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Abstract 
 
During navigation, information at multiple scales needs to be integrated. Single-
unit recordings in rodents suggest that gradients of temporal dynamics in the 
hippocampus and entorhinal cortex support this integration. In humans, gradients 
of representation are observed, such that granularity of information represented 
increases along the long axis of the hippocampus. The neural underpinnings of 
this gradient in humans, however, are still unknown. Current research is limited 
by coarse fMRI analysis techniques that obscure the activity of individual voxels, 
preventing investigation of how moment-to-moment changes in brain signal are 
organized and how they are related to behavior. Here, we measured the signal 
stability of single voxels over time to uncover previously unappreciated gradients 
of temporal dynamics in the hippocampus and entorhinal cortex. Using our novel, 
single voxel autocorrelation technique, we show for the first time a medial-lateral 
hippocampal gradient, as well as a continuous autocorrelation gradient along the 
anterolateral-posteromedial entorhinal extent. Importantly, we show that anterior-
posterior and medial-lateral hippocampal autocorrelation gradients were 
modulated by navigational difficulty, indicating that changes in signal stability are 
relevant for behavior. Our method and findings open the door for future research 
on how temporal gradients within these structures support the integration of 
information for goal-directed behavior. 
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Introduction 1 
 2 
To enable efficient goal-directed behaviour, information must be represented and 3 
integrated across multiple temporal and spatial scales. It has been proposed that 4 
neural signal gradients in the hippocampus and entorhinal cortex support such 5 
multi-scale representations in rodents, but evidence in humans is sparse and has 6 
methodological limitations. Previously, fMRI analysis techniques have uncovered 7 
local signal gradients in the human hippocampus (Brunec, Bellana, et al., 2018). 8 
These investigations, however, have been limited by analyzing patterns of 9 
activity across relatively coarse regions of interest, making it unclear how 10 
sustained versus rapidly changing signals are distributed throughout the 11 
hippocampus. Many of these analyses use predetermined anterior and posterior 12 
anatomical masks, which limit our ability to detect neural signal gradients in an 13 
unsupervised way, therefore preventing us from investigating gradients that exist 14 
along both anterior-posterior and medial-lateral axes of the hippocampus. 15 
Moreover, there have been no prior investigations of autocorrelation gradients in 16 
the entorhinal cortex, despite evidence of its role in spatial and temporal 17 
representations during navigation. To address these limitations, we have 18 
developed a novel, data-driven analysis based on autocorrelation of single voxels 19 
in fMRI during rest and navigation. This technique allows us, for the first time, to 20 
track the signal stability of individual voxels and their spatial distribution in an 21 
unconstrained way along both the anterior-posterior and medial-lateral axes of 22 
the hippocampus and entorhinal cortex. Based on this single voxel analysis we 23 
uncover gradients of neural signal dynamics along these axes in both structures 24 
and relate them to behavior.  25 
 26 
In rodents, place fields in the ventral hippocampus (homologous to the anterior 27 
hippocampus in humans) span larger areas, show a higher degree of overlap, 28 
and higher correlation in their firing across time, compared to the dorsal 29 
hippocampus (homologous to the posterior hippocampus in humans) (Hasselmo, 30 
2008; Jung et al., 1994; Kjelstrup et al., 2008; Komorowski et al., 2013). A similar 31 
gradient of hippocampal organization is also observed in the human 32 
hippocampus. Tracking moment-to-moment similarity across patterns of voxels 33 
during virtual navigation, Brunec, Bellana, et al. (2018) found that signal similarity 34 
was significantly greater within the anterior hippocampus relative to the posterior 35 
hippocampus, indicating that, as in the rodent ventral hippocampus, the human 36 
anterior hippocampus demonstrates slower changing signals that are sustained 37 
across time and space. These results suggest that a relatively stable pattern of 38 
activity in the rodent and human hippocampus follows a scaled gradient, from 39 
faster changing signal in the posterior (dorsal) hippocampus to slower changing 40 
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signal in the anterior (ventral) hippocampus. This gradient organization might 41 
underlie fine-to-coarse mnemonic representation, particularly when a different 42 
granularity of information needs to be maintained across time (Brunec & 43 
Momennejad, 2019; Robin & Moscovitch, 2017). In addition to the dorsal-ventral 44 
gradient of spatial representation observed in rodents, research suggests a 45 
difference in spatial selectivity along the proximodistal axis (homologous to 46 
medial-lateral in humans), specifically in CA1 (Igarashi et al., 2014), yet whether 47 
a similar medial-lateral distinction exists in the human hippocampus is still 48 
unclear (Hrybouski et al., 2019). 49 
 50 
A key input structure to the hippocampus that has been implicated in integrating 51 
information over time during navigation is the entorhinal cortex. Prior research 52 
has found distinct functional differentiation between the anterolateral and 53 
posterior-medial aspects of the entorhinal cortex (ERC), but there have been no 54 
prior investigations of neural signal gradients in the ERC. The lateral ERC in 55 
rodents, and the homologous anterolateral ERC in humans, supports within-56 
object and object-location coding, as well as temporal information processing 57 
(Bellmund et al., 2019; Montchal et al., 2019; Olsen et al., 2017; Tsao et al., 58 
2018; Yeung et al., 2017; 2019). In contrast, the posteromedial ERC in humans, 59 
has been primarily linked to scene processing (Berron et al., 2018; Maass et al., 60 
2015; Navarro Schröder et al., 2015) and related to grid cell organization 61 
(Bellmund et al., 2016), consistent with evidence of grid cells in the medial ERC 62 
in rodents (Hafting et al., 2005). Given prior evidence of functional distinctions of 63 
the ERC into anterolateral and posteromedial regions, we developed a data-64 
driven method to investigate directly, a continuous neural signal gradient in both 65 
the anterior-posterior and medial-lateral axes of this structure.  66 
 67 
To understand how a graded organization of signal dynamics in the hippocampus 68 
and ERC supports goal-directed behavior, we developed an analytic approach of 69 
temporal autocorrelation at the single voxel level, which we implemented during 70 
both rest and navigation. Temporal autocorrelation represents the degree of 71 
similarity between a signal and the temporally shifted, or lagged, version of the 72 
signal over successive time intervals (Figure 1A). Conventionally, it is assumed 73 
that this autocorrelation in fMRI data originates from physical and physiological 74 
noise (Arbabshirani et al., 2014; Bollmann et al., 2018; Bullmore et al., 2001; 75 
James et al., 2019; Lenoski et al., 2008; Lund et al., 2006; Purdon & Weisskoff, 76 
1998) or the hemodynamic response function (Arbabshirani et al., 2014; James 77 
et al., 2019; Rajapakse et al., 1998) and, therefore, has been considered 78 
irrelevant to brain function. Recently, however, Arbabshirani et al. (2019) found 79 
that autocorrelation reflects changes in cognitive state (task vs. rest) as well as 80 
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changes in mental state (healthy control vs. schizophrenia), suggesting that the 81 
observed changes in the autocorrelation are also modulated by cognitive 82 
processes. Prior studies, however, have been limited and are unable to answer 83 
the question of how temporal autocorrelation is directly related to behavior. 84 
Examining the temporal autocorrelation of single voxels during an active 85 
navigation task, therefore, is important for understanding how a stable, highly 86 
correlated signal is relevant for behavior.  87 
 88 
Investigating the fMRI signal at the single voxel level allows us to measure neural 89 
gradients with more precision than previous methods. While studies with fMRI in 90 
humans suggest that functional heterogeneity exists along the long axis of the 91 
hippocampus (Nadel et al., 2013; Poppenk et al., 2013; see Grady, 2020 for a 92 
review) and medial-lateral extent of the ERC (e.g., Hafting et al., 2005; Maass et 93 
al., 2015; Navarro Schröder et al., 2015), previous analysis techniques have 94 
been limited to investigations using predetermined anatomical masks, which 95 
obscures the contribution of individual voxels, making it unclear whether graded 96 
signals extend along multiple axes in these regions. Furthermore, examining the 97 
autocorrelation at the single voxel level allows for a finer-grained analysis that 98 
may be more sensitive to differences in navigational performance and can help 99 
us to determine how a scaled gradient of signal similarity might be employed to 100 
integrate representations across spatial scales during navigation. We, therefore, 101 
combine our single voxel autocorrelation approach with an unconstrained 102 
clustering method to determine how temporal autocorrelation is distributed in 103 
multiple dimensions throughout the hippocampus and ERC.  104 
 105 
Here we present the first evidence of a medial-lateral neural signal gradient in the 106 
hippocampus as well as a novel continuous gradient in the ERC. Using resting 107 
