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Abstract (250 words max.): 

 

Rapid clonal expansion of antigen specific T cells is a fundamental feature of adaptive immune 

responses. It enables the outgrowth of an individual T cell into thousands of clonal descendants that 

diversify into short-lived effectors and long-lived memory cells. Clonal expansion is thought to be 

programmed upon priming of a single naïve T cell and then executed by homogenously fast divisions 

of all of its descendants. However, the actual speed of cell divisions in such an emerging ‘T cell family’ 

has never been measured with single-cell resolution. Here, we utilize continuous live-cell imaging in 

vitro to track the division speed and genealogical connections of all descendants derived from a single 

naïve CD8+ T cell throughout up to ten divisions of activation-induced proliferation. This 

comprehensive mapping of T cell family trees identifies a short burst phase, in which division speed is 

homogenously fast and maintained independent of external cytokine availability or continued T cell 

receptor stimulation. Thereafter, however, division speed diversifies and model-based computational 

analysis using a novel Bayesian inference framework for tree-structured data reveals a segregation into 

heritably fast and slow dividing branches. This diversification of division speed is preceded already 

during the burst phase by variable expression of the interleukin-2 receptor alpha chain. Later it is 

accompanied by selective re-expression of memory marker CD62L in slower dividing branches. Taken 

together, these data demonstrate that T cell clonal expansion is structured into subsequent burst and 

diversification phases the latter of which coincides with specification of memory vs. effector fate. 

 

Significance (120 words max.): 
Rapid clonal expansion of antigen-specific T cells is a fundamental feature of adaptive immune 

responses. Here, we utilize continuous live-cell imaging in vitro to track the division speed and 

genealogical connections of all descendants derived from a single naïve CD8+ T cell throughout up to 

ten divisions of activation-induced proliferation. Bayesian inference of tree-structured data reveals that 

clonal expansion is divided into a homogenously fast burst phase encompassing two to three divisions 

and a subsequent diversification phase during which T cells segregate into quickly dividing effector T 

cells and more slowly cycling memory precursors. Our work highlights cell cycle speed as a major 

heritable property that is regulated in parallel to key lineage decisions of activated T cells. 

 

Introduction: 
The smallest unit from which an adaptive immune response can originate is an individual antigen-

specific lymphocyte (1). For both CD4+ and CD8+ T cells, it has been shown that single-cell-derived 

immune responses in vivo are subject to immense variation, despite being directed against the same 

epitope and unfolding within the same host (2-6). Upon vaccination or infection even naïve T cells 

harboring identical T cell receptors (TCRs) will generate ‘T cell families’ (i.e. immune responses 

derived from a single T cell) of highly distinct size and phenotypic composition (2, 3, 6). Interestingly, 

within a given T cell family, clonal expansion and T cell differentiation are interdependent: At the peak 

of expansion, larger T cell families harbor lower percentages of long-lived central memory precursors 

(CMPs) and higher percentages of shorter-lived effector memory precursors (EMPs) and terminal 

effectors (TEs) than smaller T cell families (2, 7). 

To account for the variation in single-cell-derived expansion and the interdependency of T cell 

phenotype and family size, we have put forward a stochastic developmental framework in which naïve 
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T cells first give rise to slowly dividing CMPs, which can then differentiate into more quickly dividing 

but shorter-lived progeny (2). This framework proved to be efficient in describing features of single-

cell-derived T cell responses in vivo, such as the relative independence of a T cell family’s memory 

capacity from its acute size of clonal expansion. This framework is further supported by direct 

measurements of division speed in vivo, showing that, already by day four after vaccination, CD62L+ 

CMPs undergo on average one division less per day than their CD62L– counterparts (8). Moreover, 

recent work confirmed the largely unidirectional differentiation of CMPs into non-CMPs during the 

expansion phase of a T cell response (9) and the role of CMPs as the major source of long-lasting CD8+ 

T cell memory (10-12). 

However, certain features of our originally proposed stochastic framework are at odds with observations 

made during the very early phase of T cell activation: First, directly after activation in vivo, CD8+ T 

cells have been found to divide particularly fast (13, 14), conflicting with the idea of an initial emergence 

of slowly-dividing CMPs. Second, elegant in vitro experiments have shown that division activity is 

strongly correlated among the members of a given T or B cell family, arguing against the emergence of 

distinct expansion kinetics within the same family (15-18). However, these latter studies mainly 

investigated the first three to four cell divisions executed by an expanding lymphocyte family and 

compared division speed only between close relatives within the family tree (i.e., sibling or mother-

daughter correlations). We reasoned that to investigate the gradual cross-generational emergence of 

slower- or faster-dividing genealogical branches, division speed and T cell kinship must be tracked 

across longer genealogical distances than done before. 

