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ABSTRACT  

Parkinson’s disease (PD) and Alzheimer’s disease (AD) are progressive neurodegenerative disorders that affect millions 

of people worldwide. In this work, we propose a deep learning approach to classify these diseases based on 3D T1-

weighted brain MRI. We analyzed several datasets including the Parkinson's Progression Markers Initiative (PPMI), an 

independent dataset from the University of Pennsylvania School of Medicine (UPenn), the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), and the Open Access Series of Imaging Studies (OASIS) dataset. The UPenn and 

OASIS datasets were used as independent test sets to evaluate the model performance during inference. We also 

implemented a random forest classifier as a baseline model by extracting key radiomics features from the same T1-

weighted MRI scans. The proposed 3D convolutional neural network (CNN) model was trained from scratch for the 

classification tasks. For AD classification, the 3D CNN model achieved an ROC-AUC of 0.878 on the ADNI test set and 

an average ROC-AUC of 0.789 on the OASIS dataset. For PD classification, the proposed 3D CNN model achieved an 

ROC-AUC of 0.667 on the PPMI test set and an average ROC-AUC of 0.743 on the UPenn dataset. Model performance 

was largely maintained when using only 25% of the training dataset. The 3D CNN outperformed the random forest 

classifier for both the PD and AD tasks. The 3D CNN also generalized better on unseen MRI data from different 

imaging centers. These approaches show promise for screening of PD and AD patients using only T1-weighted brain 

MRI, which is relatively widely available. This model with additional validation could also be used to help differentiate 

between challenging cases of AD and PD when they present with similarly subtle motor and non-motor symptoms. 
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1. INTRODUCTION  

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative diseases in the 

world. According to the World Health Organization (WHO), around 50 million people have dementia worldwide, and 

AD likely contributes to 60-70% of these cases.1 A further study reported that 6.1 million people were affected by PD 

globally in 2016.2 Structural magnetic resonance imaging (MRI) offers the potential to screen individuals for diagnostic 

biomarkers of PD and AD. Standard volumetric T1-weighted brain MRI is widely used and accessible world-wide, and 

has the advantage of not subjecting the patient to ionizing radiation3 compared to other modalities, such as PET.  
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Recently, a multi-center study was conducted by the PD working group of the Enhancing NeuroImaging Genetics 

through Meta-Analysis (ENIGMA) consortium on a cohort of 2,357 PD patients and 1,182 healthy controls using T1-

weighted brain MRI scans from 19 different international centers.4 The authors analyzed cortical thickness, regional 

surface area, and volumes for subcortical regions of the brain revealing a distributed pattern of atrophy that advances as 

the disease progresses. Similar work in AD has stemmed from large cohort studies such as the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), which has published multiple works demonstrating significant changes in brain metrics 

in the disorder.5 While important, such case-control comparisons only identify distinctive features at the group level, and 

do not offer a means to classify disease status in new individuals. Over 80% of PD patients develop cognitive deficits; 

this is relatively common in prodromal and de novo PD. Therefore, differentiating early AD from early PD is a key 

clinical issue. 

Machine learning and deep learning models have been developed for various neuroimaging applications, including 

image reconstruction and enhancement, segmentation and labeling of regions of interest, and disease classification and 

subtyping. When designing models for these tasks, several factors must be considered, including data availability, the 

size and efficiency of the neural network architecture, and its performance on diverse datasets other than those used to 

train the algorithm. Many studies have shown promise in applying convolutional neural networks (CNNs) to brain MRI 

scans for regression tasks such as brain age prediction, a commonly used benchmarking task that attempts to predict a 

person’s age from their brain scan.6,7 Other works have proposed methods for classification of neurodegenerative 

diseases. Islam and Zhang proposed a 2D model based on the Inception-V4 architecture for classification of AD.8 

Sivaranjini and Sujatha9 proposed a CNN based on the AlexNet architecture for PD classification. Many of the methods 

proposed previously, however, make predictions in a slice-wise manner. Yagis et al. address potential data leakage 

issues in some of the earlier neuroimaging works, several of which performed slice-based predictions.10 Also, some of 

the prior 2D methods may not account for the spatial relationships of all the slices in the 3D MRI volume. West et al. 

show that 3D CNNs can outperform their 2D counterparts for some neuro-imaging based classification tasks.3  

