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 302 
 303 
Figure 3: Sensing both intermittency and frequency enables navigation across diverse plumes. A. Our model 304 
linearly combines an intermittency sensor (red) and whiff frequency sensor (blue) to bias upwind motion. Following 305 
(Demir et al., 2020), turns occur stochastically at a constant Poisson rate 𝜆/012, while the sensor output B biases the 306 
likelihood that turns are upwind. Turn magnitudes are chosen from a normal distribution with mean 30o and S.D. 8o 307 
(Demir et al., 2020). B. Example successful trajectories in the high intermittency and high frequency plume (Figure 2). 308 
C. Percentage of agents that reach within 15 mm of the source when signal is present minus same percentage when 309 
signal is absent, for the model with only intermittency sensing (gF = 0; red), only frequency sensing (gI = 0; blue),  or 310 
both (𝑔' , 𝑔( nonzero; purple), in the high intermittency plume (top) and high frequency plume (bottom). Error bars: SEM 311 
calculated by bootstrapping the data 1000 times (Methods). D. Distribution of initial downwind position x (first column), 312 
crosswind position y (2nd column) and orientation (3rd column) for successful agents, for the high intermittency (top row) 313 
and high frequency (bottom row) plumes. Colors correspond to same models as in D. Upwind heading is 180° and 314 
shaded regions represent SEMs obtained from bootstrapping (Methods) E. Relative filter weight ≔	3!〈(〉63"〈'〉