state fMRI data with high spatial and temporal resolution from the Human 108 
Connectome Project (HCP), we measured single voxel autocorrelation in the 109 
hippocampus and ERC. Specifically, we measured the similarity of single voxels 110 
over time by correlating the timecourse of each voxel with temporally shifted 111 
versions of itself (Figure 1A). We applied data-driven clustering to determine how 112 
temporal autocorrelation was spatially distributed throughout the hippocampus 113 
and ERC. We found high autocorrelation in the anterior-medial hippocampus and 114 
posteromedial ERC and low autocorrelation in the posterior-lateral hippocampus 115 
and anterolateral ERC. Using task-based fMRI, we replicated these results and 116 
also demonstrated that increases in navigation difficulty were associated with 117 
increases in autocorrelation in the anterior-medial hippocampus. Our single voxel 118 
autocorrelation approach yields consistent and precise gradients of single voxel 119 
autocorrelation in the hippocampus and ERC, providing a powerful new 120 
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continuous and data-driven method that can illuminate how temporal dynamics in 121 
brain signals relate to complex cognition. 122 
 123 
Results 124 
 125 
Dataset 1: Resting state fMRI 126 
Hippocampus 127 
Spatial distribution of single voxel autocorrelation  128 
To examine hippocampal dynamics at the single voxel level when no cognitive 129 
demands were placed on participants, we first analyzed resting-state fMRI data 130 
from 44 participants from the Human Connectome Project (HCP) Retest dataset 131 
(2 runs per participant). Here, we correlated the timecourse of activity of each 132 
voxel in the hippocampus with activity in that same voxel shifted by a temporal 133 
lag of 1 TR (Dataset 1 TR = 720 ms). We repeated this process until a maximum 134 
temporal shift of 4 seconds was reached, or 5 lags (Figure 1A). A map of single 135 
voxel autocorrelation values throughout the hippocampus was generated for 136 
each lag separately (for a theoretical schematic, see Figure 1B).  137 
 138 
We found that single voxel autocorrelation maps at the group level (lags 1-5) 139 
showed a notable difference in the distribution of single voxel autocorrelation 140 
values along the hippocampal axis (Figure 2A). More specifically, voxels with 141 
higher single voxel autocorrelation were mainly in the anterior-medial region 142 
whereas voxels with lower single voxel autocorrelation were mainly in the 143 
posterior-lateral region (in both left and right hippocampus). As shown in Figure 144 
2A, although the overall autocorrelation decreased as the lag increased, the 145 
overall pattern of autocorrelation gradients was similar for lags 1-5.  146 
 147 
Single voxel autocorrelation – Reliability results 148 
We next tested the reliability of these results. Here we defined a reliable result as 149 
one in which single voxel autocorrelation vectors generated from two runs of the 150 
same participant were more similar than two runs from different participants 151 
(lower intra-subject Euclidean distances compared to inter-subject Euclidean 152 
distances). Nonparametric permutation tests comparing intra-subject and inter-153 
subject Euclidean distance revealed reliable results in both the left (intra-subject: 154 
7.43 ± 2.07, inter-subject: 9.38 ± 2.22, P < 0.0001) and right hippocampus (intra-155 
subject: 7.22 ± 1.98, inter-subject: 9.02 ± 2.02, P < 0.0001) (Figure 3A). These 156 
high intra-subject similarity values suggest that the single voxel autocorrelation 157 
pattern is an intrinsic feature of the brain, likely originating from neuronal 158 
sources, rather than noise or imaging artifacts.  159 
 160 
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 161 
 162 

Figure 1. A) Method. For each voxel, the timecourse of activity was successively 163 
temporally shifted by 1 TR and correlated with itself. This was repeated for a total shift of 164 
4 seconds (i.e., 5 lags for resting state data (Dataset 1) and 2 lags for navigation data 165 
(Dataset 2)). This resulted in a vector of single voxel autocorrelation values, with each 166 
value corresponding to a different lagged correlation. B) Single voxel autocorrelation 167 
(hypothetical values). The procedure was repeated for all voxels in an ROI. To 168 
examine the spatial distribution of the single voxel autocorrelation, we plot the group-169 
level single voxel autocorrelation maps for each lag, averaged across runs and 170 
participants. C) Autocorrelation clustering (hypothetical values). The autocorrelation 171 
values for each lag were stored in a vector (single voxel autocorrelation vector). The 172 
voxels in the ROI were clustered based on the similarity (Euclidean distance) of single 173 
voxel autocorrelation vectors. Single voxel autocorrelation vectors were clustered 174 
according to their Euclidean distance (Blondel et al., 2008). Clustering was performed at 175 
the individual-level and at the group-level.  176 
 177 
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Autocorrelation Clustering 178 
We applied a Louvain clustering method using modularity maximization without 179 
predefining the number of clusters (Blondel et al., 2008) to the group-level single 180 
voxel autocorrelation vectors (for a theoretical schematic, see Figure 1C). This 181 
data-driven clustering approach revealed three distinct clusters in both the left 182 
and right hippocampus (Figure 2B); notably, past work that segmented the 183 
hippocampus into two ROIs (anterior and posterior) a priori would not have been 184 
able to detect the presence of this third cluster. Consistently across all 5 lags we 185 
found that Cluster 1 had the highest single voxel autocorrelation values and was 186 
located in the anterior-medial hippocampus (Figure 2D). Cluster 3 had the lowest 187 
single voxel autocorrelation values and was located in the posterior-lateral part of 188 
the hippocampus. Cluster 2 had intermediate single voxel autocorrelation values 189 
and was located between Clusters 1 and 3. These three clusters were also 190 
reliably observed at the individual level (cluster maps from two runs of an 191 
example participant are shown in Figure 2B). 192 
 193 
In summary, clustering revealed a high-to-low single voxel autocorrelation 194 
gradient along the anterior-posterior axis, consistent with what has been 195 
previously found in the literature (Brunec, Bellana, et al., 2018; Raut et al., 2020). 196 
In addition, we found differences along the medial-lateral axis, as well as a 197 
prominent anterior-medial cluster of high single voxel autocorrelation that could 198 
be distinguished from a posterior-lateral cluster of low single voxel 199 
autocorrelation. While previous methods using predetermined anterior/posterior 200 
ROI masks might have missed this medial-lateral distinction, our data-driven 201 
method provides evidence that an autocorrelation gradient exists along multiple 202 
spatial dimensions.  203 
 204 
Autocorrelation Clustering – Reliability results 205 
The reliability of single voxel autocorrelation clustering was evaluated by 206 
measuring spatial overlap between clusters, calculated by the Jaccard coefficient 207 
(Figure 3B). Here we defined a reliable result as one in which the spatial 208 
distribution of autocorrelation clusters was consistent across the two runs of the 209 
same participant, indicated by greater overlap (higher Jaccard coefficient) among 210 
clusters within an individual compared to between different individuals. Using 211 
nonparametric permutation, we found high reliability for clusters in the bilateral 212 
hippocampus, specifically Cluster 1 (Left: P < 0.001; Right: P < 0.001) and 213 
Cluster 3 (Left: P < 0.001; Right: P < 0.001). These findings of high intra- and 214 
inter-subject overlap suggest that Clusters 1 and 3 were highly reliable, within 215 
individuals. Cluster 2, however, had significantly lower overlap (Left: P = 0.06; 216 
Right: P = 0.007), suggesting more variability within individuals. 217 
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Gradients of single voxel autocorrelation (lag 1) 218 
The single voxel autocorrelation and autocorrelation clustering results presented 219 
above both suggest the presence of an autocorrelation gradient along two main 220 
axes: the anterior-posterior axis and the medial-lateral axis. To more precisely 221 
examine these individual gradients, we plotted the single voxel autocorrelation 222 
across hippocampal slices along the X (medial-lateral), Y (posterior-anterior), and 223 
Z (inferior-superior) axes. We observed consistent gradients in every participant. 224 
Specifically, single voxel autocorrelation gradually decreased in the medial-to 225 
lateral direction and increased in the posterior-to-anterior direction (Figure 2C; 226 
we focused on lag 1, but a similar pattern was revealed across all lags, as shown 227 
in Figure 2A). A rough gradient of high-to-low autocorrelation was also observed 228 
in the inferior-superior axis, which is due to the angle of the hippocampus (i.e., 229 
the anterior hippocampus is located more inferiorly relative to the posterior 230 
hippocampus). When we investigated the spatial distribution of the three clusters 231 
(projected on the background of the plots in Figure 2C), we observed a gradient 232 
of cluster assignment that complemented the single voxel autocorrelation 233 
gradients. Specifically, high-to-low single voxel autocorrelation gradients were 234 
also associated with a cluster gradient from Cluster 1 to Cluster 3. 235 
 236 
 237 
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 238 
Figure 2. Hippocampus. Single Voxel Autocorrelation. A) Group-level single voxel 239 
