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Abstract— Brain shift is an important obstacle for the 

application of image guidance during neurosurgical 
interventions. There has been a growing interest in intra-
operative imaging systems to update the image-guided surgery 
systems with real-time data. However, due to the innate 
limitations of the current imaging modalities, accurate and real-
time brain shift compensation remains as a challenging problem. 
In this study, application of the intra-operative photoacoustic 
(PA) imaging and registration of the intra-operative PA images 
with pre-operative brain MR images is proposed to compensate 
brain deformation during surgery. Finding a satisfactory 
multimodal image registration method is a challenging problem 
due to complicated and unpredictable nature of brain 
deformation. In this study, the co-sparse analysis model is 
proposed for PA-MR image registration which can capture the 
interdependency of two modalities. The proposed algorithm 
works based on the minimization of mapping transform by using 
a pair of analysis operators. These operators are learned by the 
alternating direction method of multipliers. The method was 
evaluated using experimental phantom and ex-vivo data obtained 
from mouse brain. The results of phantom data show about 60% 
and 63% improvement in root mean square error (RMSE) and 
target registration error (TRE) in comparison with commonly 
used normalized mutual information registration method. In 
addition, the results of mouse brain and phantom data shown 
more accurate performance for PA versus ultrasound imaging 
for brain shift calculation. Finally, by using the proposed 
registration method, the intra-operative PA images could become 
a promising tool when the brain shift invalidated pre-operative 
MRI.  

Index Terms— Brain shift, Co-sparse analysis, Intra-operative 
imaging, Multimodal image registration, Photoacoustic imaging. 
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I. INTRODUCTION 

aximal Safe resection of brain tumors in eloquent 
regions is optimally performed under image-guided 

surgery systems [1, 2]. Accuracy of the image-guided 
neurosurgery system is drastically affected by intra-operative 
tissue deformation, called brain shift. Brain shift is a dynamic 
complex spatiotemporal phenomenon which happens after 
performing a craniotomy and invalidates pre-operative image 
of patients [3, 4]. Brain shift which is known as the brain 
deformation is a combination of the wide variety of biological, 
physical and surgical causes and occurs at both cortical and 
deep brain structures [2, 5-7]. Brain shift calculation and 
compensation methods are based on updating the pre-
operative images with regard to the intraoperative tissue 
deformation. These methods fall into two main categories: 
biomechanical models and intra-operative imaging 
approaches. Biomechanical model-based approaches are time 
and computation consuming methods; however, they could be 
highly accurate [8-10]. The main challenge of model-based 
methods is that the tissue deformations occur during 
intraoperative neuro-surgical procedures are hard to accurately 
and real time model and thus are often not considered [2]. 
Therefore, most of the recent studies focused on using intra-
operative imaging including intraoperative computed 
tomography (CT) [11], magnetic resonance imaging (MRI) 
[12-14], fluorescence-guided surgery [15], and ultrasound 
(US) imaging [16-18] during neurosurgery. In fact, 
interventional imaging systems are becoming an integral part 
of modern neurosurgeries to update patients coordinate during 
surgery using registration of intra-operative images with pre-
operative images [19]. However, each of these modalities are 
proved to have well-known limitations [20]. Radiation 
exposure and low spatial resolution in CT, the requirement of 
an expensive equipped MR compatible operating room and 
time consuming for MRI, limited imaging depth in 
fluorescence imaging, and poor quality of the US images are 
the major challenges of the common intra-operative imaging 
modalities [21]. 