3!〈(〉*3"〈'〉
	 for 315 

different points in the two plumes.  316 
 317 
Optimal performance requires distinct weighting of frequency and intermittency in 318 
different environments 319 
 320 
To investigate the influence of relative sensor weight in navigation, we quantified navigational 321 
performance as a function of both the sensor weights 𝑔4 and 𝑔5 and the plume’s spatiotemporal 322 
complexity. To remove constraints due to the limited spatial and temporal resolution of the 323 
recorded plume videos, and to easily investigate a wide range of environments, we switched to 324 
simulated odor plumes. The plumes were modeled using a simple dispersion model (Farrell et al., 325 
2002). Gaussian packets of odor are released from a source at a fixed Poisson rate 𝜆, and 326 
advected by a velocity field composed of a uniform downwind velocity 𝑈. Normally distributed 327 
random perturbations 𝜂; and 𝜂< are added to the packet positions in the crosswind and downwind 328 
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directions, respectively, at each time step, to account for the effects of turbulent diffusivity. The 329 
turbulent diffusivity models the effects of turbulent eddies as a diffusive process, but with diffusion 330 
constant 𝜅 that can greatly exceed molecular diffusivity. In addition, the Gaussian packets grow 331 
in size with an effective diffusivity 𝐷, to account for the combined effects of molecular diffusion 332 
and smaller eddies in the wind flow (Figure 4A-B). Varying 𝑈 and 𝐷 allowed us to generate plumes 333 
with diverse temporal statistics. 𝑈 = 36mm/s and 𝐷 = 52mm=/s resulted in a high intermittency 334 
plume with long whiff duration (Figure 4C). Increasing the wind speed to 𝑈 = 300mm/s and 335 
decreasing effective diffusivity to 𝐷 = 10mm=/s resulted instead in a higher frequency plume with 336 
much shorter whiffs (Figure 4D). In each plume, we simulated 10,000 agents with uniformly 337 
distributed initial position and heading angle, where each agent navigated with a fixed set of gains 338 
𝑔4 and 𝑔5. We investigated various choices of 𝑔4 and 𝑔5, from 0 to 50X the base gains (Methods).  339 
 340 
The 𝑔4 and 𝑔5 maximizing performance in our simulated high intermittency plume was reasonably 341 
constrained, with a clear maximum occurring around the experimentally motivated gain (Figure 4 342 
Supplement). However, in the simulated high frequency plume, a variety of gains led to similarly 343 
maximal performance (Figure 4 Supplement), including some with values an order of magnitude 344 
larger than the base gains. We suspected that while a heavy weighting of either sensor might 345 
improve navigation, such extreme amplification may also compound the effects of noise, leading 346 
to a lack of robustness in natural conditions. We therefore added Gaussian noise to the I and F 347 
filters – noise amplitude was 5% of the average value of I (F) in the center of the simulated high 348 
intermittency (high frequency) plume. This removed maxima at high gains but retained clear 349 
maxima at lower gains (Figure 4E-F). Interestingly, the unique maxima sat fairly close to the base 350 
gain values (e.g. values of 1 in Figure 4E-F). In addition, the optimal gains for the simulated high 351 
intermittency and high frequency plumes had 𝑔5 = 0 and 𝑔4 = 0, respectively. This inherent trade-352 
off illustrates that simply augmenting the sensory capability can at times degrade performance, 353 
suggesting a benefit for sensor specialization in distinct environments.  354 
 355 
 356 
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 357 
 358 
 359 
Figure 4: Performance tradeoff between intermittency and frequency sensing in two diverse turbulent plumes. 360 
(A) Example of a simulated odor plume, following the framework in (Farrell et al., 2002). Gray circles denote Gaussian 361 
odor packets. (B) Example trajectory of a single odor packet in these simulations, and illustration of its growth. (C) 362 
Example odor concentration time series in a simulated high intermittency plume. (D) Same as C, for a high frequency 363 
plume. (E) Normalized success percentage within the simulated high intermittency plume (where success percentage 364 
is calculated as in Figure 3C) for different sets of I and F gains, after adding noise to I and F. Gains are measured in 365 
multiples of the base gains, defined in Methods. (F) Same as E, but for the simulated high frequency plume. (G) 366 
Normalized success percentage in the high intermittency plume versus same in the high frequency plume; each dot 367 
represents a different set of gains 𝑔( and 𝑔'. Points are colored by the relative weighting of the two sensors (see 368 
Methods for calculation details). Indicated point: gains that maximized the geometric mean of normalized success 369 
across the two plumes. The concavity of the front suggests a tradeoff in performance in either plume. 370 
 371 
 372 
Performance tradeoff between intermittency-sensing and frequency-sensing in different 373 
environments 374 
 375 
To get a better understanding of how navigational performance in these two simulated plumes 376 
depends on the sensor weights, we did a tighter sweep of gains near the performance maxima 377 
(Figure 3E-F) for each plume. For each set of gains, we then plotted performance in the high 378 
intermittency plume against that in the high frequency plume. For comparison, we also plotted the 379 
set of gains (𝑔4	∗, 𝑔5	∗	) that maximized the geometric mean of normalized success in both plumes 380 
(indicated in Figure 4G). The resulting scatterplot quantifies the performance in the two plumes 381 
for different navigational models, where each model is parameterized by its sensor weights 𝑔4 382 
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and 𝑔5. In general, the scatter plot fills out a region near the origin, bounded by a curve that forms 383 
a “Pareto front” of navigational performance. This Pareto front reveals a performance tradeoff for 384 
the different models: combinations of 𝑔4 and 𝑔5 that are weighted toward I do better in the high 385 
intermittency plume, while combinations weighted toward F outperform in the high frequency 386 
plume (Figure 4G). There was no fixed set of gains that performs optimally in both plumes. 387 
Importantly, the apparent concavity of the Pareto front illustrates a somewhat steep tradeoff, and 388 
suggests that flies might be better off modulating gains and switching between using intermittency 389 
and frequency sensors to bias upwind motion, as opposed to using both simultaneously.  390 
 391 
Finally, we wondered how this tradeoff manifests across a more diverse spectrum of plumes. The 392 
computational simplicity of the turbulent plume model allowed us to study a wide array of turbulent 393 
plumes differing in their temporal statistics. We fixed the gains to the values that optimized the 394 
geometric mean between the high intermittency and high frequency plumes, (𝑔4	∗, 𝑔5	∗	) and then 395 
varied the environmental parameters 𝑈 and 𝐷 to smoothly interpolate between the high frequency 396 
and high intermittency plumes investigated above. Success was roughly uniform in the different 397 
environments (Figure 5A). However, removing the frequency sensor (𝑔5	 = 0) significantly 398 
improved performance in the slowly advecting and highly diffusive plumes (low U; high D), which 399 
tend to be smoother in their concentration profiles. The reverse was true when we removed 400 
intermittency sensing (𝑔4 = 0), exemplifying a tradeoff in navigational performance that persists 401 
across this wide range of odor environments. Together with the results presented above (Figure 402 
3), this suggests that while a naïve summation of temporal sensors may be beneficial in some 403 
cases, in general, navigation can always be improved by some degree of specialization. 404 
 405 
 406 

 407 
 408 
Figure 5: Simultaneous intermittency and frequency sensing maintains steady performance across a spectrum 409 
of odor environments, but does not allow for optimal performance. Normalized success percentage for a 410 
frequency and intermittency-sensing model (A), only intermittency-sensing model (B) and only frequency-sensing 411 
model (C) for a range of simulated odor plumes. Success percentage is normalized such that the best performance of 412 
the three models is set to 1 for each environment. Gains for (A) were chosen to optimize the geometric mean of 413 
performance in the simulated high intermittency and high frequency plumes. Gains in (B) and (C) were chosen by 414 
taking the gains in (A) and then setting gF  (A) and gI (C) to 0.  415 
  416 
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 417 

