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Abstract 
Prostate cancer is the second most occurring cancer in men worldwide. To better understand 
the mechanisms of tumorigenesis and possible treatment responses, we developed a 
mathematical model of prostate cancer which considers the major signalling pathways known 
to be deregulated. 

We personalised this Boolean model to molecular data to reflect the heterogeneity and specific 
response to perturbations of cancer patients. 488 prostate samples were used to build patient-
specific models and compared to available clinical data. Additionally, eight prostate cell-line-
specific models were built to validate our approach with dose-response data of several drugs. 

The effects of single and combined drugs were tested in these models under different growth 
conditions. We identified 15 actionable points of interventions in one cell-line-specific model 
whose inactivation hinders tumorigenesis. To validate these results, we tested nine small 
molecule inhibitors of five of those putative targets and found a dose-dependent effect on four 
of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power 
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of our personalized Boolean models and illustrate how they can be used for precision 
oncology. 

Introduction 
Like most cancers, prostate cancer arises from mutations in single somatic cells that induce 
deregulations in processes such as proliferation, invasion of adjacent tissues and metastasis. 
Not all prostate patients respond to the treatments in the same way, depending on the stage 
and type of their tumour (Chen & Zhou, 2016) as well as to differences in their genetic and 
epigenetic profiles (Yang et al, 2018; Toth et al, 2019). The high heterogeneity of these profiles 
can be explained by a large number of interacting proteins and the complex cross-talks 
between the cell signalling pathways that can be altered in cancer cells. Because of this 
complexity, understanding the process of tumorigenesis and tumour growth would benefit from 
a systemic and dynamical description of the disease. At the molecular level, this can be tackled 
by a simplified mechanistic cell-wide model of protein interactions of the underlying pathways, 
dependent on external environmental signals.  

Although continuous mathematical modelling has been widely used to study cellular 
biochemistry dynamics (e.g., ordinary differential equations) (Goldbeter, 2002; Tyson et al, 
2019; Le Novère, 2015; Sible & Tyson, 2007; Kholodenko et al, 1995), this formalism does 
not scale up well to large signalling networks, due to the difficulty of estimating kinetic 
parameter values (Babtie & Stumpf, 2017). In contrast, the logical (or logic) modelling 
formalism represents a simpler mean of abstraction where the causal relationships between 
proteins (or genes) are encoded with logic statements and dynamical behaviours are 
represented by transitions between discrete states of the system (Thomas, 1973; Kauffman, 
1969). In particular, Boolean models, the simplest implementation of logical models, describes 
each protein as a binary variable (ON/OFF). This framework is flexible, requires in principle 
no quantitative information, can be hence applied to large networks combining multiple 
pathways, and can also provide a qualitative understanding of molecular systems lacking 
mechanistic detailed information. 

In the last years, logical and in particular Boolean modelling has successfully been used to 
describe the dynamics of human cellular signal transduction and gene regulations (Helikar et 

al, 2008; Calzone et al, 2010; Grieco et al, 2013; Flobak et al, 2015; Cho et al, 2016; Traynard 
et al, 2016) and their deregulation in cancer (Fumiã & Martins, 2013; Hu et al, 2015). 
Numerous applications of logical modelling have shown that this framework is able to delineate 
the main dynamical properties of complex biological regulatory networks (Faure et al, 2006; 
Abou-Jaoudé et al, 2011). 

However, the Boolean approach is purely qualitative and does not consider real time of cellular 
events (half time of proteins, triggering of apoptosis, etc.). To cope with this issue, we 
developed the MaBoSS software to compute continuous Markov Chain simulations on the 
model state transition graph (STG), in which a model state is defined as a vector of nodes that 
are either active or inactive. In practice, MaBoSS associates transition rates for activation and 
inhibition of each node of the network, enabling it to account for different time scales of the 
processes described by the model. Given some initial conditions, MaBoSS applies a Monte-
Carlo kinetic algorithm (or Gillespie algorithm) to the STG to produce time trajectories (Stoll et 

al, 2012, 2017) such that time evolution of the model state probabilities can be estimated. 
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Stochastic simulations can easily explore the model dynamics with different initial conditions 
by varying the probability of having a node active at the beginning of the simulations and by 
modifying the model such that it accounts for genetic and environmental perturbations (e.g., 
presence or absence of growth factors, or death receptors). For each case, the effect on the 
probabilities of selected read-outs can be measured (Cohen et al, 2015; Montagud et al, 
2017). 

When summarizing the biological knowledge into a network and translating it into logical terms, 
the obtained model is generic and cannot explain the differences and heterogeneity between 
patients’ responses to treatments. Models can be trained with dedicated perturbation 
experiments (Saez-Rodriguez et al, 2009; Dorier et al, 2016), but such data can only be 
obtained with non-standard procedures such as microfluidics from patients’ material (Eduati 
et al, 2020). To address this limitation, we developed a methodology to use different omics 
data that are more commonly available to personalise generic models to individual cancer 
patients or cell lines and verified that the obtained models correlated with clinical results such 
as patient survival information (Béal et al, 2019). In present work, we apply this approach to 
prostate cancer to suggest targeted therapy to patients based on their omics profile (Figure 
1). We first built 488 patient- and eight cell line-prostate-specific models using data from The 
Cancer Genome Atlas (TCGA) and the Genomics of Drug Sensitivity in Cancer (GDSC) 
projects, respectively. Simulating these models with the MaBoSS framework, we identified 
points of intervention that diminish the probability of reaching pro-tumorigenic phenotypes. 
Lastly, we developed a new methodology to simulate drug effects on these data-tailored 
Boolean models and present a list of viable drugs and regimes that could be used on these 
patient- and cell-line-specific models for optimal results. Experimental validations were 
performed on the LNCaP prostate cell line with two predicted targets, confirming the 
predictions of the model. 

 

Figure 1: Workflow to build patient-specific Boolean models and to uncover personalized drug 

treatments from present work. We gathered data from Fumiã and Martins (2013) Boolean model, 
Omnipath (Türei et al, 2021) and pathways identified with ROMA (Martignetti et al, 2016) on the 

TCGA data to build a prostate-specific prior knowledge network. This network was manually 
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converted into a prostate Boolean model that could be stochastically simulated using MaBoSS (Stoll 
et al, 2017) and tailored to different TCGA and GDSC datasets using our PROFILE tool to have 

personalized Boolean models. Then, we studied all the possible single and double mutants on these 
tailored models using our logical pipeline of tools (Montagud et al, 2017). Using these personalized 
models and our PROFILE_v2 tool presented in this work, we obtained tailored drug simulations and 
drug treatments for 488 TCGA patients and eight prostate cell lines. Lastly, we performed drug-dose 
experiments on a short list of candidate drugs that were particularly interesting in the LNCaP prostate 

cell line. Created with BioRender.com. 

Results 

Prostate Boolean model construction 

A network of signalling pathways and genes relevant for prostate cancer progression was 
assembled to recapitulate the potential deregulations that lead to high-grade tumours. 
Dynamical properties were added onto this network to perform simulations, uncover 
therapeutic targets and explore drug combinations. The model was built upon a generic cancer 
Boolean model by Fumiã and Martins (2013), which integrates major signalling pathways, and 
their substantial cross-talks. The pathways include the regulation of cell death and proliferation 
in many tumours.  

This initial generic network was extended to include prostate-cancer-specific genes (e.g., 
SPOP, AR, etc.), pathways identified using ROMA (Martignetti et al, 2016), OmniPath (Türei 
et al, 2021) and up-to-date literature. ROMA is applied on omics data, either transcriptomics 
or proteomics. In each pathway, the genes that contribute the most to the overdispersion are 
selected. ROMA was applied to the TCGA transcriptomics data using gene sets from cancer 
pathway databases (Appendix File, Figure S1). These results were used as guidelines to 
extend the network to fully cover the alterations found in prostate cancer patients. OmniPath 
was used to complete our network finding connections between the proteins of interest known 
to play a role in prostate and the ones identified with ROMA, and the list of genes already 
present in the model. The final network includes pathways such as androgen receptor, MAPK, 
Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH, the cell cycle, the epithelial-mesenchymal 
transition (EMT), apoptosis and DNA damage pathways. 