Recently, application of the hybrid imaging modalities such 
as photoacoustic (PA) imaging has gained considerable 
interest for various applications such as differential diagnostic 
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of pathologies [22, 23], depicting tissue vasculature [24], oral 
health [25, 26] and image-guided surgeries [27-29]. The PA is 
a non-ionizing hybrid imaging method which combines optical 
and ultrasound imaging modalities based on the PA e�ect: the 
formation of sound waves following pulsed light absorption in 
a medium [30-32]. PA imaging inherits advantages of high 
imaging contrast from optical imaging as well as the spatial 
and temporal resolution of the US imaging [33-37]. During 
PA image acquisition, the tissue is illuminated by short laser 
pulses, which is absorbed by endogenous (or exogenous) 
chromophores, and cause the generation of ultrasound 
emission due to thermoelastic expansion. Endogenous 
chromophores such as hemoglobin provide a strong PA signal 
due to high optical absorption coe�cients which in turn 
demonstrates the crucial structural information [30, 38]. One 
of the main advantages of PA imaging is the ability to 
visualize the blood vessel meshwork of brain tissue which is 
considered as the main landmark during neurosurgery [21, 39, 
40]. In the other hand, PA imaging has demonstrated potential 
to be used during image-guided interventions [41-43]. 
Therefore, PA imaging as a noninvasive intra-operative 
imaging could enable the real-time visualization of regions of 
interest including vessel meshwork during neurosurgery. 
Finally, registration of intra-operative PA images with pre-
operative MR images of brain tissue could enables for real 
time compensation of brain shift. 

Many investigations have tried to overcome the limitations 
of multimodal image registration algorithms in processes of 
brain shift compensation. Nevertheless, finding a single 
satisfactory solution is a challenging task due to the complex 
and unpredictable nature of the brain deformation during 
neurosurgery [44]. So far, most of the studies have focused on 
registration of intra-operative US with pre-operative MR 
algorithms. Major findings reported by Reinertsen et. al. [45], 
Chen et. al. [46], and Farnia et. al. [47] via feature-based 
registration methods. However, extraction of the 
corresponding features in two different modalities is an issue 
which directly affects the accuracy of these methods. In the 
intensity-based area, the different nature of US and MRI 
contrast mechanisms, leads to failure of the common similarity 
measures such as mutual information [48, 49]. However, 
effective solutions have been proposed by Wein et. al. [50], 
Coupé et. al. [51], Rivas et. al. [52, 53] and Machado et. al. 
[54] for multimodal image registration which face different 
limitations. 

Recently, multimodal image registration based on sparse 
representation of images has attracted enormous interest. The 
main idea of image registration based on sparse representation 
lies on the fact that different images can be represented as a 
combination of a few atoms in an over-complete dictionary 
[55]. Therefore, the sparse coefficients describe the salient 
features of the images. Generally, over-complete dictionaries 
could be constructed via two different approaches. In the first 
category, standard fixed transform is applied as an over-
complete dictionary. Fixed dictionaries such as discrete cosine 
transform, wavelet and curvelet are used for multi-modal 
image registration [19, 56, 57]. Using fixed dictionaries 

benefits from simplicity and fast implementation. However, it 
is not customized for different types of data. In the second 
approach, an over-complete dictionary was constructed via 
learning methods. Among learning methods, the K-singular 
value decomposition (K-SVD) method has been widely used 
for image registration [58]. There are some studies which used 
synthesis sparse models for multimodal image registration 
[59]. However, a learned dictionary includes a large number of 
atoms. This leads to increase computational complexity of 
multi-modal image registration which is not suitable for real 
time compensation of brain shift.  

The analysis sparse model; named co-sparse analysis 
model, represents a powerful alternative to the synthesis 
sparse representation approach in order to reduce the 
computational time [60]. Co-sparse analysis models can yield 
richer feature representations and better results for image 
registration in real time processes [61, 62]. There are few 
studies for multi-modal image registration via co-sparse 
analysis model, and none of them were in the medical field. 
Kiechle et. al. proposed analysis model in a joint co-sparsity 
setup for different modalities of depth and intensity images 
[63]. Chang Han et. al utilized the analysis sparse model for 
remote sensing images [64] and Gao et. al. used it to register 
multi-focus noisy images with higher quality images [65]. In 
our previous work, we could apply an analysis sparse model 
for US-MR image registration to compensate the brain shift 
[66]. 

To date, a few research studies investigated PA and MR 
image registration. Ren et. al. proposed PA-MR image 
registration method based on mutual information to yield more 
insights into physiology and pathophysiology [67]. Gehrung 
et. al. proposed co-registration of PA and MR image of murine 
tumor models for assessment of tumor physiology [68]. 
However, these studies were dedicated to solve the rigid 
registration problems and also did not focus on intra-operative 
application of PA imaging, and therefore did not face any 
complicated brain deformation. 

