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Abstract

In bottom-up proteomics, proteins are enzymatically digested into peptides before
measurement with mass spectrometry. The relationship between proteins and their
corresponding peptides can be represented by bipartite graphs. We conduct a
comprehensive analysis of bipartite graphs using quantified peptides from measured
data sets as well as theoretical peptides from an in silico digestion of the corresponding
complete taxonomic protein sequence databases. The aim of this study is to
characterize and structure the different types of graphs that occur and to compare them
between data sets. We observed a large influence of the accepted minimum peptide
length during in silico digestion. When changing from theoretical peptides to measured
ones, the graph structures are subject to two opposite effects. On the one hand, the
graphs based on measured peptides are on average smaller and less complex compared
to graphs using theoretical peptides. On the other hand, the proportion of protein
nodes without unique peptides, which are a complicated case for protein inference and
quantification, is considerably larger for measured data. Additionally, the proportion of
graphs containing at least one protein node without unique peptides rises when going
from database to quantitative level. The fraction of shared peptides and proteins
without unique peptides as well as the complexity and size of the graphs highly depends
on the data set and organism. Large differences between the structures of bipartite
peptide-protein graphs have been observed between database and quantitative level as
well as between analyzed species. In the analyzed measured data sets, the proportion of
protein nodes without unique peptides ranged from 6.4% to 55.0%. This highlights the
need for novel methods that can quantify proteins without unique peptides. The
knowledge about the structure of the bipartite peptide-protein graphs gained in this
study will be useful for the development of such algorithms.
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Introduction 1

The digestion of intact proteins to peptides via enzymes like trypsin is a requirement for 2

high-throughput bottom-up proteomics based on mass spectrometry (MS) [1–3]. 3

Because of this, peptides are identified and quantified directly from the MS 4

measurements instead of proteins. The protein ambiguity problem describes the 5

challenge to build a list of proteins for which evidence exists that they are present in the 6

respective sample using protein inference methods [4, 5]. Many identified peptides 7

cannot unambiguously be assigned to a single protein, as the respective peptide sequence 8

is part of multiple protein sequences in the underlying database. Because of shared 9

peptides there is the need to form protein ambiguity groups, which consist of proteins 10

whose presence in a sample cannot be completely decided using the peptides identified 11

in the sample. Beyond this, for protein quantification peptide quantities need to be 12

summarized to protein quantities. This is often done by using only unique peptides, 13

although including shared peptides would be desirable to exploit the full potential of the 14

data and to avoid inaccuracies [6–8]. The worst case, a valid quantification of proteins 15

without any quantified unique peptide, is very challenging and not solved yet despite 16

the large variety of different protein quantification methods available [9, 10]. 17

To illustrate and facilitate the protein inference and quantification steps, bipartite 18

graph representations of the protein-peptide relationships have been used [11–15]. A 19

bipartite graph is an undirected graph G (with node set N(G) and edge set E(G)) 20

whose nodes are grouped into two sets N1(G) and N2(G), so that each edge connects a 21

node of the first set with a node of the second set. In the context of 22

protein-peptide-relationships, proteins are represented by nodes from N1(G) and 23

peptides by nodes from N2(G). One straightforward approach would be to add an edge 24

if and only if the considered peptide sequence is part of the protein sequence based on 25

database knowledge. Another possibility is to draw an edge only if the corresponding 26

peptide was quantified in a specific data set (see section Construction of bipartite 27

graphs). As not all proteins are connected to each other via chains of shared peptides, 28

the bipartite graph for the whole data set can be divided into smaller connected 29

components. These components can be analyzed and handled separately during protein 30

inference or quantification. 31

The structure of the connected components is determined by the underlying protein 32

sequence database and contains valuable information on how difficult the protein 33

inference or quantification problem is in this specific case. The M-shaped example in 34