This network was then converted into a Boolean model where all variables can take two 
values: 0 (inactivate or absent) or 1 (activate or present). Our model aims at predicting prostate 
phenotypic behaviours for healthy and cancer cells in different conditions. Nine inputs that 
represent some of these physiological conditions of interest were considered: EGF, FGF, TGF 

beta, Nutrients, Hypoxia, Acidosis, Androgen, TNF alpha and Carcinogen. These input nodes 
have no regulation and their values are fixed for each simulation, representing the cell’s 
microenvironmental characteristics. 

We defined six variables as output nodes that allow the integration of multiple phenotypic 
signals and simplify the analysis of the model. Two of these phenotypes represent the possible 
growth status of the cell: Proliferation and Apoptosis. Apoptosis is activated by Caspase 8 or 
Caspase 9, while Proliferation is activated by cyclins D and B (read-outs of the G1 and M 
phases, respectively). The Proliferation output is described in published models as specific 
stationary protein activation patterns, namely the following sequence of activation of cyclins: 
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Cyclin D, then Cyclin E, then Cyclin A, and finally Cyclin B (Traynard et al, 2016). Here, we 
considered a proper sequence when Cyclin D activates first, allowing the release of the 
transcriptional factor E2F1 from the inhibitory complex it was forming with RB (retinoblastoma 
protein), and then triggering a series of events leading to the activation of Cyclin B, responsible 
for the cell’s entry into mitosis (Appendix File, Figure S4). We also define several phenotypic 
outputs that are readouts of cancer hallmarks: Invasion, Migration, (bone) Metastasis and DNA 

repair. The final model accounts for 133 nodes and 449 edges (Figure 2, SuppFile 1, and in 
GINsim format at the address: http://ginsim.org/model/signalling-prostate-cancer).    

 

Figure 2: Prostate Boolean model used in present work. Nodes (ellipses) represent biological 
entities, and arcs are positive (green) or negative (red) influences of one entity on another one. 
Orange rectangles correspond to inputs (from left to right: EGF, FGF, TGFb, Nutrients, Hypoxia, 

Acidosis, Androgen, fused_event, TNFalpha, SPOP, Carcinogen) and dark blue rectangles to 
phenotypes (from left to right: Proliferation, Migration, Invasion, Metastasis, Apoptosis, DNA_repair), 

the read-outs of the model. 

Prostate Boolean model simulation 

The model can be considered as a model of healthy prostate cells when no mutants (or fused 
genes) are present. We refer to this model as the wild type model. These healthy cells mostly 
exhibit quiescence (neither proliferation nor apoptosis) in the absence of any input (Figure 
3A). When Nutrients and growth factors (EGF or FGF) are present, Proliferation is activated 
(Figure 3B). Androgen is necessary for AR activation and helps in the activation of 
Proliferation, even though it is not necessary when Nutrients or growth factors are present. 
Cell death factors (such as Caspase 8 or 9) trigger Apoptosis in the absence of SPOP, while 
Hypoxia and Carcinogen facilitate apoptosis, but are not necessary if cell death factors are 
present (Figure 3C). 

In our model, the progression towards metastasis is described as a stepwise process. Invasion 

is first activated by known pro-invasive proteins: either β-catenin (Francis et al, 2013) or a 
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combination of CDH2 (De Wever et al, 2004), SMAD (Daroqui et al, 2012) or EZH2 (Ren et 

al, 2012). Migration is then activated by Invasion and EMT and with either AKT or AR (Castoria 
et al, 2011). Lastly, (bone) Metastasis is activated by Migration and one of three nodes: 
RUNX2 (Altieri et al, 2009), ERG (Adamo & Ladomery, 2016) or ERG fused with TMPRSS2 
(St John et al, 2012), FLI1, ETV1 or ETV4 (The Cancer Genome Atlas Research Network, 
2015). 

This prostate Boolean model was simulated stochastically using MaBoSS (Stoll et al, 2012, 
2017) and validated by recapitulating known phenotypes of prostate cells under physiological 
conditions (Figure 3). In particular, we tested that combinations of inputs lead to non-aberrant 
phenotypes such as growth factors leading to apoptosis in wild type conditions; we also 
verified that the cell cycle events occur in a proper order: as CyclinD gets activated, RB1 is 
phosphorylated and turned OFF, allowing E2F1 to mediate the synthesis of CyclinB (see 
SuppFile 2 for the jupyter notebook and the simulation of diverse cellular conditions). 
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Figure 3: Prostate Boolean model MaBoSS simulations. (A) The model was simulated with all 
initial inputs set to 0 and all other variables random. All phenotypes are 0 at the end of the 

simulations, which should be understood as a quiescent state, where neither proliferation nor 
apoptosis are active. (B) The model was simulated with growth factors (EGF and FGF), Nutrients and 

Androgen ON. (C) The model was simulated with Carcinogen, Androgen, TNFalpha, Acidosis, and 
Hypoxia ON.  
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Personalisation of the prostate Boolean model  

Personalised TCGA prostate cancer patient Boolean models 

We tailored the generic prostate Boolean model to a set of 488 TCGA prostate cancer patients 
(Appendix File, Figure S7) using our personalisation method (PROFILE, (Béal et al, 2019)), 
constructing 488 individual Boolean models, one for each patient. Personalised models were 
built using three types of data: discrete data such as mutations and copy number alterations 
(CNA) and continuous data such as RNAseq data. For discrete data, the nodes corresponding 
to the mutations or the CNA were forced to 0 or 1 according to the effect of alterations, based 
on a priori knowledge (i.e., if the mutation was reported to be activating or inhibiting the gene’s 
activity). For continuous data, the personalisation method modifies the value for the transition 
rates of model variables and their initial conditions to influence the probability of some 
transitions. This corresponds, in a biologically-meaningful way, to translating genetic 
mutations as lasting modifications making the gene independent of regulation, and to 
translating RNA expression levels as modulation of a signal but not changing the regulation 
rules (see Materials and Methods and in Appendix File, Figure S8-S12).  

We assess the general behaviour of the individual patient-specific models by comparing the 
model outputs (i.e., probabilities to reach certain phenotypes) with clinical data. Here, the 
clinical data consist of a Gleason score associated with each patient, which in turn 
corresponds to the gravity of the tumour based on its appearance and the stage of invasion 
(Gleason, 1977, 1992; Chen & Zhou, 2016). We gathered output probabilities for all patient-
specific models and confronted them to their Gleason scores. The phenotype DNA_repair, 
which can be interpreted as a sensor of DNA damage and genome integrity which could lead 
to DNA repair, seems to separate low and high Gleason scores (Figure 4A) confirming that 
DNA damage pathways are activated in patients (Marshall et al, 2019) but may not lead to the 
triggering of apoptosis in this model (Figure S9). Also, the centroids of Gleason groups tend 
to move following Proliferation, Migration and Invasion variables. We then looked at the 
profiles of the phenotype scores across patients and their Gleason group and found that the 
density of high Proliferation score (close to 1, Figure 4B) tends to increase as the Gleason 
score increases (from low to intermediate to high). The Apoptosis phenotype, however, only 
shows a slight change in probabilities in groups with low or high Gleason scores (Figure 4C).  
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Figure 4: Associations between simulations and Gleason groups (GG). A) Centroids of the PCA 
of the samples according to their GG. The personalisation recipe used was mutations and copy 

number alterations (CNA) as discrete data and RNAseq as continuous data. Density plots of 
Proliferation (B) and Apoptosis (C) scores according to GG; each vignette corresponds to a specific 

sub-cohort with a fixed GG.  