To the best of our knowledge, in this study for the first time, 
PA and MR images registration was used for the purpose of 
compensating complicated brain shift phenomena. The co-
sparse analysis model is proposed for PA-MR image 
registration which is able to capture the interdependency of 
two modalities. The algorithm works based on the 
minimization of mapping transform by using a pair of analysis 
operators which are learned by the alternating direction 
method of multipliers (ADMM). 

 

II. MATERIALS AND METHODS  

A. Brain-mimicking phantom data 
To assess the performance of the multi-modal image 

registration algorithm to compensate brain shift, a phantom 
that mimics brain tissue was prepared. The phantom was made 
of Polyvinyl Alcohol Cryogel (PVA-C) which have been 
successfully used for mimicking brain tissue in previous 
studies [19, 47]. The PVA-C material also has been applied in 
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the fabrication of phantoms for ultrasound, MRI and recently 
PA imaging [69]. A 10% by weight PVA in water solution 
was used to form PVA-C, which is solidified through a 
freeze–thaw process. The dimensions of the phantom were 
approximately 150 mm× 40 mm, with a curved top surface 
mimicking the shape of a head as shown in Fig. 1 (a). Two 
plastic tubes with 1.2 and 1.4 mm inside diameters were 
inserted randomly to the mold before freeze–thaw cycle to 
simulate blood vessels. Fig. 1. b shows the 3D model of the 
phantom including random vessels. Two types of 
chromophores; copper sulfate pentahydrate (CuSO4(H2O)5) 
and human blood (1:100 dilution); were used to fill embedded 
vessels before PA imaging (Fig. 1. c). 

 
Fig. 1. Brain-mimicking phantom design and fabrication a) The 

dimensions of the phantom were about 150 × 40 mm, b) 3D model of the 
phantom including two simulated vessels with 1.2 and 1.4 mm inside 
diameters were inserted randomly to the phantom, c) The cross-section of the 
phantom with vessels are filled using two different contrast agents 
CuSO4(H2O)5 and human blood. 

 
To acquire MR images of the phantom before any 

deformations, the phantom was scanned using a Siemens 
scanner 1.5 Tesla using a standard T1 and T2 weighted 
protocol.  Pulse-sequence parameters were set to:  TR=600 ms, 
TE=10 ms, Ec=1/1 27.8 KHz for T1 weighted and TR=8.6, 
TE=3.2, TI=450, Ec=1/1 31.3 KHz for T2 weighted considering 
1mm slice thickness with full brain phantom coverage and 1 
mm isotropic resolution. 

PA images were achieved by using ultrasound scanner 
(Vantage 128, Verasonics Inc., Kirkland, WA, USA) with a 
128 elements linear array US transducer (L11-4v, Verasonics, 
Inc., Kirkland, WA, USA) operating at frequency range 
between 4 to 9 MHz. A pulsed tunable laser (PhocusCore, 
Optotek, California, USA) and Nd:YAG/OPO nanosecond 
pulsed laser (Phocus core system, OPOTEK Inc., USA), with 
the pulse repetition rate of 10 Hz at wavelengths of 700, 800, 
and 900 nm were used to illuminate the phantom. Scan 
resolution was 1 mm, and laser fluence was ~1 mJ/cm2 (Fig. 
2). 

 

Fig. 2. Schematic of PA imaging setup which is including a tunable
laser and a programmable ultrasound data acquisition system. 

 

B. Murine brain data 

For further evaluation of the proposed image regist
method, we used ex-vivo mouse brain data which
provided by Ren. et al. in a previous study [67]. After re
of the mouse brain skull; the whole brain of mous
embedded in agar 3% in phosphate-buffered saline and
was imaged ex-vivo. To acquire T2-weighted MR ima
mouse brain a 2-D spin echo sequence with im
parameters of TR=2627.7 ms, TE=36 ms, slice thickne
mm, field of view 20 ×20 mm, and scanning time 12.3
were used. For PA imaging the laser excitation pulses o
were delivered at five wavelengths (680, 715, 730, 760
and 850 nm) in coronal orientation with field of view 2
×20 mm, step sizes of 0.3 mm moving along hori
direction, and scan time 20 of minutes. To validate these
five natural anatomical landmarks were manually selec
registration targets (Fig. 3). 