Discussion 418 
 419 
In this work, we used numerical simulations to explore the value of two temporal features of the 420 
signal – odor intermittency and encounter frequency – in navigating naturalistic odor plumes 421 
spanning a range of spatial and temporal complexity. These two features are a natural set in that 422 
they can be varied independently to create a variety of odor signals (Figure 1). Other 423 
complementary and complete quantities could be used, such as whiff and blank duration (Rigolli 424 
et al., 2021), but we focused on these since they are directly implicated by various experiments 425 
in walking Drosophila melanogaster. The navigation model we proposed reduces two 426 
experimentally-informed models of fly olfactory navigation into elementary transformations that 427 
separately extract odor intermittency and encounter frequency, and then uses these two “sensors” 428 
to bias the agent upwind. An interesting finding here is that the optimal agent in the two simulated 429 
plumes assigned weights to the sensors that resembled the weights inferred from experiment 430 
(Demir et al., 2020) (Figure 4E, Methods). Loosely, this suggests that the manner in which 431 
temporal features are extracted and processed within the Drosophila olfactory circuit may already 432 
be adapted to natural plume environments.  433 
 434 
We emphasize that our work explores normative strategies, so our results have no bearing on 435 
whether such adaptation actually occurs. There is, however, evidence that such adaptation may 436 
exist at the level of individual neurons: for example moth ORNs adjust their encoding efficiency 437 
to the local statistics of pheromones (Levakova et al., 2018). Additionally, we emphasize that in 438 
(Demir et al., 2020), upwind orientation was found to be independent of intermittency for fixed 439 
frequencies, suggesting that such adaptation of sensor weight may actually be present in walking 440 
Drosophila. Our work suggests future experiments, based on simple modifications of existing 441 
experimental paradigms, that could be used to quantify this slower-scale adaptation. One could 442 
present the complex odor plumes we generated in our recent work (Demir et al., 2020), while 443 
modulating the overall statistics on a slower scale via the speed or strength of the upwind lateral 444 
perturbations, the wind speed, or both, and record how upwind orientation depends on frequency 445 
or intermittency. 446 
 447 
In the latter half of this study, we simulated odor plumes using a simple drift-diffusion model 448 
(Farrell et al., 2002) to efficiently generate a diversity of plumes. A more precise approach would 449 
be to numerically integrate the Navier-Stokes equations describing the wind flow, together with 450 
advective-diffusive scalar transport describing the dispersion of a scalar concentration field 451 
(Rigolli et al., 2021). In such simulations, resolving odor concentrations to the viscous scale is 452 
very computationally expensive. This would likely preclude the investigation over more than a 453 
handful of distinct odor plumes, as our simplified model allowed us to explore here. On the other 454 
hand, such detailed simulations show that even in a single plume, the statistics of the odor change 455 
significantly with distance from the source, and therefore animals may benefit from modulating 456 
sensory strategies during navigation (Rigolli et al., 2021). This is consistent with our finding that 457 
frequency sensing contributes more near the edges of the plume than it does near the centerline, 458 
and vice versa for intermittency sensing.   459 
 460 
There are several aspects of olfactory navigation not considered in this work. In particular, we 461 
have neglected the role of bilateral sensing between the two antennae. In insects, bilaterally-462 
resolved concentration sensing has been demonstrated in flies (Gaudry et al., 2013) and 463 
implicated in navigation of laminar ribbons (Duistermars et al., 2009). Bilateral sensing has also 464 
been demonstrated in mice (Rajan et al., 2006), sharks (Gardiner and Atema, 2010), and even 465 
humans (Wu et al., 2020), and has been implicated in effective navigation in aquatic environments 466 
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(Michaelis et al., 2020). Spatially resolved information has been shown theoretically to provide 467 
more information about an agent’s position relative to the source of the odor (Boie et al., 2018) 468 
and aid olfactory navigation strategies, even in plumes with elements of stochasticity and 469 
turbulence (Hengenius et al., 2021). For very closely spaced antennae as in flies (<1 mm), these 470 