 

Personalised drug predictions of TCGA Boolean models 

Using the 488 TCGA-patient-specific models, we looked in each patient for genes that, when 
inhibited, hamper Proliferation or promote Apoptosis in the model. We focused on these 
inhibitions as most drugs interfere with the protein activity related to these genes, even though 
our methodology allows us to study increased protein activity related to over-expression of 
genes as well (Montagud et al, 2017; Béal et al, 2019). Interestingly, we found several genes 
that were found as suitable points of intervention in most of the patients (MYC_MAX complex 
and SPOP were identified in more than 80% of the cases) (Appendix File, Figure S17 and 
S18), but others were specific to only some of the patients (MXI1 was identified in only 4 
patients, 1% of the total, GLI in only 7% and WNT in 8% of patients). All the TCGA-specific 
personalised models can be found in SuppFile 3 and the TCGA mutants and their phenotype 
scores can be found in SuppFile 4.  
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Furthermore, we explored the possibility of finding combinations of treatments that could 
reduce the Proliferation phenotype. To lower the computational power need, we have 
narrowed down the list of potential candidates to reduce Proliferation or increase Apoptosis 

by performing the analysis of all the single perturbations and selecting the combined 
perturbations of a set of selected genes that are targets of already-developed drugs relevant 
in cancer progression (Table 1).  

We used the models to grade the effect that the combined treatments have in each one of the 
488 TCGA-patient-specific models’ phenotypes. This list of combinations of treatments can be 
used to compare the effects of drugs on each TCGA patient and allows us to propose some 
of them for individual patients and to suggest drugs suitable to groups of patients (SuppFile 
4). Indeed, the inactivation of some of the targeted genes had a greater effect in some patients 
than in others, suggesting the possibility for the design of personalised drug treatments. For 
instance, for the TCGA-EJ-5527 patient, the use of MYC_MAX complex inhibitor reduced 
Proliferation to 66%. For this patient, combining MYC_MAX with other inhibitors, such as AR 
or AKT did not further reduce Proliferation score (67% in these cases). Other patients have 
MYC_MAX as an interesting drug target, but the inhibition of this complex did not have such 
a dramatic effect in their Proliferation scores as in the case of TCGA-EJ-5527. Likewise, for 
the TCGA-H9-A6BX patient, the use of SPOP inhibitor increased Apoptosis by 87%, while the 
use of a combination of cFLAR and SPOP inhibitors further increased Apoptosis by 89%. For 
the rest of this section, we focus on the analysis of clinical groups rather than individuals.  

Studying the decrease of Proliferation, we found that AKT is the top hit in Gleason Groups 1, 
2, and 3, seconded by SPOP in Group 1, PIP3 in Group 2 and MYC_MAX in Group 3. 
MYC_MAX is the top hit in Group 4, seconded by AR. In regards to the increase of Apoptosis, 
SPOP is the top hit in all groups. SSH is second in Groups 1 and 2 and AKT in Group 3. It is 
interesting to note here that many of these genes are targeted by drugs (Table 1). Notably, 
AR is the target of the drug Enzalutamide, which is indicated for men with an advanced stage 
of the disease (Scott, 2018), or that MYC is the target of BET bromodomain inhibitors and are 
generally effective in castration-resistant prostate cancer cases (Coleman et al, 2019). 

The work on patient data provided some possible insights and suggested patient- and group-
specific potential targets. To validate experimentally our approach, we personalised the 
prostate model to different prostate cell lines where we performed drug assays to confirm the 
predictions of the model. 

Personalised drug predictions of LNCaP Boolean model 

We applied the methodology for personalisation of the prostate model to eight prostate cell 
lines available in GDSC (Iorio et al, 2016): 22RV1, BPH-1, DU-145, NCI-H660, PC-3, PWR-
1E and VCaP (results in Appendix file and are publicly available in SuppFile 5). We decided 
to focus the validation on one cell line, LNCaP. 

LNCaP, first isolated from a human metastatic prostate adenocarcinoma found in a lymph 
node (Horoszewicz et al, 1983), is one of the most widely used cell lines for prostate cancer 
studies. Androgen-sensitive LNCaP cells are representative of patients sensitive to treatments 
as opposed to resistant cell lines such as DU-145. Additionally, LNCaP cells have been used 
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to obtain numerous subsequent derivatives with different characteristics (Cunningham & You, 
2015). 

The LNCaP personalisation was performed based on mutations as discrete data and RNA-
Seq as continuous data. The resulting LNCaP-specific Boolean model was then used to 
identify all possible combinations of mutations (interpreted as effects of therapies) and to study 
the synergy of these perturbations. For that purpose, we automatically performed single and 
double mutant analyses on the LNCaP-specific model (knock-out and overexpression) 
(Montagud et al, 2017) and focused on the model phenotype probabilities as read-outs of the 
simulations. The analysis of the complete set of simulations for the 32258 mutants can be 
found in the Appendix File and in SuppFile 6, where the LNCaP-cell-line-specific mutants and 
their phenotype scores are reported for all mutants. Among all combinations, we identified the 
top 20 knock-out mutations that depleted Proliferation or increased Apoptosis the most. As 
some of them overlapped, we ended up with 29 nodes: AKT, AR, ATR, AXIN1, Bak, BIRC5, 

CDH2, cFLAR, CyclinB, CyclinD, E2F1, eEF2K, eEF2, eEF2K, EGFR, ERK, HSPs, MED12, 

mTORC1, mTORC2, MYC, MYC_MAX, PHDs, PI3K, PIP3, SPOP, TAK1, TWIST1, and VHL. 
We used the scores of these nodes to further trim down the list to have 10 final nodes (AKT, 

AR, cFLAR, EGFR, ERK, HSPs, MYC_MAX, SPOP and PI3K) and added 7 other nodes 
whose genes are considered relevant in cancer biology, such as AR_ERG fusion, Caspase8, 
HIF1, GLUT1, MEK1_2, p14ARF, ROS and TERT (Table 1). We did not consider the 
overexpression mutants as they have a very difficult translation to drug uses and clinical 
practices. 

To further analyse the mutant effects, we simulated the LNCaP model with increasing node 
inhibition values to mimic the effect of drugs’ dosages using a methodology we specifically 
developed for these purposes (PROFILE_v2). Six simulations were done for each inhibited 
node, with 100% of node activity (no inhibition), 80%, 60%, 40%, 20% and 0% (full knock-out) 
(see Methods). A nutrient-rich media with EGF was used for these simulations and we show 
results on three additional sets of initial conditions in the Appendix File, Figure S24: a nutrient-
rich media with androgen, with androgen and EGF, and with none, that correspond to 
experimental conditions that are tested here. We applied this gradual inhibition, using 
increasing drugs’ concentrations, to a reduced list of drug-targeted genes relevant for cancer 
progression (Table 1). We confirmed that the inhibition of different nodes affected differently 
the probabilities of the outputs (Appendix File, Figure S29 and S30). Notably, Apoptosis score 
was slightly promoted when knocking out SPOP under all growth conditions (Appendix File, 
Figure S30). Likewise, Proliferation depletion was accomplished when HSPs or MYC_MAX 

were inhibited under all conditions and, less notably, when ERK, EGFR, SPOP or PI3K were 
inhibited (Appendix File, Figure S30). 

