pot one seedling of one of the alien species. For each of the nine alien species, we had 20 pots. 152 

After transplanting, we randomly assigned 2 pots of each alien species to each of ten plastic 153 

cages (150 cm × 90 cm × 100 cm). The ten cages were covered with nylon nets (mesh size: 0.15 154 

× 0.15 mm) to keep out small soil fauna. We put a plastic dish under each pot, and regularly 155 

watered the pots before starting the drought treatment to ensure that none of the plants were 156 

water limited. On 3 August 2020, we inoculated each pot in five of the ten cages (i.e. 90 pots) 157 

with 50 ml of potting soil that contained the soil-fauna communities we had collected. As a 158 

control for adding potting soil, we also added 50 ml of potting soil to each pot of the remaining 159 

five cages. We assigned the cages with and without soil-fauna inoculations to alternating 160 

positions that were at least 0.5 m apart from each other (Fig. S1). On 30 August 2020 (i.e. 27 161 

days after the start of the experiment), we started the drought treatment. One of the two pots of 162 

each alien target species in each cage served as a control, which was watered regularly to keep 163 

the substrate moist throughout the entire experiment, while the other pots did not receive water 164 

unless the plants had wilted. We daily checked all pots of the drought treatment, and when some 165 

plants of the community in a pot had wilted (i.e. had lost leaf turgor), we supplied the pot with 50 166 

ml of water. So, for each of the nine alien species, we had five replicates of each of the four 167 

drought × soil-fauna treatment combinations, resulting in a total of 180 pots (9 alien species × 2 168 

soil-fauna treatments [with vs without] × 2 drought treatments [well-watered vs drought] × 5 169 
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replicates [i.e. cages]). 170 

On 28 September 2020, 10 weeks after the start of the drought treatments, we harvested the 171 

experiment. For each pot, we separately harvested the aboveground biomass of the alien target 172 

species and of each of the five native competitor species. As the roots of the plants were too 173 

much intertwined, we could not harvest the belowground biomass. All aboveground biomass was 174 

dried for at least 72 h at 65 °C, and then weighed. Based on the aboveground biomass of the 175 

alien and native species, we calculated the biomass proportion of the alien target species (the 176 

biomass of the alien target species / [biomass of the alien target species + biomass of the five 177 

native competitor species]) as a proxy of the dominance of the alien target species (for a similar 178 

approach, see Parepa et al. 2013 and Liu et al. 2018). We also calculated the aboveground 179 

biomass of the native community by summing the biomass of the five native species. 180 

Statistical analysis  181 

To analyze the effects of drought, soil-fauna addition and their interactions on performance 182 

of the alien plants in the native community, we fitted linear mixed-effects models using the lme 183 

function of the ‘nlme’ package (Pinheiro et al. 2020) in R 4.0.3 (R Core Team 2020). 184 

Aboveground biomass production of the alien target species, the native competitor species and 185 

biomass proportion of the alien target species in each pot (i.e. target aboveground biomass/total 186 

aboveground biomass) were the response variables. To meet the assumption of normality, 187 

biomass production of the alien target species and the native competitor species were 188 

natural-log-transformed, and biomass proportion of the target species was logit-transformed. We 189 

included drought treatment (i.e. well-watered vs drought), soil-fauna treatment (i.e. with vs 190 

without addition) and their interactions as fixed effects in all models. 191 

To account for non-independence of individuals of the same alien plant species and for 192 
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phylogenetic non-independence of the species, we included identity of the target species nested 193 

within family as random factors in all models. In addition to account for non-independence of 194 

plants within the same cage, we also included cage identity as random factor in all model. As the 195 

homoscedasticity assumption was violated in all models, we also included variance structures to 196 

model different variances per species or per cage (based on model selection) using the “varIdent” 197 

function in the R package ‘nlme’ (Pinheiro et al. 2020). We used log-likelihood ratio tests to 198 

assess significance of the fixed effects drought treatment, soil-fauna treatment and their 199 

interaction (Zuur et al. 2009). These tests were based on comparisons of maximum-likelihood 200 

models with and without the terms of interest, and the variance components were estimated using 201 

the restricted maximum-likelihood method of the full model (Zuur et al. 2009). 202 
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RESULTS 203 

Averaged across the nine alien target species, drought significantly decreased the 204 

aboveground biomass production of alien target species (-58.6%; Table 1; Figure 1a), and the 205 

native community (-51.5%; Table 1, Figure 1b). As the biomass of the aliens decreased more 206 

strongly in response to drought than the biomass of the natives did, the biomass proportion of the 207 

alien target species in each pot decreased (-11.6%; Table 1; Figure 1c). Inoculation with soil 208 

fauna had no significant effect on aboveground biomass of the alien target plants (-30.8%), but 209 

had a significant positive effect on aboveground biomass of the native community (+40.1%; 210 

