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We used two approaches for building species trees: we built gene trees for (i) every UCE locus in our 
most dataset and (ii) the top 10% most informative UCE loci. Species trees applying both methods 
show the same topology as in the ML and BI analyses (Fig. S3). The support values correspond to local 
PPs as described in (Sayyari and Mirarab 2016). As with other analyses, support was very high over 
most of the tree, although two nodes (the node uniting the three genera of shearwaters and the node 
uniting the diving petrels and the gadfly petrels) received lower support (all UCEs: 0.77 and 0.86; top 
10: 0.67 and 0.91, respectively).

Lineage-specific Rate Heterogeneity
To investigate the impact of among-lineage rate variation, we first applied strict and uncorrelated re-
laxed clock models in BEAST for 100 randomly selected approximately 20,000 bp subsets of our data. 
We found strong support (BF=151; ln(2*BF) = 5.71) for the uncorrelated lognormal relaxed clock mod-
el (MLE = -42933) over the strict clock model (MLE = -43084), suggesting that different lineages in our 
topology experience different nucleotide substitution rates. The CoV, extracted from the BEAST runs, 
shows how much the sequence data deviate from clock-likeness, and values below 0.1 indicate strong 
evidence for a strict clock (Drummond and Bouckaert 2015). We find a mean CoV of 0.5 (95% Highest 

Fig. 3. BEAST tree showing substitution rates mapped onto the phylogenetic tree. The highest substitution rates are mainly present at 
internal nodes and at terminal branches of small-bodied birds. 
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and particular hypotheses have received support in different taxonomic groups (Martin and Palum-
bi 1993; Mooers and Harvey 1994; Galtier et al. 2009; Garcia-Porta et al. 2019; Duchêne et al. 2021). 
Smaller bodied organisms tend to have higher metabolic (Nagy 2005) and substitution rates (Gillooly 
et al. 2005), including some species of Procellariiformes (Brown and Adams 1984). Other early work 
suggested that body mass but not AFB was correlated with the mtDNA substitution rate in procel-
lariiform seabirds (Nunn and Stanley 1998), but rigorous data analysis frameworks that account for 
correlations between traits, phylogenetic relatedness, and explicit incorporation of fossil calibrations 
were not available at that time.

Our Coevol 1.4b results revealed very weak correlation coefficients between substitution rate and 
body mass. Previous studies have found correlations of different strengths between body mass and 
substitution rate. For example, using the same method for their regression models and a similar num-
ber of data points, Weber et al. (2014) reported that approximately 10% of the variation of substitution 
rate in the class Aves could be explained by body mass alone and 15% in the case of Berv and Field 
(2018). Our results suggest a much smaller percentage of the variation explained by body mass alone 
(2%; Table S7). This lower value may be influenced by the fact that our study uses a lower taxonomic 
rank, though Procellariiformes has the most variation in body mass of any bird order. The presence 
of missing data could also influence our results. In fact, when we ran an analysis with only body mass 
and AFB, to reduce the amount of missing data, we find that body mass still only accounted for 7% of 
the substitution rate variability (Table S8). Since body mass is inversely correlated with metabolic rate, 
these results seem to suggest that the importance of metabolic rate in driving substitution rate in this 
order might not be as important as previously thought. In line with our results, other studies have 
sometimes also reported very weak correlations between substitution rate and body mass (Mooers 
and Harvey 1994; Lanfear et al. 2010; Lourenço et al. 2013).

The time-calibrated tree (Fig. 3) reveals that the highest substitution rates are present at internal 
branches, especially those branches that lead to the different Procellariidae groups. The Coevol 1.4b 
ancestral reconstruction of body mass at the internal nodes of the Procellariidae reveals intermedi-
ate-sized birds with very high substitution rates, suggesting that body mass might not be driving sub-
stitution rates. Rates may differ at different points in time because species do not keep the same body 
mass or life history traits throughout their evolution (Bromham 2011). This has often been overlooked 
as many studies have performed phylogenetic independent contrasts incorporating traits only at the 
tips and not including ancestral state reconstructions. That said, Figure 4 suggests that the negative 
correlation is strongest when taking into account both the internal branches and the tips, though sub-
tler when considering the tips alone. Furthermore, ancestral state reconstructions can sometimes have 
large confidence intervals, which can also influence precision of point estimates (Pagel et al. 2004).