Fig 1A has two protein nodes that each have one unique peptide node and there is a 35

shared peptide node connecting both protein nodes. In this case, the protein inference 36

step is quite simple, as both proteins are likely to be present in the underlying samples 37

because unique peptides exists. For protein quantification however, the shared peptides 38

contain valuable information that should not be discarded but could also lead to 39

contradictions, if the shared peptides’ quantities do not fit to the quantities from the 40

unique peptides. In the second example (N-shape, Fig 1B), protein B does not have a 41

unique peptide and it is unclear, if it exists in the sample. Even if it does, it is not 42

straightforward to quantify this protein, as it only has shared peptides whose quantities 43

are also influenced by protein node A. 44

In this paper, we generate bipartite graphs of peptide-protein relationships using 45

peptides quantified by mass spectrometry based proteomics in three different data sets 46

as well as theoretical peptides from an in silico digestion of the related protein databases 47

used for peptide identification. The aim of this paper is to systematically characterize 48

the occurring bipartite peptide-protein graphs, to compare the theoretical graphs from 49

the database with the ones from quantitative data sets. Furthermore, we can compare 50

the different data sets and the databases from different species. We characterize 51

common types of graphs as well as aggregated metrics over all graphs of a data set. 52
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Fig 1. Examples of bipartite graphs depicting protein-peptide relationships.
Protein nodes are shown as green circles and peptide nodes as red diamonds (unique to
a protein node) or blue squares (shared between protein nodes). Each node may
represent multiple protein accessions or peptide sequences. Unique peptide nodes are
defined as nodes belonging to only one protein node, which may contain several protein
accessions. Shared peptide nodes belong to at least two distinct protein nodes.

Bipartite graphs have been used in the past to display the relationships between 53

proteins and peptides and to assist protein inference or quantification [12–15], a 54

comprehensive analysis and characterization of the occurring graph types has yet not 55

been conducted. Bamberger et al. [14] show the complete set of peptide-protein graphs 56

of a combined data set from D. melanogaster and D. virilis. However, they do not 57

characterize them further or compare them with theoretical graphs or different data 58

sets, as it was not aim the of the paper (which is inferring proteoforms from the data). 59

This approach here serves as a model to describe the protein inference and 60

quantification problem in more detail and assess its difficulty for a given data set. 61

Especially the quantification of proteins without unique peptides is difficult or even not 62

possible with most methods. We can show the extend of this problem with the help of 63

the bipartite graphs, which differs between different data sets/organisms as well as 64

between measured data sets and theoretical considerations of an in silico digestion of 65

the corresponding databases. Results of this analysis will be helpful for development of 66

new protein inference and quantification methods, especially for proteins without unique 67

peptides. 68

Materials and methods 69

Data sets and corresponding protein databases 70

For building and analyzing the bipartite peptide-protein graphs, three different 71

quantitative peptide-level data sets were used together with the corresponding protein 72

databases. A summary of technical information and the search engine parameters for 73

each data set can be found in S1 Table. The samples of the first data set (D1) consist of 74

13 non-mouse proteins that were spiked into a mouse cell background (C2C12 cell lysate) 75

in different concentrations leading to five different states [16]. Each state was measured 76

in three replicates leading to 15 samples in total. The raw files and the protein database 77

were taken from the PRIDE repository [17], identifier PXD012986. Data were 78

re-analyzed using a KNIME [18] workflow employing the search engines Mascot 2.7 [19], 79

MS-GF+ [20] and X!Tandem [21]. Peptide identifications were combined using 80

PIA [22,23]. The workflow was similar to the original publication [16], except for a 81
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peptide identification filter directly after the spectrum identification leaving only 82

peptides which are strictly tryptic (i.e. cutting after arginine (R) and lysine (K), if not 83

followed by proline (P)). The resulting peptide quantities were used for further analysis 84

(quantified peptides-featureFinderCentroided.csv, which can be found in the PRIDE 85

upload with the identifier PXD024684). The corresponding protein sequence database 86

(in total 52,824 entries) consists of 52,548 entries from the UniProt reference mouse 87

proteome (UP000000589, version 2017 12, only canonical sequences), the 13 spike-in 88

proteins, 147 spike-in contaminants and 115 contaminants from the cRAP database. 89