autocorrelation maps averaged across all runs for all participants. Autocorrelation 240 
Clustering. B) Group-level clusters (top) and run-level cluster maps for two runs from an 241 
example participant (bottom). Three distinct clusters were found at both the group and 242 
the individual run-level. Cluster 1 was located in the anterior-medial hippocampus, 243 
Cluster 3 was located in the posterior-lateral hippocampus, and Cluster 2 was located 244 
between Cluster 1 and 3. C) Single Voxel Autocorrelation: Lag 1. Single voxel 245 
autocorrelation (lag 1) averaged per slice and projected into three axes (X, Y, and Z) to 246 
visualize changes in medial-lateral, anterior-posterior, and inferior-superior directions 247 
(plots depict left hemisphere; right hemisphere looked similar). The average cluster 248 
assignment of voxels on each slice is presented as the background color to show the 249 
gradation in values along the three axes. D) Average Cluster Value Across Lag. 250 
Average group-level single voxel autocorrelation values for each cluster at each lag. 251 
Cluster 1 was associated with the highest single voxel autocorrelation values, Cluster 2 252 
with intermediate values, and Cluster 3 with the lowest. This was consistent across all 5 253 
lags.  254 
 255 
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 256 
Figure 3. Hippocampal and Entorhinal cortex reliability measures. A,C) Single 257 
Voxel Autocorrelation Reliability. Distribution of shuffled and permuted mean 258 
difference of intra- and inter-subject Euclidean distances for the (A) hippocampus and 259 
(C) entorhinal cortex. Dashed lines represent the observed mean difference between 260 
intra- and inter-subject Euclidean distance. Significant negative values indicate that 261 
single voxel autocorrelation values were more similar within an individual than across 262 
individuals. B, D) Autocorrelation Cluster Reliability. Distribution of shuffled and 263 
permuted mean difference of intra- and inter-subject Jaccard coefficients for each 264 
cluster. Dashed lines represent the observed difference between intra- and inter-subject 265 
Jaccard coefficients for each cluster. (B) In both hemispheres of the hippocampus, 266 
Clusters 1 and 3 were more reliable within individuals compared to Cluster 2. (D) In the 267 
entorhinal cortex, Cluster 1 and Cluster 2 were reliable within individuals in the left 268 
hemisphere, whereas Cluster 1 and 3 were reliable within individuals in the right 269 
hemisphere. 270 

 271 
 272 
 273 
 274 
 275 
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Entorhinal cortex 276 
Spatial distribution of single voxel autocorrelation   277 
We repeated the analyses above in the ERC. To illustrate the distribution of 278 
autocorrelation values of individual voxels throughout the ERC, we plotted the 279 
group-level single voxel autocorrelation maps for lags 1-5 (Figure 4A). The maps 280 
illustrate a difference in single voxel autocorrelation throughout the ERC. 281 
Specifically, voxels with higher single voxel autocorrelation were mainly in the 282 
posterior-medial region whereas voxels with lower single voxel autocorrelation 283 
were mainly in the anterior-lateral region (in both left and right ERC).  284 
 285 
Single voxel autocorrelation – Reliability results 286 
Nonparametric permutation tests comparing intra-subject and inter-subject 287 
Euclidean distance revealed reliable results in both the left (intra-subject: 11.43 ± 288 
3.64, inter-subject: 12.87 ± 2.83, P < 0.001 and right ERC (intra-subject: 10.41 ± 289 
2.63, inter-subject: 13.19 ± 2.53, P < 0.001; Figure 3C). This analysis 290 
demonstrates the reliability of the single voxel autocorrelation and suggests that 291 
single voxel autocorrelation patterns between vectors generated from two runs of 292 
the same participant were more similar than two runs from different participants 293 
(lower intra-subject Euclidean distances compared to inter-subject Euclidean 294 
distances). 295 
 296 
Autocorrelation Clustering  297 
The group-level clustering analysis on the voxels within the ERC revealed two 298 
distinct clusters in the left hemisphere and three clusters in the right (Figure 4B). 299 
For comparison, cluster maps from two runs of an example participant are shown 300 
in Figure 4B. Cluster 1 was located in the posteromedial ERC and had the 301 
highest single voxel autocorrelation values in both left and right hemispheres. 302 
Cluster 2 was observed in the left hemisphere and was located towards the 303 
anterior-lateral ERC with low single voxel autocorrelation values. In the right 304 
hemisphere it was an intermediate cluster. Cluster 3 was only observed 305 
consistently in the right hemisphere and was located in the anterior-lateral ERC 306 
with the lowest single voxel autocorrelation values. We computed the group-level 307 
single voxel autocorrelation for each cluster and plotted it across all 5 lags 308 
(Figure 4D). Across all 5 lags, Cluster 1 consistently had the highest single voxel 309 
autocorrelation values, followed by Cluster 2 and Cluster 3. 310 
 311 
Autocorrelation Clustering – Reliability results 312 
The reliability measure for ERC clusters was calculated by the Jaccard 313 
coefficient (Figure 3D). Nonparametric permutation tests comparing intra-subject 314 
and inter-subject cluster overlap revealed reliable results in the left and right 315 
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hemisphere. In the left hemisphere, the Cluster 1 (P < 0.001) and Cluster 2 (P < 316 
0.001) were reliable. In the right hemisphere, Cluster 1 (P < 0.001) and Cluster 3 317 
(P < 0.001) were reliable. This suggests that these clusters were highly reliable 318 
within individuals. In the right hemisphere, Cluster 2 had very small Jaccard 319 
values, suggesting less reliability within individuals (Right: P = 0.53). 320 
 321 
Gradients of single voxel autocorrelation (lag 1) 322 
Single voxel autocorrelation values for lag 1 were projected onto X (medial-323 
lateral), Y (posterior-anterior), and Z (inferior-superior) axes. As shown in Figure 324 
4C, in every participant, single voxel autocorrelation values gradually decreased 325 
in the medial-to-lateral direction and the posterior-to-anterior direction (Figure 326 
4C). We found a gradient of low-to-high autocorrelation along the inferior-327 
superior axis, which is due to the fact that the posterior region of the ERC is more 328 
superior than its anterior region. We observed a gradient of cluster assignment 329 
that complemented the single voxel autocorrelation gradients, where high-to-low 330 
gradients were also associated with a cluster gradient from Cluster1 to Cluster 2. 331 
 332 
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 333 
Figure 4. Entorhinal cortex. Single Voxel Autocorrelation. A) Group-level single 334 
voxel autocorrelation maps averaged across all runs for all participants. Autocorrelation 335 
Clustering. B) Group-level clusters (top) and run-level cluster maps for two runs from an 336 
example participant (bottom). Two distinct clusters were found in the left hemisphere and 337 
three in the right hemisphere. In the left hemisphere, Cluster 1 was located in the 338 
posterior-medial ERC and Cluster 2 was in the anterior-lateral ERC. In the right 339 
hemisphere Cluster 1 was located in the posterior-medial ERC, Cluster 3 was located in 340 
the anterior-lateral ERC, and Cluster 2 was located between Cluster 1 and 3.  C) Single 341 
Voxel Autocorrelation: Lag 1. Single voxel autocorrelation projected below onto three 342 
axes (X, Y, and Z) to visualize changes in medial-lateral, anterior-posterior, and inferior-343 
superior directions (for the left hemisphere; right hemisphere looked similar). The 344 
average cluster assignment of voxels on each slice is presented as the background color 345 
to show the gradation in values along the three axes (Note the gradation depicts only 346 
Cluster 1 and 2 as there were only two significant clusters found in the left hemisphere). 347 
D) Average Cluster Value Across Lag.  Average group-level single voxel 348 
autocorrelation values for each cluster at each lag. In the left hemisphere, Cluster 1 was 349 
associated with the highest single voxel autocorrelation values and Cluster 2 with low 350 
autocorrelation values. In the right hemisphere, Cluster 1 was associated with the 351 
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highest single voxel autocorrelation, Cluster 2 with intermediate values, and Cluster 3 352 
with the lowest. This was consistent across all 5 lags.  353 
 354 
Dataset 2: Navigation fMRI 355 
We next aimed to replicate the observed effects in task fMRI and relate changes 356 
in single voxel autocorrelation to behavior. Specifically, we were interested in 357 
how single voxel autocorrelation throughout the hippocampal long axis might be 358 
modulated by differences in difficulty during a temporally-extended navigation 359 
task. Therefore, we performed our single voxel autocorrelation analyses on a 360 
task fMRI dataset acquired while participants navigated in a familiar virtual reality 361 
environment (previously described in Brunec, Bellana et al., 2018). Here, 19 362 
participants were scanned while navigating Google Street View routes around 363 
the city of Toronto. Participants navigated four different types of routes that 364 
varied in their navigational difficulty: GPS (unfamiliar routes guided by an arrow), 365 
Familiar (highly familiar routes), Unfamiliar (routes that were less familiar), and 366 
Mirrored (familiar routes that were left-right reversed). Participants completed 367 
four unique routes in each condition, sixteen routes in total (1 route = 1 scanned 368 