Like body mass, HWI can also be considered to be a proxy for metabolic rate (Ward et al. 2001). It has 
been used as a proxy for flight efficiency (Duchêne et al. 2021), where those species that are highly 
dispersive species and efficient flyers show higher HWI. We find a moderate negative correlation be-
tween HWI and substitution rate that explains 18% of the variation. These results suggest that those 
birds with low HWI values might fly less efficiently, expend more energy, have a higher metabolism, 
and produce a higher amount of nuclear substitutions. Contrary to our results on body mass, this 
suggests that metabolic rate may indeed be important. Body mass has usually been correlated with 
basal metabolic rate in other species, but Procellariiformes spend relatively little time resting on land 
—they spend most of their lives at sea, are capable of traveling exceptionally long distances without 
rest (Shaffer et al. 2006), and may even sleep while flying, although this idea is debated (Rattenborg 
2017). The metabolic rate during flight might be more important than basal metabolic rate in this 
order of birds. Energetic expenditure during flight is not only determined by morphology, but also 
by physiological and behavioural adaptations to flight, which we are not necessarily reflected fully by 
HWI, therefore future research could investigate the role of flight in greater detail.

Generation time, longevity and population size have also previously been proposed to have an im-
portant effect on rates of nuclear substitution (Chao and Carr 1993; Welch et al. 2008; Thomas et al. 
2010). AFB, a proxy for generation time, has the same effect as body mass on substitution rate, only 
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explaining 1% of the variation in the analyses that included all variables, but 15% in the analysis that 
only included AFB and body mass. In the latter model, we had a denser dataset, which reduced the 
uncertainty when reconstructing ancestral traits. Furthermore, it is likely that we obtained a higher 
correlation coefficient because we were not taking into account the correlations between AFB and all 
the other covariates that were included in the complete model. Nunn and Stanley (1998) found that 
AFB did not explain substitution rate variation in Procellariiformes, but they also pointed out that they 
had very few data points for performing independent contrasts. Estandia (2019) used phylogenetic 
generalised least squares to explore the relationship between body mass, AFB and substitution rates 
in Procellariiformes, reporting much higher correlation coefficients (AFB: R²=0.64 and body mass: 
R²=0.56), but ancestral state reconstructions were not included and a different estimate of substitu-
tion rate was used.

Longevity was hypothesised to be an important factor driving substitution rate variation in birds by 
Berv and Field (2018), but they suggested that it was actually not a good predictor after accounting 
for correlations among other covariates. However, in fishes longevity alone can explain up to 16% of 
the variation in substitution rates (Hua et al. 2015). While obtaining reliable longevity data for seabirds 
is challenging, especially for those species that live on remote islands, longevity is known for being 
highly variable in procellariiform seabirds (Wasser and Sherman 2010). Some albatross species show 
an average lifespan of 40 years or more while diving petrels can live as little as 6 years. We find that 
5% of the variability in substitution rates can be explained by longevity in this group, though this may 
be influenced by missing data.

Population size is often thought to be positively correlated with substitution rate because of body 
mass - large-bodied organisms tend to have small populations, long generation time, lower metabol-
ic rate, and hence lower substitution rates (Ohta 1972; Western and Ssemakula 1982; Lanfear et al. 
2014). However, the phylogenetic path analysis for this group of birds reveals a very weak correlation 
between population size and body mass and given that the relationship between population size and 

Fig. 4. Substitution rates (calculated as the estimate of the instant value of the rate at the node or tip by Coevol 1.4b) plotted against each
of the variables included in the model (log-transformed). The highlighted points represent the trait at the tips and the grey points represent
reconstructed traits at internal nodes. The black line and coloured 95% credibility intervals (CI) represent the fit line for the tips while grey fit
lines and 95% CI represent the mean trend (tips+internal nodes). All variables are log-transformed. Trends tend to be similar at the tips and
internal nodes, but stronger at internal nodes. AFB: Age at first breeding; HWI: Hand-wing Index.
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substitution rate is slightly stronger than with body mass, it is then unlikely that the small effect of 
population size is due to body mass effects. We note that census size can be a weak proxy for effective 
population size in some cases (Nabholz et al. 2013) and that severe, recent population bottlenecks 
have occurred in procellariform species due to human impacts such as habitat loss and introduced 
predators (Croxall et al. 2012). It is likely that the true relationship between population size and sub-
stitution rate has been and will remain obscure.

GC-biased gene conversion can influence the relationship between population size and substitution 
rate (Bolívar et al. 2019). GC-rich regions have higher mutation and recombination rates (Kiktev et al. 
2018), which can influence substitution rates, especially in lineages with large populations and short 
generation times (Weber et al. 2014). We find that the overall trend indicates comparable relationships 
between the GC-rich dataset and the GC-poor dataset (Tables S9-S10). These results suggest that 
GC-biased conversion is likely not an essential factor driving substitution rate heterogeneity in this 
group. There is, however, an alternative explanation that proposes that as population size increases, 
the prevalence of natural selection can increase faster than the production of new mutations, which 
can produce higher advantageous substitution rates, independent of body mass and GC-biased gene 
conversion (Lanfear et al. 2014).