Therefore, we performed continuous in vitro imaging of single-cell-derived clonal expansion for up to 

five days after T cell activation. In contrast to previous studies, we utilized a culture system that allowed 

us to faithfully track the genealogical connections within expanding T cell families for up to ten 

generations. We found that after completing their first cell cycle, CD8+ T cells underwent a burst phase 

of two to three uniformly quick divisions. Mean division speed then slowed down in absence of 

continued TCR stimulation, and remained high when TCR stimulation was maintained. However, even 

upon continuous TCR stimulation, distinctly proliferating branches emerged in the later generations of 

a family tree. To better quantify the hereditary nature of this process, we developed a computational 

framework that enabled a model-based analysis of the tree-structured data obtained from live-cell 

imaging. We combined branching process modeling with a Bayesian inference approach for models 

with hidden states. This framework enabled us to test various hypotheses about the diversification 

pattern of proliferating T cells into subsets with distinct inter-division times. These analyses identified 

a model in which naïve T cells first differentiate into a quickly proliferating early-activated state, which 

then transits into slowly and quickly dividing branches that heritably maintain their distinct division 

activity. Further investigating the molecular regulation of these processes, we found that distinct 

expression levels of the high affinity interleukin-2 receptor alpha chain (CD25), established during the 

burst phase, preceded the adoption of distinct division activities. Moreover, we found that CD62L, as a 

marker of CMP differentiation, was preferentially re-expressed in slowly dividing T cells that emerged 

beyond the burst phase. 

Taken together, our work shows that after a short burst phase the division speed of activated CD8+ T 

cells segregates into slow and fast cycling branches. Moreover, it provides novel mathematical 

methodology suited to test models of heredity within tree-structure data, generated by an expanding T 

cell family or any other proliferating and continuously-imaged cell type. 

 

Results: 

 

Continuous in vitro imaging reveals that distinct division speeds emerge within the same T cell 

family. In order to comprehensively map clonal expansion in vitro starting out from individual naïve 

CD8+ T cells, we utilized a continuous imaging platform (19). Naïve CD44low CD8+ T cells were 

individually sorted via flow cytometry from peripheral blood of C57BL/6 mice, transferred to culture 

wells coated with anti-CD3 and anti-CD28 antibodies and supplemented with interleukin 2 (IL-2) (Fig. 

1 A). This treatment enabled TCR restimulation throughout the expansion phase and induced vigorous 

proliferation that we monitored via continuous imaging for up to five days (Fig. 1 B and Movie S1). 

Importantly, IL-2 concentrations remained at saturating levels throughout the whole observation period 

(Fig. S1). Since overcrowding of microwells (20–100 m in diameter) and clustering of T cells can be 

a problem for tracking the individual members of an expanding T cell family tree (16, 17), we sorted 
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single T cells into relatively large wells with a diameter of 1840 m and imaged the complete well 

(Movie S2). These “macrowells” allowed for freer migration and reduced overlay phenomena of 

activated T cells. This enabled a more seamless tracing of individual T cells throughout many 

generations of division activity (Fig. 1C–D and Movie S3). We found that activated T cells required on 

average 39 hours to complete their first cell division (Fig. 1 E). The average interdivision time for 

subsequent cell cycles amounted to 8.6 hours but showed strong variation ranging from 5 to 28 hours 

per cell cycle (Fig. 1 F). Interestingly, while some of this variation could be attributed to differences 

between the overall division speed of distinct T cell families (interfamily variance), most of it was 

derived from differences in division speed between individual T cells belonging to the same family 

(intrafamily variance) (Fig. 1G). To explore whether these differences arose as random fluctuations or 

were heritably maintained, we first investigated correlations of division speed between close relatives 

in a family tree. As previously reported (14-17), we found that T cell siblings shared similar division 

speeds with one another and with the mother cell from which they were derived (Fig.1 D and H). To 

then investigate more distant genealogical relationships, we grouped the progeny of an individual T cell 

into four main branches, emerging from the second generation of each family tree (Fig. 1 I). In more 

than 40% of family trees (18 of 43), the average T cell division speed differed significantly between 

these branches (Fig. 1 J). We also identified distinct average division speeds in branches derived from 

the first generation of T cell family trees, albeit at a lower incidence (Fig. S2). These data suggest that 

slow and fast cell cycle activities can evolve within the same T cell family and can be heritably 

maintained across multiple generations.  

 

Computational analysis of T cell family trees identifies a model in which early activated T cells 

diverge into slow and fast cycling subsets. To more formally explore, whether differentiation of 

proliferating T cells into subsets with heritably distinct division speeds indeed accounted for the 

variability of inter-division times and the resulting interior structure of T cell family trees, we used a 

branching process framework (20). Since we did not observe the assumed underlying differentiation 

processes directly, we modeled the state/subset of each cell as a hidden variable.  To infer the parameters 

of the branching process, we then developed a Bayesian inference framework for tree-structured data, 

comprised of a Markov Chain Monte Carlo (MCMC) sampling approach with hidden layers (21, 22). 

Our inference framework takes as input the genealogical trees obtained from live cell imaging movies, 

as well as a model hypothesis describing the underlying branching process. As output, it returns the 

posterior distribution of model parameters as well as the model evidence for every assumed model 

hypothesis. These model evidences and corresponding Bayes factors are then used for model selection 

(Fig 2A and Supplementary Methods). The individual steps of our iterative scheme are depicted in 

Figure 2B (Fig. 2B and Supplementary Methods).  