For the second data set (D2) the UPS1 standard (containing 48 human proteins of 90

equal molarity) were spiked into a yeast background in 10 different concentrations [24]. 91

Raw files were taken from PRIDE, identifier PXD001819, and re-analyzed with 92

MaxQuant version 1.6.17.0 [25,26] and Andromeda [27]. Settings were taken from 93

Workflow 7 of the corresponding publication [24], except that ”Trypsin” (no cutting 94

after proline) was used instead of ”Trypsin/P”. The peptide output table from 95

MaxQuant (peptides.txt file) was used for further processing of the quantitative 96

peptide-level data. The corresponding database (in total 6,342 entries) consists of the 97

UniProt yeast proteome (UP000002311, version 2019 11, 6,049 entries, only canonical 98

sequences), the UPS1 fasta file [28] (48 entries), as well as the contaminants 99

database [29] provided by Andromeda (245 entries). 100

Data set D3 is a re-analysis of a published ground-truth data set with two 101

experimental groups. 60 µg of HeLa cell lysate was mixed with either 10 µg or 30 µg of 102

E. coli lysate, each measured in three technical replicates [26]. Raw files were taken 103

from the PRIDE repository, identifier PXD000279, and re-analyzed with MaxQuant 104

version 1.6.17.0 and Andromeda. The peptides.txt file was used for further processing of 105

the quantitative peptide-level data. The database contains in total 81,709 canonical 106

sequences and consists of the UniProt human reference proteome (UP000005640, version 107

2021 02, 77,027 entries), the E. coli reference proteome (UP000000625, version 2021 02, 108

4,437 entries) and the Andromeda contaminants database (245 entries). Additionally, 109

we repeated this analysis including isoforms. The reference proteomes with isoforms 110

contain 99,012 entries for human and 4,449 entries for E. coli. Together with the 111

contaminant sequences, 103,706 sequences are included. This allows an analysis of the 112

impact of including isoforms on the bipartite peptide-protein graphs. 113

For each of the protein databases, all protein sequences were digested in silico using 114

the digestion rules for trypsin (cut after R and K, if not followed by P) to obtain all 115

theoretical tryptic peptides. All peptides with a maximum of two missed cleavage sites 116

were allowed. Only peptides with a length between five and 50 amino acids (AA) were 117

considered further, as longer or shorter peptides are unlikely to be found via bottom-up 118

MS [30]. Different values for the lower bound for the peptide length (five, six, seven and 119

nine) were evaluated (see section General overview and impact of minimal peptide 120

length). 121

Processing of quantitative peptide-level data 122

For data set D1, peptides exclusively originating from decoy proteins were filtered out. 123

Intensities for the same peptide sequence but with different post-translational 124

modifications (PTMs) were summed up. Peptide sequences with a length larger than 50 125

AA or lower than the chosen minimal peptide length (see Section General overview and 126

impact of minimal peptide length in the Results chapter) were removed, to be directly 127

comparable with the theoretical peptides. The remaining sequences were mapped to the 128

proteins in the corresponding database. The three replicates for each state were 129

combined by averaging the peptide intensities, while zero values were treated as missing 130

values (NA). If two or more of the three values were NA, the combined peptide intensity 131

for this peptide was set to NA. For each possible comparison of the five different states, 132
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these aggregated values were used to calculate peptide ratios, which were set to NA if 133

one of the corresponding values was NA. For each comparison, only peptides with a 134

valid ratio (different from NA) were considered in the construction of the bipartite 135

graphs (see Section Construction of bipartite graphs). For data sets D2 and D3, peptide 136