For all the traits studied here, our results suggest that the relationship with substitution is stronger 
when considering reconstructed ancestral traits at the nodes in addition to those at the tips (Fig. 4). A 
possible explanation for this pattern would be that elevated substitution rates during speciation might 
have a more important impact on substitution rates than body mass or any of the other tested traits, 
as recently proposed by Janzen et al. (2020). Indeed, in our phylogeny internal branches with high 
substitution rates are associated with periods of rapid speciation (Ferrer Obiol et al. 2021). However, 
we remain cautious when interpreting these results, due to the high uncertainty that comes with an-
cestral reconstructions (Pagel et al. 2004), especially when phylogenetic sampling is sparse.

The fact that many studies reveal varying strengths in the relationships between life history traits, 
genome characteristics and substitution rates suggests a complex interaction among factors, which 
likely differs across taxonomic groups (Gillman and Wright 2013). In our study, no single factor ex-
plains a large proportion of variation in substitution rates. Therefore, perhaps it is time that we begin 
to question the prevailing paradigm and propose that substitution rate may be the product of the 
interaction among many variables, potentially including environmental variables (Rolland et al. 2016) 
and speciation rates (Janzen et al. 2020).

Genome-wide Data Yield Robust Topologies for the Procellariiformes Despite the 
Presence of Rate Heterogeneity
Systematic or non-random errors (e.g. LBA, compositional and rate heterogeneity) are well-known 
problems in phylogenetics (Felsenstein 1978). A number of solutions have been proposed to over-
come the potential bias of among-rate-branch-variation (Carruthers et al. 2020). However, because 
rate heterogeneity is not as extensive at low taxonomic levels (e.g., genus level), where a large number 
of phylogenetic studies are concentrated, its consequences during phylogenetic tree construction 
have not been studied in depth. Given the striking differences in body mass (Fig. 1) as well as varia-
tion in life history traits, we hypothesised that rate heterogeneity would be present among lineages 
and potential LBA could be the reason of the lack of resolution and low support observed in previous 
studies of the Procellariiformes phylogeny.

Our ML and Bayesian trees support the hypothesis that there is rate heterogeneity across the procella-
riiform phylogeny. When comparing strict and relaxed clock models, BFs strongly support substitution 
rate variation across lineages, rejecting the clock-like evolution hypothesis. Our CoV values from this 
analysis, which measure rate variation, are among the highest values found in the literature for an or-
der of birds (Nguyen and Ho 2016; Berv and Field 2018). Further, the fossil-calibrated BEAST analysis 
strongly rejected clock-like evolution, with the largest rate heterogeneity occurring between internal 
and terminal branches. Studies on a range of other taxa across different taxonomic scales have also 
demonstrated the presence of rate heterogeneity (e.g. Pereira and Baker 2006; Patané et al. 2009; Eo 
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and DeWoody 2010; Beaulieu et al. 2015), suggesting that it may be a widespread issue and may affect 
phylogenetic reconstruction on a broad scale.

Despite the presence of extensive rate heterogeneity, we recover a highly consistent and well-sup-
ported topology using multiple analytical approaches. Although our results are congruent with those 
from other genome-scale studies, we provide much greater resolution through sequencing 51 species 
(vs. a maximum of 8 species in other genomic studies) and including representatives of all genera, 
major lineages, and at least five species from each family. Our results strongly support a single topol-
ogy (i) with the albatrosses (Diomedeidae) as the sister group to all other taxa, (ii) a paraphyletic re-
lationship for the two families of storm-petrels (Hydrobatidae and Oceanitidae), (iii) Hydrobatidae as 
sister taxon to the Procellariidae, and (iv) the diving-petrels (Pelecanoides) placed within Procellariidae, 
rather than as a distinct family.

This topology also clarifies long-debated relationships of some procellariiform species and genera. 
For example, the Kerguelen petrel (Aphrodroma brevirostris) has been described as a “taxonomic odd-
ball”, as evidenced by its taxonomic history: it was first placed within the gadfly petrels (Pterodroma 
spp.), then placed in a monotypic genus (Lugensa or Aphrodroma), and later considered to be closely 
related to the shearwaters (Nunn and Stanley 1998; Kennedy and Page 2002). This species is sister to 
the gadfly petrels in our trees. Another example is the genus Procellaria: some studies have suggested 
that Procellaria and Bulweria form a monophyletic group sister to the shearwaters (Nunn and Stanley 
1998). However, we find Procellaria to be sister to the shearwaters and that Bulweria and Pseudobul-
weria are sister to the clade consisting of the shearwaters and Procellaria, thus supporting the findings 
of Kennedy and Page (2002).