run). Due to the lower spatial resolution in this dataset we were not able to 369 
examine the ERC and, thus, these analyses focused only on the hippocampus.  370 
 371 
Hippocampus 372 
Spatial distribution of single voxel autocorrelation  373 
To compute the single voxel autocorrelation, we completed the same procedure 374 
outlined in Dataset 1. In Dataset 2 the TR was 2000 ms; therefore, single voxel 375 
autocorrelation for 2 lags (or 2 TRs) was calculated. We observed a difference in 376 
single voxel autocorrelation along the anterior-posterior and medial-lateral 377 
hippocampal axes, where voxels with higher single voxel autocorrelation were 378 
found in the anterior-medial hippocampus and voxels with lower single voxel 379 
autocorrelation were found in the posterior-lateral hippocampus. Figure 5A 380 
shows the group-level single voxel autocorrelation maps for the four navigation 381 
conditions (as single voxel autocorrelation maps for lags 1-2 were similar, only 382 
lag 1 is depicted in Figure 5A). The spatial distribution of single voxel 383 
autocorrelation was similar across navigation conditions and was also similar to 384 
the findings from Dataset 1. In the next section, we investigate the differences 385 
between conditions in more depth.    386 
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 387 
Figure 5.  A) Single Voxel Autocorrelation: Lag 1. Single voxel autocorrelation values 388 
at lag 1 for every voxel in the hippocampus during spatial navigation. These values are 389 
averaged across run and participant for each of the GPS, Familiar, Unfamiliar and 390 
Mirrored conditions. A gradient from high to low autocorrelation is observed in the 391 
anterior-posterior and medial-lateral axes, across all navigation conditions. B) 392 
Autocorrelation Clustering. Cluster maps averaged across run and participant for each 393 
route type. High single voxel autocorrelation voxels cluster in the anterior-medial 394 
hippocampus and low single voxel autocorrelation voxels cluster in the posterior-lateral 395 
hippocampus. 396 
 397 
Autocorrelation Clustering  398 
In order to determine clusters of single voxel autocorrelation within each 399 
navigational condition, we repeated the autocorrelation clustering procedure 400 
described above in Dataset 1 within the hippocampus. As with Dataset 1, this 401 
revealed three distinct clusters in the left and right hemispheres for the Familiar, 402 
Unfamiliar and Mirrored conditions (Figure 5B). For Familiar, Unfamiliar, and 403 
Mirrored conditions, Cluster 1 was located in the anterior-medial HPC and had 404 
the highest single voxel autocorrelation. Cluster 3 was located in the posterior-405 
lateral hippocampus and had the lowest single voxel autocorrelation. Cluster 2 406 
was located between Cluster 1 and 3 and had intermediate single voxel 407 
autocorrelation. The GPS condition had three clusters in the right hemisphere 408 
and only two in the left.   409 
 410 
Relating single voxel autocorrelation to navigation condition  411 
Subjective difficulty ratings collected after each route (1 = difficult, 9 = easy) 412 
suggested that across the navigation conditions, navigational difficulty increased. 413 
Participants rated the GPS routes as the easiest (M = 7.2, SD = 1.46), followed 414 
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by the Familiar condition (M = 6.98, SD = 2.05), Unfamiliar condition (M = 4.35, 415 
SD = 2.66), and the Mirrored condition, which was subjectively the most difficult 416 
(M = 3.97, SD = 2.42). 417 
 418 
As navigation becomes more difficult, it is beneficial to integrate or maintain 419 
information over time, which may be reflected in changes in single voxel 420 
autocorrelation. Specifically, more stable neural dynamics might enable 421 
individuals to maintain information as one moves towards a goal. This prediction 422 
leads to two possibilities. In the first, as navigational difficulty increases we might 423 
observe a uniform change in single voxel autocorrelation across all voxels in the 424 
hippocampus. A second possibility is that as difficulty increases, voxels that tend 425 
to exhibit high autocorrelation during rest would differentially increase their 426 
autocorrelation relative to voxels that tend to exhibit low autocorrelation. To 427 
investigate these possibilities, we calculated the slope of the single voxel 428 
autocorrelation (lag 1) along the anterior-posterior and medial-lateral axes. If 429 
navigational difficulty leads to a uniform increase in autocorrelation, we would 430 
observe no changes in the slope across these axes. However, if navigational 431 
difficulty disproportionately affects the regions of the hippocampus that show high 432 
autocorrelation during rest (Figure 2), then more difficult routes would elicit a 433 
larger difference in autocorrelation values along the anterior-posterior and 434 
medial-lateral axes, and therefore, a steeper slope. For easier routes, there 435 
would be less difference in autocorrelation along the two axes, suggesting more 436 
homogeneity of temporal dynamics along the axis and a shallower slope of 437 
autocorrelation.    438 
 439 
Anterior-posterior HPC axis 440 
Comparing single voxel autocorrelation slopes 441 
We compared autocorrelation slopes in the four route conditions: GPS, Familiar, 442 
Unfamiliar, and Mirrored. For each participant, we averaged the single voxel 443 
autocorrelation (lag 1) across all voxels on each 3mm slice of the hippocampus 444 
(posterior-to-anterior direction) and calculated the slope coefficient across slices. 445 
In both the left and right hemisphere, across all four navigation conditions, the 446 
slope was positive, suggesting lower autocorrelation in the posterior 447 
hippocampus and higher autocorrelation in the anterior hippocampus, which is 448 
consistent with our findings from the clustering and single voxel autocorrelation 449 
lag 1 analyses. Across participants, Mirrored runs had steepest slopes (Left: M = 450 
0.79, SD = 0.60; Right: M = 0.55, SD = 0.80) followed by Unfamiliar (Left: M = 451 
0.69, SD = 0.53; Right: M = 0.41, SD =0.40), Familiar (Left: M = 0.63, SD = 0.46; 452 
Right: M = 0.31, SD = 0.25), and GPS routes (Left: M = 0.53, SD = 0.42; Right: M 453 
= 0.21, SD = 0.28). 454 
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 455 
To test whether there was a significant difference between single voxel 456 
autocorrelation during different navigation conditions, we ran a mixed effects 457 
model on the single voxel autocorrelation slopes along the anterior-posterior axis. 458 
We included hemisphere and condition (GPS, Familiar, Unfamiliar, and Mirrored) 459 
as predictors in the model and participants as a random intercept in the random 460 
effects term. We found a significant effect of hemisphere (F(1, 481.99) = 42.22, p 461 
< .001) and a significant effect of navigation condition (F(3, 483.04) = 6.92, p < 462 
.001) (Figure 6A). Their interaction was not significant. 463 
 464 

 A post hoc analysis of the main effect of hemisphere revealed that the single 465 
voxel autocorrelation slope was greater in the left hippocampus compared to the 466 
right hippocampus (t(482) = 6.49, p < .001). Pairwise comparisons of the different 467 
navigational conditions (collapsed across hemisphere) revealed that single voxel 468 
autocorrelation slopes were significantly greater for the Mirrored compared to 469 
GPS (t(484) = 3.88, p < .001) and Familiar (t(482) = 3.71, p < .01). There was no 470 
significant difference between Mirrored and Unfamiliar conditions. These results 471 
suggest that, across hemispheres, the single voxel autocorrelation slopes along 472 
the anterior-posterior axis were modulated by navigation difficulty: navigation 473 
runs with a steeper gradient of autocorrelation were related to more difficult 474 
navigation conditions. We compared the average single voxel autocorrelation at 475 
the two posterior-most and two anterior-most slices and found that single voxel 476 
autocorrelation was higher in the anterior hippocampus compared to the 477 
posterior hippocampus in both the left and right hemisphere (Left: anterior > 478 
posterior t(1998) = 22.23, p < .001; Right: anterior > posterior t(1998) = 13.49, p 479 
< .001). This finding suggests that increases in the autocorrelation slope along 480 
the anterior-posterior axis across conditions were driven by an increase in the 481 
anterior hippocampus.  482 

 483 
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 484 
Figure 5. Effect of navigational condition on single voxel autocorrelation slopes. 485 
Average single voxel autocorrelation per slice along the anterior-posterior and medial-486 
lateral axes for each navigation condition. A) Anterior-posterior axis. The left 487 
hippocampus had greater single voxel autocorrelation slopes compared to the right 488 
hippocampus. Across both hemispheres, slope along the anterior-posterior axis was 489 
modulated by navigational condition. The slope was greatest when participants 490 
navigated difficult routes (Mirrored and Unfamiliar routes) compared to easy routes (GPS 491 
and Familiar routes) B) Medial-lateral axis. The left hippocampus had greater single 492 
voxel autocorrelation slopes compared to the right hippocampus. Across both 493 
hemispheres, slope along the medial-lateral axis was modulated by navigational 494 
condition. The slope was greatest when participants navigated Mirrored routes 495 
compared to GPS, Familiar, and Unfamiliar routes. Bold lines represent the group 496 
average across all participants, faded lines represent each participant. 497 
 498 
Medial-lateral HPC axis 499 
Comparing single voxel autocorrelation slopes 500 
For each participant, we averaged the single voxel autocorrelation (lag 1) across 501 