Additionally, these gradual inhibition analyses can be combined to study the interaction of two 
simultaneously inhibiting nodes (Appendix File, Figure S31 and S32). For instance, the 
combined gradual inhibition of ERK and MYC_MAX nodes affects Proliferation score in a 
balanced manner (Figure 5A) even though MYC_MAX seems to affect this phenotype more, 
notably at low activity levels. By extracting subnetworks of interaction around ERK and 
MYC_MAX and comparing them, we found that the pathways they belong to have 
complementary downstream targets participating in cell proliferation through targets in MAPK 
and cell cycle pathways. This complementarity could explain the synergistic effects observed 
(Figure 5A and 5C). 
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Lastly, drug synergies can be studied using Bliss Independence using the results from single 
and combined simulations with gradual inhibitions. This score compares the combined effect 
of two drugs with the effect of each one of them, with a synergy when the value of this score 
is lower than 1. We found that the combined inhibition of ERK and MYC_MAX nodes on 
Proliferation score was synergistic (Figure 5C). Another synergistic pair is the combined 
gradual inhibition of HSPs and PI3K nodes that also affects Proliferation score in a joint 
manner (Figure 5B), with some Bliss Independence synergy found (Figure 5D). A complete 
study on the Bliss Independence synergy of all the drugs considered in present work on 
Proliferation and Apoptosis phenotypes can be found in Appendix File, Figure S33. 

 

Figure 5: Phenotype score variations and synergy upon combined ERK and MYC_MAX (A and 

C) and HSPs and PI3K (B and D) inhibition under EGF growth condition. Proliferation score 
variation (A) and Bliss Independence synergy score (C) with increased node activation of nodes ERK 

and MYC_MAX. Proliferation score variation (B) and Bliss Independence synergy score (D) with 
increased node activation of nodes HSPs and PI3K. Bliss Independence synergy score < 1 is 

characteristic of drug synergy, grey colour means one of the drugs is absent and thus no synergy 
score is available. 
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Experimental validation of predicted targets 

Drugs associated with the proposed targets 

To identify drugs that could act as potential inhibitors of the genes identified with the Boolean 
model, we explored the drug-target associations in DrugBank (Wishart et al, 2018) and 
ChEMBL (Gaulton et al, 2017). We found drugs that targeted almost all genes corresponding 
to the nodes of interest in Table 1, except for cFLAR, p14ARF and SPOP. However, we could 
not identify experimental cases where drugs targeting both members of the proposed 
combinations were available (Appendix File and in SuppFile 6). One possible explanation is 
that the combinations predicted by the model suggest in some cases to overexpress the 
potential target and most of the drugs available act as inhibitors of their targets. 

Using the cell-line specific models, we tested if the LNCaP cell line was more sensitive than 
the rest of the prostate cell lines to the LNCaP-specific drugs identified in Table 1. We 
compared GDSC’s Z-score of these drugs in LNCaP with their Z-scores in all GDSC cell lines 
(Figure 6). We observed that LNCaP is more sensitive to drugs targeting AKT or TERT than 
the rest of the studied prostate cell lines. Furthermore, we saw that the drugs that targeted the 
genes included in the model allowed the identification of cell line specificities (Appendix File). 
For instance, target enrichment analysis showed that LNCaP cell lines are especially sensitive 
to drugs targeting PI3K/AKT/MTOR, hormone-related (AR targeting) and Chromatin 
(bromodomain inhibitors, regulating Myc) pathways (adjusted p-values from target 
enrichment: 0.001, 0.001 and 0.032, respectively, Appendix File, Table S1), which 
corresponds to the model predictions (Table 1). Also LNCaP cell line is more sensitive to drugs 
targeting model-identified nodes than to drugs targeting other proteins (Figure S27, Mann-
Whitney p-value 0.00041) and this effect is specific for LNCaP cell line (Mann-Whitney p-
values ranging from 0.0033 to 0.38 for other prostate cancer cell lines). 

 

Figure 6: Model-targeting drugs’ sensitivities across prostate cell lines. GDSC z-score was 
obtained for all the drugs targeting genes included in the model for all the prostate cell lines in GDSC. 
Negative values means that the cell line is more sensitive to the drug. Drugs included in Table 1 were 

highlighted. "Other targets" are drugs targeting model-related genes that are not part of Table 1. 
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Overall, the drugs proposed through this analysis suggest the possibility to repurpose drugs 
that are used in treating other forms of cancer for prostate cancer and open the avenue for 
further experimental validations based on these suggestions. 

Experimental validation of drugs in LNCaP  

To validate the model predictions of the candidate drugs, we selected four drugs that target 
HSPs and PI3K and tested them in LNCaP cell line experiments by using endpoint cell viability 
measurement assays and real-time cell survival assays using the xCELLigence system (see 
Methods). The drug selection was a compromise between the drugs identified by our analyses 
(Table 1) and their effect in diminishing LNCaP’s proliferation (see previous section). In both 
assays, drugs that target HSP90AA1 and PI3K/AKT pathway genes retrieved from the model 
analyses were found to be effective against cell proliferation. 

The Hsp90 chaperone is expressed abundantly and plays a crucial role in the correct folding 
of a wide variety of proteins such as protein kinases and steroid hormone receptors (Schopf 
et al, 2017). Hsp90 can act as a protector of less stable proteins produced by DNA mutations 
in cancer cells (Barrott & Haystead, 2013; Hessenkemper & Baniahmad, 2013). Currently, 
Hsp90 inhibitors are in clinical trials for multiple indications in cancer (Iwai et al, 2012; Le et 

al, 2017; Chen et al, 2019). The PI3K/AKT signalling pathway controls many different cellular 
processes such as cell growth, motility, proliferation, and apoptosis and is frequently altered 
in different cancer cells (Carceles-Cordon et al, 2020; Shorning et al, 2020). Many PI3K/AKT 
inhibitors are in different stages of clinical development and some of them are approved for 
clinical use (Table 1). 

Notably, Hsp90 (NMS-E973,17-DMAG) and PI3K/AKT pathway (PI-103, Pictilisib) inhibitors 
showed a dose-dependent activity in the endpoint cell viability assay determined by the 
fluorescent resazurin after a 48-hour incubation (Figure 7). 
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Figure 7: Cell viability assay determined by the fluorescent resazurin after a 48-hours 

incubation showed a dose-dependent response to different inhibitors. A) Cell viability assay of 
LNCaP cell line response to 17-DMAG HSP90 inhibitor. B) Cell viability assay of LNCaP cell line 

response to PI-103 PI3K/AKT pathway inhibitor. C) Cell viability assay of LNCaP cell line response to 
NMS-E973 HSP90 inhibitor. D) Cell viability assay of LNCaP cell line response to Pictilisib PI3K/AKT 
pathway inhibitor. Concentrations of drugs were selected to capture their drug-dose response curves. 
The concentrations for the NMS-E973 are different from the rest as this drug is more potent than the 

rest (see Material and methods). 

We studied the real-time response of LNCaP cell viability upon drug addition and saw that the 
LNCaP cell line is sensitive to Hsp90 and PI3K/AKT pathway inhibitors (Figure 8 and 9, 
respectively). Both Hsp90 inhibitors tested, 17-DMAG and NMS-E973, reduced the cell 
viability 12 hours after drug supplementation (Figure 8A for 17-DMAG and Figure 8E for NMS-
E973), with 17-DMAG having a stronger effect and in a more clear concentration-dependent 
manner than NMS-E973 (Figure 7B-D for 17-DMAG and Figure 7F-H for NMS-E973). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454126doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454126
http://creativecommons.org/licenses/by-nd/4.0/


Likewise, both PI3K/AKT pathway inhibitors tested, Pictilisib and PI-103, reduced the cell 
viability immediately after drug supplementation (Figure 9A for Pictilisib and Figure 9E for PI-
103), in a concentration-dependent manner (Figure 9B-D for Pictilisib and Figure 9F-H for PI-
103). In addition, Hsp90 inhibitors had a more prolonged effect on the cells’ proliferation than 
PI3K/AKT pathway inhibitors. 