In a recent innovation, Lu et al.11 pooled over 85,000 brain MRI scans to build a CNN that classified a person’s sex from 

their brain scan, and they fine-tuned the network for AD classification using transfer learning. In our own prior work,12,13 

we used a recurrent neural network (RNN) to aggregate information from an ordered series of 2D slice-based CNNs to 

predict a person’s age from their 3D MRI scan (see also Peng et al.14). We later extended the same method using 

attention modules to perform AD classification.6 Despite promising performance, we did not test the method on 

additional cohorts beyond the one used to train the algorithm, nor did we test the method on multiple diseases, which 

perhaps represents a more clinically relevant application.    

Contributions: In this paper, we propose a 3D CNN that extracts features from 3D T1-weighted brain MRI scans and 

classifies subject-level PD and AD. The key contribution of this work includes: 

• A 3D CNN architecture for classification of PD and AD versus healthy control subjects using T1-weighted 

volumetric brain MRI. 

• We test a random forest-based classifier with well-known radiomics features as a baseline model. The 3D CNN 

outperforms the baseline and generalizes better. 

• We evaluate our models on multiple datasets, including external datasets from different centers to 

independently test our proposed model. 

• We show that model performs the classification task reasonably well when trained on a subset of the training 

data. 

2. DATA 

2.1 Datasets 

The datasets used in this work include 3D volumetric brain MRI data from the Parkinson's Progression Markers 

Initiative (PPMI), University of Pennsylvania (UPenn) as the out-of-distribution test set. PPMI collects baseline scans 

for untreated patients, and the UPenn is a convenience cohort of treated PD patients. For classification of AD, we 

analyzed non-accelerated 3D T1-weighted MRI scans from the ADNI dataset and the Open Access Series of Imaging 

Studies (OASIS) dataset based on OASIS1 (here after referred to as OASIS).  Demographics of each dataset are 

summarized in Table 1.  
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The H&Y staging characteristics of subjects in the UPenn dataset were as follows: Stage 1 (n=8; 7.1%), Stage 2 (n=36; 

32%), Stage 3 (n=64; 56.6%), Stage 4 (n=3; 2.6%), and Stage 5 (n=2; 1.7%). The H&Y staging characteristics of 

subjects in the PPMI dataset were as follows: Stage 1 (n=151; 44%), Stage 2 (n=191; 55.7%), Stage 3 (n=1; 0.3%), 

Stage 4 (n=0; 0%), and Stage 5 (n=0; 0%). This H & Y staging information is visualized in Figure 1 below. 

 

Figure 1. Visualization of H & Y staging information for PPMI and UPenn datasets. 

Table 1. Summary of the datasets we analyzed in this paper (Parkinson's Progression Markers Initiative (PPMI), 

University of Pennsylvania (UPenn), Alzheimer’s Disease Neuroimaging Initiative (ADNI), Open Access Series of 

Imaging Studies (OASIS)) 

Dataset Total Participants  

(n) 
Controls Cases  

(PD or AD) 
Sex  

(Male/Female) 
Age Range 

(years) 
Average Age ± Std 

(years) 

PPMI 471 130 341 (PD) 308M/163F 30.6-84.9 61.10±10.04 

UPenn 117 13 104 (PD) 75M/42F 50.0-84.0  66.65±8.12 

ADNI 531 243 288 (AD) 268M/263F 55.7–91.4  73.88±7.10 

OASIS 234 188 46 (AD) 78M/156F 33.0-96.0  72.38±12.08 

 

2.2 Image Pre-processing 
The T1-weighted brain MRI volumes were pre-processed15 using a sequence of steps, First we used the fslreorient2std 

(FSL v6.0.1) to reorient images to match the orientation of the standard template images. We then performed a ‘skull-

stripping’ brain extraction using the HD-BET CPU implementation.16 Next we extracted grey- and white-matter masks 

using FSL-FAST (FSL v6.0.1 Automated Segmentation Tool). We then performed a nonparametric intensity 

normalization (N4 bias field correction)17 using ANTs (v2.2). Next we performed linear registration to a UK Biobank 

minimum deformation template using FSL-FLIRT (FSL v6.0.1 Linear Image Registration Tool) with 6 degrees of 

freedom. We then performed isometric voxel resampling to 2 mm using the ANTs ResampleImage tool (v2.2)18, leaving 

us with pre-processed images of size 91 x 109 x 91.The T1-weighted MR images were scaled to take values between 0 

and 1 using a min-max scaling approach for the 3D CNN model. 
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2.2 Data Preparation 