We assumed that the inter-division times of cells belonging to every subset are distributed according to 

a log-normal distribution with a specific mean and coefficient of variation (CV). To allow for efficient 

computation we divided our dataset into eight groups of five family trees each, and for each group, 

inferred the posterior distribution of model parameters as well as the model evidences. We then selected 

the models best fitting to our data by calculating Bayes factors based on the model evidences. To further 

assess how well the best-fitting model represented our data, we tested whether model-based simulations 

recapitulated the statistical characteristics of the experimental data (Supplementary Methods).  

We first investigated three basic model topologies: In model #1 naïve T cells gave rise to one 

proliferating subset, in model #2 to one proliferating subset that could differentiate into another subset 

proliferating at a distinct speed, and in model #3 to one proliferating subset that could differentiate into 

two others each proliferating at distinct speeds (Fig. 2 C). As expected, a model assuming that 

proliferation of all activated T cells could be described by one division speed (i.e., one distribution of 

division speed learned from the data) was insufficient account for the specific structure of T cell family 

trees (Fig. 2 D and S3-6). Interestingly, differentiation of one proliferating subset into another was also 

insufficient to account for the measured data. This instead required the early emergence of a quickly 

proliferating subset with the capacity to differentiate into slowly or quickly cycling progeny (Fig. 2 D 

and S3-6). Mean inter-division times of these subsets were predicted at 8.8 h, 7.8 h and 12 h for the 

early activated (EA), fast-dividing (F) and slow-dividing (S) subsets, respectively (Fig. 2 E and S7). 

The learned distribution of division speed for the slow-dividing subset was relatively wide, while those 

of the early-activated and fast-dividing subsets showed considerably less variation (Fig. 2 F and S7). 

To rule out the possibility that model #3 was the preferred model only due to its additional flexibility, 
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we compared it to a mixture model in which, once leaving the EA state, cell cycle speeds are taken from 

two overlaid distributions without considering the topological restraints of the proposed differentiation 

process (Supplementary Methods). This mixture model, however, did not account for the 

experimentally determined structure of T cell family trees (Fig. S3-6). Using the simulation analysis 

mentioned earlier, we found that the best-fit “EA to S or F” model—although correctly reproducing the 

overall distribution of inter-division times (Fig. 2 G and S8)—underestimated the contribution of 

interfamily differences to the overall variation of T cell division speed (Fig. 2 H and S9). It further 

overestimated the percentage of trees with branches showing significantly distinct division speeds (Fig. 

2 I and S10). This indicated that division speed of activated T cells may not only depend on their current 

differentiation state (EA, S or F) but also on an ancestral imprinting received by the starting cell and 

passed down to its descendants. To account for this clonal imprinting of division speed, we allowed for 

a log-normally distributed factor in the model formalism that could modify all subset-specific 

proliferation rates of a given T cell family by a certain value (Supplementary Methods). Fitting this 

extended model (model #4, Fig. 2 J) to the data, we quantified the variation of subset-specific mean 

inter-division times between different families (Fig. 2 K and S11) and found that this model was able 

to explain the data best (Fig. 2 L and S3-5 and S12). Importantly, despite the additional variation 

introduced by this factor, model #4 maintained the distinct division speeds of the EA, F and S subsets 

(Fig. 2 M and N and S13). We noted that the overall distribution of inter-division times in simulated 

data based on model #4 (Fig. 2 O and S14) was similar to the results of model #3 (Fig. 2 G and S8), 

and this statistical feature alone would not have been enough to distinguish between the two models. 

Instead, more elaborate structural features of the T cell family trees could demonstrate differences 

between the two models. Indeed, model #4 now correctly captured both intra- and inter-family 

variability (Fig. 2 P, S15) and generated a realistic fraction of T cell family trees whose second-

generation branches proliferated at distinct average speeds (Fig. 2 Q, S16). The inferred model 

parameters and model evidences for all models and data-groups are depicted in Supplementary Figures 

S7, S13 and S17-S19. Taken together, these computational analyses suggested that T cell clonal 

expansion is not a homogenous process programmed exclusively upon T cell priming. Instead, the 

emergence of multiple T cell subsets proliferating at distinct speeds appeared necessary to correctly 

capture the evolution of an expanding T cell family tree. 

 

Diversification of division speed occurs after a homogenous burst phase and is preceded by 

differences in CD25 expression. The experimental conditions, under which the above-mentioned 

results were gathered, allowed both the starting cell as well as its descendants to receive TCR 

stimulation. This raised the question whether the emergence of slow and fast dividing branches within 

the same T cell family tree was the consequence of TCR stimuli incidentally accumulating in one branch 

but not the other. Thus, we next asked whether distinct division speeds would also emerge when TCR 

stimuli are restricted to the starting cell. To achieve this, we activated T cells in bulk via plate bound 

anti-CD3 and anti-CD28 antibodies in presence of IL-2 and IL-12 and, 24 h later, sorted single undivided 

T cells into wells containing no further TCR stimuli. To sustain proliferation for an extended period of 

time, wells were supplemented with saturating doses of IL-2 only (“brief”) or IL-2 and IL-12 (“brief + 

IL-12”). As before we tracked T cell proliferation via continuous imaging for up to five days (Fig. 3 A). 