 
Figure 8: Hsp90 inhibitors resulted in dose-dependent changes in the LNCaP cell line. A) Real-

time cell electronic sensing (RT-CES) cytotoxicity assay of Hsp90 inhibitor, 17-DMAG. The yellow 
dotted line represents 17-DMAG addition. The brown dotted lines are indicative of the cytotoxicity 
assay results at 24 hours (B), 48 hours (C) and 72 hours (D) after 17-DMAG addition. E) RT-CES 

cytotoxicity assay of Hsp90 inhibitor, NMS-E973. The yellow dotted line represents NMS-E973 
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addition. The brown dotted lines are indicative of the cytotoxicity assay results at 24 hours (F), 48 
hours (G) and 72 hours (H) after NMS-E973 addition. 

 

Figure 9: PI3K/AKT pathway inhibition with different PI3K/AKT inhibitors shows dose-

dependent response in LNCaP cell line. A) Real-time cell electronic sensing (RT-CES) cytotoxicity 
assay of PI3K/AKT pathway inhibitor, PI-103. The yellow dotted line represents PI-103 addition. The 
brown dotted lines are indicative of the cytotoxicity assay results at 24 hours (B), 48 hours (C) and 72 
hours (D) after PI-103 addition. E) RT-CES cytotoxicity assay of PI3K/AKT pathway inhibitor, Pictilisib. 

The yellow dotted line represents Pictilisib addition. The brown dotted lines are indicative of the 
cytotoxicity assay results at 24 hours (F), 48 hours (G) and 72 hours (H) after Pictilisib addition. 
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Discussion 
Clinical assessment of cancers is moving towards more precise, personalised treatments, as 
the times of one-size-fits-all treatments are no longer appropriate, and patient-tailored models 
could boost the success rate of these treatments in clinical practice. In this study, we set out 
to develop a methodology to investigate drug treatments using personalised Boolean models. 
Our approach consists of building a model that represents the patient-specific disease status 
and retrieving a list of proposed interventions that affect this disease status, notably by 
reducing its pro-cancerous behaviours. In this work, we have showcased this methodology by 
applying it to TCGA prostate cancer patients and to GDSC prostate cancer cell lines, finding 
patient- and cell-line-specific targets and validating selected cell-line-specific predicted targets 
(Figure 1). 

First, a prostate cancer Boolean model that encompasses relevant signalling pathways in 
cancer was constructed based on already published models, experimental data analyses and 
pathway databases (Figure 2). The influence network and the assignment of logical rules for 
each node of this network were obtained from known interactions described in the literature 
(Figure 3). This model describes the regulation of invasion, migration, cell cycle, apoptosis, 
androgen and growth factors signalling in prostate cancer (Appendix file). 

Second, from this generic Boolean model, we constructed personalised models using the 
different datasets, i.e. 488 patients from TCGA and eight cell lines from GDSC. We obtained 
Gleason-score-specific behaviours for TCGA’s patients when studying their Proliferation and 
Apoptosis scores, observing that high Proliferation scores are higher in high Gleason groups 
(Figure 4). Thus, the use of these personalised models can help rationalise the relationship of 
Gleason grading with some of these phenotypes.  

Likewise, GDSC data was used with the prostate model to obtain prostate-specific cell-line 
models (Figure 6). These models show differential behaviours, notably in terms of Invasion 

and Proliferation phenotypes (Figure S19). One of these cell-line-specific models was chosen, 
LNCaP, and the effects of all its genetic perturbations were thoroughly studied. We studied 
32258 mutants, including single and double mutants, knock-out and over-expressed, and their 
phenotypes (Appendix File, Figure S25 and S26). 32 knock-out perturbations that depleted 
Proliferation and/or increased Apoptosis were identified and 16 of them were selected for 
further analyses (Table 1). The LNCaP-specific model was simulated using different initial 
conditions that capture different growth media’s specificities, such as RPMI media with and 
without androgen or epidermal growth factor (Appendix File, Figure S24). 

Third, these personalised models were used to simulate the inhibition of druggable genes and 
proteins, uncovering new treatment’s combination and their synergies. We developed a 
methodology to simulate drug inhibitions in Boolean models, termed PROFILE_v2, as an 
extension of previous works (Béal et al, 2019). The LNCaP-specific model was used to obtain 
simulations with nodes and pairs of nodes corresponding to the genes of interest inhibited with 
varying strengths. This study allowed us to compile a list of potential targets (Table 1) and to 
identify potential synergies among genes in the model (Figure 5). Some of the drugs that 
targeted these genes, such as AKT and TERT, were identified in GDSC as having more 
sensitivity in LNCaP than in the rest of the prostate cancer cell lines (Figure 6). In addition, 
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drugs that targeted genes included in the model allowed the identification of cell line 
specificities (Appendix File). 

Fourth, we validated experimentally the effect of Hsp90 and PI3K/AKT pathway inhibitors on 
the LNCaP cell line, finding a concentration-dependent inhibition of the cell line viability as 
predicted, confirming the role of the drugs targeting these proteins in reducing LNCaP’s 
proliferation (Figure 7 and 8). Notably, these targets have been studied in other works on 
prostate cancer (Chen et al, 2019; Le et al, 2017). 

The study presented here enables the study of drug combinations and their synergies. One 
reason for searching for combinations of drugs is that these have been described for allowing 
the use of lower doses of each of the two drugs reducing their toxicity (Bayat Mokhtari et al, 
2017), evading compensatory mechanisms and combating drug resistances (Al-Lazikani et al, 
2012; Krzyszczyk et al, 2018).  

Even if this approach is attractive and promising, it has some limitations. First, the analyses 
performed with the mathematical model do not aim at predicting drug dosages per se but to 
help in the identification of potential candidates. The patient-specific changes in Proliferation 

and Apoptosis scores upon mutation are maximal theoretical yields that are used to rank the 
different potential treatments and should not be used as a direct target for experimental results 
or clinical trials. Our methodology suggests treatments for individual patients, but the obtained 
results vary greatly from patient to patient, which is not an uncommon issue of personalized 
medicine (Ciccarese et al, 2017; Molinari et al, 2018). This variability is an economical 
challenge for labs and companies to pursue true patient-specific treatments and also poses 
challenges in clinical trial designs aimed at validating the model based on the selection of 
treatments (Cunanan et al, 2017). Nowadays and because of these constraints, it might be 
more commercially interesting to target group-specific treatments, which can be more easily 
related to clinical stages of the disease. 

Mathematical modelling of patient profiles helps to classify them in groups with differential 
characteristics, providing, in essence, a grade-specific treatment. We therefore based our 
analysis on clinical grouping defined by the Gleason grades, but some works have 
emphasized the difficulty to properly assess them (Chen & Zhou, 2016) and as a result may 
not be the perfect predictor for the patient subgrouping in this analysis, even though it is the 
only available one for these datasets. The lack of subgrouping that stratifies patients 
adequately may undermine the analysis of our results and could explain the Proliferation and 
Apoptosis scores of high-grade and low-grade Gleason patients. 

Moreover, the behaviours observed in the simulations of the cell-lines-specific models do not 
always correspond to what is reported in the literature. The differences between simulation 
results and biological characteristics could be addressed in further studies by including other 
pathways, for example better describing the DNA repair mechanisms, or by tailoring the model 
with different sets of data, as the data used to personalise these models do not allow to cluster 
these cell lines according to their different characteristics (Appendix File, Figure S21 and S22). 
In this sense, another limitation is that we use static data (or a snapshot of dynamic data) to 
build dynamic models and to study its stochastic results. Thus, these personalised models 
would likely improve their performance if they were fitted to dynamic data (Saez-Rodriguez & 
Blüthgen, 2020) or quantitative versions of the models were built, such as ODE-based, that 
may capture more fine differences among cell lines. 
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The present work contributes to efforts aimed at using modeling (Rivas-Barragan et al, 2020; 
Eduati et al, 2020; Zañudo et al, 2017) and other computational methods (Madani Tonekaboni 
et al, 2018; Menden et al, 2019) for the discovery of novel drug targets and combinatorial 
strategies. Our study expands the prostate drug catalogue and improves predictions of the 
impact of these in clinical strategies for prostate cancer by proposing and grading the 
effectiveness of a set of drugs that could be used off-label or repurposed. The insights gained 
from this study present the potential of using personalised models to obtain precise, 
personalised drug treatments for cancer patients.  
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Materials and Methods 

Data acquisition 

Publicly available data of 489 human prostate cancer patients from TCGA described in 
(Hoadley et al, 2018) were used in the present work. We gathered mutations, CNA, RNA and 
clinical data from cBioPortal 
(https://www.cbioportal.org/study/summary?id=prad_tcga_pan_can_atlas_2018) for all of 
these samples resulting in 488 with complete omics datasets. 

