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Abstract11

Collection of high-throughput data has become prevalent in biology. Large datasets allow12

the use of statistical constructs such as binning and linear regression to quantify relationships13

between variables and hypothesize underlying biological mechanisms based on it. We discuss14

several such examples in relation to single-cell data and cellular growth. In particular, we15

show instances where what appears to be ordinary use of these statistical methods leads16

to incorrect conclusions such as growth being non-exponential as opposed to exponential17

and vice versa. We propose that the data analysis and its interpretation should be done in18

the context of a generative model, if possible. In this way, the statistical methods can be19

validated either analytically or against synthetic data generated via the use of the model,20

leading to a consistent method for inferring biological mechanisms from data. On applying21

the validated methods of data analysis to infer cellular growth on our experimental data, we22

find the growth of length in E. coli to be non-exponential. Our analysis shows that in the23

later stages of the cell cycle the growth rate is faster than exponential.24
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1 Introduction25

The last decade has seen a tremendous increase in the availability of high-quality large26

datasets in biology, in particular in the context of single-cell level measurements. Such data27

are complementary to “bulk” measurements made over a population of cells. They have28

led to new biological paradigms and motivated the development of quantitative models [1–29

7]. Nevertheless, they have also led to new challenges in data analysis, and here we will30

point out some of the pitfalls that exist in handling such data. In particular, we will show31

that the commonly used procedure of binning data in order to eliminate noise (averaging32

conditioned on the value of one of the variables) may lead to smooth curves that hint at33

specific functional relations between the two variables plotted that are inconsistent with34

the true functional relations. As we shall show, this may come about due to the “hidden”35

noise sources that affect the binning procedure and the phenomenon of “inspection bias”36

where certain bins have biased contributions. One of our main take home messages is the37

significance of having an underlying model (or models) to guide/test/validate data analysis38

methods. The underlying model is referred to as a generative model in the sense that39

it leads to similar data to that observed in the experiments. The importance of a so-40

called generative model has been beautifully advocated in the context of astrophysical data41

analysis [8], yet biology brings in a plethora of exciting differences: while in physics noise from42

measurement instruments often dominates, in the biological examples we will dwell on here it43

is the intrinsic biological noise that can obscure the mathematical relation between variables44

when not handled properly. In the following, we will illustrate this rather philosophical45

introduction on a concrete and fundamental example, albeit e pluribus unum. We will focus46

on the analysis of the Escherichia coli growth curves obtained via high throughput optical47

microscopy. Nevertheless we anticipate the conceptual points made here – and demonstrated48

on a particular example of interest – will translate to other types of measurements, which49
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make use of microscopy but also beyond.50

Binning corresponds to grouping data based on the value of the x-axis variable, and find-51

ing the mean of the fluctuating y-axis variable for this group. By removing the fluctuations52

of the y-variable, the binning process often aims to expose the “true” functional relation53

between the two variables which can be used to infer the underlying biological mechanism.54

It is important to discuss the sources of fluctuations in the y-axis variable before we proceed.55

In biology, fluctuations in the variables arise inevitably from the intrinsic variability within56

a cell population. Cells growing in the same medium and environment have different charac-57

teristics (e.g., growth rate) due to the stochastic nature of biochemical reactions in the cell58

[9]. For example, the division event is controlled by stochastic reactions, whose variability59

leads to cell dividing at a size smaller or larger than the mean. In this paper, when modeling60

the data, we will consider the intrinsic noise as the only source of variability and assume61

that the measurement error is much smaller than the intrinsic variation in the population.62

One example of the use of binning is shown in Figure 1A where size at division (Ld) vs63

size at birth (Lb) is plotted using experimental data obtained by Tanouchi et al. for E. coli64

growing at 25°C [10]. In Figure 1A, the functional relation between length at division and65

length at birth for E. coli is observed to be linear and close to Ld = Lb+∆L (see Section 5.11.166

for details). The relation obtained allows us to hypothesize a coarse-grained biological model67

known as the adder model as shown in Figure 1B in which the length at division is set by68

addition of length ∆L from birth [4, 11–16]. This example demonstrates the use of statistical69

analysis on single-cell data to understand the underlying cell regulation mechanisms. Using70

statistical methods such as binning and linear regression, other phenomenological models71

apart from adder have also been proposed in E. coli where the division length (Ld) is not72

directly “set” by that at birth [17–19]. The phenomenological models, in turn, can be related73

to mechanistic (molecular-level) models of cell size and cell cycle regulation [20]. Recent74

work has shed light on the subtleties involved in interpreting the linear regression results for75
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the Ld vs Lb plot where seemingly adder behavior in length can be obtained from a sizer76

model (division occurring on reaching a critical size) due to the interplay of multiple sources77

of variability [21]. This issue is similar in spirit to those we highlight here.78

The volume growth of single bacterial cells has been typically assumed to be exponential79

[4, 14, 22–25]. Assuming ribosomes to be the limiting component in translation, growth is80

predicted to be exponential and growth rate depends on the active ribosome content in the81

cell [26–28]. Under the assumption of exponential growth, the size at birth (Lb), the size at82

division (Ld), and the generation time (Td) are related to each other by,83

ln(
Ld
Lb

) = λTd, (1)

where λ is the growth rate. Understanding the mode of growth is important e.g., due to84

its potential effects on cell size homeostasis. Exponentially growing cells cannot employ a85

mechanism where they control division by timing a constant duration from birth but such86

a mechanism is possible in case of linear growth [3, 13, 29]. Linear regression performed87

on ln(Ld
Lb

) vs 〈λ〉Td plot, where 〈λ〉 is the mean growth rate, was used to infer the mode88

of growth in the archaeon H. salinarum [16], and in the bacteria M. smegmatis [30] and89

C. glutamicum [31], for example. If the best linear fit follows the y=x trend, the resulting90

functional relation might point to growth being exponential. A corollary to this is the91

rejection of exponential growth when the slope and intercept of the best linear fit deviate from92

one and zero respectively [31]. Thus, binning and linear regression applied on single-cell data93

appear to provide information about the underlying biology, in this case, the mode of cellular94

growth. We will test the validity of such inference by analyzing synthetic data generated95

using generative models. We find that linear regression performed on the plot ln(Ld
Lb

) vs96

〈λ〉Td, surprisingly, does not provide information about the mode of growth. Nonetheless,97

we show that other methods of statistical analysis such as binning growth rate vs age plots98
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are adequate in addressing the problem. Using these validated methods on experimental99

data, we find that E. coli grows non-exponentially. In later stages of the cell cycle, the100

growth rate is higher than that in early stages.101

2 Statistical methods like binning and linear regression102

should be interpreted based on a model.103

To illustrate the pitfalls associated with binning, we use data from recent experiments on E.104

coli where the length at birth, the length at division and the generation time were obtained105

for multiple cells (see Section 5.1 and [32]). Phase-contrast microscopy was used to obtain106

cell length at equal intervals of time. Note that we consider length as a proxy for cell size as107

the fluctuations in the width of E. coli cells are negligible in a given condition [15, 23, 33, 34].108

To investigate if the cell growth was exponential, we plotted ln(Ld
Lb

) vs 〈λ〉Td for cells growing109

in M9 alanine minimal medium at 28°C (〈Td〉 = 214 min). The linear regression of these110

data yields a slope of 0.3 and an intercept of 0.4 as shown in Figure 2A. The binned data and111

the best linear fit deviate significantly from the y=x line (see Table S2). Additionally, the112

binned data follows a non-linear trend and flattens out at longer generation times. We also113

found similar deviations in the binned data and best linear fit in glycerol medium (〈Td〉 =114

164 min) shown in Figure 2- figure supplement 1A, and glucose-cas medium (〈Td〉 = 65 min)115

shown in Figure 2- figure supplement 1B. Qualitatively similar results have been recently116

obtained for another bacterium, C. glutamicum, in Ref. [31]. These results might point to117

growth being non-exponential.118

Next we will approach the same problem but with a generative model. We will first119

show that the aforementioned non-linear dependencies are perfectly consistent with purely120

exponential growth. For the model, we consider exponential growth where the growth rate121

is distributed normally and independently between cell cycles with mean growth rate 〈λ〉122
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and standard deviation CVλ〈λ〉. CVλ is thus the coefficient of variation (CV) of the growth123

rate and is assumed to be small. To maintain a narrow distribution of cell size, cells must124

employ regulatory mechanisms. In our model, we assume that, barring the noise due to125

stochastic biochemical reactions, cells attempt to divide at a particular size Ld given size at126

birth Lb. Keeping the model as generic as possible, we can write Ld as a function of Lb, f(Lb)127

which can be thought of as a coarse-grained model for the regulatory mechanism. Ref. [13]128

provides a framework to capture the regulatory mechanisms by choosing f(Lb) = 2L1−α
b Lα0 .129

L0 is the typical size at birth and α, which can take values between 0 and 2, reflects the130

strength of regulation strategy. α = 0 corresponds to the timer model where division occurs131

on average after a constant time from birth, and α = 1 is the sizer model where a cell divides132

upon reaching a critical size. α = 1/2 can be shown to be equivalent to the adder model133

where division is controlled by addition of constant size from birth [13]. In addition to the134

deterministic function (f) specifying division, the size at division is affected by noise ( ζ
〈λ〉)135

in division timing. We assume it has a Gaussian distribution with mean zero and standard136

deviation σn
〈λ〉 and that it is independent of the growth rate. Thus, the generation time (Td)137

can be mathematically written as Td = 1
λ

ln( f(Lb)
Lb

)+ ζ
〈λ〉 and is influenced by growth rate noise138

and division timing noise. Note that replacing the time additive division timing noise with139

a size additive division timing noise will not affect the results qualitatively (see Sections 5.2140

and 5.3 for details and Table S1 for variable definitions).141

For perfectly symmetrically dividing cells whose sizes are narrowly distributed, the trend142

in the binned data for ln(Ld
Lb

) vs 〈λ〉Td plot is found to be (see Section 5.4),143

y = x

1 +
1− x

ln(2)

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

 . (2)

Fixing CVλ = σn = 0.15, we show using simulations in Figure 2C the non-linear trend in the144

binned data even though we assumed exponential growth. Similarly, on performing linear145
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regression on ln(Ld
Lb

) vs 〈λ〉Td plot, we find that the slope is not equal to one and the intercept146

is non-zero (see Eqs. 27 and 28). Eq. 2 shows that the trend in the binned data depends147

on the ratio of growth rate noise and division timing noise. The slope is equal to one and148

intercept is zero only if the noise in growth rate is negligible. In experiments that is rarely149

the case, hence, the binned data trend and the best linear fit deviate from the y=x line150

even though growth might be exponential. Thus, we cannot rule out exponential growth in151

the E. coli experiments despite the binned data trend being non-linear and the best-fit line152

deviating from the y=x line.153

Why does a non-linear relationship in the binned data for the plot ln(Ld
Lb

) vs 〈λ〉Td arise154

even for exponential growth? According to the model, Ld is determined by a deterministic155

strategy, f(Lb) and a time/size additive division timing noise. The noise component which156

affects Ld and subsequently the quantity ln(Ld
Lb

) is thus the noise in division timing and not157

the growth rate. The generation time (Td) plotted on the x-axis is influenced by the noise in158

division timing as well as the noise in growth rate. Binning assumes that for a fixed value of159

the x-axis variable, the noise from other sources affects only the y-axis variable (the binned160

variable). Similarly for linear regression, the underlying assumption is that the independent161

variable on x-axis is precisely known while the dependent variable on the y-axis is influenced162

by the independent variable and from external factors other than the independent variable.163