Upon brief TCR stimulation, 1st and 2nd generation T cells divided at the same average speed as those 

cultured in the sustained presence of TCR stimuli (“sustained”). After this initial burst phase, the average 

division speed of briefly stimulated T cells significantly slowed down, albeit less in the group 

supplemented with IL-2 and IL-12 (Fig. 3 B and C). Importantly, the variation in division speed of both 

the “brief” and “brief+IL-12” groups matched or even exceeded that of T cells receiving sustained TCR 

stimuli (Fig. 3B and C). If this variation arose due to random fluctuations in division speed, one would 

expect that over time short and long inter-division times cancel each other out and all members of a 

growing T cell family occupy the same or adjacent generations.  However, we found that upon acquiring 

an increasing number of divisions, the generational range between the most and least divided members 

of a T cell family constantly widened, arguing in favor of distinct family branches heritably maintaining 

slower and faster cell cycle activity (Fig. 3 D). To more closely investigate the mechanistic origin of 

these distinct division speeds, we measured the expression of the high-affinity IL-2 receptor alpha chain 

(CD25) during continuous imaging. We achieved this by addition of very low concentrations of anti-

CD25 antibody conjugated to relatively photostable fluorophores such as Phycoerythrin (PE) or 

Allophycocyanin (APC) (23). We found that addition of sufficiently low antibody concentrations 
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interfered only very little with the proliferative activity of activated T cells (Fig. S20) but still generated 

readily detectable fluorescent signals (Movie S4). Interestingly, T cells receiving brief vs. sustained 

TCR stimulation showed distinct levels of CD25 surface expression already within the 1st and 2nd 

generation but still proliferated at the same speed. Only from the 4th generation onwards did lower or 

higher CD25 expression levels begin to correlate with lower or higher T cell division speed (Fig. 3 E). 

In fact, closer inspection of individual T cell family trees showed that changes in CD25 expression levels 

can be allocated to specific branches and can precede changes in division speed that develop across 

multiple generations (Fig. 3 F and Fig. S21). Taken together, these data indicate that during the first 

two generations of T cell proliferation, division speed is largely independent of sustained TCR stimuli, 

IL-12 availability or CD25 expression levels. Thereafter, however, distinct levels of CD25 surface 

expression begin to correlate with distinct division speeds and are heritably maintained within distinct 

branches of an expanding family tree. 

 

Adoption of slower division speed coincides with re-expression of CMP marker CD62L. Finally, 

we aimed to investigate whether these linked changes in IL-2 receptivity and division speed also 

correlated with memory vs. effector T cell differentiation. Since CD62L+ CMPs have been identified as 

early as day four post immunization in vivo and have been shown to divide slower than their CD62L– 

counterparts (8), we decided to investigate expression of this memory marker in our experimental 

system. First, we analyzed single-cell-derived T cell responses via flow cytometry at day five after in 

vitro activation. In line with previous observations made in vivo, we found that larger T cell families 

contained lower percentages of CD62L+ T cells (Fig. 4 A). Moreover, when tracking T cell responses 

derived from populations of 100 T cells via intracellular dye dilution, we found that those T cells which 

had undertaken more divisions contained lower percentages of CD62L+ cells compared to their less-

divided counterparts (Fig. 4 B and C). When tracking single-cell-derived T cell responses in the same 

manner, we found that T cell families stretched out across multiple generations and that CD62L– cells 

accumulated in the stronger divided offspring of the same starting cell (Fig. 4 D and E). While this 

observation could indicate that CD62L– T cells divide faster, it could also mean that differentiation into 

CD62L– T cells happens only after a certain generation is reached. To resolve this question, we again 

turned to continuous imaging. Immediately after T cell activation CD62L is enzymatically removed 

from the surface of activated T cells (24). In line with this shedding of CD62L, we found virtually no 

surface expression of this molecule immediately after T cell activation. However, CD62L surface 

expression reappeared from the 2nd generation onwards and coincided with a slower division speed 

relative to CD62L– T cells found in the same generation (Fig. 4 F). Importantly, division speed of 

CD62L+ T cells remained relatively fixed throughout generations, arguing that the gradual slow-down 

of T cell families that we had observed from generations 3 to 6 resulted from an increasing number of 

T cells switching into the CD62L+ state. The same differentiation associated reduction of cell cycle 

speed occurred in presence of IL-12, albeit with CD62L+ T cells maintaining substantially faster division 

activity than in absence of this inflammatory cytokine (Fig. 4 G). 

 

Discussion 

 

It is a hallmark of adaptive immunology that single antigen-specific T cells can generate progeny that 

diversifies into both terminally differentiated effector cells and precursors of long-lived memory cells 

(25). This fate diversification occurs in parallel to rapid T cell proliferation and computational modelling 

of single-cell-derived T cell responses has suggested that memory precursors and short-lied effector T 

cells are set apart by fundamentally distinct cell cycle speeds (2). Recently, we have shown that four 

days after initial T cell priming, memory precursors are characterized by a slower division speed than 

their effector counterparts in vivo (8). Early clonal expansion on the other hand was found in vitro to 

occur in a highly synchronized manner (15-18). Here, we set out to close the gap between these early in 

vitro observations and the later diversification of division speed and T cell fate observed in vivo. 