all voxels on each 3mm slice of the hippocampus (lateral-to-medial direction) and 502 
calculated the slope coefficient across slices. In both the left and right 503 
hemisphere, across all four navigation conditions, the slope was positive, 504 
suggesting lower autocorrelation in the lateral hippocampus and higher 505 
autocorrelation in the medial hippocampus. This observation is consistent with 506 
our findings from the clustering and single voxel autocorrelation lag 1 analyses. 507 
Across participants, Mirrored runs had steepest slopes (Left: M = 1.63, SD = 508 
1.15; Right: M =1.45, SD = 1.77) followed by Unfamiliar (Left: M = 1.37, SD = 509 
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0.95; Right: M = 1.13, SD = 1.20), Familiar (Left: M = 1.21, SD = 0.74; Right: M = 510 
0.92, SD = 0.98), and GPS routes (Left: M =1.08, SD = 0.80; Right: M = 0.89, SD 511 
= 1.45). 512 
 513 
We ran a mixed effects model on the single voxel autocorrelation slopes along 514 
the medial-lateral axis with hemisphere and condition as predictors and 515 
participant as a random intercept in the random effects term. We found a 516 
significant effect of hemisphere (F(1, 482.03) = 5.03, p < .05) and a significant 517 
effect of navigation condition (F(3, 482.71) = 7.10, p < .001) (Figure 6B). Their 518 
interaction was not significant.  519 
 520 
A post hoc analysis of the main effect of hemisphere revealed that the single 521 
voxel autocorrelation slopes were greater in the left than the right hippocampus 522 
(t(482) = 2.24, p < 0.05). Pairwise comparisons of the different navigational 523 
conditions (collapsed across hemisphere) revealed that single voxel 524 
autocorrelation slopes were significantly greater for the Mirrored compared to 525 
GPS (t(483) = 3.42, p < .01), greater for Mirrored compared to Familiar (t(482) = 526 
4.18, p < .001), and greater for Mirrored compared to Unfamiliar (t(482) = 2.61, p 527 
< .05). These results suggest that, across hemispheres, the single voxel 528 
autocorrelation slopes along the medial-lateral axis were modulated by 529 
navigation difficulty: navigation runs that had a steeper gradient of 530 
autocorrelation were related to more difficult navigation conditions. We compared 531 
the average single voxel autocorrelation at the two medial-most and two lateral-532 
most slices and found that single voxel autocorrelation was higher in the medial 533 
hippocampus than the lateral hippocampus in both the left and right hemisphere 534 
(Left: medial > lateral t(1998) = 17.76, p < .001; Right: medial > lateral t(1998) = 535 
14.91, p < .001). This suggests that increases in the autocorrelation slope along 536 
the medial-lateral axis across conditions is driven by an increase in the medial 537 
hippocampus.  538 
 539 
Discussion 540 
 541 
Here we present a novel autocorrelation measure to investigate intra-542 
hippocampal and intra-entorhinal processing. We provide the first evidence of a 543 
medial-lateral gradient of autocorrelation in the hippocampus, as well as a 544 
posterior-medial and anterior-lateral gradient in the ERC. We found that voxels in 545 
the anterior-medial hippocampus have a highly correlated, slower changing 546 
signal, whereas voxels in the posterior-lateral hippocampus have a less 547 
correlated, faster changing signal (Figure 2) (Brunec, Bellana, et al., 2018; Raut 548 
et al., 2020). Our study highlights the importance of examining the medial-lateral 549 
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axis of the hippocampus, which has previously been an under-studied feature of 550 
hippocampal organization. We find novel evidence for a continuous gradient in 551 
the ERC, with greater autocorrelation in the posteromedial ERC and lower 552 
autocorrelation in the anterolateral ERC (Figure 4). Lastly, the present study is 553 
the first to show that gradients of single voxel autocorrelation in the hippocampus 554 
are related to behavior during navigation. Specifically, autocorrelation gradients 555 
in the anterior-posterior and medial-lateral axes, as measured by the slope, 556 
increased for difficult routes and were steepest in the left hemisphere (Figure 6). 557 
This increase in slope was driven by increases in the anterior-medial 558 
hippocampus. 559 
 560 
Our data-driven approach — which allows voxels to cluster according to their 561 
single voxel autocorrelation, uncovered a multidimensional gradient in both the 562 
anterior-posterior and medial-lateral axes in both the hippocampus and ERC 563 
(Figure 2 & 4). In the hippocampus, the anterior-posterior axis has been studied 564 
with respect to its role in representing graded information, for example coarse-565 
grained to fine-grained information (Poppenk et al. 2013; Strange et al., 2014), 566 
large to small spatial distances (Evensmoen et al., 2013; Nielson et al., 2015; 567 
Peer et al., 2019;) and long to short temporal distance (Bellmund et al., 2019; 568 
Nielson et al., 2015). Investigations of representational differences along the 569 
medial-lateral axis, however, have been limited because prior work has used 570 
predefined anatomical segmentations limited to the anterior and posterior 571 
portions of the long axis of the hippocampus. Our single voxel autocorrelation 572 
method is not restricted by predefined ROIs and proves to be a more precise 573 
measure that detects subtle differences in signal along the medial-lateral axis 574 
that have been previously overlooked and that are modulated by navigational 575 
difficulty. In addition to the hippocampus, we found similar distinctions in the 576 
ERC. We observed a gradient of single voxel autocorrelation organization, such 577 
that greater single voxel autocorrelation was observed in the posterior-medial 578 
region and lower single voxel autocorrelation in the anterolateral region of the 579 
ERC (Figure 4). This gradient is consistent with previous neuroimaging 580 
investigations of ERC which used high-resolution fMRI and functional 581 
connectivity to define distinct subregions within the human ERC (Maass et al., 582 
2015; Navarro Schröder et al., 2015). Our analytic technique, however, goes 583 
beyond this prior work by demonstrating, for the first time, continuous gradients 584 
of autocorrelation in the ERC.  585 
 586 
The present study demonstrates that the autocorrelation of the fMRI signal is not 587 
just global noise, but instead carries meaningful information about brain function 588 
that is directly related to behavior. Autocorrelation is frequently characterized as 589 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454036doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

23 

noise that masks meaningful signals and is unrelated to cognition, but recent 590 
research suggests that autocorrelation might be a global organizing principle and 591 
reflects intrinsic functional hierarchies in the brain (Irish & Vatansever, 2020; 592 
Raut et al., 2020). For example, an analysis of resting state fMRI data calculated 593 
the autocorrelation decay in single voxels across a temporal window (0-8 594 
seconds) and found a significant large-to-small timescale gradient along the 595 
anterior-posterior axis in the hippocampus (Raut et al., 2020), which is consistent 596 
with reports by Brunec, Bellana, et al. (2018). Recent research has also linked 597 
autocorrelation with global differences in cognitive state (task vs. rest) and 598 
mental state (healthy vs. schizophrenia) (Arbabshirani et al., 2019). While this 599 
study cannot address the direct link between the autocorrelation gradients and 600 
behavior, this work suggests that autocorrelation can be used to discriminate 601 
between cognitive states that are uniform across the brain, leaving open the 602 
question of how autocorrelation gradients in specific brain regions might be 603 
related to differences in cognition during a behavioral task. Our analysis 604 
technique demonstrated novel gradients during resting state, and can also be 605 
applied to task related activation to reveal their relation to on-going behavior and 606 
is the first to show that changes in single voxel autocorrelation gradients are 607 
directly related to changes in difficulty during a navigation task.  608 
 609 
Anterior hippocampal voxels are more stable across time compared to the 610 
posterior hippocampus, which might enable the anterior hippocampus to maintain 611 
prior information across time during goal-directed navigation (Brunec, Bellana, et 612 
al., 2018). Our method proved to be a more sensitive measure than previous 613 
techniques (e.g., Brunec, Bellana et al., 2018) because we were able to show 614 
differences in autocorrelation across navigation conditions. More specifically we 615 
found that the autocorrelation in the anterior-medial hippocampus increased 616 
during navigation of difficult routes (Figure 6). The autocorrelation signal may 617 
reflect the mechanism by which the hippocampus holds onto the past and carries 618 
it forward during navigation when we are in unfamiliar or unpredictable 619 
environments. For example, when navigating an unfamiliar route to a distant 620 
goal, the local details of the environment might not be helpful to orient oneself in 621 
relation to the goal; it may be more efficient, therefore, to keep in mind a coarser, 622 
overall map of the environment with information about steps already taken in 623 
order to reach the goal destination successfully. This large-scale representation 624 
may not be as useful to keep online during navigation of well-known or familiar 625 
routes where local details are sufficient for orienting and navigating to the goal, 626 
which could explain the decreased single voxel autocorrelation in the signal 627 