In this case, only 〈λ〉Td plotted on x-axis is influenced by growth rate noise while both 〈λ〉Td164

and ln(Ld
Lb

) are influenced by noise in division time. This does not fit the assumption for165

binning and linear regression and hence, the best linear fit for ln(Ld
Lb

) vs 〈λ〉Td plot might166

deviate from the y=x line even in the case of exponential growth.167

Another way of explaining the deviation from the linear y=x trend is by inspection bias,168

which arises when certain data is over-represented [35]. Cells which have a longer generation169

time than the mean will most likely have a slower growth rate. Thus, in Figure 2A and170

Figure 2C, at larger values of 〈λ〉Td or Td, the bin averages are biased by slower growing171
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cells, thus making ln(Ld
Lb

) or λTd to be lower than expected. This provides an explanation172

for the flattening of the trend.173

It follows from the previous discussion that if one bins data by ln(Ld
Lb

) then the assumption174

for binning is met. Both of the variables 〈λ〉Td and ln(Ld
Lb

) are influenced by the noise in175

division time but 〈λ〉Td plotted on the y-axis is also influenced by the growth rate noise.176

Thus, the y-axis variable, 〈λ〉Td is determined by the x-axis variable, ln(Ld
Lb

), and an external177

source of noise, in this case, the growth rate noise. Thus, based on our model, we expect the178

trend in binned data and linear regression performed on the interchanged axes to follow the179

y=x trend for exponentially growing cells (see Section 5.4). Indeed, on interchanging the axis180

and plotting 〈λ〉Td vs ln(Ld
Lb

) for synthetic data, we find that the trend in the binned data181

follows the y=x line (Figure 2D). We also find that the best linear fit follows the y=x line182

in the case of alanine (Figure 2B), glycerol (Figure 2- figure supplement 1A) and glucose-183

cas (Figure 2- figure supplement 1B). A change from non-linear behavior to that of linear184

on interchanging the axes is also observed in a related problem where growth rate (λ) and185

inverse generation time ( 1
Td
) are considered (Figure 2- figure supplement 2 and Section 5.10).186

Thus far, we showed for a range of models where birth controls division that the binned187

data trend for ln(Ld
Lb

) as function of 〈λ〉Td is non-linear and dependent on the noise ratio σn
CVλ

188

in the case of exponential growth. On interchanging the axes the binned data trend agrees189

with the y=x line independent of the growth rate and division time noise. However, we will190

show next that this agreement with the y=x trend cannot be used as a “smoking gun” for191

inferring exponential growth from the data. To investigate this further, let us consider linear192

growth, which has also been suggested to be followed by E. coli cells [36, 37]. The underlying193

equation for linear growth is,194

Ld − Lb = λ′Td, (3)

where λ′ is the the elongation speed i.e., dL
dt
. For cells growing linearly, the best linear195
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fit for the plot 〈λ〉Td vs ln(Ld
Lb

) is expected to deviate from the y=x line. Surprisingly, we196

found that for the class of models where birth controls division by a strategy f(Lb) and197

cells grow linearly, the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) agrees closely with the y=x trend.198

On carrying out analytical calculations based on this model, we obtain the slope and the199

intercept of the 〈λ〉Td vs ln(Ld
Lb

) plot to be 3
2

ln(2) ≈ 1.04 and -0.03 respectively, which is200

very close to that for exponential growth (see Section 5.6). This is shown for simulations201

of linear growth with cells following an adder model in Figure 3A. Given no information202

about the underlying model, Figure 3A could be interpreted as cells undergoing exponential203

growth contrary to the assumption of linear growth in simulations. Thus, when handling204

experimental data, cells undergoing either exponential or linear growth might seem to agree205

closely with the y=x trend. Deforet et al. [38] used the linear binned data trend in case206

of 〈λ〉Td vs ln(Ld
Lb

) plot to infer exponential growth but as we showed in this section, the207

linear trend does not rule out linear growth. This again reiterates our message of having a208

generative model to guide the data analysis methods such as binning and linear regression.209

For completeness, we also discuss the natural plot for linear growth, 〈λlin〉Td vs ld − lb and210

the plot obtained on interchanging the axes in Section 5.5 and Figure 3- figure supplements211

1A, 1B. For cells growing exponentially, the best linear fit for the 〈λlin〉Td vs ld − lb plot is212

expected to deviate from the y=x line. This is indeed what is observed in Figure 3- figure213

supplement 1C where simulations of exponentially growing cells following the adder model214

are presented (see Section 5.6 for extended discussion).215

In all of the cases above, the problem at hand deals with distilling the biologically relevant216

functional relation between two variables. However, the data is assumed to be subjected to217

fluctuations of various sources, and it is important to ensure that the statistical construct we218

are using (e.g. binning) is robust to these. How can we know a priori whether the statistical219

method is appropriate and a "smoking gun" for the functional relation we are conjecturing?220

The examples shown above suggest that performing statistical tests on synthetic data ob-221
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tained using a generative model is a convenient and powerful approach. Note that in cases222

such as the ones studied here where analytical calculations may be performed, one may not223

even need to perform any numerical simulations to test the validity of the methods.224

3 Growth rate vs age plots are consistent with the un-225

derlying growth mode.226

In the last section, we showed that the plots ln(Ld
Lb

) vs 〈λ〉Td and 〈λ〉Td vs ln(Ld
Lb

) are not227

decisive in identifying the mode of growth. Recent works on B. subtilis [39] and fission yeast228

[40] have used differential methods of quantifying growth namely growth rate (= 1
L
dL
dt
) vs229

age plots and elongation speed (=dL
dt
) vs age plots to probe the mode of growth within a230

cell cycle. Here, L denotes the size of the cell after time t from birth in the cell cycle and231

age denotes the ratio of time t to Td within a cell cycle (hence it ranges from 0 to 1 by232

construction within a cell cycle). In this section, using various models of cell growth and cell233

cycle, we test the growth rate vs age method. For cells assumed to be growing exponentially,234

growth rate is constant throughout the cell cycle. On averaging over multiple cell cycles, the235

trend of binned data is expected to be a horizontal line with value equal to mean growth236

rate which is indeed what we find in the numerical simulations of the adder and the adder237

per origin model [17], as shown in Figure 3B. In contrast, for linearly growing cells, the238

elongation speed is expected to remain constant. We show this constancy using numerical239

simulations of linearly growing cells following the adder model (Figure 3- figure supplement240

3A). In accordance with this result, the growth rate is expected to decrease with cell age241

for linear growth. This is verified in Figure 3B by again using the numerical simulations of242

linear growth with cells following the adder model. Thus, the two growth modes (exponential243

and linear) could be differentiated using the growth rate vs age plot and it appears to be244

a consistent method to obtain the mode of growth. For further details about the binning245
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method used in growth rate vs age and elongation speed vs age plots, see Section 5.7.246

Using the validated growth rate vs age plots, we obtained the growth rate trend for247

experimental data on E. coli for the three growth conditions studied in this paper (Figures248

4A-4C). We found an increase in growth rate in all growth conditions during the course of249

the cell cycle. One may wonder whether such an increase may be explained by the E. coli250

morphology alone, due to the presence of hemispherical poles. For exponentially growing cell251

volume and considering a geometry of E. coli with spherical caps at the poles, the percentage252

increase in the growth rate of length over a cell cycle is around 3% which is significantly253

smaller than that observed in our experimental data. Considering cell size trajectories (cell254

size, L at time, t data) where cell lengths were tracked beyond the cell division event (by255

considering cell size in both daughter cells), we also found that the growth rate decreases close256

to division (age ≈ 1) and returns to a value nearly equal to that observed at the beginning257

of cell cycle (age ≈ 0) as shown in Figure 4- figure supplements 1A-1C (see Section 5.7 for258

extended discussion).259

The above question of mode of growth within a cell cycle can also be analyzed in relation260

to a specific event. Several studies have pointed to a change in growth rate at the onset of261

constriction [41, 42]. This change in growth rate can be probed using growth rate vs time262

plots where time is taken relative to the onset of constriction as shown in Figure 4- figure263

supplement 2. These plots show a decrease in growth rates at the two extremes of the plot.264

These decreases are due to inspection bias, where the growth rate trend is affected by the265

biased contribution of cells with a higher than average generation time or equivalently slower266

growth rate (see Section 5.8 for extended discussion). Inspection bias is also observed when267

timing is considered relative to other cell events such as cell birth (see Section 5.8 and Figure268

3- figure supplements 2C, 2D).269

It might not always be possible to obtain growth rate trajectories as a function of time/cell270

age. Godin et al. instead obtained the instantaneous biomass growth speed (dM
dt
) as a func-271
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tion of its buoyant mass (M) [22]. On applying linear regression for instantaneous mass272

growth speed vs mass, we expect the slope of the best linear fit obtained to provide the273

average growth rate (〈 1
M

dM
dt
〉) under the assumption of exponential growth while for linear274

growth the intercept provides the average growth speed. Using this method, biomass was275

suggested to be growing exponentially. This method can be applied to study the length276

growth rate within the cell cycle by plotting elongation speed as a function of length [43].277

We find that the binned data trend of this plot follows the expected trend for linear and ex-278

ponential growth as shown in Figure 3- figure supplement 3B and Figure 3- figure supplement279

3D, respectively, for a cell cycle model where division is controlled via an adder mechanism280

from birth. However, the trend obtained appears to be model-dependent as shown in Figure281

3- figure supplement 3F where the underlying cell cycle model used in the simulations is the282

adder per origin model. For this model, the binned data trend is found to be non-linear283

with the growth rate speeding up at large sizes, despite the synthetic data being generated284

for perfectly exponential growth. This non-linear trend can lead to growth rate being mis-285

interpreted as non-exponential within the cell cycle (see Section 5.9 for details). Thus, an286

analysis using the elongation speed vs size plot must be accompanied with an underlying287

cell cycle model.288

In summary, we found that the growth rate vs age plot was a consistent method to289

determine the changes in growth rate within a cell cycle. Unlike the growth rate vs age290

plots, the inference from the growth rate vs size plots was found to be model-dependent.291

Using the growth rate vs age plots, we show that the length growth of E. coli can be faster292

than exponential (super-exponential).293
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4 Discussion294

Statistical methods such as binning and linear regression are useful for interpreting data and295

generating hypotheses for biological models. However, we show in this paper that predicting296

the relationships between experimentally measured quantities based on these methods might297

lead to misinterpretations. Constructing a generic model and verifying the statistical analysis298

on the synthetic data generated by this model provides a more rigorous way to mitigate these299

risks.300

In the paper, we provide examples in which ln(Ld
Lb

) vs 〈λ〉Td and 〈λ〉Td vs ln(Ld
Lb

) plots301

fail as a method to infer the mode of growth. The binned data trend for ln(Ld
Lb

) vs 〈λ〉Td302

plot was found to be dependent upon the noise parameters in the class of models where303

birth controlled division (Equation 2). We also show that 〈λ〉Td vs ln(Ld
Lb

) plot could not304

differentiate between exponential and linear modes of growth (Figures 2D, 3A). Thus, we305

conclude that the best linear fit for the above plots might not be a suitable method to infer306

the mode of growth but they are just one of the many correlations which the correct cell307

cycle model should be able to predict.308

We found growth rate vs age and elongation speed vs age plots to be consistent methods309

to probe growth within a cell cycle. The method was validated using simulations of various310

cell cycle models (such as the adder, and adder per origin model, where in the latter, control311

over division is coupled to DNA replication) and the binned growth rate trend agreed closely312

with the underlying mode of growth for the wide range of models considered (Figure 3B). In313

the case of growth rate vs time plots, it was important to take into consideration the effects314

of inspection bias. We used cell cycle models to show the time regimes where inspection bias315

could be observed (Figure 3- figure supplement 2). In the regime with negligible inspection316

bias, we could reconcile the growth rate trend obtained using growth rate vs age (Figures 4A-317