LFQ values were extracted from the respective peptides.txt tables and zero values were 137

re-assigned by NA. Further processing was the same as explained for data set D1, 138

except that aggregation of peptides with different PTMs was not necessary here, as it is 139

done internally by MaxQuant. An overview of the different quantitative peptide-level 140

data sets can be found in S2 Table. 141

Construction of bipartite graphs 142

For every data set, the bipartite protein-peptide graphs are constructed using two 143

different sets of peptides. First, all theoretical peptides obtained from in silico digestion 144

of the corresponding protein database are used (D1 fasta, D2 fasta, D3 fasta). Second, 145

for each comparison of two states only those peptides with a valid ratio are used 146

(D1 quant, D2 quant and D3 quant). The connected components that arise from the 147

pairwise comparisons of the different states within one data set are put together and 148

analyzed jointly. 149

To construct the bipartite graphs, a matrix with peptides in rows and all 150

corresponding proteins in columns is created, with entries of 1 if the peptide belongs to 151

the respective protein and 0 otherwise. This matrix is used as a biadjacency matrix [11] 152

to build the bipartite graph of the relationship between proteins and peptides. Proteins 153

that have the same set of peptides are indistinguishable and are therefore collapsed to a 154

single node, i.e. a protein group. Similarly, all peptides sequences that belong to exactly 155

the same set of proteins are collapsed to one single node to further simplify the graph 156

structure. Accordingly, in Fig 1, one node may stand for multiple protein accessions or 157

peptide sequences. This also means that here uniqueness is defined on the level of nodes. 158

A peptide node (which may contain multiple peptide sequences) is defined as unique if 159

it belongs to only one single protein node (which may contain multiple protein 160

accessions), and it is defined as shared if it belongs to at least two protein nodes. In the 161

resulting bipartite graph, protein nodes can be connected to each other via chains of 162

shared peptide nodes. As not all protein nodes are connected this way, the graph can be 163

decomposed into connected components, where all nodes are connected to each other, 164

but not to any other node outside of it. The connected components (called ”graphs” in 165

the following for simplicity) can be treated separately for protein inference or protein 166

quantification. 167

Two graphs G and H are called isomorphic if there exists a bijective function 168

f : N(G) → N(H) that maps the node set of G to the one of H, so that the edge 169

structure remains the same: (u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(H) ∀ u, v ∈ N(G) [31]. 170

Additionally, we require that the function f preserves the node type, i.e. that protein 171

and peptide nodes are distinguished in terms of isomorphisms. Groups of isomorphic 172

graphs reflect identical structures of protein-peptide relationships and contain the same 173

information needed for inference or quantification, except the specific quantities of the 174

peptides. Sets of isomorphic bipartite graphs (isomorphism classes) are built for the 175

data sets, based on theoretical peptides from the in silico digestion of the database and 176

quantified peptides with a valid ratio. 177

Classes of isomorphic graphs are determined by comparing two graphs using the 178

”isomorphic” function from the igraph package, which uses the BLISS algorithm 179

proposed by Junttila and Kaski [32]. Both graphs are transformed into defined 180

canonical forms which are then directly compared. These canonical forms are also used 181

for graphical representation of the graphs in S2 Fig, S3 Fig, S4 Fig and S5 Fig. As the 182

”isomorphic” function does not take into account the type of nodes in a bipartite graph 183
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(e.g. a M-shaped and W-shaped graph would be considered isomorphic), we added a 184

criterion that additionally compares the node types of both graphs. In an iterative 185

procedure, each bipartite graph is compared to the current set of isomorphism classes 186

and added to the corresponding class. If necessary, a new isomorphism class is built. 187

Software 188

Calculations were performed and graphics created using R 4.1.2 [33]. The package 189

seqinr 4.2-8 [34] was used to import the fasta files and OrgMassSpecR 0.5-3 [35] 190

(modified version of the Digest() function) to perform the in silico digestion. For 191

dealing with (bipartite) graphs, the igraph package 1.2.9 [36] was used, and for further 192

graphics ggplot2 3.3.5 [37]. Additionally, function from the following R packages were 193

used: reshape2 1.4.4 [38], BBmisc 1.11 [39], pbapply 1.5-0 [40], limma 3.47.16 [41], 194