Fig. 3. Ex-vivo head of mouse data (a) MR image, (b) PA ima
registration targets is shown in red and blue point in a) and b) respecti
assess the performance of registration algorithm [67]. 

C. Inducing Brain Deformation 

The proposed algorithm was designed to compensate
deformation during neurosurgery. Since the brain deform
is a complicated non-linear transformation, it is a challe
task to implement it physically on the phantom or mouse
data. To evaluate our proposed registration algorithm
performed brain deformation numerically by applying
defined pixel shifts to images. For this purpose, we use
operative and intra-operative MR images of brain tissu
intra-operative MR image was considered as a gold sta
The deformation matrix was obtained by mono-
registration of these images using residual comp
algorithm [70] (Fig. 4). Then the obtained brain deform
matrix was applied on PA images of brain phantom and 
brain data. 
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Fig. 4. (a) Pre-operative MR image, (b) Inta-operative MR image, (c) Brain 

deformation filed was achived by registration of intra-operative and pre-
operative MR images using residual complexity method. 

D. PA-MR Image Registration Framework 

In the following, the workflow for automatic multi-modal 
image registration to compensate the brain deformation was 
shown in Fig. 5. After preparing two data set including brain-
mimicking phantom data and murine brain data, pre-
deformation MR images were setting as a reference images 
and pre-deformation PA image were setting as float images. 
Then a real brain deformation matrix which was achived by 
registration of intra-operative and pre-operative patient MR 
images using residual complexity method was applied on PA 
images to generate deformed PA images. Then by using 
proposed registration method based on joint co-sparse 
analysis, registration of MR image and deformed PA image 
was done. Finally, image registration results were evaluated 
and visualized for brain shift calculation. To evaluate the 
registration algorithm, root mean square error (RMSE) was 
calculated for phantom and mouse images registration. 
Additionally, target registration error (TRE) was calculated for 
defined targets in phantom and mouse brain data. 
Furthermore, we used the Hausdorff Distance (HD) between 
the PA and MR images. The HD between two point sets is 
defined as:

)],(),,([),( MRPAMRPAMRPA IIdMaxMinIIdMinMaxMaxIIHD =
 
where,   is the Euclidean distance of the locations, and smaller 
value of HD indicates a better alignment of boundaries. To 
avoid the effect of outliers [73], we used 95% HD instead of 
maximum HD. 

 
Fig. 5. The workflow for automatic multi-modal image registration to 

compensate brain deformation. MR and PA images including pre-defined 
targets were setting as reference and float images, respectively. After applying 
brain deformation on PA images, registration of MR and deformed PA was 
done and evaluated. 

E. Co-sparse analysis model  

Image (I) can be approximated via the sparse represen
nRx∈  which is a linear combination of a few no

elements (named atoms) in an over-complete dictionary m
knRD ×∈ ( kn << ). 

 

where kR∈α  is a sparse vector with the fewest k non-
elements. The sparse coefficients describe the salient fea
of the images. Therefore, the sparse representation proble
could be solved as the following optimization problem: 

 

εαα
α

≤−
20

.,min Dxts  

 

Here,
0

α  is the zero norm of α  that represents the num

non-zero values in a vector (α ). The sparse representat
an image considers that a synthesis dictionary represen
redundant signals.  