Therefore, we utilized continuous live-cell imaging and tracked the division speed, differentiation status 

and genealogical connections of all descendants derived from a single naïve T cell for up to ten divisions 

of activation-induced proliferation in vitro. We find that initial T cell proliferation indeed occurs in a 

burst-like manner. With rapid execution of T cell divisions being largely independent of further TCR 

and cytokine stimuli received beyond priming. At two to three cell divisions, the average duration of 

this burst is similar to that previously described for in vitro settings in which stimuli were stringently 
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restricted to the starting cell (18, 26, 27). Upon restriction of subsequent stimuli, including blockade of 

endogenous IL-2, T cell proliferation abruptly subsides after completion of this burst (18, 26, 27). This 

homogenous programming of proliferation activity, termed “division destiny”, has been attributed to a 

division counter (18, 26) or division timer (27) set in the starting cell and transmitted to all of its progeny. 

Here, we deliberately chose culture conditions that maintained T cell proliferation beyond the initial 

burst phase and closely monitored the evolution of cell cycle speed within the resulting family trees. 

Interestingly, we found evidence for a heredity of cell cycle speed that was in part programmed in the 

starting cell but also critically required the emergence of distinct T cell subsets proliferating at distinct 

speeds. One of these, the EA subset, was of transient nature and its life-time coincided with the duration 

of the initial proliferative burst. Thereafter, slow (S) and fast (F) cycling subsets emerged that were 

characterized by distinct CD25 and CD62L expression levels, two markers that have been found to 

characterize the early subdivision of long-lived CMPs (CD62L+CD25–) and non-CMPs (CD62L–

CD25+) in vivo (28, 29). In keeping with a concept of asymmetric cell division (30), the segregation of 

these subsets has been proposed to occur as early as the first cell division. While our data cannot exclude 

such an immediate segregation, they rather support a developmental model in which lineage segregation 

begins somewhat later, after a burst-like expansion of two to three cells division. Thereafter, we find 

that individual branches within an expanding T cell family tree can maintain slower or faster cell cycle 

speeds that coincide with differences in expression of CD25 and CD62L. With these findings, our study 

puts renewed focus on the intertwined nature of cell cycle activity and T cell differentiation (31, 32). 

While previously this relation has been mainly explored with respect to the accumulated number of 

divisions, we now highlight the actual speed of cell division as a major heritable property that appears 

to be regulated in parallel to key lineage decisions of activated T cells. From a technical point of view, 

we provide a novel computational inference framework for analyzing tree-structured data obtained by 

live-cell imaging. Due to the complexity of such tree-structured data, previous studies have often only 

utilized summary statistics from live-cell imaging experiments to infer underlying kinetics (15, 33, 34). 

Our framework, however, exploits full structural information from this data type. As opposed to few 

other model-based analyses of lineage trees where phenotypic measurements were assumed to inform 

about cell state changes (35-38), our framework does not rely on phenotypic observations and links 

division speed to underlying hidden states. Another important feature of our study is the simultaneous 

analysis of complete genealogical trees without partitioning into smaller “sub-trees”, which ensures that 

no long-ranged structural information is lost. Our inference framework allows to investigate the complex 

kinetic structure of expanding T cell family trees and enables hypothesis testing as to the hereditary 

nature of cell cycle activity and the topological organization of T cell differentiation. It will be exciting 

to investigate whether the developmental framework proposed here will hold true in vivo and to more 

closely examine how T cell differentiation and cell cycle speed are connected on the molecular level. 
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Material and Methods 

 
Mice 

C57BL/6 wt mice were purchased from Envigo. OT-I Rag1-/- matrix donor mice expressing 

combinations of the congenic markers CD45.1/2 and CD90.1/2 were bred under specific pathogen-free 

conditions at the mouse facility of the Institute for Medical Microbiology, Immunology and Hygiene, 

Technical University of Munich (TUM), Munich 81675, Germany. Animal care and procedures were in 

accordance with institutional protocols as approved by the relevant local authorities. 

 

Cell Sorting 
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Cells were isolated from peripheral blood or spleens of C57BL/6 or OT-I Rag1-/- matrix donor mice 

and sorted for a naive phenotype (CD8+, CD44low) at a MoFlo Legacy or MoFLo XDP cell sorter. For 

experiments with sustained anti-CD3/CD28 stimulation a single naive CD8+ T cell was sorted per well 

of an anti-CD3/CD28 coated (10 µg/mL at 4°C over night) plate (384 Well Small Volume™ LoBase 

med. binding µClear® microplate) containing 25 µL RPMI + Pen/Strep + 10 % heat-inactivated FCS 

and 25 U/mL recombinant human IL-2. For experiments with limited anti-CD3/CD28 stimulation 10 