The sequence of steps in our preprocessing pipeline ensures some level of uniformity in our datasets, including: 

nonparametric intensity normalization (N4 bias field correction), and isometric voxel resampling to 2 mm. We created 

non-overlapping data partitions to train, validate and test the proposed model. 10% of PPMI (PD) and 10% of ADNI 

(AD) were used for testing for the classification tasks. As there are more PD cases in the UPenn dataset than healthy 

controls and more controls in OASIS than AD cases, we created balanced subsets of the UPenn (PD) and OASIS (AD) 

datasets for independent testing. Balanced test data sets for these two cohorts were created by combining the class with 

fewer subjects with random unique equal sized subsets from the larger classes. Any variance in the performance over the 

subsets is presented with a corresponding standard deviation in the Results section. Creating these balance subsets allows 

us to make complete use of all the subjects we have available for classifying PD and AD. We used the rest of the ADNI 

and PPMI dataset for training (including 20% of these datasets as a validation set for the 3D CNN). 

 

3. METHODS 

3.1 Random Forest Classifier  

We implemented a machine learning pipeline as a baseline for AD and PD classification, as shown in Figure 2. The 

model uses the T1-weighted MRI volume and a whole-brain mask as the input. The whole brain mask is created to focus 

feature extraction on the region within the brain volume. 93 radiomics features - including textural features based on 

first-order statistical co-occurrence matrices - were extracted using PyRadiomics.19 The features were selected based on 

recursive feature elimination, and were min-max scaled, and used to train a random forest classifier. The random forest 

was initialized and trained with the default hyperparameters as defined in the scikit-learn package. The final model 

evaluated on the test set is model trained on the complete training dataset. 

 

Figure 2. Machine Learning Pipeline for Neurodegenerative Disease Prediction 

 

3.2 3D CNN Model Architecture 

The architecture of the 3D CNN model20 is illustrated in Figure 3. The input to this model is 91x109x91. The CNN 

consists of 4 modules consisting of 3 layers: convolutional (conv), max-pooling (maxpool) and batch normalization (BN) 

for feature extraction. The convolutional layers have 64, 64, 128, and 256 filters respectively. The feature extractor block 

is connected by a global average pooling layer to a fully connected (FC) layer with 512 neurons, a dropout layer and a 

fully connected layer with a sigmoid activation function for the binary classification problem. Binary cross-entropy loss 

is used as the loss function for the CNN. 

 

Figure 3. Architecture of the 3D Convolutional Neural Network (CNN). 
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3.3 3D CNN Model Training and Hyperparameter Optimization 

All layers of the CNN were trained on the PPMI and ADNI training data for PD and AD classification, respectively. The 

ROC-AUC and the loss were used to ensure convergence during each of the training epochs. The hyperparameters of the 

CNN were optimized based on a random search approach. The key hyperparameters were tuned included the optimizer 

(Adam,21 Adam with weight decay, stochastic gradient descent), learning rate (2e-3 to 1e-5), learning rate scheduling, 

dropout (0 to 0.5), use of bias initializer for class imbalance, early stopping, training epochs, and batch size. 

The hyperparameters used for classification of AD included training for 50 epochs, dropout of 0.2, batch size of 4, an 

Adam optimizer with learning rate of 2e-4, and a weight decay of 1e-4. The hyperparameters used for classification of 

PD included training for 50 epochs with early stopping if there was no improvement in validation loss for 30 epochs, 

dropout of 0.2, batch size of 4, an Adam optimizer with learning rate of 2e-4, and weight decay of 1e-4. We used small 

random image rotations with angles ε {-20, -10, -5, 5, 10, 20} degrees to augment the existing data. We initialized a bias 

in the final output layer equal to the logarithm of the number of samples in class 0 divided by the number of samples in 

class 1.22, 23 This was performed to alleviate the imbalance in the PPMI dataset. The model with best validation 

performance was used for testing on the test sets for the two classification tasks. 