throughout the familiar routes (Figure 6). This hypothesis is supported by 628 
previous research which has shown that the anterior hippocampus plays an 629 
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important role in representing larger spatial and temporal distances (Evensmoen 630 
et al., 2013; Nielson et al., 2015) as well as representing coarser-grained, global 631 
representations (Collin et al., 2015).  632 
 633 
We found that both of the single voxel autocorrelation gradients (anterior-634 
posterior and medial-lateral) were steeper in the left hemisphere compared to the 635 
right. It is still unclear whether this is representative of a stable difference in 636 
autocorrelation between the hemispheres or whether this reflects different types 637 
of information that are engaged across the two hemispheres during navigation. 638 
Future research is needed to determine the nature of this hemispheric difference.  639 
 640 
Another non-mutually exclusive possibility is that the single voxel autocorrelation 641 
is representative of predictions that are cast into the future. The notion that 642 
increased temporal similarity is indicative of an extended spatiotemporal 643 
representation is supported by recent work investigating the predictive horizons 644 
along the hippocampal anteroposterior axis during navigation (Bruenc & 645 
Momennejad, 2019). Brunec and Momennejad (2019) found that as participants 646 
virtually navigated familiar, real-world routes (a subset of the familiar routes 647 
presented here), hippocampal activity was related to a hierarchical scale of 648 
horizon representations, in which the posterior hippocampus represented steps 649 
closer in the future trajectory (~25m) while the anterior hippocampus represented 650 
steps further in the future trajectory (~175m). It is possible, therefore, that the 651 
single voxel autocorrelation we observed helps represent an upcoming 652 
navigational trajectory, with immediate goals represented in posterior-lateral 653 
regions and more distal goals in the anterior-medial hippocampus. The predictive 654 
role of the hippocampus has also been observed in perception, particularly when 655 
the stimulus was visually complex (Kok et al., 2020). Our method and findings 656 
open the door for future studies using high resolution neuroimaging in 657 
combination with a task that parametrically modulates the amount of information 658 
that is carried over time in both predictable (familiar) and unpredictable 659 
(unfamiliar) environments to uncover content that is carried forward via the 660 
autocorrelation signal. 661 
 662 
Although we were not able to relate the autocorrelation in ERC to behavior due to 663 
the resolution of the navigation data, if we apply the same logic we used for the 664 
hippocampus, our findings are consistent with the notion that alERC codes for 665 
local details and perceptual aspects of experience, whereas the pmERC codes 666 
for global contexts. Specifically, the (antero-)lateral ERC has been linked to fine-667 
grained temporal processing (Montchal et al., 2019; Tsao et al., 2018) and to 668 
processing of object-context and within-object details (Yeung et al., 2017; 2019). 669 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454036doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

25 

The low autocorrelation we observed in the alERC might indicate faster updating 670 
of moment-to-moment changes and therefore support fine-grained 671 
representations. Future investigations can use our method to analyze continuous 672 
changes along both anterior-posterior and medial-lateral axes of the ERC without 673 
being restricted to anatomical subfield segmentations, perhaps revealing a more 674 
nuanced understanding of the organization of the ERC. We observed two 675 
consistent clusters in the left hemisphere and three consistent clusters in the 676 
right hemisphere, which suggests that in this dataset there was more variability in 677 
the left ERC intermediate cluster. Future research is needed to determine 678 
whether this is a stable property of the temporal organization of the left ERC that 679 
can be replicated across other datasets.  680 
 681 
It is currently unclear how the posterior-medial and anterior-lateral subregions of 682 
the ERC are functionally related to the anterior and posterior regions of the 683 
hippocampus. In the present study we found that clusters in the anterior-medial 684 
hippocampus and posterior-medial ERC had high single voxel autocorrelation, 685 
whereas clusters in the posterior-lateral hippocampus and antero-lateral ERC 686 
had low single voxel autocorrelation. These distinctions along the anterior-687 
posterior and medial-lateral axes of the ERC are consistent with previous 688 
functional connectivity findings (Navarro Schröder et al., 2015), however 689 
functional connectivity and neuroanatomical studies in humans have been limited 690 
and do not find any clear differences between the anterior and posterior portions 691 
of the hippocampus with respect to their connectivity to different subregions in 692 
the ERC (Maass et al., 2015; Navarro Schröder et al., 2015). Functional 693 
connections between these regions might be evident in the scale of information 694 
processing in the hippocampus and ERC. For example, it is possible that the 695 
pattern of low single voxel autocorrelation in anterior-lateral ERC and posterior-696 
lateral hippocampus supports fine-grained processing — precise temporal 697 
processing in the anterior-lateral ERC (Bellmund et al., 2019; Montchal et al., 698 
2019) and local spatial details in the posterior hippocampus (Doeller et al., 2008; 699 
Evensmoen et al., 2013; Hirshhorn et al. 2012; Lee et al., 2012).  700 
 701 
There are currently no clear neuroanatomical links between the anterior-lateral 702 
ERC and posterior-lateral hippocampus or the anterior-medial hippocampus and 703 
posterior-medial ERC. There are, however, probable connections between the 704 
anterior ERC and lateral hippocampus and posterior ERC with medial 705 
hippocampus (Strange et al., 2014; Witter & Amaral 2020; Nilssen et al., 2019; 706 
Witter et al., 2017). Our results, therefore, open the door for future investigations 707 
to characterize more fully the nature of anterior and posterior hippocampal signal 708 
dynamics in relation to the entorhinal subregions in humans and in relation to 709 
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other structures, such as prefrontal cortex (Barredo et al., 2015; Vaidya & Badre, 710 
2020).   711 
 712 
The results presented here reveal, for the first time, two continuous gradients 713 
along the anterior-posterior and medial-lateral axes in the hippocampus and 714 
ERC. One outstanding question is whether there is new information that can be 715 
gained by investigating the two autocorrelation gradients separately, or whether 716 
the information they represent is redundant. For example, do tasks that evoke a 717 
steep autocorrelation gradient along the anterior-posterior axis necessarily evoke 718 
a similarly steep gradient along the medial-lateral axis or are there tasks in which 719 
these two gradients act in opposing directions (e.g., change in anterior-posterior 720 
slope but no change or change in opposite direction in medial-lateral slope). 721 
Another outstanding question is whether our novel single voxel autocorrelation 722 
method can be applied with shorter timescales so that they can be used with 723 
event-related designs. Here we use the entire timecourse of the voxel’s activity to 724 
calculate the single voxel autocorrelation throughout the entire run, but it remains 725 
to be seen whether we can adapt our method to examine how autocorrelation 726 
changes over shorter time windows. This would allow us to ask new questions 727 
about what kind of information is being carried in the autocorrelation signal during 728 
discrete or shorter events and at event boundaries, which are known to trigger 729 
changes in hippocampal activity associated with integration of information across 730 
events (Dubrow & Davachi, 2013; Ezzyat & Davachi, 2014). Finally, this method 731 
can be used to investigate differences in autocorrelation within subfields of the 732 
hippocampus. For example, it has been proposed that CA1 is implicated in 733 
integrating information in memory, whereas DG/CA3 which mediates pattern 734 
separation may be more implicated in making fine distinctions in memory (Kyle et 735 
al., 2015; Leutgeb et al., 2004; Schapiro et al., 2017; Yassa & Stark, 2011). 736 
Integration processes in CA1, therefore, might be supported by voxels with high 737 
single voxel autocorrelation while separation processes in DG/CA3 might be 738 
better supported by low single voxel autocorrelation. Future research using our 739 
method and high-resolution fMRI is needed to test these differences within 740 
subfields.  741 
 742 
Our studies were inspired initially by single-unit recording studies in rodents 743 
(Brun et al., 2008; Cavanagh et al., 2016; Gothard et al.,1996; Kjelstrup et al., 744 
2008; Maurer et al., 2005). We believe our findings, however, have gone beyond 745 
replicating the rodent findings in humans, a worthy task in its own right, but 746 
extended the findings to the point that they can now be used to inform future 747 
studies in rodents and humans. We provide some examples in which this is the 748 
case. For example, our method enabled us to find differences in autocorrelation 749 
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along the anterior-posterior and medial-lateral axes in the entorhinal cortex, 750 
which have only been examined in a restricted region in rodents (Brun et al., 751 
2008). Our findings are consistent with neuroanatomical and neurophysiological 752 