gradients are very difficult to resolve and so are often not useful for navigation (Celani et al., 2014; 471 
Crimaldi and Koseff, 2001; Shraiman and Siggia, 2000). Nonetheless, it would be interesting to 472 
consider the effect of bilateral comparisons of intermittency and frequency, particularly when 473 
modeling the navigation of species with larger antennae.  474 
 475 
To this end, it has already been shown that bilateral comparisons of frequency allow agents to 476 
track the edges of some turbulent odor plumes (Michaelis et al., 2020). Additionally, recent work 477 
(Rigolli et al., 2021) has shown that in the central regions of a turbulent plume, the intensity of an 478 
odor signal is more useful than temporal statistics for predicting distance to source, while at the 479 
edges of the plume, temporal statistics become more useful. Thus it is very possible that in high 480 
intermittency plumes, organisms might use frequency to track the edges of odor plumes or even 481 
execute offset responses, such as those detailed in (Alvarez-Salvado et al., 2018).  482 
 483 
For the sake of simplicity, we considered a model where agents move with a constant speed and 484 
only change orientation through a discretized turning paradigm, suggested by (Demir et al., 2020). 485 
However, more diverse actions such as stopping and walking (Demir et al., 2020), speed 486 
modulation (Alvarez-Salvado et al., 2018; Mafra-Neto and Carde, 1994), continuous heading 487 
modulation (Alvarez-Salvado et al., 2018) and casting/counter-turning behavior (Alvarez-Salvado 488 
et al., 2018; Budick and Dickinson, 2006; Mafra-Neto and Carde, 1994; Pang et al., 2018; Vickers 489 
and Baker, 1994) have also been observed in insect olfactory navigation. It is also worth 490 
investigating, therefore, the role of intermittency and frequency in modulating behaviors such as 491 
these in different environments.   492 
 493 
Furthermore, due to the thresholding and compression of the odor signal in the two 494 
experimentally-informed models that motivated this study, we have not investigated the role that 495 
odor concentration may play in modulating navigational behavior. Absolute odor concentration 496 
can inform source location in turbulence (Rigolli et al., 2021), and more information is conveyed 497 
about spatial location when resources are devoted to encoding higher absolute concentrations 498 
(Victor et al., 2019). Concentration sensing has also been implicated in neuron response: in moth 499 
projection neurons, spike patterns depend on both the intensity and timing of odor stimuli (Vickers 500 
et al., 2001). Thus, it is likely that navigational performance could be enhanced by incorporating 501 
more information about the intensity of the odor signal, along with the extracted temporal 502 
statistics.  503 
 504 
Finally, we have not explored the role of learning. The frequency and intermittency filters we used 505 
had a timescale of two seconds, precluding history-dependent behavioral effects over longer 506 
timescales. History-dependence in navigational decisions has been observed in flying fruit flies 507 
(Pang et al., 2018), where the magnitude of fly turns decreased with the number of signal 508 
encounters, in desert ants (Buehlmann et al., 2015), where ants used the existence of previously 509 
learned olfactory cues to navigate in a new environment, and in mice (Gire et al., 2016), where 510 
gradient climbing was abandoned for foraging when mice were sufficiently conditioned on known 511 
odor locations. Theoretical strategies such as infotaxis, where agents navigate by using cues to 512 
learn an internal probabilistic representation of their environment (Vergassola et al., 2007), also 513 
has some support in experiment (Calhoun et al., 2014; Pang et al., 2018). We find that robust 514 
navigation is enhanced by modulating intermittency and frequency sensing in time, and 515 
incorporating history-dependence in our models could be done straightforwardly, with a few added 516 
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parameters. Pairing this with behavioral experiments of the type suggested above would provide 517 
a fruitful direction for future study. 518 
 519 
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Methods 535 
 536 
Simulating ON and F Responses to square waves 537 
 538 
The frequency response function is defined as the convolution between the whiff onset time series 539 
𝑤(𝑡) and an exponential filter with decay timescale 𝜏5 where the whiff time series is a sum of delta 540 
functions occurring at the onset of each whiff. Thus, we have  541 