000 naive CD8+, CD44low T cells were sorted per well of an anti-CD3/CD28 coated (10 µg/mL at 4°C 

over night) plate (384 Well med. binding µClear® microplate) containing 100 µL RPMI + Pen/Strep + 

10 % heat-inactivated FCS + 25 U/mL recombinant human IL-2 + 10 ng/mL murine IL-12. After 24 h 

at 37°C + 5% CO2 + 95% H2O the cells were pooled and sorted again. This time it was sorted for 

activated (CD8+, CD44high) T cells and a single activated cell was sorted per well of an anti-CD28 

coated 384 well plate (384 Well Small Volume™ LoBase med. binding µClear® microplate) containing 

25 µL RPMI + Pen/Strep + 10 % heat-inactivated FCS and 25 U/mL recombinant human IL-2 with or 

without 10 ng/mL murine IL-12. 

 

Continuous Single-Cell Imaging 

Live-cell imaging was performed by the ETH Zurich as described by Eilken et al. (Eilken, H.M., S. 

Nishikawa, and T. Schroeder, Continuous single-cell imaging of blood generation from haemogenic 

endothelium. Nature, 2009. 457(7231): p. 896-900.) Briefly, the microplates were transferred to a live-

cell imaging microscope and approximately every 1-3 minutes a picture was taken from each well. For 

experiments in which the expression of a surface antigen was measured, the respective dye-conjugated 

antibody was added in very low concentration to the culture medium (e.g., 1:20 000 for anti-CD25-

APC, corresponding to 10 ng/mL) and in addition to the bright field images the respective fluorescent 

channel was acquired approximately once every 45 minutes. The cells were observed for 3-5 days. 

 

Cell Tracking 

Generation of T cell family trees and heat trees was performed by manually tracking the cells using 

“The Tracking Tool“ and the semi-automatic FI-measurement software “qTFy“ (Hilsenbeck, O., et al., 

Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat 

Biotechnol, 2016. 34(7): p. 703-6.) 

 

Cell Proliferation Dye Staining and Flow Cytometry 

Cell Proliferation Dye staining was performed using the CellTrace Violet™ Cell Proliferation Kit by 

ThermoFisher scientific according to the manufacturer’s instructions. Cells were sorted, activated for 

24 h and sorted again as described in the section about cell sorting. After three days the cells were stained 

with anti-CD62L-FITC (MEL-14) and acquired using a Cytoflex S cytometer.  

 

ELISA (Suppl.) 

The IL-2 ELISA was performed using the IL-2 Human ELISA Kit by ThermoFisher scientific according 

to the manufacturer’s instructions. 

 

Antibodies and Cytokines 

Anti-murine CD3 (145-2C11), anti-murine CD28 (37.51) and anti-murine CD25-APC (PC61) were 

purchased from BD Bioscience, anti-murine CD8 (53.6.7), anti-murine CD44 (IM7) and anti-murine 

CD62L-FITC (MEL-14) were purchased from Biolegend. Recombinant murine IL-12 was purchased 

from Peprotech. Recombinant human IL-2 was purchased from ThermoFisher Scientific. 

 

Statistical Analysis 

All non-in silico experiments were analyzed using Prism 7, 8 and 9 (GraphPad Software). p-values were 

assessed using a two-tailed unpaired Student’s t test, one-way ANOVA, Spearman non-parametric or 

Pearson test, as specified in the figure legends.   

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.28.454102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454102
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures 

 
 

 
 
 

Figure 1: 

Continuous in vitro imaging reveals that distinct cell cycle speeds emerge within the same T cell 

family. (A) Blood was taken from an OT-I mouse and sorted for naïve CD8+, CD44low cells. A single 

naïve OT-I cell was sorted into a well that was coated with αCD3 and αCD28 in the presence of 25 

U/mL IL-2. The cell culture plate was transferred to a live-cell imaging microscope and imaged for the 

next three to five days. (B) Pictures, taken at different time points from the same single cell-derived 

progeny. (C) Snapshot of a single cell-derived progeny at 3 days, 17 hours and 45 minutes after start of 

acquisition. Colored lines represent migration pattern of individual cells. (D) Definitions of family tree 

associated data: y-axis: Time. Generation: The number of cell divisions that have occurred from the 

naïve T cell until the respective cell was created by division of its respective mother cell. Mother and 

daughter cells: The two cells that originate from the same cell division are daughter cells in respect of 

the original cell that divided (mother cell). Sibling cells: Cells that have the same mother cell. Inter-

division time: Time between the creation of an individual cell due to the division of its mother cell into 

two daughter cells and the end of the respective cell due to its own division into two new daughter cells. 

(E) Time for first and subsequent divisions. Single naïve (CD44low) CD8+ T cell were sorted into separate 

wells of an αCD3/CD28-coated 384-well plate and imaged for 5 days in a live-cell imaging microscope. 