4C) and growth rate vs time plots (Figure 4- figure supplement 2). The authors in Ref. [31]318
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circumvent inspection bias in the elongation speed vs time from birth plots by focusing their319

analysis on the time period from cell birth to the generation time of the fastest dividing cell.320

The authors of Ref. [44], while investigating the division behavior in the cells undergoing321

nutrient shift within their cell cycle, use both models and experimental data from steady-322

state conditions to identify inspection bias. These serve as good examples of using models323

to aid data analysis.324

Statistics obtained from linear regression such as in Figure 1A help narrow down the325

landscape of cell cycle models, but many have potential pitfalls lurking which might lead to326

misinterpretations (Figure 2C, Figure 3A). There are additional issues beyond those concern-327

ing linear regression and binning discussed here. For example, Ref. [45] discusses Simpson’s328

paradox [46] where distinct cellular sub-populations might lead to erroneous interpretation329

of cell cycle mechanisms. Examples of such distinct sub-populations are found in asymmet-330

rically dividing bacteria such as M. smegmatis [30, 47].331

Single cell size in E. coli has been reported to grow exponentially [4, 14, 22–25], linearly332

[36], bilinearly [48] or trilinearly [41]. These are inconsistent with our observations in Figures333

4A-4C where we find that growth can be super-exponential. The non-monotonic behavior in334

the fastest-growth condition is reminiscent of the results reported in Ref. [39] for B. subtilis.335

The authors of Ref. [39] attribute the increase in growth rate to a multitude of cell cycle336

processes such as initiation of DNA replication, divisome assembly, septum formation. In337

the two slower growth conditions (Figures 4A-4B), we find that the growth rate increase338

starts before the time when the septal cell wall synthesis starts i.e., the constriction event.339

However, in the fastest growth condition (Figure 4C), the timing of growth rate increase340

seems to coincide with the onset of constriction which is in agreement with previous findings341

[41, 42].342

It is important to distinguish between length growth and biomass growth. Ref. [49]343

measures biomass and cell volume and finds the mass-density variations within the cell-cycle344
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to be small. In this paper, since we observe the length growth to be non-exponential (Figure345

4), it remains to be seen whether biomass growth also follows a similar non-exponential346

behavior or if it is exponential as previously suggested [22, 49].347

In conclusion, the paper draws the attention of the readers to the careful use of statistical348

methods such as linear regression and binning. Although shown in relation to cell growth,349

this approach to data analysis seems ubiquitous. The general framework of carrying out data350

analysis is presented in Figure 5. It proposes the construction of a generative model based on351

the experimental data collected. Of course, we do not always know whether the model used352

is an adequate description of the system. What is the fate of the methodology described here353

in such cases? First, we should be reminded of Box’s famous quote “all models are wrong,354

some are useful”. The goal of a model is not to provide as accurate a description of a system355

as possible, but rather to capture the essence of the phenomena we are interested in and356

stimulate further ideas and understanding. In our context, the goal of the model is to provide357

a rigorous framework in which data analysis tools can be critically tested. If verified within358

the model, it is by no means proof of the success of the model and the method itself, and359

further comparisons with the data may falsify it leading to the usual (and productive) cycle360

of model rejection and improvement via comparison with experiments. However, if the best361

model we have at hand shows that the data analysis method is non-informative, as we have362

shown here on several methods used to identify the mode of growth, then clearly we should363

revise the analysis as it provides us with a non-consistent framework, where our modeling is364

at odds with our data analysis. Furthermore, testing the methods on a simplified model is365

still advantageous compared with the option of using the methods without any validation.366

To mitigate the risk of using irrelevant models, in some cases it may be desirable to test the367

analysis methods on as broad a class of models as possible as we have done in the paper, for368

example by our use of a general value of α to describe the size-control strategy within our369

models. Thus, guided by the model, the data analysis methods can be ultimately applied to370
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experimental data and underlying functional relationships can be inferred. Reiterating the371

message of the authors in Ref. [8], the data analysis using this framework aims to justify372

the methods being used, thus, reducing arbitrariness and promoting consensus among the373

scientists working in the field.374

5 Methods375

5.1 Experimental methods376

Strain engineering: STK13 strain (∆ftsN::frt-Ypet-FtsN, ∆dnaN::frt-mCherry-dnaN) is377

derivative of E. coli K12 BW27783 (CGSC#: 12119) constructed by λ-Red engineering [50]378

and by P1 transduction [51]. For chromosomal replacement of ftsN with fluorescence deriva-379

tive, we used primers carrying 40nt tails with identical sequence to the ftsN chromosomal380

locus and a plasmid carrying a copy of ypet preceded by a kanamycin resistance cassette381

flanked by frt sites (frt-kanR-frt-Ypet-linker) as PCR template (a kind gift from R. Reyes-382

Lamothe McGill University, Canada; [52]). The resulting PCR product was transformed by383

electroporation into a strain carrying the λ-Red-expressing plasmid pKD46. Colonies were384

selected by kanamycin resistance, verified by fluorescence microscopy and by PCR using385

primers annealing to regions flanking ftsN gene. After removal of kanamycin resistance by386

expressing the Flp recombinase from plasmid pCP20 [53], we transferred the mCherry-dnaN387

gene fusion (BN1682 strain; a kind gift from Nynke Dekker from TUDelft, The Nether-388

lands, [54]) into the strain by P1 transduction. To minimize the effect of the insertion on389

the expression levels of the gene we removed the kanamycin cassette using Flp recombinase390

expressing plasmid pCP20.391

Cells growth, preparation, and culturing E. coli in mother machine microflu-392

idic devices: All cells were grown and imaged in M9 minimal medium (Teknova) supple-393

mented with 2 mM magnesium sulfate (Sigma) and corresponding carbon sources at 28°C.394
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Three different carbon sources were used: 0.5% glucose supplemented by 0.2% casamino395

acids (Cas) (Sigma), 0.3% glycerol (Fisher) and 0.3% alanine (Fisher) supplemented with 1x396

trace elements (Teknova).397

For microscopy, we used mother machine microfluidic devices made of PDMS (poly-398

dimethylsiloxane). These were fabricated following to previously described procedure [55].399

To grow and image cells in microfluidic device, we pipetted 2-3 µl of resuspended concen-400

trated overnight culture of OD600 ∼ 0.1 into main flow channel of the device and let cells to401

populate the dead-end channels. Once these channels were sufficiently populated (about 1402

hr), tubing was connected to the device, and the flow of fresh M9 medium with BSA (0.75403

µg/ml) was started. The flow was maintained at 5 µl/min during the entire experiment by404

an NE-1000 Syringe Pump (New Era Pump Systems, NY). To ensure steady-state growth,405

the cells were left to grow in channels for at least 14 hr before imaging started.406

Microscopy: A Nikon Ti-E inverted epifluorescence microscope (Nikon Instruments,407

Japan) with a 100X (NA = 1.45) oil immersion phase contrast objective (Nikon Instru-408

ments, Japan), was used for imaging the bacteria. Images were captured on an iXon DU897409

EMCCD camera (Andor Technology, Ireland) and recorded using NIS-Elements software410

(Nikon Instruments, Japan). Fluorophores were excited by a 200W Hg lamp through an411

ND8 neutral density filter. A Chroma 41004 filtercube was used for capturing mCherry im-412

ages, and a Chroma 41001 (Chroma Technology Corp., VT) for Ypet images. A motorized413

stage and a perfect focus system were utilized throughout time-lapse imaging. Images in all414

growth conditions were obtained at 4 min frame rate.415

Image analysis: Image analysis was carried out using Matlab (MathWorks, MA) scripts416

based on Matlab Image Analysis Toolbox, Optimization Toolbox, and DipImage Toolbox417

(https://www.diplib.org/). Cell lengths were determined based on segmented phase contrast418

images. Dissociation of Ypet-FtsN label from cell middle was used to determine the exact419

timing of cell divisions.420
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Further experimental details can also be found in Ref. [32].421

5.2 Model422

Consider a model of cell cycle characterized by two events: cell birth and division. In our423

model, we assume that, barring the noise, cells tend to divide at a particular size vd given424

size at birth vb, via some regulatory mechanism. Hence, we can write vd as a function of425

vb, f(vb). Ref. [13] provides a framework to capture the regulatory mechanisms by choosing426

f(vb) = 2v1−α
b vα0 . v0 is the typical size at birth and α captures the strength of regulation427

strategy. α = 0 corresponds to the timer model where division occurs after a constant time428

from birth, and α = 1 is the sizer where a cell divides on reaching a critical size. α = 1/2 can429

be shown to be equivalent to an adder where division is controlled by addition of constant430

size from birth [13]. From here on, we would be using the length of the cell (Lb, Ld, etc.) as431

a proxy for size (vb, vd, etc.). All of the variable definitions are summarized in Table S1. We432

also define lb = Lb
〈Lb〉

and ld = Ld
〈Lb〉

. Using this, we can write the division strategy f(lb) to be ld433

= f(lb) = 2 l1−αb . The total division size obtained will be a combination of f(lb) and noise in434

the division timing, the source of which could be the stochasticity in biochemical reactions435

controlling division.436

We will assume that division is perfectly symmetric i.e., size at birth in the (n + 1)th437

generation (ln+1
b ) is half of size at division in the nth generation (lnd ). Using the size additive438

division timing noise (ζs(0, σbd)) and f(lb) specified above, we obtain,439

xn+1 = (1− α)xn + ln

(
1 +

ζs(0, σbd)

2(1 + xn)1−α

)
, (4)

where xn = ln(lnb ). Size at birth (Lb) is narrowly distributed, hence lb ≈ 1 and we can write440
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x = ln(lb) = ln(1 + δ) where δ is a small number. We obtain x� 1 and,441

x ≈ δ = lb − 1. (5)

The size additive noise, ζs(0, σbd) is assumed to be small and has a normal distribution with442

mean 0 and standard deviation σbd. Note that σbd is a dimensionless quantity. Since ζs(0, σbd)443

is assumed to be small and xn � 1, we can Taylor expand the last term of Equation 4 to444

first order,445

xn+1 ≈ (1− α)xn +
ζs(0, σbd)

2
. (6)

Equation 6 shows a recursive relation for cell size and it is agnostic of the mode of growth.446

We will show later for exponential growth that replacing the size additive noise with time447

additive noise does not change the structure of Equation 6.448

5.3 Exponential growth449

Next, we will try to obtain the generation time (Td) in the case of exponentially growing450

cells. For exponential growth, the time at division Td is given by,451

Td =
1

λ
ln(

Ld
Lb

). (7)

For simplicity, we will assume a constant growth rate (λ) within the cell-cycle. Growth rate452

is fixed at the start of the cell-cycle and is given by λ = 〈λ〉 + 〈λ〉ξ(0, CVλ), where 〈λ〉 is453

the mean growth rate and ξ(0, CVλ) is assumed to be small with a normal distribution that454

has mean 0 and standard deviation CVλ. CVλ denotes the coefficient of variation (CV) of455

the growth rate. This captures the variability in growth rate within cells arising from the456

stochastic nature of biochemical reactions occurring within the cell.457
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5.3.1 Size additive noise458