Table 1; Figure 1b). Consequently, the aboveground biomass proportion of the alien target 211 

species was decrease in the presence of soil fauna (-41.9%; Table 1; Figure 1c). Moreover, as the 212 

native community benefitted more from the presence of soil fauna under well-watered conditions 213 

(+44.0%) than under drought conditions (+32.5%; Table 1; Figure 1b), the negative effect of 214 

soil-fauna inoculation on biomass proportion of the alien target species tended to be stronger 215 

under well-watered conditions (-49.7%) than under drought conditions (-32.0%; marginally 216 

significant S × D interaction in Table 1, p = 0.09; Figure 1c).  217 
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DISCUSSION 218 

Our multispecies experiment found that drought limited the absolute and the relative 219 

biomass production of the alien target plants. This means that drought suppressed the invasion 220 

succession of the alien species in the native community. In addition, we found that the presence 221 

of soil-fauna communities benefited the native community and resulted in a decreased biomass 222 

proportion of the alien species. In other words, the soil fauna promoted the resistance of the 223 

native community against invasion by the alien species. Moreover, the suppressive effect of 224 

drought on biomass proportion of the alien plants disappeared (although this effect was only 225 

marginally significant; p = 0.09) in the presence of soil fauna. This suggests that the presence of 226 

soil-fauna communities might mediate the negative effect of drought on alien plant invasion into 227 

a resident community. 228 

While drought is well known to inhibit plant performance overall (Beierkuhnlein et al. 2011, 229 

Zlatev and Lidon 2012, Gupta et al. 2020), recent studies found that growth and reproduction 230 

were more strongly affected for invasive than for native plant species (Liu et al. 2017; Valliere et 231 

al. 2019; Kelso et al. 2020). Our results are consistent with these previous findings (see also the 232 

total biomass production per pot in Fig. S2), and suggest that the native competitors were more 233 

tolerant to drought than the invasive alien species (Werner et al. 2010; Copeland et al. 2016; Liu 234 

et al. 2017; LaForgia et al. 2018; Valliere et al. 2019; Kelso et al. 2020). On the other hand, it 235 

could also indicate that the invasive alien plants took more advantage of the well-watered 236 

conditions than the native species did. This would be in line with the idea that invasive plants 237 

show higher phenotypic plasticity, and capitalize more strongly on benign conditions than native 238 

plants do (i.e. the Master-of-some strategy sensu Richards et al. 2006). In any case, the negative 239 

effect of drought on the biomass proportion of the alien plants suggests that the competitive 240 
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balance between invasive alien plants and native plants could be changed by drought in favour of 241 

the resident community. Another recent study, however, showed that alien species that are not 242 

invasive yet could benefit from drought (Haeuser et al. 2019), which could imply a turn-over in 243 

invasive alien species with ongoing climate change. 244 

Inoculation with soil fauna significantly increased the biomass production of the native 245 

community. It is often suggested that soil fauna, such as collembolans and mites in present study 246 

(Table S2), could enhance soil nutrient mineralization and consequently nutrient absorption of 247 

plants (Bardgett and Chan 1999, Lussenhop and Bassirirad 2005). As a consequence, soil fauna 248 

frequently have positive effects on plant performance (Lussenhop and Bassirirad 2005, Partsch et 249 

al. 2006, Mehring and Levin 2015). However, we found that soil-fauna inoculation had a slightly 250 

negative, though not statistically significant, effect on growth of the alien target plants. Therefore, 251 

it is unlikely that soil fauna promoted native plant growth solely by increasing nutrient 252 

availability, as we would have expected the invasive alien species to benefit from it. The most 253 

likely explanation for this is that although the invasive alien species may have been released 254 

from their native specialist enemies (Blossey and Notzold 1995; Chun et al. 2010), they may – in 255 

contrast to the native plant species – be largely naïve to the generalist herbivorous soil fauna in 256 

their new ranges (Parker et al. 2006; Verhoeven et al. 2009). As a result, a possible advantage due 257 

to an increase in soil-nutrient availability by the soil fauna might have been negated by negative 258 

effects of herbivorous soil fauna. As this would be less the case for the native species, this could 259 

explain why the soil fauna suppressed the dominance (i.e. biomass proportion) of alien target 260 

plants. While it has been shown before that soil fauna affects the composition of plant 261 

communities (Wardle et al. 2004; Bonkowski et al. 2009; Eisenhauer et al. 2010), this is one of 262 

the first studies to document the ability of the soil fauna to provide resistance against alien plant 263 
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invasion. 264 