There is also another representation of image based 
co-sparse analysis model [60]. This alternative assume
for a signal of interest ( x ), there exists an analysis op

nkR ×∈Ω such that α≈Ωx as an analyzed vector is 

for all nRx∈ . The rows of Ω represent filters that p
sparse responses and indices of the filters with zero res
determine the subspace to which the signal belongs to
subspace is the intersection of all hyperplanes to which
filters are normal vectors, and therefore, the informat
signals is encoded in its zero responses. The index set 
zero entries of xΩ  is called the co-support of x as belo
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As the key property of analysis sparse models, these m
put an emphasis on the zeros in the analysis represen
rather than the non-zeros in the sparse representation 
signal. These zeros in the analysis representation 
inscribe the low-dimensional subspace which the 
belongs to. Consequently, analysis operator le
procedures finds the suitable operator Ω for signal 
below: 

 

where ∗Ω  is the optimized operator Ω. In order to rel
co-sparsity assumption, the log-square function as a 
approximation of zero norm is used for large values o
below:  
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            (6) 
 

One should consider that there has been three main 

constraints on the ∗Ω  to avoid trivial solutions as below [71]:  

i. The rows of ∗Ω  have unit Euclidean norm; 
 
 .manifoldoblique∈Ω ∗   
 

ii. The operator 
∗Ω  has full rank, i.e., it has the maximal 

number of linear independent rows. 
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iii. The rows of the operator are not trivially linearly 
dependent. 

∑
<

∗ ΩΩ−−=Ω
1

2 ))(1log()(
k

l
T

kr                            (7) 

F. Multi-modal Image Registration Algorithm 

In this study, we formulated the multimodal image 
registration problem in terms of an analysis co-sparse model. 
There are different co-sparse models that could be used in 
multimodal image registration approaches [72]. In our 
approach a joint analysis co-sparse model (JACSM) was 
proposed for registration of PA and MR images. JACSM 
indicates that different signals from different sensors of the 
same scene form an ensemble. The signals in an ensemble 
including a common sparse component; shared between all of 
them, and an innovation component which represents 
individual differences [73].  

Consider two images 
PAI and 

MRI which are provided 
through PA and MR imaging, respectively, from brain 
simulated phantom as the input data. The interdependency of 
the two image modalities was modeled via JACSM and 
common sparse components were considered in this study. 
This images pair has a co-sparse representation with an 
appropriate pair of analysis operators

MRPA nknk
MRPA RR ×× ×∈ΩΩ ),( . By considering structures 

of images encoded in their co-supports based in equation (3), 
there is a pair of analysis operators so that the intersection of 
the co-supports of 

PAPA IΩ and 
MRMR IΩ is large. In specific, 

we try to learn the pair of co-sparse analysis operator 
),( MRPA ΩΩ for two different image modalities. 

On the other hand, the PA and MR images should be 
matched with a transformation � such that: 

)8(),()( xcordinatepixelallforxITxI PAMR ≈  

which x determines homogeneous pixel coordinates in PA 
images. The goal of multi-modal image registration problem 
in this approach is to optimize � by using the pair of analysis 
operators ),( MRPA ΩΩ . We consider that for an optimized 
transformation, there is a coupled sparsity measure to be 
minimized. Thus, by considering equation (6) and constraints 

based on (7) we are searching for *T such that: 

 
To tackle the problem of (9), we propose the ADMM. In 

other words, the analysis operators were learned by optimizing 
a JACSM via an ADMM. The ADMM as a candidate solver 
for convex problems, breaking our main problem into smaller 
sub-problems as below: 

 
cByAxtsygxf =++ ..),()(min              (10) 

 

where nRx ∈ , mRy ∈ , npRA ×∈ , and mpRB ×∈ . The 
augmentation Lagrangian for the equation (10) can be written 
as: 

2

2
)

2
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p −++−+++= ρλλ    (11)   

               
where term ρ  is a penalty term that is considered positive, 

and λ is the Lagrangian multiplier. Equation (11) is solved 
over three steps: x-minimization, and y-minimization, these 
two are split into N separate problems and followed by an 

updating step for multiplier λ as follows:  
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III. EXPERIMENTS & RESULTS  

To implement the proposed image registration algorithm, 
randomly, total of 20000 pairs of square sample patches of 
size 7 pixel from the total of images in the training set were 
selected. It is notable that in our experiments, the patch sizes 
3, 5, 7, 9 and 11 pixels were applied. Based on our experience, 
small patch size would cause an over smooth effect, and a 
larger patch size would lead to more computation. Therefore, 
based on our results, the patch size of 7×7 was selected to 
balance the two effects. 