𝐹(𝑡) = 9𝑤(𝑡 − 𝑠)
%

&?

𝑒&
@
', 	𝑑𝑠 =b 9𝛿(𝑡 − 𝑡A − 𝑠)𝑒

& @
',𝑑𝑠

%

&?A

=b𝑒&
.&.7
',

A

	 (7) 542 

 543 
 544 

where 𝑘 enumerates the whiffs. Note that 𝐹(𝑡 + Δ𝑡) = 𝐹(𝑡)𝑒&
89
:,. Therefore, in discrete time steps 545 

we have 𝑤(𝑡 + Δ𝑡) = 1 if 𝑜𝑑𝑜𝑟(𝑡) < 𝐾 and 𝑜𝑑𝑜𝑟(𝑡 + Δ𝑡) ≥ 𝐾 and 0 otherwise and 𝐹(𝑡 + Δ𝑡) =546 

𝐹(𝑡) ⋅ 𝑒&
8;
:, if 𝑤(𝑡 + Δ𝑡) = 0	and 𝐹(𝑡 + Δ𝑡) = 𝐹(𝑡) ⋅ 𝑒&

8;
:, + 1 if 𝑤(𝑡 + Δ𝑡) = 1.  547 

 548 
For 𝑂𝑁(𝑡), we use Euler’s method to numerically integrate Equation (2) to obtain 𝐴(𝑡) and then 549 
similarly integrate the following equation: 550 
 551 

𝑑𝑂𝑁
𝑑𝑡

=
1
𝜏,-

g𝐶(𝑡) − 𝑂𝑁(𝑡)h	 (8) 552 

 553 
where 𝐶(𝑡) is defined in Equation (1) and the above equation is equivalent to Equation (3).𝜏5 was 554 
set to 2s (Demir et al., 2020) while 𝜏" and 𝜏,- were set to 9.8s and 0.72s respectively (Alvarez-555 
Salvado et al., 2018). The detection threshold was assumed to be below the signal amplitude and 556 
𝑘! was set to be 1% of the signal amplitude.   557 
 558 
Calculation of ON and F responses to square waves 559 
 560 
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To illustrate how the ON and W filters respond to the frequency and duration of odor signals, we 561 
consider their response to square wave odor pulses of given frequency 𝑓, duration 𝐷 and 562 
amplitude 𝑆). We first consider the ON response. To understand the ON response we first have 563 
to calculate 𝐴(𝑡). From equation (2), we have 564 
 565 

𝑑𝐴
𝑑𝑡

=
1
𝜏"
∙ (𝑜𝑑𝑜𝑟 − 𝐴) (9) 566 

 567 
 568 
Let 𝐴B denote the value of 𝐴 at the offset of the 𝑛%C pulse of signal and 𝐴B∗  denote the value of 𝐴 569 
at the onset of the 𝑛%C pulse. We wish to obtain a recursive relation for 𝐴B which will allow us to 570 
solve for 𝐴B and from there obtain the value of 𝐴 at all times. At the offset of a pulse, 𝑜𝑑𝑜𝑟 = 0 571 
and 𝐴	will exponentially decay with time scale 𝜏" until the onset of the next pulse. This time of 572 

decay is given by D
E
− 𝐷. Hence at the onset of the next pulse,  𝐴B8D∗ =	𝐴B ∙ 𝑒

&	F <:=
∙H<>&IJ	K. At this 573 

point, for a time period 𝐷, i.e. until the offset of the (𝑛 + 1)%C	pulse, 𝐴 obeys the equation 574 
 575 

𝑑𝐴
𝑑𝑡

=
1
𝜏"
∙ (𝑆) − 𝐴) (10) 576 

 577 
with initial value 𝐴B8D	∗ .   Hence 578 
 579 

9
𝑑𝐴

𝑆) − 𝐴

"?@<

"?@<∗
=
𝐷
𝜏"	

(11) 580 

 581 
 582 

and therefore, after substituting 𝐴B8D∗ =	𝐴B ∙ 𝑒
&	F <:=

∙H<>&IJ	K  583 
 584 

𝐴B8D = 𝐴B𝑒
& D
E'= + 𝑆) k1 − 𝑒

&I'=l	 (12) 585 

 586 
 587 
One can thus see that  588 

𝐴B = 𝐴)𝑒
& B
E'= + 𝑆) k1 − 𝑒

&I'=lb 𝑒&
A
E'=

B&D

AL)

	 (13) 589 

 590 
 591 

= 𝐴)𝑒
& B
E'= + 𝑆) k1 − 𝑒

&I'=l ∙
1 − 𝑒&

B
E'=

1 − 𝑒&
D
E'=

. (14) 592 

 593 
Once the number of pulses 𝑛	is much greater than 𝑓𝜏", i.e  𝑡 ≫ 	 𝜏", we get  594 
 595 

𝐴B ≈
𝑆) k1 − 𝑒

&I'=l

1 − 𝑒&
D
E'=

. (15) 596 
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 597 
 598 
 599 
Since this is the value of 𝐴(𝑡)	at the end of a pulse, it will be the maximum value of 𝐴(𝑡) over one 600 
period. Ultimately, however, we are interested in computing 𝑂𝑁(𝑡),	which obeys the equation 601 
 602 
 603 

𝑑𝑂𝑁
𝑑𝑡

=
1
𝜏,-

⋅ 	 o
𝑜𝑑𝑜𝑟

𝑜𝑑𝑜𝑟 + 𝑘𝑑 + 𝐴(𝑡)
− 𝑂𝑁p . (16) 604 

	 605 
 606 
 607 
To understand the response of 𝑂𝑁 we can consider three different signal time scales. If the signal 608 

fluctuates quickly with respect to 𝜏" i.e.  𝐷 and D
E
− 𝐷 ≪ 𝜏" , then for 𝑡 ≫ 	 𝜏" one can approximate 609 