Although numerous studies have shown that climate change could affect interactions of 265 

plants with aboveground organisms at other trophic levels (de Sassi and Tylianakis 2012; 266 

Eisenhauer et al. 2012; Nooten and Hughes 2014; Meza-Lopez and Siemann 2020), only few 267 

studies have addressed how climate change may affect interactions of plants with belowground 268 

organisms at other trophic levels (Eisenhauer et al. 2012; Classen et al. 2015; Guyer et al. 2018; 269 

Wilschut and van Kleunen 2021). To the best of our knowledge, no studies have addressed how 270 

resident soil fauna might affect the interactions between native and invasive plant species. We 271 

found that the growth promotion of native plants induced by soil fauna was stronger under 272 

well-watered condition than under drought condition. This may be because drought could 273 

decrease the abundance and diversity of soil arthropods (Lindberg 2003; Kardol et al. 2010; 274 

Makkonen et al. 2011; Eisenhauer et al. 2012; Guyer et al. 2018; Aupic-Samain et al. 2020), and 275 

thus the increase of soil-nutrient availability induced by soil fauna is stronger under well-watered 276 

condition than under drought conditions. Interestingly, we found tentative evidence that the 277 

decrease in dominance of alien target plant caused by drought was larger in the absence of soil 278 

fauna than in its presence. In other words, the presence of soil fauna might buffer against the 279 

negative effects of drought on alien plant invasion in resident communities. Therefore, previous 280 

pot experiments that did not include soil fauna might have overestimated the effects of drought 281 

on alien plant invasion. Therefore, future studies testing effects of climate change on alien plant 282 

invasion should also consider the role of other trophic levels, and especially the role of 283 

belowground trophic levels. 284 
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CONCLUSIONS  285 

The findings of our multi-species experiment are in line with results of previous studies that 286 

drought can inhibit alien plant invasion into a native resident community. However, to the best of 287 

our knowledge, we here show for the first time that the presence of soil fauna might help the 288 

resident plant community to resist alien plant invasions. This soil-fauna mediated resistance, 289 

however, may be partly negated by drought. This implies that with ongoing climate change, and 290 

more frequent droughts, invasive plants might be more likely to overcome the resistance 291 

provided by soil fauna.  292 
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Table 1 528 

Table 1 Results of linear mixed-effects models testing the effects of drought (well-watered vs drought), soil fauna (with vs without) and their 529 

interactions on aboveground biomass production of the alien target plants, native competitor species, and biomass proportion of the alien target 530 

species in each pot. Significant effects (p < 0.05) are bold. 531 

 

Aboveground biomass production of the 
alien target species 

(natural-log-transformed) 

Aboveground biomass production 
of the native competitor species 

(natural-log-transformed) 

Aboveground biomass proportion of the 
target species in each pot 

(logit-transformed) 
Fixed effects Df χ

2 P Df χ
2 P Df χ

2 P 

Soil fauna (S) 1 2.4990 0.1139 1 4.7722 0.0289 1 7.0803 0.0078 
Drought (D) 1 63.8413 <0.0001 1 164.1043 <0.0001 1 5.6339 0.0176 

S × D 1 0.1512 0.6974 1 5.6304 0.0177 1 2.8297 0.0925 

Random effects SD SD SD 

Family 0.004 0.002 0.004 

Species 0.970* 0.086 1.057* 

Cage 0.004 0.267* 0.187 

Residual 0.586 0.126 0.555 

 Marginal R2 Conditional R2 Marginal R2 Conditional R2 Marginal R2 Conditional R2 
R2 of the model 0.138 0.770 0.641 0.940 0.063 0.802 

* Standard deviations for individual alien species or individual cage random effects for the saturated model are found in Table S3.532 
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Figure 1 533 

 534 

Figure 1 Mean values (± SE) of aboveground biomass of the alien target species (a), 535 

aboveground biomass production of the native competitor species (b), and biomass 536 

proportion of the alien target species in each pot (c) under different drought (well-watered vs 537 

drought) and soil-fauna (with vs without) treatments. 538 
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SUPPORTING INFORMATION 539 