The fate of each cell was tracked and the inter-division time for the first division and all subsequent 

divisions were determined for 43 single-cell derived progenies (in total 43 cells for 1st division and 2710 

cells for subsequent cell divisions). Red lines indicate the means. (F) Intra- and inter-clonal variability 
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of inter-division times. The inter-division times from (E) (first division excluded) arranged according to 

their mean inter-division time. Red bars: mean inter-division time within family tree. Red dotted line: 

mean for all cells. (G) Total variance of inter-division times from further divisions in (E), as well as the 

contribution of intrafamily and interfamily variances are shown. Intrafamily variance is calculated as 

the weighted mean of the variances of inter-division times within all different families. Interfamily 

variance is calculated as the weighted variance of the mean inter-division times of different families 

(Supplementary Methods). (H) Inter-division times from (E) were plotted against the inter-division 

times of their sibling cell (left panel, 1201 pairs) or their direct daughter cells (right panel, 2630 pairs). 

The correlation coefficient r and the p-value for spearman correlation are indicated. (I) A representative 

family tree was divided into 4 branches starting from generation 2. Loose ends: no further tracking 

possible for the respective cell. (J) Inter-division time of cells in the four branches starting from the 

second generation—as depicted in (I)—are color-coded for all trees in (F). In 18 out of 43 trees (~42%, 

highlighted trees), inter-division times differed significantly between the four branches. 
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Figure 2: 

Computational analysis of T cell family trees identifies a model in which early activated T cells 

diverge into slow and fast cycling subsets. (A) Schematic of the workflow of our inference scheme. 

The scheme requires as input 1) lineage trees obtained from successive 2D microscopy images, and 2) 

one or more model hypotheses describing the underlying branching process. For every model 

hypothesis, it returns posterior distribution of model parameters and an approximation of the model 

evidence. The model evidences are used for model selection. (B) Individual steps of the iterative 

inference scheme. In every iteration, a new set of model parameters are proposed based on the current 

parameter values and a proposal distribution. These proposed parameters, e.g., the mean and CV of 

subset-specific inter-division time distribution, are used to simulate several samples of hidden variables 

of the model. For instance, the shown model topology includes three different subsets (black, blue and 

green). The simulated hidden variables in this case are the subset that is assigned to each cell in the tree. 

For every tree and every simulated sample, the likelihood of the data is calculated given the current 

value of parameters and hidden variables. A Monte Caro approximation method is used to calculate the 

overall likelihood of the data given the parameters. The proposed parameter set is accepted with the 

acceptance probability calculated based on the likelihood, and is rejected otherwise. (C) Schematic of 

different model hypotheses used for the analysis of T cell family trees: Model #1 assumes a homogenous 

population with one proliferation speed. Model #2 assumes an early expanding subset that later 

differentiates into another subset with a distinct proliferation speed. Model #3 assumes an early 

expanding subset that diversifies into slow- and fast-dividing subsets. (D) The model evidences for the 

models in (C) indicate the following hierarchy where model #3 explains the data best and model #1 is 

least matching to the data: model #3 > model #2 > model #1. The circles show the mean of model 

evidences of the eight data groups (Supplementary Methods). The error bars show the standard error of 

the mean.  (E) Inferred mean and (F) CV of the inter-division time distribution for “Early-activated”, 

“Slow-dividing” and “Fast-dividing” subsets based on model #3. For every data group, the median of 

the posterior distribution of the respective parameters is calculated; the squares denote the mean of these 

medians (Supplementary Methods). The error bars show the standard error of the mean. (G) The 

distribution of inter-division times in 10000 simulated trees based on model #3 compared to that of the 

experimental data (grey). The red histogram shows the overall distribution in the simulated data, while 

the black, blue and green histograms show the distribution of “Early-activated”, “Fast-dividing” and 

“Slow-dividing” subsets respectively. The results are shown for one data group. (H) Total variance of 

the inter-division times and the contribution of intrafamily and interfamily sources as observed in the 

experimental data (grey bars) and simulated data (red boxes). The simulated data consists of 500 datasets 

of each 44 trees simulated based on model #3. Intrafamily variance is calculated as the weighted mean 

of the variances of inter-division times within different families. Interfamily variance is calculated as 

the weighted variance of the family mean inter-division times (Supplementary Methods). The results 

are shown for one data group. (I) Percentage of the trees whose four branches (as in Fig. 1I) have 

significantly distinct inter-division times. The grey line shows the experimental data and the red 

histogram shows the distribution of this percentage in the simulated data as in (H) (Supplementary 

Methods). The results are shown for one data group. (J) Model #4 adopts the topology of model #3 and 

incorporates interfamily variability in addition. The subset-specific mean inter-division times are 

assumed to be log-normally distributed with unknown parameters among different families 

(Supplementary Methods). (K) Inferred variation of subset-specific mean inter-division times among 

different families based on model #4. The black, blue and green curves show the distribution for “Early-

activated”, “Fast-dividing” and “Slow-dividing” subsets respectively. The results are shown for one data 

group. (L) Model evidences for the models in (C) and (J) indicate that model #4 explains the data best. 