Publicly available data of cell lines used in the present work were obtained from Genomics of 
Drug Sensitivity in Cancer database (GDSC) (Iorio et al, 2016). Mutations, CNA and RNA 
data, as well as cell lines descriptors, were downloaded from 
(https://www.cancerrxgene.org/downloads).  

All these data were used to personalise Boolean models using our PROFILE method (Béal et 

al, 2019). 

Prior knowledge network construction  

Several sources were used in building this prostate Boolean model and in particular the model 
published by Fumiã and Martins (2013). This model includes several signalling pathways such 
as the ones involving receptor tyrosine kinase (RTKs), phosphatidylinositol 3-kinase 
(PI3K)/AKT, WNT/b-Catenin, transforming growth factor-b (TGF-b)/Smads, cyclins, 
retinoblastoma protein (Rb), hypoxia-inducible transcription factor (HIF-1), p53 and ataxia-
telangiectasia mutated (ATM)/ataxia-telangiectasia and Rad3-related (ATR) protein kinases. 
The model includes these pathways as well as the substantial cross-talks among them. For a 
complete description of the process of construction, see Appendix File. 

The model also includes several pathways that have a relevant role in our datasets identified 
by ROMA (Martignetti et al, 2016), a software that uses the first principal component of a PCA 
analysis to summarise the coexpression of a group of genes in the gene set, identifying 
significantly overdispersed pathways with a relevant role in a given set of samples. This 
software was applied on the TCGA transcriptomics data using the gene sets described in the 
Atlas of Cancer Signaling Networks, ACSN (Kuperstein et al, 2015) (www.acsn.curie.fr) and 
in Hallmarks (Liberzon et al, 2015) (Appendix File, Figure S1) and highlighted the signalling 
pathways that show high variance across all samples, suggesting candidate pathways and 
genes. Additionally, OmniPath (Türei et al, 2021) was used to extend the model and complete 
it connecting the nodes from Fumiã and Martins and the ones from ROMA analysis. OmniPath 
is a comprehensive collection of literature-curated human signalling pathways, which includes 
several databases such as Signor (Perfetto et al, 2016) or Reactome (Fabregat et al, 2018) 
and that can be queried using pypath, a Python module for molecular networks and pathways 
analyses. 

Fusion genes are frequently found in human prostate cancer and have been identified as a 
specific subtype marker (The Cancer Genome Atlas Research Network, 2015). The most 
frequent is TMPRSS2:ERG as it involves the transcription factor ERG, which leads to cell-
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cycle progression. ERG fuses with the AR-regulated TMPRSS2 gene promoter to form an 
oncogenic fusion gene that is especially common in hormone-refractory prostate cancer, 
conferring androgen responsiveness to ERG. A literature search reveals that ERG directly 
regulates EZH2, oncogene c-Myc and many other targets in prostate cancer (Kunderfranco et 

al, 2010).  

We modelled the gene fusion with activation of ERG by the decoupling of ERG in a special 
node AR_ERG that is only activated by AR, when the fused_event input node is active. In the 
healthy case, fused_event (that represents TMPRSS2:ERG fusion event) is fixed to 0 or 
inactive. The occurrence of the gene fusion is represented with the model perturbation where 
fused_event is fixed to 1. This AR_ERG node is further controlled by tumour suppressor 
NKX3-1 that accelerates DNA_repair response and avoids the gene fusion TMPRSS2:ERG. 
Thus, loss of NKX3-1 favours recruitment to the ERG gene breakpoint of proteins that promote 
error-prone non-homologous end-joining (Bowen et al, 2015). 

The network was further documented using up-to-date literature and was constructed using 
GINsim (Chaouiya et al, 2012), which allowed us to study its stable states and network 
properties. 

Boolean model construction 

We converted the network to a Boolean model by defining a regulatory graph, where each 
node is associated with discrete levels of activity (0 or 1). Each edge represents a regulatory 
interaction between the source and target nodes and is labelled with a threshold and a sign 
(positive or negative). The model is completed by logical rules (or functions), which assign a 
target value to each node for each regulator level combination (Chaouiya et al, 2012; Abou-
Jaoudé et al, 2016). The regulatory graph was constructed using GINsim software (Chaouiya 
et al, 2012) and then exported in a format readable by MaBoSS software (see below) in order 
to perform stochastic simulations on the Boolean model. 

The final model has a total of 133 nodes and 449 edges (SuppFile 1) and includes pathways 
such as androgen receptor and growth factor signalling, several signalling pathways (Wnt, 
NFkB, PI3K/AKT, MAPK, mTOR, SHH), cell cycle, epithelial-mesenchymal transition (EMT), 
Apoptosis, DNA damage, etc. This model has 9 inputs (EGF, FGF, TGF beta, Nutrients, 

Hypoxia, Acidosis, Androgen, TNF alpha and Carcinogen presence) and 6 outputs 
(Proliferation, Apoptosis, Invasion, Migration, (bone) Metastasis and DNA repair). This model 
was deposited in the GINsim Database with identifier 252 (http://ginsim.org/model/signalling-
prostate-cancer) and in BioModels (Malik-Sheriff et al, 2019) with identifier 
MODEL2106070001 (https://www.ebi.ac.uk/biomodels/MODEL2106070001). SuppFile 1 is 
provided as a zipped folder with the model in several formats: MaBoSS, GINsim, SBML as 
well as images of the networks and its annotations. 

Stochastic Boolean model simulation 

MaBoSS (Stoll et al, 2012, 2017) is a C++ software for stochastically simulating 
continuous/discrete-time Markov processes defined on the state transition graph (STG) 
describing the dynamics of a Boolean model (for more details, see (Chaouiya et al, 2012; 
Abou-Jaoudé et al, 2016)). MaBoSS associates transition rates to each node’s activation and 
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inhibition, enabling it to account for different time scales of the processes described by the 
model. Probabilities to reach a phenotype (to have value ON) are thus computed by simulating 
random walks on the probabilistic STG. Since a state in the STG can combine the activation 
of several phenotypic variables, not all phenotype probabilities are mutually exclusive (like the 
ones in Appendix File, Figure S25). Using MaBoSS we can study an increase or decrease of 
a phenotype probability when the model variables are altered (nodes status, initial conditions 
and transition rates), which may correspond to the effect of particular genetic or environmental 
perturbation. In the present work, the outputs of MaBoSS focused on the readouts of the 
model, but this can be done for any node of a model. 

MaBoSS applies Monte-Carlo kinetic algorithm (i.e. Gillespie algorithm) to the STG to produce 
time trajectories (Stoll et al, 2012, 2017) so time evolution of probabilities are estimated once 
a set of initial conditions are defined and a maximum time is set to ensure that the simulations 
reach asymptotic solutions. Results are analyzed in two ways: (1) the trajectories for particular 
model states (states of nodes) can be interpreted as the evolution of a cell population as a 
function of time and (2) asymptotic solutions can be represented as pie charts to illustrate the 
proportions of cells in particular model states. Stochastic simulations with MaBoSS have 
already been successfully applied to study several Boolean models (Calzone et al, 2010; 
Remy et al, 2015; Cohen et al, 2015). 