The performance of JACSM based registration method was 
evaluated using a phantom with simulated vessels and using 
ex-vivo mouse brain data with anatomical landmarks. In Fig. 
6, the performance of the proposed registration method for 
PA-MR, US-MR, and MR-MR images on the phantom data 
were shown and compared. In the first row, the MR image and 
its corresponding US and PA images were shown. Dashed 
yellow circles show the same fields of view in three different 
modalities (MRI, US, and PA). Corresponding structures 
which are used to calculate target registration error are labeled 
with numbers 1 to 3 in the three imaging modalities. The brain 
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deformation field is applied to the images at the first row and 
the second row represents deformed MR, US, and PA images. 
As shown in Fig. 6. d, e, and f, labeled targets have been 
displaced due to inducing deformation. Finally, the images in 
the third row show the image registration results of MR, US, 
and PA after deformation (second row) with the original MRI 
before deformation (Fig. 6. a). The result of registration 
between the original MR image and deformed MR image (Fig. 
6. g) is used as a gold standard to evaluate the proposed 
algorithm. Also, the registration result of deformed PA image 
(Fig. 6. i) is compared to registration result of deformed 
ultrasound image (Fig. 6. h) as a commonly used intra-
operative imaging modality for brain shift compensation. As 
we have shown in the third row, images registered more 
accurate in MR-MR images registration compared to PA-MR 
image registration. Also, images registered more accurately in 
PA-MR image registration compared to the US-MR image 
registration. As we have shown with the blue arrow in the 
third-row images, the surface of the phantom is matched 
accurately in the result of MR-MR image registration. It is 
while, registration of US-MR has the worst performance to 
match the surface of the phantom in two modalities and 
registration of PA-MR has an acceptable performance to 
match the surface of phantom in two modalities PA and MRI.  

 

 
Fig 6. The results of multi-modal image registration of phantom data. First 
row: Original image of phantom data before deformation from three different 
modalities a) MRI, b) US, and c) PA, Second row: Deformed images of d) 
MRI, e) US,and f) PA. Third row show the results of registered images of g) 
MR-MR, f) US-MR, and g) PA-MR. Blue arrow in third row images represent 
the surface of phantom in different modalities. Blue arrow A are related to the 
surface of phantom in original MR images and blue arrows B are related to the 
surface of phantom in deformed MR, deformed US, and deformed PA images, 
in (g), (h) and (i), respectively. 

 

To quantitative evaluation of the proposed registration 
method, RMSE, TRE, and HD for PA-MR, US-MR, and MR-
MR image registration were calculated and shown in Table.1. 
Also, for further evaluation the results of our proposed method 
were compared to the commonly used normalized mutual 
information (NMI) registration method. In total, we used 23 
phantom data. Registration accuracy of MR and MR images 
was considered as a gold standard. Also, the algorithms are 

implemented in MATLAB, and tested on an Intel Core
GHz CPU with 8GB RAM. 

The results of phantom study showed that PA-MR 
registration has better RMSE, TRE and HD about 60%
and 59% compared to US-MR image registration as a co
imaging modality for brain shift compensation, respec
On the other hand, the proposed method reached RM
about 0.73 mm which is acceptable in comparison with
MR image registration as a gold with RMSE of abou
mm. The proposed method improved the results of RMS
TRE of about 60% and 63% (on average) compared to N

For further evaluation of the proposed method, the e
mouse brain data was used. In Fig. 7, the performan
JACSM based registration method for PA-MR 
registration for mouse brain data were shown and com
with MR-MR image registration. Fig. 7. a and b represe
and PA images of mouse brain before any deform
respectively. The PA image after applying non
deformation is shown in Fig. 7. c, and the registration re
deformed PA and original MR of mouse brain ima
shown in Fig. 7. d. Also, in panel (e) the mean of R
TRE, and HD of PA-MR image registration for all d
mouse brain was calculated and compared to the result o
MR image registration. 