The circles show the mean of model evidences of eight data groups (Supplementary Methods). The error 

bars show the standard error of the mean. (M) and (N) Same as (E) and (F) with parameters inferred 

based on model #4. (O), (P) and (Q) Same as (G), (H) and (I) with simulated data based on model #4. 
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Figure 3: 

Diversification of division speed occurs after a homogenous burst phase and is preceded by 

differences in CD25 expression. (A) Live-cell imaging with brief TCR stimulation. Blood was taken 

from an OT-I mouse and sorted for naïve CD8 T cells. 10 000 cells/well were activated for 24 h with 

plate-bound αCD3/CD28 and 25 U/mL IL-2. Cells were sorted again for activated (CD44high) cells and 

a single cell was sorted in each well of a 384-well plate that was coated with ICAM-1 or αCD28 to 

enable attachment. The cells were imaged for 3-5 days. (B) Cells were stimulated as described in (A). 

After the brief stimulation and segregation 10 ng/mL IL-12 were added to the medium (second panel) 

or not (left panel). The cells in the right-hand panel were stimulated continuously with αCD3/αCD28 as 

in figure 1. The inter-division times of all cells are plotted for the respective generations. Red lines 

indicate the median. Kruskall-Wallis test: ****: p<0.0001 (C) Data points from (B) were allocated to 

the different family trees, and the coefficients of variation of the inter-division times within the trees 

were calculated within each generation. The mean of these CVs is plotted as bar graph. On average 

15.45 trees per bar (4-27). (D) For all three conditions it is shown how the individual cells within a tree 

are distributed over the generations at different time points. The fraction of tree per generation is 

calculated by dividing the number of cells in a specific generation at the given time point by the 

maximum number of cells potentially present in the respective generation (number of cells in generation 

X / 2 generation X). E.g., for a potential tree that consists after 48 h out of 1 cell in generation 2 and 6 cells 

in generation 3 the respective fractions of tree per generation are for generation 2: 1 / 22 = 0.25 and for 
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generation 3: 6 / 23 = 0.75. For incompletely tracked trees (e.g., when cells died or the identity of cells 

is unclear) the fractions of tree per generation is corrected so that the sum of all fractions of tree per 

generation sum up to 1.0 (corrected fraction of tree per generation = fraction of tree per generation / sum 

of all fractions of tree per generation at the same time point). Each square represents the cells of a tree 

that are in the respective generation at the given time point. The redder the box is, the higher is the 

fraction of the tree in the respective generation. Thus, red boxes indicate synchronized cell divisions 

whereas green boxes indicate desynchronization. Samples from the continuous stimulation setting are 

depicted in the upper part. Below that are the short stimulation samples. The short stimulation + IL-12 

samples are depicted in the bottom part. (E) As in (A) but αCD25-APC was added to the culture. The 

inter-division times of all cells from all investigated trees were separated according to their generation, 

and their inter-division times were plotted against their CD25 expression. Blue: brief stimulation without 

IL-12. Red: brief stimulation with IL-12. Green: continuous stimulation. Spearman r and p-values as 

indicated. Results from: Generation 1: 80 cells, generation 2: 138 cells, generation 3: 232 cells, 

generation 4: 313 cells, generation 5: 422 cells, generation 6: 583 cells. (F) Exemplary tree (brief 

stimulation + IL-12) shown as family tree (left panel. Loose ends with red X: cell died) and heat tree 

(right panel). Each box represents a cell as in the family tree. Yellow: low CD25 expression. Red: high 

CD25 expression. Blank: no CD25 quantification possible. 
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Figure 4: 

Adoption of slower division speed coincides with re-expression of CMP marker CD62L. (A) Cell 

numbers of single cell-derived progenies are plotted against the percentage of CD62L expressing cells 

(determined by flow cytometry) within the respective T-cell family (continuous TCR stimulation). 

Spearman correlation coefficient r = -0.7569, p < 0.0001 n = 31 (cells with %CD62L = 0% excluded 

from analysis). (B) Representative Cell Trace Violet plot of the offspring of 100 OT-I cells that had 

been stained with Cell Trace Violet and activated for 24 h. After further 3 days of cell culture, the cells 

were stained for CD62L and analyzed by flow cytometry. (C) On the basis of the vertical lines in the 

Cell Trace Violet plot in (B), the number of cell divisions for each cell in the plot can be estimated. The 

mean CD62L expression within each division peak is shown for all cells of the 100 cell-derived 

progenies. (D) Left panel: Representative Cell Trace Violet plot as in (B) but from a single progenitor 

cell. Right panel: Overlay of 30 single-cell Cell Trace Violet plots. Each color represents a different 

single-cell derived progeny. (E) CD62L expression in division peaks as in (C) but from single-cell 

derived progenies. In addition, division peaks of the same single-cell tree are drawn in the same color 

and connected with a line. (F) Inter-division times in different generations (left) and from all generations 

together (right) in the “brief” stimulation condition. The two-sided Wilcoxon rank sum test is used to 

determine if the inter-division times of CD62L+ (green) and CD62L- (blue) cells are significantly 

different: ns: p-value > 0.05, *: p-value ≤ 0.05, **: p-value ≤ 0.01, ***: p-value ≤ 0.001, ****: p-value 

≤ 0.0001. (G) Same as (F) for the “brief+IL-12” stimulation condition. 
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