 

3.4 Model Testing 

To evaluate the models, we used standard performance metrics including the receiver-operator characteristic curve-area 

under the curve (ROC-AUC), the precision-recall area under the curve (PR-AUC), accuracy, precision, recall and F1-

score. The Youden index24 was used to optimize the threshold from the ROC curve. The performance metrics were 

calculated as an average on all the balanced subsets of the UPenn and OASIS independent test sets. 

4. RESULTS 

 
Below we show results of the proposed 3D CNN for classification of PD and AD with T1-weighted MRI data. 

 
4.1 Alzheimer’s Disease Classification 

The training, validation ROC-AUC, and classification loss curves are shown in Figure 4 for the 3D CNN. The validation 

curves closely follow the training performance as seen in the figure. The ROC curves for the 3D CNN, calculated from 

these test sets, are shown in Figure 5. The curves in different colors in the plot on the right in Figure 5 represent the 

ROC curves for the balanced subsets from the corresponding test set. 

 

Figure 4. Training and validation curves for ROC-AUC (left) and loss (right) for AD classification using the 3D CNN. 

The random forest classifier achieved an ROC-AUC of 0.730 on the ADNI test set and 0.558 on the OASIS independent 

test set. The 3D CNN achieved an ROC-AUC of 0.878 on the ADNI test set and 0.789 on the OASIS independent test 

set. The performance of the 3D CNN and random forest classifier on the ADNI test set and the OASIS dataset are 

summarized in terms of the different metrics in Table 2. Results show that our 3D CNN outperforms the baseline 

random forest for AD classification and tends to generalize better on an independent dataset. 
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Figure 5. ROC curve for the 3D CNN on the ADNI test set (left) and ROC curves for each of the balanced subsets from 

the OASIS dataset (right). The ROC curves for these subsets are shown in different colors on the right 

 

Table 2. Performance of Random Forest and 3D CNN for AD classification. 

  
  
  

 Metric 

ADNI OASIS 
(Average of balanced subsets with the standard deviation) 

Random Forest 3D CNN Random Forest 3D CNN 

ROC- AUC 0.730 0.878 0.558 (0.038) 0.789 (0.038) 

PR AUC 0.646 0.816 0.556 (0.048) 0.795 (0.042) 

Accuracy 0.741 0.821 0.571 (0.018) 0.742 (0.036) 

Precision 0.722 0.808 0.575 (0.041) 0.724 (0.055) 

Recall 0.591 0.808 0.603 (0.105) 0.793 (0.039) 

F1-score 0.650 0.808 0.580 (0.037) 0.755 (0.029) 

 
 

We evaluated the effect of training data size on the test time performance of the model using ADNI and OASIS. To this 

end, we used different fractions of the ADNI dataset for training, ranging from just 10% to 100%. We also evaluated the 

effect of using data augmentation during training. Figure 6 shows the model performance trend for ADNI and OASIS 

with and without data augmentation. 
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Figure 6. Model test ROC-AUC (for the ADNI test data and for OASIS) is plotted versus the Training Dataset size 

(from the ADNI dataset), On the y-axis we show performance for models trained on 10% (n=37), 25% (n=92), 50% 

(n=185), 75% (n=278), and 100% (n=371) of the available training data.  

 

4.2 Parkinson’s Disease Classification 

The training, validation ROC-AUC and classification loss curves are shown in Figure 7 for the 3D CNN for PD 

classification. Figure 8 shows the ROC curves for the 3D CNN on the PPMI test set, and over each balanced subset of 

the UPenn dataset. 

 

 

Figure 7. Training and validation curves for ROC-AUC (left) and loss (right) for PD classification using the 3D CNN. 

 

The random forest classifier achieved an ROC-AUC of 0.524 on the PPMI test set and 0.534 on the UPenn test. The 3D 

CNN achieved an ROC-AUC of 0.667 on the PPMI test set and 0.743 on the UPenn test. The performance of the 3D 

CNN and random forest classifier during inference on the PPMI test set and the UPenn independent test set are 

summarized using the different metrics in Table 3. Results show that our 3D CNN outperforms the baseline random 

forest for PD classification and generalizes better when tested on an independent dataset. 
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Figure 8. ROC curve of the 3D CNN on the PPMI test set (left) and ROC curves for each of the balanced subsets from 

the UPenn dataset (right). The ROC curves for these subsets are shown in different colors on the right. 