divisions in that structure (human: Maass et al., 2015; monkey: Witter & Amaral, 753 
2021; rat: Witter et al., 2017). Second, although activity of a single voxel, 754 
comprised of thousands of neurons, may be considered to be a coarser unit of 755 
analysis than recordings from single units, it may be the case that it is the 756 
operation of a population of these neurons that is most closely linked to 757 
organizational temporal dynamics. It is the gradients revealed by autocorrelation 758 
at the single voxel level that enabled us to link hippocampal dynamics to 759 
behavior. In addition, we were able to segment the populations into clusters, 760 
suggesting subdivisions that would not be evident at the single-unit level. It would 761 
be worthwhile to determine whether similar clusters are found in rodents and 762 
examine their functional significance. Similar analyses at the population-level in 763 
rodents may yield information about the relation of neural dynamics to higher-764 
level memory representations and goals, an enterprise that is just beginning 765 
(Jacob & Josselyn, 2020; Morrissey et al., 2017). 766 
 767 
Our results provide compelling evidence for a gradation of single voxel 768 
autocorrelation in the hippocampus and ERC. As predicted, our single voxel 769 
method proved to be a fine-grained measure that revealed subtleties in the 770 
spatial organization of autocorrelation, going beyond prior methods, and allowed 771 
us to observe graded signals along anterior-posterior and medial-lateral axes in 772 
both regions. Further, we show for the first time that differences in single voxel 773 
autocorrelation gradients in the hippocampus can be directly related to 774 
differences in difficulty during a virtual navigation task, thus opening the door for 775 
future research to ask new questions of the autocorrelation signal and uncover 776 
how it is related to behavior.  777 
 778 
Materials and Methods 779 
 780 
Dataset 1: Resting state fMRI 781 
Participants 782 
We analyzed resting state fMRI data from 44 participants (14 male) from the 783 
Human Connectome Project (HCP) Retest dataset. This dataset consists of data 784 
from 44 participants who were scanned twice using the full HCP imaging 785 
protocol. All subject recruitment procedures and informed consent forms, 786 
including consent to share de-identified data, were approved by the Washington 787 
University Institutional Review Board (IRB) (Glasser et al. 2016). The present 788 
analysis of this dataset was approved by the University of Toronto research 789 
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ethics board.  790 
 791 
Scanning parameters and preprocessing 792 
Resting state data were collected using a multiband EPI pulse sequence (TR = 793 
720 ms, TE = 33.1 ms, 72 slices with 2 mm thickness, FOV = 208 x 180 mm, 794 
voxel size = 2x2 mm, Flip angle = 52, Multiband factor = 8, Scan time = 14 795 
minutes and 33 seconds). Each run was repeated twice, with a left-to-right and a 796 
right-to-left phase encoding direction. The presented results are generated from 797 
data with the left-to-right phase encoding direction.  798 
 799 
Initial fMRI preprocessing steps already applied to the downloaded data included 800 
fieldmap correction, motion correction, brain extraction, registration to standard 801 
space, and intensity normalization (Glasser et al., 2013; Smith et al., 2013; Van 802 
Essen et al., 2013). The data were further preprocessed using the FIX tool in 803 
FSL (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), and noise components 804 
related to head motion and other artifacts were removed. To eliminate high 805 
frequency noise and artifacts, fMRI signals are low-pass filtered using MATLAB 806 
IIR Butterworth filter (designfilt function in Signal Processing Toolbox) with cutoff 807 
frequency of 0.1 Hz. 808 
 809 
Single voxel autocorrelation method 810 
Computing single voxel autocorrelation  811 
Bilateral hippocampal and entorhinal masks were generated using the Harvard-812 
Oxford Atlas in FSL. For each voxel inside each of the regions of interest (ROIs), 813 
unbiased autocorrelation (as implemented in MATLAB xcorr function) was 814 
calculated. Specifically, the timecourse of a single voxel’s activity was correlated 815 
with itself shifted by a temporal lag, the length of 1 TR (Dataset 1 TR = 720 ms). 816 
We repeated this process, shifting the timecourse forward by 1 lag (720 ms) and 817 
correlating it with the original, non-shifted timecourse until a maximum temporal 818 
shift of 4 seconds was reached. We chose 4 seconds because it has been shown 819 
that the autocorrelation of the fMRI signal in the gray matter drops off after 4 820 
seconds (i.e., it is not distinguishable from the autocorrelation of other noise) 821 
(Bollmann et al., 2018). For example, the non-shifted timecourse was correlated 822 
with lag 1 (length of 1 TR), lag2 (length of 2 TRs), etc. (Figure 1). The 823 
autocorrelation (AC) computed for each lag was stored in a vector. The 824 
autocorrelation vector (single voxel autocorrelation vector) contained 5 values 825 
(one single voxel autocorrelation for each lag). This approach resulted in a single 826 
voxel autocorrelation vector for each voxel (Figure 1A). All single voxel 827 
autocorrelation values were normalized by subtracting the mean and dividing by 828 
the standard deviation within each mask so that meaningful comparisons could 829 
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be made between the two fMRI datasets (resting state and task). Single voxel 830 
autocorrelation maps were then averaged across the first and second runs from 831 
the 44 participants to generate an average overall map (e.g., Figure 1B).  832 
 833 
Single voxel autocorrelation – Reliability Analysis      834 
To verify that the observed single voxel autocorrelation pattern was not a 835 
measurement artifact (e.g., head motion, magnetic field inhomogeneity, 836 
physiological artifacts, etc.), we tested the reliability of the single voxel 837 
autocorrelation pattern within an individual. In our case, the single voxel 838 
autocorrelation pattern was deemed reliable if there was a high degree of 839 
agreement between the single voxel autocorrelation values generated from 840 
different runs from the same participant compared to runs from different 841 
participants. Reliability of the single voxel autocorrelation values was measured 842 
by calculating the Euclidean distance (ED) between the single voxel 843 
autocorrelation vectors for all pairs of run-wise datasets. 44 participants with 2 844 
repeated sessions produced 44 intra-subject and 3784 inter-subject ED values. 845 
The lower the ED between two single voxel autocorrelation vectors, the higher 846 
the similarity between them. We expected to see more similar single voxel 847 
autocorrelation patterns between single voxel autocorrelation vectors generated 848 
from two runs of the same participant compared to two runs from different 849 
participants (lower intra-subject ED compared to inter-subject ED). The inter-850 
subject and intra-subject ED are not completely independent from one another, 851 
therefore we used nonparametric permutation to test for significance. We 852 
randomly shuffled the intra-and inter-subject labels and pulled two samples of 853 
size 44 (intra-subject) and 3784 (inter-subject). We calculated the mean 854 
difference between the two samples and repeated this process 10,000 times, 855 
resulting in a histogram of mean differences under the null hypothesis (i.e., the 856 
difference between intra- and -inter-subject ED equal to zero). We compared the 857 
observed difference between intra- and inter-subject EDs with the null distribution 858 
and calculated nonparametric p-values. Permutation tests were conducted using 859 
a permutation testing package in Matlab (Laurens, 2021). 860 
 861 
Computing single voxel autocorrelation clusters (Autocorrelation Clustering) 862 
The Euclidean distance between the single voxel autocorrelation vectors of each 863 
voxel pair in each mask was calculated to create a distance matrix. The distance 864 
matrix was first normalized (i.e., divided by the maximum value) and then 865 
subtracted from 1 to generate a similarity matrix ranging from 0 to 1. This 866 
similarity matrix was used to generate hippocampal clusters using the modularity 867 
optimization algorithm proposed by (Blondel et al., 2008; Wickramaarachchi et 868 
al., 2014). Unlike the majority of the clustering methods, modularity optimization 869 
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does not require to assign the number of clusters and estimates the optimum 870 
number of clusters from data. In addition to clustering at the level of each 871 
individual, group-level clustering was performed by averaging the similarity 872 
matrices of all participants (e.g., Figure 1C). 873 
 874 
Autocorrelation Clustering – Reliability Analysis 875 
Reliability of the clustering was measured by calculating the overlap between the 876 
generated clusters using the Jaccard coefficient. The Jaccard coefficient of 877 
regions A and B is defined as: 878 
 879 

     𝐽(𝐴, 𝐵) = |)	∩	,|
|)	∪	,|

	 880 

	881 
Where 	|𝐴 ∩ 𝐵| is the number of common voxels in both A and B (intersection) 882 
and |𝐴	 ∪ 	𝐵| is the number of voxels in A and B combined (union). Individual 883 
parcellations were then compared to the group-level parcellation to examine the 884 
consistency of parcellation. The Jaccard coefficient was calculated both intra-885 
subject (overlap between clusters extracted from two runs from the nth subject) 886 
and inter-subject (overlap between the cluster from the nth subject and the same 887 