Matrix 1.3-4 [42], matrixStats 0.61.0 [43], openxlsx 4.2.4 [44], xtable 1.8-4 [45], tidyverse 195

1.3.1 [46], cowplot 1.1.1 [47], ggpubr 0.4.0 [48]. 196

R code that was used for this work is available at: 197

https://github.com/mpc-bioinformatics/bipartite-peptide-protein-graphs. 198

Results 199

General overview and impact of minimal peptide length 200

Very small and very large peptides cannot be measured by MS for high-throughput 201

bottom-up proteomics [30]. During peptide identification, the length of peptides is 202

usually restricted by limiting the number of amino acids as a setting for the search 203

engine. Even if small peptides are allowed during database search, often only a few are 204

identified and subsequently quantified in the end (see S1 Fig B, exemplary for D1). 205

However, on database level, many small peptides exist after tryptic digestion. Especially 206

peptides with a length of five amino acids (which are usually not identified nor 207

quantified) show a larger proportion of shared peptides compared to longer peptides 208

(see S1 Fig A, C and D). We analyzed the influence of different minimal peptide lengths 209

on the overall bipartite graph structures (Table 1, S3 Table and S4 Table). We chose six 210

and seven, as common default values for search engines, five as an extreme lower bound, 211

and nine, the required length by the Human Proteome Project of the Human Proteome 212

Organization (HUPO HPP) [49]. 213

For D1 fasta (Table 1), 52,824 protein sequences from the database were in silico 214

digested to around 2.87 million peptides, including all peptides with a length between 215

five and 50 amino acids and up to two missed cleavages. 64 protein sequences for which 216

no tryptic peptide within the desired length was found were excluded from the analysis. 217

The number of protein nodes is only slightly lower than the number of protein 218

accessions (this is expected, as only few database proteins should be indistinguishable 219

considering their tryptic peptides). However, the number of peptide nodes is notably 220

lower than the number of peptide sequences (only about 130,000). The bipartite graph 221

covering all these nodes consists of 2,916 connected components that form 206 different 222

isomorphism classes. The largest class consists of the smallest possible graph with only 223

one protein and one unique peptide node, which is an easy case for protein inference 224

and quantification. This system occurs 2,004 times, making up around 69% of all 225

graphs and covering 3.8% of all protein nodes. The largest graph (in terms of the 226

number of protein nodes) contains over 47,000 protein nodes and therefore around 90% 227

of all protein nodes and almost 95% of all peptide nodes. All these proteins are 228

connected via chains of shared peptides. The second largest graph is much smaller with 229

only 26 protein nodes and 75 peptide nodes. 230

September 1, 2022 6/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2021.07.28.454128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454128
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Influence of different minimal peptide lengths on the bipartite
graphs for D1 fasta.

min 5 AA min 6 AA min 7 AA min 9 AA
protein accessions 52,760 52,752 52,741 52,679
protein nodes 52,405 52,388 52,364 52,250
peptide sequences 2,872,496 2,777,410 2,642,464 2,365,974
peptide nodes 133,137 103,517 96,241 92,346
edges 444,272 277,656 241,601 221,186
graphs 2,916 10,356 15,402 17,114
graphs with 1 protein node 2,004 4,809 6,355 7,147
isomorphism classes 206 1,474 2,583 2,692
largest graph*
protein nodes 47,525 25,006 1,632 939
peptide nodes 126,315 57,763 3,971 2,415
edges 433,174 185,147 14,093 8,751
second largest graph*
protein nodes 26 91 1,104 529
peptide nodes 75 177 2,940 1,046
edges 288 486 10,541 2,484

* In terms of number of protein nodes.