Table S1 Details of the study species used in the experiment. 540 

Species Family Status Seed sources Sowing data

Bidens frondosa L. Asteraceae Alien Zhejiang, China 26/6/2020 

Bidens pilosa L. Asteraceae Alien Zhejiang, China 26/6/2020 

Erigeron canadensis L. Asteraceae Alien Jilin, China 26/6/2020 

Hibiscus trionum L. Malvaceae Alien Jilin, China 5/7/2020 

Lolium perenne L. Poaceae Alien Greenwood flower seed industry, China 26/6/2020 

Medicago sativa L. Leguminosae Alien Nei Mongol, China 26/6/2020 

Paspalum notatum Flüggé Poaceae Alien Zhejiang, China 15/5/2020 

Solidago canadensis L. Asteraceae Alien Zhejiang, China 26/6/2020 

Xanthium strumarium L. Asteraceae Alien Nei Mongol, China 26/6/2020 

Chloris virgata Sw. Poaceae Native Nei Mongol, China 26/6/2020  

Digitaria sanguinalis (L.) Scop. Poaceae Native Jilin, China 26/6/2020 

Echinochloa crus-galli (L.) P.Beauv. Poaceae Native Jilin, China 26/6/2020 

Lepidium apetalum Willd. Brassicaceae Native Jilin, China 26/6/2020 

Plantago asiatica L. Plantaginaceae Native Nei Mongol, China 26/6/2020 
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Table S2 Soil-fauna taxa found in the soil used to inoculate the pot mesocosms.  541 

Species Taxonomy groups 

Allonychiurus songi Collembola 
Entomobrya koreana Collembola 
Folsomia sp1 Collembola 
Folsomides sp1 Collembola 
Homidia phjongiangica Collembola 
Hypogastrura sp1 Collembola 
Isotomiella minor Collembola 
Isotomodes sp1 Collembola 
Orchesellides sinensis Collembola 
Proisotoma sp1 Collembola 
Sminthurides sp1 Collembola 
Thalassaphorura macrospinta Collembola 
Acrotritia ardua (Koch, 1841) Mites 
Antennoseius alexandrovi Bregetova, 1977 Mites 
Galumna changchunensis Wen, 1987 Mites 
Mesostigamata sp.1 Mites 
Mesostigamata sp.2 Mites 
Mesostigamata sp.3 Mites 
Mesostigamata sp.4 Mites 
Mesostigamata sp.5 Mites 
Mesostigamata sp.6 Mites 
Mesostigamata sp.7 Mites 
mites nymph  Mites 
Nothrus anauniensis Canestrini & Fanzago, 1877 Mites 
Oppiella nova (Oudemans, 1902) Mites 
Prostigamata sp.1 Mites 
Prostigamata sp.2 Mites 
Scheloribates fimbriatus Thor, 1930 Mites 
Tectocepheus velatus (Michael, 1880) Mites 
Trichogalumna nipponica (Aoki, 1966) Mites 
Veigaia slonovi Bregetova, 1961 Mites 
Zygoribatula exilis (Nicolet, 1855) Mites 
Zygoribatula truncata (Aoki, 1961) Mites 
Araneae Others 
Chilopoda Others 
Coleoptera adult Others 
Coleoptera larvae Others 
Diptera larvae Others 
Formicidae Others 
Homoptera larvae Others 
Phytophthira Others 
Protura Others 
Scutigerellidae Others 

 542 
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Table S3 Standard deviations for individual alien species or individual cage random effects for metrics analyzed with models with a Gaussian 543 

error distribution. The standard deviations given refer to the first species and cage respectively. For each species and cage, these should be 544 

multiplied by the multiplication factors. The names of the alien species in the table are abbreviated using the first letter of the genus and species 545 

epithet. 546 

 547 
  Multiplication factor standard deviation 

Metric Species Standard 
Deviation 

LP EC HT PN SC BF BP MS XS 

Aboveground biomass production of the alien target species 0.970 1.000 0.778 0.626 0.820 1.078 1.935 2.600 1.890 1.778 
Aboveground biomass proportion of the target species in each pot 1.057 1.000 0.879 0.920 0.942 1.179 2.164 2.958 1.905 1.815  
 548 
 549 
  Multiplication factor for standard deviation 

Metric 
Cages Standard 
Deviation 

Cage1 Cage2 Cage3 Cage4 Cage5 Cage6 Cage7 Cage8 Cage9 Cage10 

Aboveground biomass production of the native 
competitor species 

0.267 1.000 2.461 2.603 3.751 1.531 1.725 2.090 1.302 3.503 2.590 
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Figure S1 550 

  551 

Figure S1 Graphical illustration of the experimental design.  552 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453896doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453896
http://creativecommons.org/licenses/by-nc/4.0/


33 

Figure S2 553 

   554 

Figure S2 Mean values (± SE) of the aboveground biomass production per pot under different 555 

drought (well-watered vs drought) and soil fauna (with vs without) treatment. 556 
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