Here we will calculate the generation time using the division strategy f(lb) and a size additive459

division timing noise (ζs(0, σbd)) as described previously. On substituting Ld = (f(lb) +460

ζs)〈Lb〉 into Equation 7 we obtain,461

Td =
1

〈λ〉+ 〈λ〉ξ(0, CVλ)
ln(

2l1−αb + ζs(0, σbd)

lb
), (8)

where the size additive noise (ζs(0, σbd)) is Gaussian with mean 0 and standard deviation462

σbd.463

The noise ζs(0, σbd) is assumed to be small, and we obtain to first order,464

Td ≈
1

λ

(
ln(2)− αxn +

ζs(0, σbd)

2(1 + xn)1−α

)
. (9)

Since xn � 0, on Taylor expanding 1
(1+xn)1−α

to first order,465

Td ≈
1

λ

(
ln(2)− αxn +

ζs(0, σbd)

2
(1 + (1− α)xn)

)
. (10)

Assuming noise in growth rate to be small and expanding to first order, we obtain,466

Td ≈
1

〈λ〉

(
ln(2)− αxn − ln(2)ξ(0, CVλ) +

ζs(0, σbd)

2

)
. (11)

Equation 11 gives the generation time for the class of models where birth controls division467

under the assumption that growth is exponential.468

5.3.2 Time additive noise469

Next, we ensure that the recursive relation for size at birth and the expression for the470

generation time given by Equations 6 and 11, respectively, are robust to the nature of noise471
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assumed. In this section, the generation time is obtained using the division strategy f(lb) as472

described previously along with a time additive division timing noise ( ζ
〈λ〉). In such a case,473

Td is obtained to be,474

Td =
1

λ
(ln(2)− αxn) +

ζ(0, σn)

〈λ〉
. (12)

The time additive noise, ζ(0,σn)
〈λ〉 , is assumed to be small and has a normal distribution with475

mean 0 and standard deviation σn
〈λ〉 . Note that σn is a dimensionless quantity.476

Assuming noise in growth rate to be small, we find Td to first order to be,477

Td ≈
1

〈λ〉
(ln(2)− αxn − ln(2)ξ(0, CVλ) + ζ(0, σn)) . (13)

Equation 13 is same as Equation 11, if the time additive noise term, ζ(0, σn), in Equation478

12 is replaced by ζs(0, σbd)/2. Using Equation 13, the variance in Td (σ2
t ) is,479

σ2
t =

1

〈λ〉2

(
ln2(2)CV 2

λ +
2σ2

n

2− α

)
. (14)

For exponential growth, we also find,480

ln(
Ld
Lb

) = xn+1 − xn + ln(2) = λTd. (15)

On substituting Equation 12 into Equation 15 we obtain to first order,481

xn+1 ≈ (1− α)xn + ζ(0, σn). (16)

On replacing the time additive noise term, ζ(0, σn), in Equation 16 with ζs(0, σbd)/2, we482

recover the recursive relation for size at birth obtained in the case of size additive noise483

shown in Equation 6. Hence, the model is insensitive to noise being size additive or time484

additive with a simple mapping for going from one noise type to another in the small noise485
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limit.486

At steady state, x has a normal distribution with mean 0 and variance σ2
x whose value is487

given by,488

σ2
x =

σ2
n

α(2− α)
. (17)

We note that some of the derivations above have also been presented in Ref. [16], but are489

provided here for completeness.490

5.4 Predicting the results of statistical constructs applied on ln(Ld

Lb
)491

vs 〈λ〉Td and 〈λ〉Td vs ln(Ld

Lb
)492

5.4.1 Obtaining the best linear fit493

Next, we calculate the equation for the best linear fit for the choice of ln(Ld
Lb

) as y-axis and494

〈λ〉Td as x-axis and vice versa. For simplicity, in this section, we will consider time additive495

division timing noise. However, the results obtained here will hold for size additive noise as496

well because the model is robust to the type of noise added as shown in the previous section.497

First, we calculate the correlation coefficient (ρexp) for ln(Ld
Lb

) and time of division Td,498

ρexp =
〈(ln(Ld

Lb
)− 〈ln(Ld

Lb
)〉)(Td − 〈Td〉)〉

σlσt
, (18)

where σl is the standard deviation in ln(Ld
Lb

). Using Equations 15 and 16 we obtain,499

ln(
Ld
Lb

) ≈ ln(2)− αxn + ζ(0, σn). (19)
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Substituting Equations 13 and 19 into the numerator of Equation 18,

〈(ln(
Ld
Lb

)− 〈ln(
Ld
Lb

)〉)(Td − 〈Td〉)〉

= 〈(−αxn + ζ(0, σn))
(−αxn − ln(2)ξ(0, CVλ) + ζ(0, σn))

〈λ〉
〉. (20)

As the terms ζ(0, σn), ξ(0, CVλ) and xn are independent of each other, 〈ξ(0, CVλ)ζ(0, σn)〉 =500

0, 〈ξ(0, CVλ)xn〉 = 0 and 〈xnζ(0, σn)〉 = 0. Equation 20 simplifies to,501

〈(ln(
Ld
Lb

)− 〈ln(
Ld
Lb

)〉)(Td − 〈Td〉)〉 = (α2σ2
x + σ2

n)
1

〈λ〉
. (21)

The variance of ln(Ld
Lb

) obtained using Equation 19 is,502

σ2
l = α2σ2

x + σ2
n =

2σ2
n

2− α
. (22)

Inserting Equations 14, 21 and 22 into Equation 18, we get,503

ρexp =

√√√√ 1

1 +
(1−α

2
) ln2(2)CV 2

λ

σ2
n

. (23)

The slope of a linear regression line is given by,504

m = ρ
σy
σx
, (24)

where σx, σy and ρ are the standard deviation of the x-variable, the standard deviation of505

the y-variable and the correlation coefficient of the (x,y) pair, respectively. The intercept is,506

c = 〈y〉 −m〈x〉. (25)
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On the x-axis, we plot 〈λ〉Td and the y-axis is chosen as ln(Ld
Lb

). The slope for this choice507

(mtl) can be calculated by,508

mtl = ρexp
σl

σt〈λ〉
. (26)

On substituting the values we get,509

mtl =
1

1 +
(1−α

2
) ln2(2)CV 2

λ

σ2
n

. (27)

Only for CVλ � σn we would expect a slope close to 1.510

The intercept (ctl) for the ln(Ld
Lb

) vs 〈λ〉Td plot is given by,511

ctl = 〈ln(
Ld
Lb

)〉 −mtl〈〈λ〉Td〉 = ln(2)

1− 1

1 +
(1−α

2
) ln2(2)CV 2

λ

σ2
n

 . (28)

However, if we choose the x-axis as ln(Ld
Lb

) and the y-axis is chosen as 〈λ〉Td, we obtain the512

slope mlt,513

mlt = ρexp
σt〈λ〉
σl

. (29)

On substituting the values we obtain mlt = 1 independent of the noise parameters and find514

that the intercept is zero.515

5.4.2 Non-linearity in binned data516

In the Main text, for the plot ln(Ld
Lb

) vs 〈λ〉Td, we find the binned data to be non-linear (see517

Figure 2C of the Main text). In this section, we explain the non-linearity observed using the518

model developed in the previous sections.519

Binning data based on the x-axis means taking an average of the y-variable conditioned520

on the value of the x-variable. Mathematically, this amounts to calculating E[y | x] i.e.,521

the conditional expectation of the y-variable given that x is fixed. In our case, we need to522
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calculate E[ln(Ld
Lb

) | 〈λ〉Td]. ln(Ld
Lb

) = λTd by definition of exponential growth, hence,523

E[ln(
Ld
Lb

) | 〈λ〉Td] = E[λTd | 〈λ〉Td]. (30)

Since Td is fixed, this is equivalent to calculating E[λ | Td]. Using Equation 13,524

E[λ | Td] =

∫∞
−∞

∫∞
−∞

∫∞
−∞ λp(x, ξ, ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉) dx dξ dζ∫∞
−∞

∫∞
−∞

∫∞
−∞ p(x, ξ, ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉) dx dξ dζ
. (31)

p(x, ξ, ζ) is the joint probability distribution of x and noise parameters ξ and ζ. Since, they

are independent of each other, the joint distribution is product of the individual distributions

f1(x), f2(ξ) and f3(ζ), the distributions being Gaussian with mean 0 and standard deviation

σx, CVλ and σn, respectively. σx, σn are related by Equation 17. Since x, ξ, and ζ are

narrowly distributed around zero, the contribution from large positive or negative values is

extremely small. This ensures that Td is also close to its mean and non-negative despite the

limits of the integral being −∞ to ∞. Using λ = 〈λ〉+ 〈λ〉ξ(0, CVλ) in Equation 31,

E[λ | Td]

= 〈λ〉

(
1 +

∫∞
−∞

∫∞
−∞

∫∞
−∞ ξf1(x)f2(ξ)f3(ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉)) dx dξ dζ∫∞
−∞

∫∞
−∞

∫∞
−∞ f1(x)f2(ξ)f3(ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉)) dx dξ dζ

)
.

(32)

On evaluating the integrals, we obtain,525

E[λ | Td] = 〈λ〉

1 +
1

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

−
〈λ〉Td
ln(2)

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

 . (33)
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Thus, the trend of binned data is found to be,526

E[ln(
Ld
Lb

) | 〈λ〉Td] = 〈λ〉Td

1 +
1

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

−
〈λ〉Td
ln(2)

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

 . (34)

In the regime CVλ � σn , the last two terms on the RHS of Equation 34 vanish and the527

binned data follows the trend y=x.528

For the 〈λ〉Td vs ln(Ld
Lb

) plot, we need to calculate E[〈λ〉Td | ln(Ld
Lb

)]. Using Equations 13529

and 19, we obtain,530

〈λ〉Td = ln(
Ld
Lb

)− ln(2)ξ(0, CVλ). (35)

ln(Ld
Lb

) is independent of ξ(0, CVλ). Using this, we can write E[〈λ〉Td | ln(Ld
Lb

)] as,

E[〈λ〉Td | ln(
Ld
Lb

)]

=

∫∞
−∞

∫∞
−∞(〈λ〉Td) f2(ξ) f4(ln(Ld

Lb
)) δ

(
〈λ〉Td − (ln(Ld

Lb
)− ln(2)ξ)

)
d(〈λ〉Td) dξ

f4(ln(Ld
Lb

))
. (36)

Note that the integral over 〈λ〉Td goes from −∞ to ∞ although 〈λ〉Td cannot be negative.531

As before, this is not an issue because we assume 〈λ〉Td to be tightly regulated around ln(2)532

and the contribution to the integral from −∞ to 0 is negligible. f4(ln(Ld
Lb

)) denotes the533

probability distribution for ln(Ld
Lb

), the distribution being Gaussian with mean ln(2), and534

standard deviation σl which is calculated in Equation 22. Putting the Gaussian form of535

f2(ξ) into the integral and simplifying we get,536

E[〈λ〉Td | ln(
Ld
Lb

)] = ln(
Ld
Lb

). (37)

The trend of binned data to first order in noise and x is E[〈λ〉Td | ln(Ld
Lb

)] = ln(Ld
Lb

). This is537

shown in Figure 2D of the Main text where the binned data follows the y=x line.538
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5.5 Linear growth539

In this section, we will focus on finding the equation of the best linear fit for relevant plots540

in the case of linear growth. The time at division for linear growth is given by,541

Td =
Ld − Lb
λ′

. (38)