 

Table 3. Performance of Random Forest and 3D CNN for PD classification 

  
  
  

Metric 

PPMI UPenn 
(Average of balanced subsets with the standard deviation) 

Random Forest 3D CNN Random Forest 3D CNN 

ROC AUC 0.524 0.667 0.534 (0.066) 0.743 (0.111) 

PR AUC 0.815 0.812 0.520 (0.067) 0.777 (0.102) 

Accuracy 0.521 0.706 0.567 (0.066) 0.709 (0.082) 

Precision 0.864 0.839 0.563 (0.071) 0.816 (0.085) 

Recall 0.487 0.722 0.673 (0.248) 0.560 (0.208) 

F1-score 0.623 0.776 0.581 (0.148) 0.631 (0.177) 

 

5. DISCUSSION AND FUTURE WORK 

In this paper, we present a 3D CNN that outperforms a baseline random forest method for the classification of AD and 

PD from T1-weighted volumetric brain MRI. We presented results comparing the 3D CNN’s performance with the 

baseline method, for both tasks, in section 4. The 3D CNN achieved an ROC-AUC of 0.878 and 0.667 for the AD (10% 

of ADNI) and PD (10% of PPMI) classification. The 3D CNN yielded an average ROC-AUC of 0.789 and 0.784 for the 

AD (OASIS) and PD (UPenn) classification. The standard deviation on the UPenn test (0.11) for the 3D CNN versus on 

the OASIS test set (0.03) suggests that the model tuned for the AD task is relatively more stable than on the PD task. 

This can also be observed via the ROC curves on the right of Figures 5 and 8. The random forest classifier achieved an 

ROC-AUC of 0.730 and 0.524 for the AD (10% of ADNI) and PD (10% of PPMI) classification. The random forest 

yielded an average ROC-AUC of 0.558 and 0.534 for the AD (OASIS) and PD (UPenn) classifications. The 3D CNN 

also generalized better than the random forest classifier on the independent test sets. 

We show how the size of the training dataset affects the model’s performance during inference. As expected, the model 

performance degrades with a smaller training dataset. Even so, the model performed reasonably well with only 25% of 

the ADNI training data, i.e., 92 subjects. Figure 6 indicates that data augmentation could be beneficial to the model’s 

performance by reducing overfitting during training. The performance trend shows that the model benefits from using 

additional training data and may continue to improve as more training datasets become available. 
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Empirically, the 3D CNN was more prone to overfitting on the PPMI data for PD classification than on ADNI for AD 

classification. PD classification might be more challenging than AD classification, as definitive diagnosis of PD might 

require other imaging modalities such as DAT-PET to augment structural features from T1-weighted brain MRI. Future 

work will also assess the added value of additional imaging protocols, such as quantitative MRI,25 which may boost 

classification performance. Our PPMI dataset was imbalanced for the two classes, i.e., the class ratio was 

0.72(PD):0.28(CN), whereas ADNI was relatively well balanced, i.e., 0.46(AD):0.54(CN). A larger dataset with more 

balance between the classes might improve performance and reduce overfitting during training for PD classification. The 

3D CNN proposed here is a relatively efficient architecture (~1.3 million parameters) compared to other typical 3D deep 

neural networks. We plan to perform additional experiments with 2D variants as this might also help to reduce 

overfitting issues for low data problems such as the tasks defined here. We are also working on creating activation maps 

as a way to improve interpretability of the model’s prediction, and plan to test the added value of MRI data 

harmonization approaches based on generative adversarial networks, such as CycleGANs26 or CALAMITI,27 which can 

make MRI data from different scanners or protocols more comparable.   

6. CONCLUSIONS 

The experiments and results presented here highlight the potential of the 3D CNN model to classify neurodegenerative 

diseases based on T1-weighted brain MRI. The 3D CNN’s performance was robust when trained only on a subset of the 

complete dataset, and outperformed the baseline random forest classifier. We showed some differences in training and 

test performance for the proposed model in PD and AD classification tasks. When trained on more data and with 

additional validation the proposed pipeline could help in non-invasively screening individuals for PD and AD from 

structural MRI data. Even classifiers with moderate performance may be useful screening tools, prior to more invasive 

procedures, such as PET scans and CSF assays, which have been used to define biological AD and to help diagnose PD. 
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