Almost 100,000 short peptides of length five are included in the above analysis. 231

When these are omitted (minimum peptide length six), the number of graphs more than 232

triples to over 10,000. A major influence on this is the fragmentation of the former 233

largest graph, which splits into over 7,000 graphs. Now, still about half of all protein 234

and peptide nodes are connected within one single graph. The number of different 235

isomorphism classes increases dramatically to almost 1,500. For peptides of length five 236

the proportion of shared peptides is increased compared to longer peptides (S1 Fig), 237

which can explain the breakdown of the largest graph. If the minimal peptide length is 238

further increased to seven, the number of graphs rises further and the size of the largest 239

graph decreases drastically from covering 47% of all protein nodes to only 3%. At this 240

minimal peptide length, the largest graph reaches a reasonable size, also comparable to 241

the second largest graph, without loosing too much information. Increasing the minimal 242

peptide length even further, e.g. to nine, would lead to the loss of about 4,000 peptide 243

nodes and 20,000 edges. We decided to use a minimal peptide length of seven, as a 244

further increase risks losing too many well-quantifiable peptides and therefore 245

complexity of the graph. 246

The second database (D2 fasta, S3 Table) contains 6,342 protein accessions, much 247

less than D1 fasta. When using five AA as minimal length, only six protein accessions 248

did not produce at least one peptide with the given criteria. More than 750,000 249

peptides are created during the in silico digestion. After collapsing of nodes, around 250

6,300 protein and 13,000 peptide nodes remain. 90.1 % of all graphs contain only one 251

peptide node and protein node. There are only 18 different types of graphs. The largest 252

graph contains 70.5% of all protein nodes and 84.1% of all peptide nodes. Increasing the 253

minimal peptide length has a similar effect as for D1: the largest graph falls apart and 254

the number of graphs rises. In contrast to D1, here the size of the largest graph already 255

drops dramatically for a minimum peptide length of six (only contains 1% of all protein 256

nodes). The number of protein nodes in the largest and second largest graphs are not 257

influenced by omitting peptides of length seven and eight, however, they now contain 258

fewer peptide nodes and edges. 259
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For D3 fasta (S4 Table), based on human and E. coli databases, the behaviour is 260

similar to D1 fasta, although on a higher level, because there are more protein 261

accessions present in the FASTA file. Again, the number of graphs and of different 262

isomorphism classes rises for higher minimum peptide lengths. As for D1 fasta, there is 263

a large drop in size of the largest graph between six and seven amino acids (from 50% to 264

8% of all protein nodes). Between a limit of seven and nine, again the increase has 265

slowed down compared to lower limits. 266

In summary, the minimal peptide length has a huge impact on the graph structures 267

and especially on the size of the largest graph. For the following analyses, a minimal 268

peptide length of seven for D1 fasta and D3 fasta and of six amino acids for D2 fasta is 269

used. This ensures that the largest graph is decomposed far enough to yield a reasonable 270

size compared to the total number of protein nodes. On the other hand we do not omit 271

too many peptides and therefore retain valuable information. These thresholds are also 272

applied to the quantitative peptide-level data to ensure direct comparability. 273

Occurring types of graphs and aggregated characteristics 274

In the following, common isomorphism classes occurring from theoretical or quantified 275

peptides of D1, D2 and D3 are described. Aggregated characteristics of all graphs are 276

calculated as a summarization and shown in S2 Fig and Fig 3. For D1 fasta, 15,402 277

bipartite graphs are constructed which fall into 2,583 different isomorphism classes. The 278

representative graphs of the ten largest isomorphism classes are shown in Fig 2A. The 279

quantitative data set D1 quant contains five states of different combinations of 280

concentrations of 13 spike-in proteins, leading to ten possible pairwise comparisons. 281

Over the ten comparisons 28,802 graphs are formed in total, which belong to 354 282

different isomorphism classes. To characterize the graphs that occur, the distribution of 283

numbers of different node types is shown in S2 Fig (first row). The two main node types 284

are protein and peptide nodes, which can be further divided into unique and shared 285

peptide nodes. The most simple graph type is the only one with just one protein node. 286

This is the most frequent class for D1 fasta and D1 quant with 41% and 61% of the 287

graphs, respectively, and therefore the corresponding bar is the highest. Moving from 288

the database to the quantitative level, the proportion of this simple graph type increases 289

due to the disappearance of shared peptides that are not quantified (see Section 290