Note that λ′ has units of [length/time] and is defined as the elongation speed. This is542

different from the exponential growth rate which has units [1/time]. Here, we will work with543

the normalized length at birth (lb) and division (ld),544

Td =
ld − lb
λlin

. (39)

Consider the normalized elongation speed to be λlin = 〈λlin〉 + 〈λlin〉ξlin(0, CVλ,lin), where545

〈λlin〉 is the mean normalized elongation speed for a lineage of cells and ξlin(0, CVλ,lin) is546

normally distributed with mean 0 and standard deviation CVλ,lin. Thus, the CV of elongation547

speed is CVλ,lin. The regulation strategy which the cell undertakes is equivalent to that in548

previous sections and is given by g(lb) = 2 + 2(1− α)(lb − 1). Note that we can obtain g(lb)549

by Taylor expanding f(lb) around lb = 1. Using the regulation strategy g(lb) and adding a550

size additive noise ζs(0, σbd) which is independent of lb, we find,551

Td =
2 + 2(1− α)(lnb − 1) + ζs(0, σbd)− lnb

〈λlin〉(1 + ξlin(0, CVλ,lin))
. (40)

Note that we chose size additive division timing noise (ζs(0, σbd)) for convenience in this552

section. However, it can be shown as done previously that the model is robust to the noise553

in division timing being size additive or time additive. Assuming that the noise terms554
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ξlin(0, CVλ,lin) and ζs(0, σbd) are small, we obtain to first order,555

Td ≈
(1− 2α)(lb − 1) + 1 + ζs(0, σbd)− ξlin(0, CVλ,lin)

〈λlin〉
. (41)

The terms lb, ζs(0, σbd) and ξlin(0, CVλ,lin) are independent of each other. The standard556

deviation of Td (σt) can be calculated to be,557

σ2
t =

(1− 2α)2σ2
b + σ2

bd + CV 2
λ,lin

〈λlin〉2
. (42)

Assuming perfectly symmetric division and using lnd = g(lnb )+ζs(0, σbd), we find the recursive558

relation for lnb to be,559

lnd − lnb = 2ln+1
b − lnb = (1− 2α)lnb + 2α + ζs(0, σbd). (43)

Note that Equation 43 is the same as Equation 6 under the approximation xn = lnb − 1. At560

steady state, the standard deviation of lb is denoted by σb and using Equation 43 its value561

is obtained to be,562

σ2
b =

σ2
bd

4α(2− α)
. (44)

Similarly, the standard deviation of ld-lb, or equivalently λlinTd, denoted by σl,lin, is calculated563

to be,564

σ2
l,lin =

4α + 1

4α(2− α)
σ2
bd. (45)

For linear growth, a natural plot is ld-lb vs 〈λlin〉Td (reminiscent of the ln(Ld
Lb

) vs 〈λ〉Td plot565

for exponential growth). To calculate the slope of the best linear fit, we have to calculate566

the correlation coefficient ρlin given by,567

ρlin =
〈(ld − lb − 〈ld − lb〉) (〈λlin〉Td − 〈〈λlin〉Td〉)〉

〈λlin〉σl,linσt
. (46)
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Again using the independence of terms lb, ζs(0, σbd) and ξlin(0, CVλ,lin) from each other, we568

get,569

ρlin =
(1− 2α)2σ2

b + σ2
bd

〈λlin〉σl,linσt
=

σl,lin
〈λlin〉σt

. (47)

The slope of best linear fit for the plot ld − lb vs 〈λlin〉Td is given by,570

mtl,lin = ρlin
σl,lin
〈λlin〉σt

=
1

1 +
CV 2

λ,lin4α(2−α)

σ2
bd(4α+1)

. (48)

The intercept ctl,lin is found to be,571

ctl,lin = 〈ld − lb〉 −mtl,lin〈〈λlin〉Td〉 = 1− 1

1 +
CV 2

λ,lin4α(2−α)

σ2
bd(4α+1)

. (49)

On flipping the axis, the slope (mlt,lin) for the plot 〈λlin〉Td vs ld − lb is obtained to be,572

mlt,lin = ρlin
〈λlin〉σt
σl,lin

= 1. (50)

The intercept clt,lin is found to be,573

clt,lin = 〈〈λlin〉Td〉 −mlt,lin〈ld − lb〉 = 0. (51)

The best linear fit for the 〈λlin〉Td vs ld − lb plot follows the trend y=x.574

Simulations of the adder model for linearly growing cells were carried out. The deviation575

of the best linear fit for the ld − lb vs 〈λlin〉Td plot from the y=x line is shown in Figure 3-576

figure supplement 1A, while in Figure 3- figure supplement 1B, the best linear fit for the plot577

〈λlin〉Td vs ld − lb is shown to agree with the y=x line.578
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5.6 Differentiating linear from exponential growth579

In this section, we explore the equation for the best linear fit of 〈λlin〉Td vs ld − lb plot in580

the case of exponential growth and 〈λ〉Td vs ln(Ld
Lb

) plot for linear growth. Intuitively, we581

expect the best linear fit in both cases to deviate from the y=x line. In this section, we will582

calculate the best linear fit explicitly. Surprisingly, we will find that, in the case of linear583

growth, the best linear fit for the 〈λ〉Td vs ln(Ld
Lb

) plot follows the y=x line closely.584

Let us begin with exponential growth with growth rate, λ = 〈λ〉 + 〈λ〉ξ(0, CVλ) as585

defined previously. Again, ξ(0, CVλ) has a normal distribution with mean 0 and standard586

deviation CVλ, it being the CV of the growth rate. The time at division is given by Equation587

7. The average growth rate 〈λ〉 = 〈 ln(2)
Td
〉 ≈ ln(2)

〈Td〉
. For exponential growth, we will plot588

〈λlin〉Td vs ld− lb. As previously defined, 〈λlin〉 is the mean normalized elongation speed and589

〈λlin〉 = 〈 1
Td
〉 ≈ 1

〈Td〉
. 〈λlin〉 is related to 〈λ〉 by,590

〈λlin〉 =
〈λ〉

ln(2)
. (52)

ld − lb can be calculated by using the regulation strategy f(lb) introduced in Section 5.2 and591

a normally distributed size additive noise ζs(0, σbd). Note that we have chosen the noise in592

division timing to be size additive. However, the model is robust to the choice of type of593

noise as we showed in Section 5.3. Using Equations 5 and 6 we obtain,594

lnd − lnb ≈ 1 + (1− 2α)xn + ζs(0, σbd). (53)

Using Equation 11, 〈λlin〉Td is obtained to be,595

〈λlin〉Td = 1− αx

ln(2)
− ξ(0, CVλ) +

ζs(0, σbd)

2 ln(2)
. (54)

To calculate the expression formlt,lin, the slope of the best linear fit for 〈λlin〉Td vs ld−lb plot,596
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we first calculate ρlin given by Equation 46. The expression for σl,lin (standard deviation of597

ld − lb) and σt (standard deviation of Td) are found to be,598

σ2
l,lin = (1− 2α)2σ2

x + σ2
bd, (55)

599

σ2
t =

1

〈λlin〉2

(
(
ασx
ln(2)

)2 + CV 2
λ + (

σbd
2 ln(2)

)2

)
. (56)

σx is related to σn via Equation 17. In Section 5.3, we also showed that σn = σbd
2
. Using600

these, we can write,601

σ2
x =

σ2
bd

4α(2− α)
. (57)

Now using the expressions for σt, σl,lin and the fact that x, ξ(0, CVλ) and ζs(0, σbd) are602

independent of each other, we get,603

ρlin =

(2α−1)ασ2
x

ln(2)
+

σ2
bd

2 ln(2)

〈λlin〉σl,linσt
. (58)

For the plot 〈λlin〉Td vs ld − lb, the slope mlt,lin is given by,604

mlt,lin = ρlin
σt〈λlin〉
σl,lin

=

(2α−1)ασ2
x

ln(2)
+

σ2
bd

2 ln(2)

σ2
l,lin

. (59)

Inserting Equation 55 into Equation 59 and substituting σ2
x given by Equation 57, we obtain,605

mlt,lin =
1

ln(2)

3α

4α + 1
. (60)

The intercept clt,lin is found to be,606

clt,lin = 〈〈λlin〉Td〉 −mlt,lin〈ld − lb〉 = 1− 1

ln(2)

3α

4α + 1
. (61)
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For the adder model (α = 1
2
), we get the value of slope mlin,lt = 1

2 ln(2)
≈ 0.7213 and intercept607

clin,lt = 1 − 1
2 ln(2)

≈ 0.279. This is different from the best linear fit obtained for same608

regulatory mechanism controlling division in linearly growing cells where we found that the609

best linear fit follows the y=x line. Intuitively, we expect the best linear fit of 〈λlin〉Td vs610

ld−lb plot to deviate from y=x line in the case of exponential growth. We showed analytically611

that for a class of models where birth controls division, it is indeed the case. This is also612

shown using simulations of the adder model in Figure 3- figure supplement 1C.613

In Section 5.4.1, we found the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) plot to follow the y=x614

line for exponentially growing cells where division is regulated by birth event via regulation615

strategy f(lb). Next, we calculate the equation for the best linear fit of 〈λ〉Td vs ln(Ld
Lb

)616

plot given growth is linear. The model for division control will be same as that in Section617

5.5 i.e., the regulation strategy for division is given by g(lb) = 2 + 2(1 − α)(lb − 1) which618

is also equivalent to f(lb). The linearly growing cells grow with elongation speed λlin =619

〈λlin〉(1+ ξlin(0, CVλ,lin)). As discussed before, ξlin(0, CVλ,lin) has a normal distribution with620

mean 0 and standard deviation CVλ,lin, it being the CV of the elongation speed. Using621

Equations 5 and 6, we get,622

ln(
Ld
Lb

) = ln(2)− αxn +
ζs(0, σbd)

2
. (62)

Using Equations 5 and 52, we obtain from Equation 41,623

〈λ〉Td = ln(2) + (1− 2α) ln(2)x+ ln(2)ζs(0, σbd)− ln(2)ξlin(0, CVλ,lin). (63)

Since x, ξlin(0, CVλ,lin) and ζs(0, σbd) are uncorrelated, the standard deviation of ln(Ld
Lb

) and624

Td denoted by σl and σt respectively are calculated to be,625

σ2
l = α2σ2

x +
σ2
bd

4
, (64)
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σ2
t =

ln2(2)

〈λ〉2
((1− 2α)2σ2

x + σ2
bd + CV 2

λ,lin). (65)

We calculate the correlation coefficient for the pair (ln(Ld
Lb

), 〈λ〉Td). Since the correlation626

coefficient is unaffected by multiplying one of the variables with a positive constant, we can627

calculate the correlation coefficient for the pair (ln(Ld
Lb

), Td) or ρexp as given by Equation 18.628

Using the independence of terms x, ξlin(0, CVλ,lin) and ζs(0, σbd),629

ρexp =
ln(2)(σ2

x(2α− 1)α +
σ2
bd

2
)

〈λ〉σlσt
. (66)

For the plot 〈λ〉Td vs ln(Ld
Lb

), the slope mlt of the best linear fit is given by,630

mlt = ρexp
σt〈λ〉
σl

=
ln(2)(σ2

x(2α− 1)α +
σ2
bd

2
)

σ2
l

. (67)

Inserting Equation 64 into Equation 67 and using Equation 57, we get,631

mlt =
3

2
ln(2) ≈ 1.0397. (68)