 

TABLE I 
EVALUATION OF PROPOSED REGISTRATION METHODS ON PHANTOM D

Multimodal 
Registration 

 RMSE 
(mean±std) 

TRE 
(mean±std) 
Number of 
targets: 3 
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MR-MR 

JACSM  0.62±0.04 0.32±0.03 
0.51±0.04 
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0.4NMI 0.98±0.09 

 
US-MR 

JACSM  1.17±0.13 
1.87±0.15 

0.96±0.08 
1.58±0.11 

0.5
1.2NMI 

 

PA-MR 
JACSM 0.73±0.05 0.58±0.04 0.3

NMI 1.18±0.09 0.96±0.08 0.6
 

6

orei7 3.2 

R image 
%, 65% 

 common 
ectively. 
MSE of 
ith MR-
out 0.62 

SE and 
 NMI.  

ex-vivo 
ance of 
 image 
ompared 
sent MR 
rmation, 

on-linear 
result of 
ages is 

f RMSE, 
l data of 
t of MR-

 

 DATA. 
HD 

mean±std) 

.21±0.03 
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Fig. 7. The results of multi-modal image registration of mouse brain data. a) 
MRI, b) PA image, c) PA image after applying non-linear deformation, and d) 
registration of deformed PA and MRI of mouse data. Panel (e) shows the 
mean of RMSE, TRE, and HD of PA-MR image registration for all data of 
mouse brain. 
 

The results acquired from ex-vivo mouse brain also proved 
the ability of the proposed registration method to recover non-
linear deformation with calculated mean of RMSE, TRE, and 
HD as 1.13, 0.98, and 0.85 mm, respectively. The results are 
acceptable when compared to results of MRI-MRI registration 
as a gold standard with RMSE, TRE, and HD about 0.98, 0.85, 
and 0.77 mm. In fact, intra-operative PA as a real time 
imaging with about 15% RMSE increase, could be a good 
alternative for intra-operative MR imaging. Additionally, with 
60% improvement in registration accuracy, PA imaging could 
be an alternative for intra-operative ultrasound imaging. 

Having a closer look at the comparison between synthesis 
and analysis models, the synthesis model contains very few 
low-dimensional subspaces, and an increasingly large number 
of subspaces of higher dimension.  In contrast, the analysis 
model includes a combinatorial number of low-dimensional 
subspaces with fewer high-dimensional subspaces. The co-
sparse analysis models can yield richer feature representations, 
and joint co-sparse analysis models consider common sparse 
component of different signals from different sensors. 
Therefore, the JACSM based registration method to be more 
suitable for multi-modal images registration. 

IV. CONCLUSION 

There has been a growing interest in intra-operative imaging 
approaches to update the pre-operative images with real-time 
data when tissue deformation occurs during surgery. In 
specific, accurate and real-time brain shift compensation 
remains as a challenging problem during neurosurgery. In this 
study for the first time, we proposed application of PA 
imaging as interventional solution during neurosurgery in 
combination with pre-operative modalities, such as MRI to 
track brain deformation. However, accurate combination of 
PA and MR images requires the development of a real-time 
and robust image registration algorithm. Accurate registration 
of intra-operative PA images with pre-operative MR images of 
brain tissue could calculate and compensate brain 
deformation. In this study, the JACSM based registration is 
proposed for PA-MR image registration which can capture the 
interdependency of two modalities. The proposed algorithm 
works based on the minimization of mapping transform by 
using a pair of analysis operators in PA and MR images which 
are learned by the ADMM. The algorithm was tested on two 
data sets of phantom and mouse brain data and the results 
showed more accurate performance for PA imaging versus US 
imaging for brain shift calculation. Furthermore, the proposed 
method showed about 60% improvement in TRE in 
comparison with the common NMI registration method. The 
co-sparse analysis models can yield richer feature 
representations and better accuracy for medical image 
registration in the real time process which is crucial for 
surgeons during neurosurgery to compensate brain shift. 
Finally, by using this JACSM-based registration, the intra-

operative PA images could become a promising tool when the 
brain shift invalidated pre-operative MRI. 
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