cluster estimated in all other subjects).   888 
      889 
Assuming that the single voxel autocorrelation pattern is consistent across the 890 
two runs of the same participant, we expected there to be greater spatial overlap 891 
(higher Jaccard coefficient) among clusters within an individual compared to 892 
between different individuals. The Jaccard coefficients for clusters within 893 
participants are not completely independent from the Jaccard coefficients for 894 
clusters between participants, therefore we used nonparametric permutation to 895 
test for significance. For each cluster, we randomly shuffled the intra-and inter-896 
subject labels and pulled two samples of size 44 (intra-subject) and 3784 (inter-897 
subject). We calculated the mean difference between the two samples and 898 
repeated this process 10,000 times, resulting in a histogram of the mean 899 
differences under the null hypothesis (i.e., the difference between intra- and -900 
inter-subject Jaccard coefficient equal to zero). We compared the observed 901 
difference between intra- and inter-subject Jaccard coefficients with the null 902 
distribution and calculated nonparametric P values. 903 
 904 
Dataset 2: Navigation fMRI 905 
Participants 906 
Task fMRI data is from Brunec, Bellana, et al. (2018), where 19 participants (9 907 
males; mean age 22.58 years, range 19-30 years) were scanned while 908 
navigating Google Street View routes around the city of Toronto. All subject 909 
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recruitment procedures and informed consent was approved by the University of 910 
Toronto research ethics board. 911 
 912 
Paradigm 913 
Participants met with the experimenter ahead of time and built routes that were 914 
either highly familiar or less familiar to them (e.g., frequently travelled or not). 915 
Participants then returned to the lab for their second session and were scanned 916 
while they navigated four different types of routes. 1) Familiar: participants 917 
started at a familiar landmark and navigated to a familiar goal destination via a 918 
familiar route, 2) Mirrored: participants started at a familiar landmark and 919 
travelled to a familiar destination via a familiar route, but the images of the route 920 
were mirrored (left-right reversed), 3) Unfamiliar: participants started at a familiar 921 
location, navigated to a familiar destination, but they were instructed to take an 922 
unfamiliar route between the two, and 4) GPS: participants started at an 923 
unfamiliar location in an unfamiliar part of town and pressed arrow keys following 924 
the directions displayed by an arrow on the screen to the goal destination. 925 
Participants completed four unique routes in each condition, sixteen routes in 926 
total (1 route = 1 scanned run). At the end of each route, participants rated the 927 
difficulty of the route on a scale from 1 (difficult) to 9 (easy).  928 
 929 
Scanning parameters and preprocessing 930 
Participants were scanned with a 3T Siemens MRI scanner at Baycrest’s Rotman 931 
Research Institute. A high-resolution 3D MPRAGE T1-weighted pulse sequence 932 
image (160 axial slices, 1 mm thick, FOV = 256 mm) was first obtained to register 933 
functional maps against brain anatomy. Functional imaging was performed to 934 
measure brain activation by means of the blood oxygenation level dependent 935 
(BOLD) effect. Functional T2*-weighted images were acquired using echo-planar 936 
imaging (30 axial slices, 5 mm thick, TR = 2000 ms, TE = 30 ms, flip angle = 70 937 
degrees, FOV = 200 mm). The native EPI resolution was 64 x 64 with a voxel 938 
size of 3.5mm x 3.5mm x 5.0mm. Images were first corrected for head motion 939 
using the Analysis of Functional NeuroImages (AFNI; Cox, 1996). All subsequent 940 
analysis steps were conducted using the statistical parametric mapping software 941 
SPM12.  942 
 943 
Preprocessing involved slice timing correction, spatial realignment and co-944 
registration, with a resampled voxel size of 3mm isotropic, with no spatial 945 
smoothing. As all of our analyses rely on covariance, we additionally regressed 946 
out the mean time-courses from participant-specific white matter, and 947 
cerebrospinal fluid masks, alongside estimates of the 6 rigid body motion 948 
parameters from each EPI run. To further correct for the effects of motion which 949 
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may persist despite standard processing (Power et al., 2012), an additional 950 
motion scrubbing procedure was added to the end of our preprocessing pipeline. 951 
Using a conservative multivariate technique, time points that were outliers in both 952 
the six rigid-body motion parameter estimates and BOLD signal were removed, 953 
and outlying BOLD signal was replaced by interpolating across neighboring data 954 
points. Motion scrubbing further minimizes any effects of motion-induced spikes 955 
on the BOLD signal, over and beyond standard motion regression, without 956 
leaving sharp discontinuities due to the removal of outlier volumes (for details, 957 
see Campbell et al., 2013). To enable comparisons at the group-level, the final 958 
step of the preprocessing involved warping participants’ functional data to the 959 
MNI-space template. 960 
 961 
Single voxel autocorrelation method 962 
Computing single voxel autocorrelation  963 
To compute the single voxel autocorrelation, we completed the same procedure 964 
outlined in Dataset 1. We used the same bilateral hippocampal masks to extract 965 
the HPC voxels in Dataset 2. For each voxel, the single voxel autocorrelation 966 
was calculated by repeatedly shifting temporal lags (length of 1 TR) until a 967 
maximum lag of 4 seconds was reached. In Dataset 2 the TR was 2000 ms; 968 
therefore, single voxel autocorrelation for 2 lags (or 2 TRs) was calculated, 969 
resulting in a maximum lag of 4 seconds. As outlined in the procedure above, 970 
single voxel autocorrelation values were normalized by subtracting the mean and 971 
dividing by the standard deviation. Single voxel autocorrelation was calculated for 972 
all four runs of each navigational condition (Familiar, Unfamiliar, Mirrored, GPS). 973 
The single voxel autocorrelation was averaged across the four scanned runs 974 
(unique routes), resulting in four different maps (one for each navigational 975 
condition). Single voxel autocorrelation maps were then averaged across the 19 976 
participants to generate an average group map for each navigation condition. 977 
 978 
Participants completed 16 navigation runs (four in each condition) at their own 979 
pace. Because the conditions varied in difficulty, the average number of TRs 980 
differed across conditions and participants. Every route was 2-10 km long and 981 
the average run (route) length was 137.6 TRs (2 s TRs). The average number of 982 
TRs was lowest in the GPS condition (M = 92.13, SD = 17.44), followed by the 983 
Familiar condition (M = 136.45, SD = 39.18), the Mirrored condition (M = 155.73, 984 
SD = 36.84), and the Unfamiliar condition (M = 158.78, SD = 32.13). In order to 985 
compare single voxel autocorrelation across scanned runs with a similar number 986 
of TRs/lengths, we chose to filter out any runs that were unusually short (that the 987 
participant either didn’t complete or completed very quickly). We excluded runs 988 
that were less than 88 TRs long. This resulted in an average of 13.36 runs (SD = 989 
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1.21) per participant. The GPS runs were disproportionately shorter than the 990 
other conditions, resulting in more GPS runs excluded than other conditions. The 991 
average number of routes included in the following analyses per participant are 992 
as follows: Mirrored (M=3.89, SD=0.31), Unfamiliar (M=3.84, SD=0.50), Familiar 993 
(M=3.68, SD=0.47), GPS (M=1.95, SD=1.22).  994 
 995 
Computing autocorrelation clusters (Autocorrelation Clustering) 996 
We repeated the single voxel autocorrelation clustering procedure described 997 
above in Dataset 1 to determine clusters of single voxel autocorrelation within 998 
each navigational condition. 999 
 1000 
Relating single voxel autocorrelation to navigation condition  1001 
Calculating single voxel autocorrelation slopes 1002 
To investigate how the spatial distribution of single voxel autocorrelation is 1003 
related to navigation difficulty, we compared the single voxel autocorrelation (lag 1004 
1) slopes across the four different conditions: GPS, Familiar, Unfamiliar, and 1005 
Mirrored. First, for each participant, we extracted the single voxel autocorrelation 1006 
(lag 1) from every voxel. We averaged the single voxel autocorrelation across all 1007 
voxels on each slice of the hippocampus. We used 3 mm slices in the anterior-1008 
posterior direction (Y-direction), resulting in thirteen slices. Using a linear 1009 
regression, we calculated the slope coefficient for the single voxel autocorrelation 1010 
across slices for each navigation run. We then repeated the same procedure, 1011 
using 3 mm slices in the medial-lateral direction (X-direction), resulting in 9 1012 
slices. We computed the slopes and compared them across navigation 1013 
conditions and hemispheres.  1014 
 1015 
To test whether there was a significant difference between single voxel 1016 
autocorrelation during different navigation conditions, we ran a mixed effects 1017 
model on the single voxel autocorrelation slopes along the anterior-posterior and 1018 
medial-lateral axes. This analysis was conducted in R (R Core Team, 2019) 1019 
using the afex (Singmann et al., 2020) and the tidyverse packages (Wickham, 1020 
2017). 1021 
 1022 
 1023 
 1024 
 1025 
 1026 
 1027 
 1028 
 1029 
 1030 
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