Data tailoring the Boolean model 

Logical models were tailored to a dataset using PROFILE to obtain personalised models that 
capture the particularities of a set of patients (Béal et al, 2019) and cell lines (Béal et al, 2021). 
Proteomics, transcriptomics, mutations and CNA data can be used to modify different 
variables of the MaBoSS framework such as node activity status, transition rates and initial 
conditions. The resulting ensemble of models is a set of personalised variants of the original 
model that can show great phenotypic differences. Different recipes (use of a given data type 
to modify a given MaBoSS variable) can be tested to find the combination that better correlates 
to a given clinical or otherwise descriptive data.  

In the present case, TCGA-patient-specific models were built using mutations, CNA and/or 
RNA expression data. After studying the effect of these recipes in the clustering of patients 
according to their Gleason grouping (Appendix File, Figure S8-S12), we chose to use 
mutations and CNA as discrete data and RNA expression as continuous data. 

Likewise, we tried different personalisation recipes to personalise the GDSC prostate cell lines 
models, but as they had no associated clinical grouping features, we were left with the 
comparison of the different values for the model’s outputs among the recipes (Appendix File, 
Figure S20). We used mutation data as discrete data and RNA expression as continuous data 
as it included the most quantity of data and reproduced the desired results (Figure S20). We 
decided not to include CNA as discrete data as it forced LNCAP proliferation to be zero, by 
forcing E2F1 node to be 0 and SMAD node to be 1 throughout the simulation (for more details, 
refer to Appendix File). 

More on PROFILE’s methodology can be found in its own work (Béal et al, 2019) and at its 
dedicated GitHub repository: https://github.com/sysbio-curie/PROFILE. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454126doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454126
http://creativecommons.org/licenses/by-nd/4.0/


High-throughput mutant analysis of Boolean models 

MaBoSS allows the study of knock-out or loss-of-function (node forced to 0) and gain-of-
function (node forced to 1) mutants as genetic perturbations and of initial conditions as 
environmental perturbations. Phenotypes’ stabilities against perturbations can be studied and 
allow to determine driver mutations that promote phenotypic transitions (Montagud et al, 
2017). 

Genetic interactions were thoroughly studied using our pipeline of computational methods for 
Boolean modelling of biological networks (available at https://github.com/sysbio-
curie/Logical_modelling_pipeline). LNCaP-specific Boolean model was used to perform single 
and double knock-out (node forced to 0) and gain-of-function (node forced to 1) mutants for 
each one of the 133 nodes, resulting in a total of 32258 models. These were simulated under 
the same initial conditions, their phenotypic results were collected and a PCA was applied on 
the wild-type-centred matrix. 

The 488 TCGA-patient-specific models were studied in a similar way, but only perturbing 16 
nodes shortlisted for their therapeutic target potential (AKT, AR, Caspase8, cFLAR, EGFR, 
ERK, GLUT1, HIF-1, HSPs, MEK1_2, MYC_MAX, p14ARF, PI3K, ROS, SPOP and TERT). 
Then, the nodes that mostly contributed to a decrease of Proliferation (Appendix File, Figure 
S17) or an increase in Apoptosis (Appendix File, Figure S18) were gathered from the 488 
models perturbed. 

Additionally, the results of LNCaP model’s double mutants were used to quantify the level of 
genetic interactions (epistasis or otherwise (Drees et al, 2005)) between two model genetic 
perturbations (resulting from either the gain-of-function mutation of a gene or from its knock-
out or loss-of-function mutation) with respect to wild type phenotypes’ probabilities (Calzone 
et al, 2015). The method was applied to the LNCaP model studying Proliferation and Apoptosis 
scores (Appendix File, Figure S31 and S32). 

This genetic interaction study uses the following equation for each gene pairs, which is 
equation 2 in Calzone et al, (2015): 

 (1) 

Where  and  are phenotype  fitness values of single gene defects,  is the phenotype 

 fitness of the double mutant, and  is one of the four functions: 

 (additive) 

 (log) 

 (multiplicative) 

 (min) (2) 

To choose the best definition of , the Pearson correlation coefficient is computed 
between the fitness values observed in all double mutants and estimated by the null model 
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(more information on (Drees et al, 2005)). Regarding  fitness value, to a given phenotype 

, <1 represents deleterious, >1 beneficial and ≈1 neutral mutation. 

Drug simulations in Boolean models 

Logical models can be used to simulate the effect of therapeutic interventions and predict the 
expected efficacy of candidate drugs on different genetic and environmental backgrounds by 
using our PROFILE_v2 methodology. MaBoSS can perform simulations changing the 
proportion of activated and inhibited status of a given node. This can be determined in the 
configuration file of each model (see, for instance, “istate” section of the CFG files in SuppFiles 
1, 3 and 5). For instance, out of 1000 trajectories of the Gillespie algorithm, MaBoSS can 
simulate 50% of them with an activated AKT and 50% with an inhibited AKT node. The 
phenotypes’ probabilities for the 1000 trajectories are averaged and these are considered to 
be representative of a model with a drug that half-inhibits the activity of AKT.  

In present work, LNCaP model has been simulated with different levels of node activity, with 
100% of node activity (no inhibition), 80%, 60%, 40%, 20% and 0% (proper knock-out), under 
four different initial conditions, a nutrient-rich media that simulates RPMI Gibco® media with 
DHT (androgen), with EGF, with both and with none. In terms of the model, the initial 
conditions are Nutrients is ON and Acidosis, Hypoxia, TGF beta, Carcinogen and TNF alpha 
are set to OFF. EGF and Androgen values vary upon simulations. 

Drug synergies have been studied using Bliss Independence. The Combination Index was 
calculated with the following equation (Foucquier & Guedj, 2015): 

 (3) 
Where  and  is the efficiency of the single drug inhibitions and  is the inhibition resulting 
from the double drug simulations. A Combination Index (CI) below 1 represents synergy 
among drugs. 

This methodology can be found in its own repository: 
https://github.com/ArnauMontagud/PROFILE_v2  

Identification of drugs associated with proposed targets 

To identify drugs that could act as potential inhibitors of the genes identified with our models 
(Table 1), we explored the drug-target associations in DrugBank (Wishart et al, 2018). For 
those genes with multiple drug-target links, only those drugs that are selective and known to 
have relevance in various forms of cancer are considered here.  

In addition to DrugBank searches, we also conducted exhaustive searches in ChEMBL 
(Gaulton et al, 2017) (http://doi.org/10.6019/CHEMBL.database.23) to suggest potential 
candidates for genes, whose information is not well documented in Drug Bank. From the large 
number of bioactivities extracted from ChEMBL, we filtered human data and considered only 
those compounds, whose bioactivities fall within a specific threshold (IC50/Kd/ Ki<100 nM). 

We performed a target set enrichment analysis using the fgsea method (Korotkevich et al, 
2016) from the piano R package (Väremo et al, 2013). We targeted pathway information from 
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the GDSC1 and GDSC2 studies (Iorio et al, 2016) as target sets and performed the enrichment 
analysis on the normalised drug sensitivity profile of the LNCaP cell line. We normalised drug 
sensitivity across cell lines in the following way: cells were ranked from most sensitive to least 
sensitive (using ln(IC50) as drug sensitivity metrics), and the rank was divided by the number 
of cell lines tested with the given drug. Thus, the most sensitive cell line has 0, while the most 
resistant cell line has 1 normalised sensitivity. This rank-based metric made it possible to 
analyse all drug sensitivities for a given cell line, without drug-specific confounding factors, 
like mean IC50 of a given drug, etc. 

Cell culture method 

For in vitro drug perturbation validations we used the androgen-sensitive prostate 
adenocarcinoma cell line LNCaP purchased from American Type Culture Collection (ATCC, 
Manassas, WV, USA). Cells were maintained in RPMI-1640 culture media (Gibco, Thermo 
Fisher Scientific, Waltham, MA, USA) containing 4.5 g/L glucose, 10% fetal bovine serum 
(FBS, Gibco), 1X GlutaMAX (Gibco) 1% PenStrep antibiotics (Penicillin G sodium salt, and 
Streptomycin sulfate salt, Sigma-Aldrich, St. Louis, MI, USA). Cells were maintained in a 
humidified incubator at 37 °C 5% CO2 (Sanyo, Osaka, Japan). 