Similarly the intercept (clt) for the plot 〈λ〉Td vs ln(Ld
Lb

) is found to be,632

clt = 〈〈λ〉Td〉 −mlt〈ln(
Ld
Lb

)〉 = ln(2)(1− 3

2
ln(2)) ≈ −0.0275. (69)

This is very close to y=x trend obtained for the same regulatory mechanism controlling633

division in exponentially growing cells (Figure 3A).634

5.7 Growth rate vs age and elongation speed vs age plots.635

In the previous sections, we found that binning and linear regression on the plot ln(Ld
Lb

) vs636

〈λ〉Td, and the plot obtained by interchanging the axes, were inadequate to identify the mode637
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of growth. In this section, we try to validate the growth rate vs age plot as a method to638

elucidate the mode of growth.639

In addition to cell size at birth and division and the generation time, cell size trajectories640

(cell size, L vs time from birth, t) were obtained for multiple cell cycles. In our case, the cell641

size trajectories were collected either via simulations (in Figure 3B) or from experiments (for642

Figures 4A-4C) at intervals of 4 min. For each trajectory, growth rate at time t or age t
Td

643

is calculated as 1
L(t)

L(t+∆t)−L(t)
∆t

where ∆t is the time between consecutive measurements. To644

obtain elongation speed vs age plots, the formula before needs to be replaced with L(t+∆t)−L(t)
∆t

.645

The growth rate is interpolated to contain 200 points at equal intervals of time for each cell646

trajectory. The growth rate trends appear to be robust with regards to a different number of647

interpolated points (from 100 to 500 points). To obtain the growth rate trend as a function648

of cell age, we use the method previously applied in Ref. [39]. In this method, growth rate is649

binned based on age for each individual trajectory (50 bins) and the average growth rate is650

obtained in each of the bins. The binned data trend for growth rate vs age is then found by651

taking the average of the growth rate in each bin over all trajectories. Binning the growth652

rate for each trajectory ensures that each trajectory has an equal contribution to the final653

growth rate trend so as to avoid inspection bias. This step is especially important when data654

collected at equal intervals of time is analyzed. In such a case, cells with larger generation655

times have a greater number of measurements than cells with smaller generation times.656

Obtaining the growth rate trend without binning growth rate for each trajectory would have657

biased the binned data trend for the growth rate vs age plot to a smaller value because658

of over-representation by slower-growing cells (or equivalently cells with longer generation659

time). This bias towards lower growth rate values in the growth rate vs age plots is an660

instance of inspection bias.661

In Figures 4A-4C, we find the growth rate obtained from E. coli experiments to change662

within the cell cycle. In the two slower growth media (Figures 4A, 4B), the growth rate is663
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found to increase with cell age while for the fastest growth media (Figure 4C) the growth664

rate follows a non-monotonic behaviour similar to that observed in Ref. [39] for B. subtilis.665

Abrupt changes in growth rate are reported at constriction in Refs. [41, 42]. We find that the666

growth rate changes start before constriction in the two slower growth conditions considered.667

One possibility is that this increase is due to preseptal cell wall synthesis [56]. Preseptal cell668

wall synthesis does not require activity of PBP3 (FtsI) but instead relies on bifunctional669

glycosyltransferases PBP1A and PBP1B that link to FtsZ via ZipA. One hypothesis that670

can be tested in future works is that at the onset of constriction, activity from PBP1A671

and PBP1B starts to gradually shift to the PBP3/FtsW complex and therefore no abrupt672

change in growth rate is observed. In the fastest growth condition (glucose-cas medium), we673

find that the increase in growth rate approximately coincides with onset of constriction, in674

agreement with the previous findings [41, 42].675

In Figures 4A-4C, the growth rate trends are not obtained for age close to one. This676

is because growth rate at age = 1 is given by 1
L(Td)

L(Td+∆t)−L(Td)
∆t

and this requires knowing677

the cell lengths beyond the division event (L(Td + ∆t)). To estimate growth rates at age678

close to one, we approximate L(Td + ∆t) to be the sum of cell sizes of the two daughter679

cells. In order to minimize inspection bias, we considered only those cell size trajectories680

which had L(t) data for 12 min after division (corresponding to an age of approximately681

1.1). However, the growth rate trends in all three growth media were robust with regards to682

a different time for which L(t) was considered (4 min to 20 min after division). We use the683

binning procedure discussed before in this section. To validate this method, we applied it684

on synthetic data obtained from the simulations of exponentially growing cells following the685

adder and the adder per origin model. Cells were assumed to divide in a perfectly symmetric686

manner and both of the daughter cells were assumed to grow with the same growth rate,687

independent of the growth rate in the mother cell. The growth rate trends for the two688

models considered (adder and adder per origin) are expected to be constant even for cell age689
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> 1. We found that the growth rate trends were indeed approximately constant as shown in690

Figure 4- figure supplement 1D. We also considered linear growth with division controlled via691

an adder model. The daughter cells were assumed to grow with the same elongation speed,692

independent of the elongation speed in the mother cell. In this case, we expect the elongation693

speed trend to be constant for cell age > 1. This is indeed what we observed as shown in the694

inset of Figure 4- figure supplement 1D. We used this method on E. coli experimental data695

and found that the growth rate trends obtained for the three growth conditions (Figure 4-696

figure supplements 1A-1C) were consistent with that shown in Figures 4A-4C in the relevant697

age ranges. For cell age close to one, we found that the growth rate decreased to a value698

close to the growth rate near cell birth (age ≈ 0) for all three growth conditions considered.699

In summary, we find that the growth rate vs age plots are a consistent method to probe700

the mode of cell growth within a cell cycle.701

5.8 Growth rate vs time from specific event plots are affected by702

inspection bias703

To probe the growth rate trend in relation to a specific cell cycle event, for example cell birth,704

growth rate vs time from birth plots are obtained for simulations of exponentially growing705

cells following the adder model. In the growth rate vs time from birth plot, the rate is found706

to stay constant and then decrease at longer times (Figure 3- figure supplement 2C) even707

though cells are exponentially growing. Because of inspection bias (or survivor bias), at later708

times, only the cells with larger generation times (or slower growth rates) “survive”. The709

average generation time of the cells averaged upon in each bin of Figure 3- figure supplement710

2C is shown in Figure 3- figure supplement 2D. The decrease in growth rate in Figure 3-711

figure supplement 2C occurs around the same time when an increase in generation time is712

observed in Figure 3- figure supplement 2D. Thus, the trend in growth rate is biased towards713
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lower values at longer times. The problem might be circumvented by restricting the time on714

the x-axis to the smallest generation time of all the cell cycles considered [31].715

To check for growth rate changes at constriction, we used plots of growth rate vs time716

from constriction (t−Tn). Growth rate trends obtained from E. coli experimental data show717

a decrease at the edges of the plots (Figure 4- figure supplements 2A, 2C, and 2E). These718

deviate from the trends obtained using the growth rate vs age plots (Figures 4A-4C). To719

investigate this discrepancy, we use a model which takes into account the constriction and720

the division event. Currently it is unknown how constriction is related to division. For the721

purpose of methods validation, we use a model where cells grow exponentially, constriction722

occurs after a constant size addition from birth, and division occurs after a constant size723

addition from constriction. Note that other models where constriction occurs after a constant724

size addition from birth while division occurs after a constant time from constriction, as well725

as a mixed timer-adder model proposed in Ref. [42], lead to similar results. We expect the726

growth rate trend to be constant for exponentially growing cells. However, we find using727

numerical simulations that it decreases at the plot edges both before and after the constriction728

event (Figure 3- figure supplement 2A). This decrease can be attributed to inspection bias.729

The average growth rate in time bins at the extremes are biased by cells with smaller growth730

rates. This is shown in Figure 3- figure supplement 2B where the average generation time731

for the cells contributing in each of the bins of Figure 3- figure supplement 2A is plotted.732

The time at which the growth rate decreases on both sides of the constriction event is close733

to the time at which the average generation time increases. For example, in alanine medium,734

the generation time for each of the bins is plotted in Figure 4- figure supplement 2B. The735

average generation time for the cells contributing to each of the bins is almost constant for736

the timings between -80 min to 20 min. Thus, for this time range the changes in growth rate737

are not because of inspection bias but are a real biological effect. The behavior of growth738

rate within this time range in Figure 4- figure supplement 2A is in agreement with the trend739
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in growth rate vs age plot of Figure 4A. On accounting for inspection bias, the growth rate740

vs age plots agree with the growth rate vs time from constriction plots in other growth media741

as well (Figure 4- figure supplement 2C, Figure 4- figure supplement 2E). Thus, growth rate742

vs time plots are also a consistent method to probe growth rate modulation in the time range743

when avoiding the regimes prone to inspection bias.744

5.9 Results of elongation speed vs size plots are model-dependent.745

Cells assumed to undergo exponential growth have elongation speed proportional to their746

size. In the case of exponential growth, the binned data trend of the plot elongation speed vs747

size is expected to be linear with the slope of the best linear fit providing the value of growth748

rate and intercept being zero. In this section, we use the simulations to test if binning and749

linear regression on the elongation speed vs size plots are suitable methods to differentiate750

exponential growth from linear growth [43].751

To test the method, we generate cell size trajectories using simulations of the adder model752

with a size additive division timing noise and assuming exponential growth. Elongation speed753

at size L(t) is calculated for each trajectory as L(t+∆t)−L(t)
∆t

where ∆t is the time between754

consecutive measurements (= 4 min in our case). Each trajectory is binned into 10 equally755

sized bins based on their cell sizes and the average elongation speed is obtained for each bin.756

The final trend of elongation speed as a function of size is then obtained by binning (based757

on size) the pooled average elongation speed data of all the cell cycles.758

We find that the binned data trend is linear with the slope of the best linear fit close to the759

average growth rate considered in the simulations (Figure 3- figure supplement 3D). This is760

in agreement with our expectations for exponential growth. In order to check if this method761

could differentiate between exponential growth and linear growth, we used simulations of762

the adder model undergoing linear growth to generate cell size trajectories for multiple cell763

cycles. For linear growth, elongation speed is expected to be constant, independent of its764
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cell size. The binned data trend for the elongation speed vs size plot is also obtained to be765

constant for the simulations of linearly growing cells (Figure 3- figure supplement 3B). The766

intercept of the best linear fit obtained is close to the average elongation speed considered in767

the simulations. The binned data trend for linear and exponential growth are clearly different768

as shown in Figure 3- figure supplement 3B and Figure 3- figure supplement 3D, respectively,769

and this result holds for a broad class of models where the division event is controlled by770

birth and the growth rate (for exponential growth)/elongation speed (for linear growth) is771

distributed normally and independently between cell-cycles.772

Next, we consider the adder per origin cell cycle model for exponentially growing cells773

[17]. In this model space, the cell initiates DNA replication by adding a constant size per774

origin from the previous initiation size. The division occurs on average after a constant time775

from initiation. For exponentially growing cells, the binned data trend is still expected to be776

linear as before. Instead, we find using simulations that the trend is non-linear and it might777

be misinterpreted as non-exponential growth (Figure 3- figure supplement 3F).778

Thus, the results of binning and linear regression for the plot elongation speed vs size is779

model-dependent.780

5.10 Interchanging axes in growth rate vs inverse generation time781

plot might lead to different interpretations.782

So far, our discussion was focused on the question of mode of single-cell growth. A related783

problem regards the relation between growth rate (λ) and the inverse generation time ( 1
Td
).784