𝐴(𝑡) with its average value over one period, which is given by 610 
 611 

𝑓 ∙

⎝

⎜
⎛
9

𝑆) k1 − 𝑒
&I'=l
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I

)

⎠

⎟
⎞

(17) 612 

 613 
 614 
 615 

= 𝑆) ∙ 𝑓 ∙ 𝐷	 (18) 616 
 617 
 618 
 619 
Notice 𝑓 ∙ 𝐷 = 𝐼, the intermittency of the signal. Hence in this limit, and assuming 𝑆) ≫ 𝑘𝑑, when 620 
the signal is present we have 621 
 622 

𝑑𝑂𝑁
𝑑𝑡

=
1
𝜏,-

⋅ o
1

1 + 𝐼
− 𝑂𝑁p	 (19) 623 

 624 
 625 
Thus, 𝑂𝑁(𝑡) obeys the same dynamics as 𝐴(𝑡), except it adapts to a square wave of amplitude 626 
D
D84

 instead of 𝑆) and with a different time scale. Thus by the same reasoning as for 𝐴(𝑡), the 627 

maximum value of 𝑂𝑁(𝑡) over one period (once 𝑡 ≫ 𝜏", 𝜏,-) is approximately  D
D84

∙ D&M
B C
:DE

D&M
B <
>:DE

  and 628 

the average value over one period is  𝐼 ∙ D
D84

.  629 

 630 
If instead 𝜏" 	≈ 𝐷	 or 𝜏" ≪ 𝐷 then 𝐴(𝑡) ≈ 𝑜𝑑𝑜𝑟(𝑡) and we get  631 
 632 

𝑑𝑂𝑁
𝑑𝑡

=
1
𝜏,-

⋅ o
1
2
− 𝑂𝑁p	 (20) 633 

 634 
 635 
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and the average value of 𝑂𝑁(𝑡) becomes 𝐼/2. (The maximum value would be D
=
∙ D&M

B C
:DE

D&M
B <
>:DE

 ).  636 

 637 
 638 

Finally, we can consider the case where 𝜏" ≫ 𝐷	and 𝜏" ≪ xD
E
− 𝐷y. In this case 𝐴(𝑡) ≈ 0 and 639 

𝑂𝑁(𝑡) adapts to a square wave with amplitude ≈ 1. The average value of 𝑂𝑁(𝑡) is 𝐼 (and the 640 

maximum value would be D&M
B C
:DE

D&M
B <
>:DE

).  641 

 642 
In summary we see that in all these cases, the average value of 𝑂𝑁 depends only on the 643 
intermittency and increases monotonically with intermittency. 644 
 645 
For 𝐹, it is easiest to consider 𝐹B as the value of 𝐹 just after the onset of each pulse.  Since 𝐹 646 
increases by 1 at the onset of each pulse and then decays exponentially with time scale 𝜏5 until 647 
the onset of the next pulse, one has 648 
 649 

𝐹B8D = 𝐹B ∙ 𝑒
& D
E', + 1. (21) 650 

 651 
 652 
Hence  653 
 654 

𝐹B = 𝐹) ∙ 𝑒
& B
E', 	+

1 − 𝑒&
B
E',

1 − 𝑒&
D
E',

	 (22) 655 

 656 
 657 

For 𝑡 ≫ 𝜏5 we have 𝑛 ≫ 𝑓𝜏5 and  𝐹B ≈
D

D&M
B <
>:,

. Since 𝐹 jumps at the onset of a pulse and then 658 

decays, this is the maximum value of 𝐹. The average value of 𝐹 over one period is thus  659 
 660 

1

1 − 𝑒&
D

E'$

∙ 𝑓 ∙ 9 𝑒&
%
'$

D
E

)
	𝑑𝑡 = 𝑓 ∙ 𝜏*	 (23) 661 

 662 
 663 
 664 
Hence the average value of 𝐹 is linearly proportional to the frequency of the signal.  665 
 666 
Agent-based simulation in recorded odor plumes 667 