Drugs used in the cell culture experiments 

We tested two drugs targeted at Hsp90 and two targeted at PI3K complex. 17-DMAG is an 
Hsp90 inhibitor with an IC50 of 62 nM in a cell-free assay (Pacey et al, 2011). NMS-E973 is 
an Hsp90 inhibitor with DC50 of <10 nM for Hsp90 binding (Fogliatto et al, 2013). Pictilisib is 
an inhibitor of PI3Kα/δ with IC50 of 3.3 nM in cell-free assays (Zhan et al, 2017). PI-103 is a 
multi-targeted PI3K inhibitor for p110α/β/δ/γ with IC50 of 2 to 3 nM in cell-free assays and less 
potent inhibitor to mTOR/DNA-PK with IC50 of 30 nM (Raynaud et al, 2009). All drugs were 
obtained from commercial vendors and added to the growth media to have concentrations of 
2, 8, 32, 128 and 512 nM for NMS-E973 and 1, 5, 25, 125 and 625 nM for the rest of the drugs 
in the endpoint cell viability and of 3.3, 10, 30 mM for all the drugs in the RT-CES cytotoxicity 
assay. 

Endpoint cell viability measurements 

In vitro toxicity of the selected inhibitors was determined using the viability of LNCaP cells, 
determined by the fluorescent resazurin (Sigma-Aldrich, Germany) assay as described 
previously (Szebeni et al, 2017). Briefly, the LNCaP cells (10000) were seeded into 96-well 
plates (Corning Life Sciences, Tewksbury, MA, USA) in 100 μl RPMI media and incubated 
overnight. Test compounds were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, 
Germany). Cells were treated with an increasing concentration of test compounds. The highest 
applied DMSO content of the treated cells was 0.4%. Cell viability was determined after 48 
hours incubation. Resazurin reagent (Sigma–Aldrich, Budapest, Hungary) was added at a final 
concentration of 25 μg/mL. After 2 hours at 37°C 5%, CO2 (Sanyo) fluorescence (530 nm 
excitation/580 nm emission) was recorded on a multimode microplate reader (Cytofluor4000, 
PerSeptive Biosystems, Framingham, MA, USA). Viability was calculated with relation to blank 
wells containing media without cells and to wells with untreated cells.  
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Real-time cell electronic sensing (RT-CES) cytotoxicity assay 

Real-time cytotoxicity assay was performed as previously described (Ozsvári et al, 2010). 
Briefly, RT-CES 96-well E-plate (BioTech Hungary, Budapest, Hungary) was coated with 
gelatin solution (0.2% in PBS, phosphate buffer saline) for 20 min at 37 °C, then gelatin was 
washed twice with PBS solution. Growth media (50 μL) was then gently dispensed into each 
well of the 96-well E-plate for background readings by the RT-CES system prior to the addition 
of 50 μL of the cell suspension containing 2x104 LNCaP cells. Plates were kept at room 
temperature in a tissue culture hood for 30 min prior to insertion into the RT-CES device in the 
incubator to allow cells to settle. Cell growth was monitored overnight by measurements of 
electrical impedance every 15 min. Continuous recording of impedance in cells was reflected 
by the cell index value. The next day cells were co-treated with different drugs. Treated and 
control wells were dynamically monitored over 72 h by measurements of electrical impedance 
every 5 min. Each treatment was repeated in 2 wells per plate during the experiments. 
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Tables and their legends 
Table 1: List of selected nodes, their corresponding genes and drugs that were included in the 
drug analysis of the models tailored for TCGA patients and LNCaP cell line.  

Node Gene 
Compound / 

Inhibitor name 
Clinical stage Source 

AKT 
AKT1, 
AKT2, 
AKT3 

PI-103 Preclinical Drug Bank 

Enzastaurin Phase 3 Drug Bank 

Archexin, Pictilisib Phase 2 Drug Bank 

AR AR 

Abiraterone,  
Enzalutamide, 
Formestane, 
Testosterone 
propionate 

Approved Drug Bank 

5alpha-androstan-
3beta-ol 

Preclinical Drug Bank 

Caspase8 CASP8 Bardoxolone Preclinical Drug Bank 

cFLAR CFLAR - - - 

EGFR EGFR 

Afatinib, 
Osimertinib, 

Neratinib, Erlotinib, 
Gefitinib 

 Approved Drug Bank 

Varlitinib Phase 3 Drug Bank 

Olmutinib, Pelitinib Phase 2 Drug Bank 

ERK MAPK1 

Isoprenaline Approved Drug Bank 

Perifosine Phase 3 Drug Bank 

Turpentine, 
SB220025, 

 Preclinical  Drug Bank 
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Olomoucine, 
Phosphonothreoni

ne 

MAPK3, 
MAPK1 

Arsenic trioxide Approved Drug Bank 

Ulixertinib, 
Seliciclib 

Phase 2 Drug Bank 

Purvalanol Preclinical  Drug Bank 

MAPK3 

Sulindac, 
Cholecystokinin 

Approved Drug Bank 

5-iodotubercidin Preclinical  Drug Bank 

GLUT1 SLC2A1 Resveratrol  Phase 4  Drug Bank 

HIF-1 HIF1A CAY-10585 Preclinical Drug Bank 

HSPs 

HSP90AA1, 
HSP90AB1, 
HSP90B1, 
HSPA1A, 
HSPA1B, 
HSPB1 

Cladribine Approved Drug Bank 

17-DMAG Phase 2 Drug Bank 

NMS-E973 Preclinical Drug Bank 

MEK1_2 
MAP2K1, 
MAP2K2 

Trametinib, 
Selumetinib  

Approved Drug Bank 

Perifosine Phase 3 Drug Bank 

PD184352 (CI-
1040) 

Phase 2 Drug Bank 

MYC_MAX 
complex of 
MYC and 

MAX 

10058-F4 (for 
MAX) 

Preclinical Drug Bank 

p14ARF CDKN2A - - - 

PI3K PI-103 Preclinical Drug Bank 
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PIK3CA, 
PIK3CB, 
PIK3CG, 
PIK3CD, 
PIK3R1, 
PIK3R2, 
PIK3R3, 
PIK3R4, 
PIK3R5, 
PIK3R6, 

PIK3C2A, 
PIK3C2B, 
PIK3C2G, 
PIK3C3 

Pictilisib Phase 2 Drug Bank 

ROS 

NOX1, 
NOX3, 
NOX4 

Fostamatinib Approved Drug Bank 

NOX2 

Dextromethorphan Approved Drug Bank 

Tetrahydroisoquino
lines 

(CHEMBL3733336
, 

CHEMBL3347550, 
CHEMBL3347551) 

Preclinical  ChEMBL 

SPOP SPOP  -- -- -- 

TERT TERT 

Grn163l Phase 2 Drug Bank 

BIBR 1532 Preclinical ChEMBL 

 

Supplementary materials 
SuppFile 1, a zipped folder with the model in several formats: MaBoSS, GINsim, SBML as 
well as images of the networks and its annotations. 

SuppFile 2, a jupyter notebook to inspect Boolean models using MaBoSS. 

SuppFile 3, a zipped folder with the TCGA-specific personalised models and their Apoptosis 

and Proliferation phenotype scores. 
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SuppFile 4, a TSV file with the Apoptosis and Proliferation phenotype scores of TCGA-
patient-specific mutations. 

SuppFile 5, a zipped folder with the cell-lines-specific personalised models. 

SuppFile 6, a TSV file with the Apoptosis and Proliferation phenotype scores of LNCaP-cell-
line specific mutations. 
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