On a population level, the two are clearly proportional to each other. However, single-cell785

studies based on binning showed an intriguing non-linear dependence between the two, with786

the two variables becoming uncorrelated in the faster-growth media. [25, 57]. Within the787

same medium, the binned data curve for the plot λ vs 1
Td

flattened out for faster dividing788
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cells. The trend in the binned data was different from the trend of y= ln(2)x line as observed789

for the population means. A priori one might speculate that the flattening in faster dividing790

cells could be because the faster dividing cells might have less time to adapt their division791

rate to transient fluctuations in the environment. Kennard et al. [57] insightfully also plotted792

1
Td

vs λ and found a collapse of the binned data for all growth conditions onto the y = ln(2)x793

line. These results are reminiscent of what we previously showed for the relation of ln(Ld
Lb

)794

and 〈λ〉Td.795

In the following, we will elucidate why this occurs in this case using an underlying model796

and predicting the trend based on it. We use simulations of the adder model undergoing797

exponential growth. The parameters for size added in a cell cycle and mean growth rates798

are extracted from the experimental data. CV of growth rate is assumed lower in faster-799

growth media as observed by Kennard et al. Using this model, we could obtain the same800

pattern of flattening at faster-growth conditions that is observed in the experiments (Figure801

2- figure supplement 2A). The population mean for λ and 1
Td

follows the expected y=ln(2)x802

equation (shown as black dashed line) as was the case in experiments. Intuitively, such a803

departure from the expected y=ln(2)x line for the single cell data can again be explained by804

determining the effect of noise on variables plotted on both axes. As previously stated Td is805

affected by both growth rate noise and noise in division timing while growth rate fluctuates806

independently of other sources of noise. This does not agree with the assumption for binning807

as noise in division timing affects the x-axis variable rather than the y-axis variable. In such808

a case, the trend in the binned data might not follow the expected y=ln(2)x line. However,809

on interchanging the axes, we would expect the assumptions of binning to be met and the810

trend to follow the y= 1
ln(2)

x line (Figure 2- figure supplement 2B).811
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5.11 Data and simulations812

5.11.1 Experimental data813

Experimental data obtained by Tanouchi et al. [10] was used to plot Ld vs Lb shown in814

Figure 1A. E. coli cells were grown at 25°C in a mother machine device and the length at815

birth and division were collected for multiple cell cycles. Ld vs Lb plot was obtained using816

these cells and linear regression performed on it provided a best linear fit.817

Data from recent mother machine experiments on E. coli was used to make all other818

plots. Details are provided in Section 5.1 and Ref. [32]. The experiments were conducted at819

28°C in three different growth conditions - alanine, glycerol and glucose-cas (also see Section820

5.1). Cell size trajectories were collected for multiple cell cycles and all of the data collected821

were considered while making the plots in the paper.822

5.11.2 Simulations823

MATLAB R2021a was used for simulations. Simulations of the adder model for exponentially824

growing cells were carried out over a single lineage of 2500 generations (Figures 2C, 2D,825

Figure 3- figure supplement 1C). The mean length added between birth and division was826

set to 1.73 µm in line with the experimental results for alanine medium. Growth rate was827

variable and sampled from a normal distribution at the start of each cell cycle. The mean828

growth rate was set to ln(2)
〈Td〉

, where 〈Td〉 = 212 min and coefficient of variation (CV) = CVλ829

= 0.15. The noise in division timing was assumed to be time additive with mean 0 and830

standard deviation σn
〈λ〉 , where σn = 0.15. The binning data trends and the best linear fits831

obtained using these simulations could be compared with the analytical results obtained in832

Sections 5.4.2 and 5.6.833

For simulations of linear growth (Figures 3A-3B, Figure 3- figure supplements 1A, 1B, 3A,834

3B, Figure 4- figure supplement 1D), the mean growth rate was set to 〈Ld−Lb〉〈Td〉
, with the values835
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of 〈Ld − Lb〉 and 〈Td〉 used as mentioned previously. The noise in division timing was size836

additive with standard deviation = 0.15〈Lb〉. Noise was also considered to be size additive837

with the same standard deviation for the simulations of exponentially growing cells shown838

in Figure 3B, Figure 3- figure supplements 2C, 3C, 3D, and Figure 4- figure supplement 1D.839

For Figure 3B, Figure 3- figure supplements 3E, 3F, Figure 4- figure supplement 1D,840

simulations were carried out over a lineage of 2500 generations for exponentially growing cells841

following the adder per origin model. In the simulations, the time increment is 0.01 min.842

The initial condition for the simulations is that cells are born and initiate DNA replication843

at time t=0 but the results are independent of initial conditions. The number of origins is844

also tracked throughout the simulations beginning with an initial value of 2. Cells divide845

into two daughter cells in a perfectly symmetrical manner (no noise in division ratio), and846

one of the daughter cells is discarded for the next cell cycle. In simulations, the growth rate847

was fixed within a cell cycle but varied between different cell cycles. On division, the growth848

rate for that cell cycle was drawn from a normal distribution with mean 〈λ〉 and coefficient of849

variation (CVλ) whose values were fixed using the experimental data from alanine medium.850

The total length at which the next initiation happens is determined by,851

Ltot,nexti = Li +O∆ii, (70)

where ∆ii is the length added per origin and O is the number of origins. To determine852

Ltot,nexti , ∆ii was drawn on reaching initiation length from a normal distribution. The mean853

and CV of ∆ii was obtained from experiments done in alanine medium. In the adder per854

origin model, division happens after a C+D time from initiation. The division length (Ld)855

is obtained to be,856

Ld = Lie
λ(C+D). (71)

In the simulations, once the initiation length was reached, the corresponding division oc-857
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curred a time C+D after initiation. C+D timings for each initiation event were again drawn858

from a normal distribution with the same mean and CV as that of the experiments in alanine859

medium.860

For Figure 3- figure supplement 2A, cells were assumed to grow exponentially in the861

simulations. The constriction length (Ln) was set to be,862

Ln = Lb + ∆bn. (72)

The length added (∆bn) was assumed to have a normal distribution with the mean length863

added between birth and constriction set to 1.18 µm and the CV = 0.23, in line with the864

experimental results for alanine medium. The length at division was set as,865

Ld = Ln + ∆nd. (73)

The length added (∆nd) was also assumed to have a normal distribution with the mean866

length added set to 0.53 µm and the CV = 0.26, again in line with the experimental results867

for alanine medium.868

For Figure 3B, Figure 3- figure supplements 2A-2D, 3A-3F, Figure 4- figure supplement869

1D, the cell sizes are recorded within the cell cycle at equal intervals of 4 min, similar to870

that in the E. coli experiments of Ref. [32].871

For simulations shown in Figure 4- figure supplement 1D, the cell size trajectories are872

obtained at intervals of 4 min beyond the current cell-cycle. The size after the division event873

is said to be the sum of the sizes of the daughter cells. It is also further assumed that874

the daughter cells are equal in size (perfectly symmetric division) and they both grow with875

the same growth rate (for exponential growth) or elongation speed (for linear growth). The876

growth rates/elongation speeds for the daughter cells are sampled from a normal distribution877

with a mean and CV as discussed before. The cell size trajectories are recorded for 80 min878
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after the division event in the current cell cycle.879

In Figure 2- figure supplement 2, simulations of the adder model for exponentially growing880

cells were carried out until a population of 5000 cells was reached. The parameters for size881

added in a cell cycle and mean growth rates were extracted from the experimental data [57].882

The value of σn used in all growth conditions was 0.17 while CVλ decreased in faster growth883

conditions (0.2 in the three slowest growth conditions, 0.12 and 0.07 in the second fastest884

and fastest growth conditions respectively).885
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1047

Figure 1: Utility of binning and linear regression: A. Length at division (Ld) vs length
at birth (Lb) is plotted using data obtained by Tanouchi et al. [10]. Raw data is shown as
blue dots. We find the trend in binned data (red) to be linear with the underlying best
linear fit (yellow) following the equation, Ld = 1.09Lb + 2.24µm. This is close to the adder
behavior with an underlying equation given by Ld = Lb + ∆L, where ∆L is the mean size
added between birth and division (shown as black dashed line). B. A schematic of the adder
mechanism is shown where the cell grows over its generation time (Td) and divides after
addition of length ∆L from birth. This ensures cell size homeostasis in single cells.
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1057

Figure 2: Plots that could potentially lead to misinterpreting exponential growth:
A, B. Data is obtained from experiments in M9 alanine medium (〈Td〉 = 214 min, N = 816
cells). A. ln(Ld

Lb
) vs 〈λ〉Td plot is shown. The blue dots are the raw data, the red correspond

to the binned data trend, the yellow line is the best linear fit obtained by performing linear
regression on the raw data and the black dashed line is the y=x line. A priori, non-linear
trend in binned data might point to growth being non-exponential. B. 〈λ〉Td vs ln(Ld

Lb
)

plot is shown for the same experiments. C, D. Simulations of exponentially growing cells
following the adder model are carried out for N = 2500 cells. The parameters used are
provided in Section 5.11.2. C. ln(Ld

Lb
) vs 〈λ〉Td plot is shown. The trend in binned data

shown in red is non-linear. The black dashed line is the expected trend obtained from theory
(Equation 2). For parameters used in the simulations here, the black dashed line follows
ln(Ld

Lb
) = 1.26〈λ〉Td− 0.38(〈λ〉Td)2. D. 〈λ〉Td vs ln(Ld

Lb
) plot is shown with binned data in red

closely following the expected trend of y=x line (black dashed line). In all of these plots, the
binned data is shown only for those bins with more than 15 data points in them.
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1073

Figure 3: Differentiating linear growth from exponential growth: A. 〈λ〉Td vs ln(Ld
Lb

)
plot is shown for simulations of linearly growing cells following the adder model for N =
2500 cell cycles. The binned data closely follows the y=x trend which could be incorrectly
interpreted as cells undergoing exponential growth. B. The binned data trend for growth
rate vs age plot is shown in red for simulations of N= 2500 cell cycles of exponentially
growing cells following the adder model. We observe the trend to be nearly constant as
expected for exponential growth. Since the growth rate is fixed at the beginning of each cell
cycle in the above simulations, we do not show error bars for each bin within the cell cycle.
Also shown in black is the growth rate vs age plot for simulations of N= 2500 cell cycles of
linearly growing cells following the adder model. As expected for linear growth, the binned
growth rate decreases with age. The binned growth rate trend is also found to be nearly
constant for the simulations of exponentially growing cells following the adder per origin
model (shown in magenta). Thus, the plot growth rate vs age provides a consistent method
to identify the mode of growth. Parameters used in the above simulations of exponential
and linear growth are derived from the experimental data in alanine medium. Details are
provided in the Section 5.11.2.
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1091

Figure 4: Growth rate vs age obtained from experiments: Growth rate vs age plots
are shown for E. coli experimental data. The red dots correspond to the binned data trends
showing the variation in growth rate. The medium in which the experiments were conducted
are A. Alanine (〈Td〉 = 214 min) B. Glycerol (〈Td〉 = 164 min) C. Glucose-cas (〈Td〉 = 65
min). The error bars show the standard deviation of the growth rate in each bin scaled by

1√
N
, where N is the number of cells in that bin. The dashed vertical lines mark the age at

initiation of DNA replication (left line) and the start of septum formation (right line). In
case of glucose-cas, the initiation age is not marked as it occurs in the mother cell.
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Figure 5: A flowchart of the general framework proposed in the paper to carry out data
analysis.
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8 Supplementary Figures and Tables1105

Table S1: Variable definitions.