 668 
The first plume recording we used is the same as used in (Alvarez-Salvado et al., 2018). We call 669 
this plume the high intermittency plume. The odor detection threshold of the agents was set by 670 
analyzing the signal in a region outside the plume. In this region, pixel values of 0 were removed 671 
and non-zero values were fit to a Gaussian. The detection threshold was then set to be the three 672 
standard deviations above the mean of this fit. 10,000 agents were initialized with uniformly 673 
distributed starting position, where the x-position was between 50mm and 300mm from the source 674 
and the y position went from 80mm below the source to 80mm above the source.  The initial 675 
heading angle was uniformly distributed from 0 to 360 degrees. The simulation was run for the 676 
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length of the video, (240s) and the discrete time step was set to be the reciprocal of the frame 677 
rate (1/15s).  678 
 679 
The second plume recording we used was taken from (Demir et al., 2020). We call this the high 680 
frequency plume. The odor detection threshold of each agent was set the same way it was in 681 
(Demir et al., 2020). Again 10,000 agents were initialized with uniformly distributed initial position 682 
and heading. The initial x-position was between 38.45mm and 288.45mm and the initial y position 683 
was between -74mm and 86mm. Initial heading was uniformly distributed from 0 to 360 degrees. 684 
The simulation was run for 123.3s, starting from the 600th frame of the video to the last frame, at 685 
89.94 frames per second, corresponding to the frame rate used in (Demir et al., 2020). The first 686 
600 frames were dropped so that the plume had expanded to full size when the simulations began.  687 
 688 
In both simulations, odor signal was computed by averaging over an elliptical antenna-sensing 689 
region in front of the agent, as in (Demir et al., 2020). The length of the region’s major axis was 690 
1.5mm and the length of the minor axis was 0.5mm. The ellipse was centered 1mm in front of the 691 
agent. In both simulations, if agents went outside the frame region then they were allowed to 692 
continue but received zero signal in those regions. Thus there were no walls in these simulations. 693 
 694 
For these simulations, 𝐹 was computed as for the square-wave pulses, with a detection threshold 695 
as described above, but we also enforced that the whiff time series 𝑤(𝑡) could not register two 696 
whiffs less than 40ms apart, to capture the idea that the time resolution of individual whiffs is not 697 
arbitrarily precise and to avoid spurious detections due to the random fluctuations in the signal, 698 
as suggested by (Demir et al., 2020).  699 
 700 
Determination of base gains from experiment 701 
 702 
The base gains, 𝑔4)	and 𝑔5), which were used for the simulations in Figure 3, and in multiples of 703 
which the gains in Figure 4 and Figure 5 are reported, were determined the following way. (Demir 704 
et al., 2020) experimentally extracted a sigmoidal turning bias, as in Equation 6 except only using 705 
the 𝐹 filter and reported a gain of 0.242. We thus set 𝑔5) = 0.242. 𝑔4) was set so that the 706 
contribution from 𝐼 in the high intermittency plume would be roughly the same size as the 707 
contribution from 𝐹 in the high frequency plume. So defining 𝐼) and 𝐹) to be typical 𝐼 and 𝐹 values 708 
in the high intermittency and high frequency plumes respectively, we have 𝑔4)𝐼) = 𝑔5)𝐹). We thus 709 
determined a 𝑔4) of 1.936.  710 
 711 
Regarding the remaining parameters, the turn-rate was set to 1.3/s, walking speed set to 10.1 712 
mm/s, and filter decay timescale 𝜏 was set to 2s, all in accordance with the findings of (Demir et 713 
al., 2020). Note that the same timescale was used for the 𝐼 and 𝐹 filters. 714 
 715 
Statistical methods 716 
 717 
Error bars for success rates (Figure 3C) were computed by bootstrapping data from a simulation 718 
of 10,000 flies-1000 resamples were used with each resample size being equal to 10,000. 719 
Similarly, for the histograms of successful initial conditions, the data was resampled 1000 times, 720 
where each resample size was the size of the original data and means and standard deviations 721 
were computed and used for each histogram bin.  722 
 723 
 724 
Agent-based simulation in simulated odor plumes 725 
 726 
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The simulated odor plumes were created using the strategy laid out by (Farrell et al., 2002). 727 
Plumes consisted of growing Gaussian packets of odor concentration, released as a Poisson 728 
process with rate 𝜆, that were advected by a uniform mean wind velocity and perturbed by 729 
turbulent diffusivity. The concentration at a point (𝑥, 𝑦) due to a packet centered at (𝑥N , 𝑦N) was 730 
computed as  731 
 732 

odorN(𝑥, 𝑦) =
𝐶)

𝜋(𝑅)= + 4𝐷𝑡N)
expk−

𝑟N=

(𝑅)= + 4𝐷𝑡N)
l	 , (24) 733 

 734 
 735 
where 𝑟= = (𝑥 − 𝑥N)= + (𝑦 − 𝑦N)=, 𝑅) is the initial packet radius, 𝑡N is the time since the release of 736 
this particular packet, 𝐷 is a diffusivity that governs the packet growth, meant to account for 737 
molecular diffusivity and the effects of small eddies and 𝐶) sets the initial concentration amplitude. 738 
The total odor(𝑥, 𝑦, 𝑡) is then the sum over all packets that have been released up to time 𝑡. The 739 
packet center was computed the following way,  740 