LBA is one consequence of rate heterogeneity and a frequent cause of inaccurate phylogenetic in-
ferences (Anderson and Swofford 2004; Bergsten 2005; Brinkmann et al. 2005; Philippe et al. 2005). 
The family Hydrobatidae (northern storm-petrels) demonstrates a long branch, and this family has 
repeatedly been reconstructed as sister to the rest of the order in previous studies (Nunn and Stanley 
1998; Kennedy and Page 2002; Hackett et al. 2008). Those results may have been influenced by LBA, 
which is even more likely given the relatively sparse datasets (both in terms of taxon sampling and 
in the length and number of loci) employed. Despite the large body mass difference between the 
storm-petrels and the albatrosses we found that body mass has a weak association with substitution 
rate and is unlikely to cause LBA in this phylogeny, because the short-branched albatrosses arise as 
the basal group.

The presence of short internal branches indicative of periods of rapid speciation has also been found 
to obscure phylogenetic reconstruction (e.g. Alda et al. 2018; Ferrer Obiol et al. 2021). Rapid specia-
tion can lead to incomplete lineage sorting (ILS), which may result in the loss of phylogenetic signal 
and conflicting topologies (Rokas and Carroll 2006; Whitfield and Lockhart 2007; Wiens et al. 2008; 
Philippe et al. 2011; McCormack et al. 2013; Suh et al. 2015). Concatenation-based methods can be 
less accurate than coalescent-based approaches in the presence of ILS (i.e. Bayzid and Warnow 2013; 
Edwards et al. 2016). In this study, we used the summary method ASTRAL-III which is statistically 
consistent under the multi-species coalescent. Our ASTRAL species trees show the same topology as 
recovered in the ML and Bayesian analyses, although with somewhat lower support in some nodes. 
One node with differing support in the species tree analysis is the node uniting the three species of 
Ardenna and the two species of Calonectris shearwaters, with support of 0.77 in the species tree com-
pared to full support in the ML and Bayesian trees (Fig. S3 and Fig. 2). This problematic short internal 
branch also emerged in Ferrer Obiol et al. (2021), where it was demonstrated that discordance in the 
shearwater topology was mainly driven by high levels of ILS due to rapid speciation. The branches 
leading to this node also show a high substitution rate, which agrees with the proposal that nucleo-
tide substitution rates are high during periods of multiple and rapid divergence events (Janzen et al. 
2020). The time-calibrated tree places the divergence of each of the three shearwater clades (Ardenna, 
Calonectris and Puffinus) during the Middle Miocene, between 11.5 Ma and 12.5 Ma, relatively soon 
after the Middle Miocene Disruption, when a series of extinctions were occurring due to a severe drop 
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in the global temperatures and re-establishment of the East Antarctic Ice sheet (Pearson and Palmer 
2000). After extinction periods, niches often become available allowing species to radiate (Simpson 
1944; Raup 1994; but see Hoyal Cuthill et al. 2020), which might explain the shearwater rapid radiation 
and ILS.

Another node with slightly lower support in the species tree than in concatenation-based methods 
is the node uniting Pterodroma + Aphrodroma with the clade comprising the prions and the diving 
petrels (Pelecanoides), which has full support in the ML and Bayesian analyses but a PP=0.86 in the 
species tree. As discussed above, lower support might be the result of rapid speciation events, which 
can generate patterns of phylogenetic incongruence, sometimes due to ILS at short internal branch-
es (Pamilo and Nei 1988; Rosenberg and Nordborg 2002). In some previous phylogenies (Nunn and 
Stanley 1998; Kennedy and Page 2002) it was hypothesised that the diving petrels were a separate 
family, Pelecanoididae, because it was sister to other Procellariidae. It is likely that the small amount of 
mitochondrial DNA sequence previously used, together with the long branch leading to Pelecanoides, 
contributed to placing Pelecanoides as sister to rather than within the Procellariidae as recovered in 
our analyses.

Conclusion

Our work suggests that large datasets may overcome issues related to among-lineage-rate-variation; 
however, this should be tested in other taxonomic groups using other types of data. Disparities in 
body mass, life history traits, and several other factors have been proposed to drive rate heteroge-
neity, but we find no support for the hypothesis that any of these variables is largely responsible for 
substitution rate variation alone. Rather, we find that many factors explain a small amount of rate 
variation, including potentially high substitution rates during rapid speciation events.
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