Variables Description

Lb Length of the cell at birth and also a proxy for size at birth

Ld Length of the cell at division and also a proxy for size at

division

lb
Lb
〈Lb〉

, where 〈Lb〉 is mean size at birth

ld
Ld
〈Lb〉

, where 〈Lb〉 is mean size at birth

f(lb) Mathematical function which captures the regulation strategy

determining division given size at birth. f(lb) = 2l1−αb

Td Generation time

σt Standard deviation of generation time

xn or x xn = ln(lnb ). Since lb ≈ 1, xn ≈ lnb − 1

σx Standard deviation of xn

f1(xn) Gaussian describing the distribution of xn. f1(xn) =

1√
2πσ2

x

exp
(
− x2n

2σ2
x

)
〈λ〉 Mean growth rate

CVλ Coefficient of variation of growth rate

ξ(0, CVλ) Normally distributed growth rate noise. Growth rate is de-

fined as λ = 〈λ〉 + 〈λ〉ξ(0, CVλ)

f2(ξ) Gaussian describing the distribution of random variable

ξ(0, CVλ). f2(ξ) = 1√
2πCV 2

λ

exp
(
− ξ2

2CV 2
λ

)
ζ(0,σn)
〈λ〉 Normally distributed time additive division timing noise with

mean 0 and standard deviation σn
〈λ〉
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f3(ζ) Gaussian describing the distribution of random variable

ζ(0, σn). f3(ζ) = 1√
2πσ2

n

exp
(
− ζ2

2σ2
n

)
ζs(0, σbd) Normally distributed size additive division timing noise with

mean 0 and standard deviation σbd

σl Standard deviation of ln(Ld
Lb

)

f4

(
ln(Ld

Lb
)
)

Gaussian describing the distribution of ln(Ld
Lb

). f4

(
ln(Ld

Lb
)
)

= 1√
2πσ2

l

exp

(
−

(
ln(

Ld
Lb

)−ln(2)
)2

2σ2
l

)
ρexp Correlation coefficient of the pair (ln(Ld

Lb
), 〈λ〉Td)

mtl Slope of the best linear fit for ln(Ld
Lb

) vs 〈λ〉Td plot

ctl Intercept of the best linear fit for ln(Ld
Lb

) vs 〈λ〉Td plot

mlt Slope of the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) plot

clt Intercept of the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) plot

〈λlin〉 Mean normalized elongation speed

CVλ,lin Coefficient of variation of normalized elongation speed

ξlin(0, CVλ,lin) Normally distributed normalized elongation speed noise. Nor-

malized elongation speed is defined as λlin = 〈λlin〉 +

〈λlin〉ξlin(0, CVλ,lin)

σl,lin Standard deviation of ld − lb

ρlin Correlation coefficient of the pair (ld − lb, 〈λlin〉Td)

mtl,lin Slope of the best linear fit for ld − lb vs 〈λlin〉Td plot

ctl,lin Intercept of the best linear fit for ld − lb vs 〈λlin〉Td plot

mlt,lin Slope of the best linear fit for 〈λlin〉Td vs ld − lb plot

clt,lin Intercept of the best linear fit for 〈λlin〉Td vs ld − lb plot

Li Cell size at the start of DNA replication (initiation)
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Ltot,nexti Total cell size of the daughter cells at the start of DNA repli-

cation

∆ii Size added per origin between initiations

O Number of origins just after initiation

C+D Time between initiation and division

Tn Timing of start of septum formation/onset of constriction

Ln Cell size at time Tn

Table S2: The slope and the intercept of the best linear fit along with their 95% confidence
intervals (CI) obtained on performing linear regression on experimental data. The data is
collected for cells growing in M9 alanine, glycerol and glucose-cas media [32].

Media No. of Td

ln(Ld

Lb
) vs 〈λ〉Td plot 〈λ〉Td vs ln(Ld

Lb
) plot

cells (min) Slope (with

95% CI)

Intercept

(with 95%

CI)

Slope (with

95% CI)

Intercept

(with 95%

CI)

Alanine 816 214 0.34 (0.31,

0.36)

0.44 (0.42,

0.46)

1.06 (0.98,

1.14)

-0.01 (-0.07,

0.04)

Glycerol 648 164 0.34 (0.32,

0.37)

0.43 (0.41,

0.44)

1.26 (1.16,

1.35)

-0.13 (-0.20,

-0.07)

Glucose-

cas

737 65 0.31 (0.28,

0.34)

0.42 (0.40,

0.44)

0.91 (0.83,

1.00)

0.09 (0.03,

0.15)
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Figure 2- figure supplement 1: Experimental data: ln(Ld
Lb

) vs 〈λ〉Td (left) and 〈λ〉Td vs
ln(Ld

Lb
) plot (right) is shown for, A. Cells growing in glycerol medium (〈Td〉 = 164 min, N =

648 cells). B. Cells growing in glucose-cas medium (〈Td〉 = 65 min, N = 737 cells). Binned
data (red), and the best linear fit (yellow) obtained by performing linear regression on the
raw data deviate from the y=x line (black dashed line) in the case of ln(Ld

Lb
) vs 〈λ〉Td plots in

both media. However, both binned data and the best linear fit are in close agreement with
the y=x line (black dashed line) on interchanging the axes. In all of these plots, the binned
data is shown only for those bins with more than 15 data points in them.
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Figure 2- figure supplement 2: Binned data trend in growth rate (λ) and inverse
generation time ( 1

Td
) plots: A-B. Simulations of the adder model for exponentially

growing cells were carried out at multiple growth rates for N = 2500 cells. The size added
between birth and division and the mean growth rates were extracted from Kennard et al.,
[57]. The CV of growth rates was greater for cells growing in slower-growth media. See
Section 5.11.2 for the parameter values. For these simulations, we show A. λ vs 1

Td
plot. B.

1
Td

vs λ plot. The smaller circles show the trend in binned data within a growth medium.
Different colors correspond to different growth media. Population means are shown as larger
markers. The population means agree with the expected y=ln(2)x line (black dashed line)
in Figure 2- figure supplement 2A but the trend within a single growth medium is non-linear
and deviates from the y=ln(2)x line. However, in Figure 2- figure supplement 2B, population
means across growth conditions and the trend in binned data within a single growth medium
follow the expected y= 1

ln(2)
x line (black dashed line).
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Figure 3- figure supplement 1: Predicting statistics based on a model of linear
growth: A-B. Simulations of linearly growing cells following the adder model are car-
ried out for N = 2500 cell cycles. A. ld − lb vs 〈λlin〉Td plot is shown. The raw data is
shown as blue dots. The binned data (in red) and the best linear fit (in yellow) deviate from
the y=x line (black dashed line). Such a deviation can be predicted based on a model as
discussed in detail in Section 5.5. B. 〈λlin〉Td vs ld − lb plot is shown. The binned data (in
red) and the best linear fit (in yellow) agree with the y=x line (in black). C. Simulations
of exponentially growing cells following the adder model are carried out for N = 2500 cell
cycles. 〈λlin〉Td vs ld − lb plot is shown. The binned data (in red) and the best linear fit (in
yellow) deviate from the y=x line (in black) as expected for exponential growth. Parameters
used in the simulations above are provided in Section 5.11.2.
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Figure 3- figure supplement 2: Inspection bias in the growth rate vs time plots
obtained from simulations: A. The binned growth rate trend as a function of time
from the onset of constriction (t-Tn) is shown in red. Time t-Tn = 0 corresponds to onset of
constriction. The plot is shown for simulations of exponentially growing cells carried out over
N = 2500 cell cycles. Constriction length is determined by a constant length addition from
birth and division occurs after a constant length addition from constriction. B. The average
generation time for the cells present in each bin of Figure 3- figure supplement 2A is shown.
C. For simulations of exponentially growing cells following the adder model (N=2500), the
binned growth rate (in red) vs time from birth plot is shown. D. The average generation
time for the cells present in each bin of Figure 3- figure supplement 2C is shown. The vertical
dashed lines show the time range in which the generation times are approximately constant
and hence, the effects of inspection bias are negligible. Within that time range, the growth
rate trend is found to be constant, consistent with the assumption of exponential growth.
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Figure 3- figure supplement 3: Differential methods of quantifying growth: A-B.
Simulations of linearly growing cells following the adder model are carried out for N = 2500
cell cycles. Cell size (L) data is recorded as a function of time within the cell cycle. A.
The red dots show the binned data for elongation speed as a function of age. The trend
is almost constant in agreement with the linear growth assumption. B. Elongation speed
is also constant with cell size as expected for linear growth with the intercept value being
the average elongation speed. C-D. Simulations of exponentially growing cells following the
adder model are carried out for N = 2500 cell cycles. C. Elongation speed trend (in red)
increases with age in agreement with the exponential growth assumption. D. Elongation
speed trend (in red) increases linearly with size with a slope equal to the average growth
rate. E-F. Simulations of exponentially growing cells following the adder per origin model
are carried out for N = 2500 cell cycles. E. Again, the elongation speed trend (in red)
increases with age in agreement with the exponential growth assumption. F. Elongation
speed trend (in red) deviates from the expected linear trend (black dashed line). This could
be misinterpreted as non-exponential growth. Thus, we find that the binned data trend for
the plot elongation speed vs size is model-dependent.
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Figure 4- figure supplement 1: Growth rate vs age curves extended beyond the
division event: A,B,C. The binned growth rate trend is shown in red as a function of
age for E. coli experimental data. The trends are obtained using the cell size trajectories
extending beyond the division event (age>1). The plots are shown for A. Alanine medium
(N = 720 cells) B. Glycerol medium (N = 594 cells). C. Glucose-cas medium (N = 664
cells). The error bars in all three plots represent the standard deviation of the growth rate
in each bin scaled by 1√

N
, where N is the number of cells in that bin. The growth rate trend

appears to be periodic in each of the growth media i.e., λ at age ≈ 1 is close to λ at age ≈
0. These trends agree with that of Figure 4 in the appropriate age ranges. D. Simulations
are carried out for N= 2500 cell cycles. The cell size trajectories are collected beyond the
division event (age>1). The binned data trend for growth rate vs age plot is shown in red
for exponentially growing cells following the adder model. We observe the trend to be nearly
constant as expected for exponential growth. The binned growth rate trend is also found to
be nearly constant for the simulations of exponential growing cells following the adder per
origin model (shown in magenta). (Inset) Shown in red is the elongation speed vs age plot
for simulations of N= 2500 cell cycles of linearly growing cells following the adder model.
As expected for linear growth, the binned elongation speed trend remains approximately
constant with age. The growth rate trends for the models with exponential growth agree
with that of Figure 3B. The elongation speed trend (inset) also agrees with the trend in
Figure 3- figure supplement 3A.
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Figure 4- figure supplement 2: Inspection bias in the growth rate vs time from
constriction plots obtained from experiments: A,C,E. The binned growth rate trend
is shown in red as a function of time from the onset of constriction (t-Tn). Time t-Tn = 0
corresponds to the onset of constriction for all cells considered. The plots are shown for A.
Alanine medium. C. Glycerol medium. E. Glucose-cas medium. The error bars in all three
plots represent the standard deviation of the growth rate in each bin scaled by 1√

N
, where N

is the number of cells in that bin. B,D,F. The average generation time for the cells present
in each bin of B. Alanine medium (Figure 4- figure supplement 2A) D. Glycerol medium
(Figure 4- figure supplement 2C) F. Glucose-cas medium (Figure 4- figure supplement 2E)
are shown. The vertical dashed lines represent the time range within which the average
generation time remains approximately constant. The growth rate trends within this time
range are consistent with that in Figure 4 for the respective growth condition as there is
negligible inspection bias.
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