 741 
𝑥N(𝑡 + Δ𝑡) = 𝑥N(𝑡) + 𝑈Δ𝑡 + 𝜂D	 (25) 742 

 743 
𝑦N(𝑡 + Δ𝑡) = 𝑦N(𝑡) +	𝜂=	, (26) 744 

   745 
 746 
where 𝑈 denotes the mean wind velocity and 𝜂D and 𝜂= are Gaussian white-noise perturbations 747 
with mean 0 and standard deviation √2𝜅Δ𝑡, representing the effects of turbulent dispersion with 748 
eddy diffusivity 𝜅.  749 
 750 
In general, parameters were chosen to be physically realistic and also give concentration time-751 
series and odor plumes that were qualitatively similar to those in the videos. To set 𝐶), we defined 752 
the detection threshold to be 1 and enforced that an agent more than 1.6	standard deviations 753 
away from an initial packet would not be able to detect its presence. See Table 2 below.  754 
 755 

Parameter Explanation Value 
𝑈 Wind speed 36mm/s − 300mm/s 
𝐷 Packet growth diffusivity 10mm=/s − 52mm=/s 
𝜅 Eddy diffusivity 1000mm=/s 
𝜆 Packet release rate 5Hz 
𝑅) Initial packet radius 10mm 
𝐶) Initial packet intensity 3827.24	(a. u. ) 
𝐾 Odor detection threshold 1	(a. u. ) 

 756 
Table 1: List of parameters used for odor plume simulations 757 
 758 
The order of magnitude for 𝐷 was set by the fact that attractive odorants for Drosophila 759 
melanogaster tend to have molecular diffusivities of around 10mm=/s, eg. Ethyl acetate. The eddy 760 
diffusivity 𝜅 was set in accordance with (Drivas et al., 1996). The release rate and initial size were 761 
chosen to be similar to those in (Farrell et al., 2002). The wind speed was chosen to be similar to 762 
those used experimentally in (Demir et al., 2020) and (Alvarez-Salvado et al., 2018).  763 
 764 
Additionally, to improve computational efficiency, packets were no longer tracked once their 𝑥 765 
position was so large that even if all released packets were at that position, the sum of their 766 
contributions would still be less than the detection threshold. 767 
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 768 
10,000 agents were initialized with uniformly distributed initial position and angle, with 𝑥	between 769 
50mm and 400mm, 𝑦 between -110mm and 110mm and 0° < 𝜃 < 360°, where 𝑥 and 𝑦 positions 770 
are defined relative to the source location, as in Figure 3. Plumes were simulated for enough time 771 
steps so that the expected 𝑥 position of a packet released at time 0 would be equal to the 772 
maximum initial 𝑥 for navigating agents, before navigating agents were introduced and simulated 773 
for 120s. Once again, a trajectory’s success was defined by whether it got within 15mm of the 774 
source location.  775 
 776 
To define the antenna-sensing region, space was discretized into “pixels” with 0.154mm as the 777 
pixel width, matching the spatial resolution of the high frequency plume. The concentration was 778 
then computed by averaging over the pixels in an elliptical region, with the region defined as in 779 
the previous section. 780 
 781 
To set the level of noise added to the 𝐼 and 𝐹 filters, we first computed a characteristic 𝐼 value in 782 
the simulated high intermittency plume, 𝐼), by averaging 𝐼 values over a region 192mm < 𝑥 <783 
205mm  and 0mm < 𝑦 < 9mm and then averaging over the length of the simulation. We did the 784 
same for 𝐹 values in the simulated high frequency plume to obtain 𝐹). The values we obtained 785 
were 𝐼) = 0.776 and 𝐹) = 3.14. We then used 5% of these values as the standard deviation for 786 
Gaussian white noise to be added to the output of the 𝐼 and 𝐹 filters respectively at each time 787 
step. We also used 𝐼) and 𝐹) as representative 𝐼 and 𝐹 values in order to assign a single relative 788 
filter weight with which to color each set of gains in Figure 4G.  789 
 790 
 791 
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Figure 4-figure supplement 1 924 
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 927 
Performance for different sets of gains without filter noise: Normalized success in the simulated high intermittency 928 
plume (A) and simulated high frequency plume (B) for different sets of 𝐼 and 𝐹 gains. We see strong performance in B 929 
for a large region at high intermittency gains 𝑔(.  930 
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