Processing of quantitative peptide-level data). While this graph type contains 12.1% of 291

all protein nodes in the theoretical setting, this proportion rises to 32.5% for D1 quant. 292

The second largest class for D1 fasta (almost 3,000 occurrences, i.e., around 19% of 293

the graphs) contains graphs with two protein nodes and three peptide nodes. In these 294

M-shapes graphs there are two peptide nodes that are unique for one of the protein 295

groups each, and a peptide node that is shared by the two protein nodes. As each 296

protein group has at least one unique peptide, both should be reported during protein 297

inference. For quantification, however, it is not clear how to handle shared peptides. 298

They may be omitted (as done in some currently used quantification algorithms), but 299

this would mean to delete valuable information. While this graph type is common in 300

D1 fasta, its proportion strongly decreases for D1 quant to only 0.62%. Among the ten 301

largest isomorphism classes for D1 fasta, there are four (ranks three, four, five and ten) 302

that have three protein nodes that are each connected to a unique peptide node. The 303

graphs differ in number of and connections to shared peptide nodes. From an inference 304

and quantification point of view, they behave similar to M-shaped graphs. The same 305

holds for the eighth most common isomorphism class, which contains four proteins, each 306

connected to a unique peptide node. The sixth, seventh and ninth largest isomorphism 307

classes have in common, that one of the protein nodes is not connected to a unique 308

peptide node. This means that from the identified peptides it is not clear if this protein 309

is in the sample or not. However, the quantities of the shared peptides in combination 310
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Fig 2. Representative bipartite graphs for the ten largest isomorphism
classes found in data set D1. A) D1 fasta, B) D1 quant, with number of
occurrences and percentage of all graphs.

with the unique peptides can help to estimate a quantity for this protein node. E.g., in 311

case of N-shaped graphs (see Fig 1B) with only two protein nodes and one unique and 312

one shared peptide node, this is possible. The ratio for protein B cannot be given 313

exactly, but a lower or upper limit can be calculated, depending on the values of the two 314

peptide ratios. This opportunity is not exploited by most currently applied protein 315

quantification methods. Of the remaining isomorphism classes, 2,306 only occur once in 316

D1 fasta. These are often relatively large systems that are uniquely found in the data 317

due to their complex combination of protein and peptide nodes and the corresponding 318

edges. However, these graphs contain almost 26,700 protein nodes which corresponds to 319

almost 51% of all protein nodes and should not be neglected. For the quantitative data 320
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set D1 quant graphs with a unique peptide node for each protein node are not within 321

the ten largest classes (except the M-shaped graph) and occur only seldomly. Instead, 322

from the top ten graph types, eight contain at least one protein node without a unique 323

peptide node. The N-shaped graph is the second most common with almost 19% of all 324

graphs The fifth and ninth largest isomorphism classes do not contain any unique 325

peptide node. These differences between the theoretical graphs from D1 fasta and the 326

graphs from the quantitative data set D1 quant can also be seen in S2 Fig. 327

On database level, graph types with two peptide nodes (N-shaped, like Fig 1B) are 328

very uncommon and much less present than those with three peptide nodes. This graph 329

type forms the second largest class for D1 quant, but almost never appears on the 330

database level. The M-shaped graph type (see Fig 1A) is the second most common on 331

the database level, which causes a higher bar for a peptide number of three in S2 Fig. A 332

lot of M-shaped graph types fall apart from database to quantitative level to the most 333

simple or N-shaped graphs or vanish completely. In general, for the database level, 334

graph types with even numbers of peptide nodes seem to be less common than the 335

following odd numbers. This causes ”gaps” for even numbers in the peptide node 336

distributions for theoretical peptides, while these are not present for quantified peptides. 337

For unique or shared peptide nodes these gaps do not exist. In this case, also the 338

number zero is possible for the smallest graph type. Zero unique peptides occur rarely, 339

but a little more often on the quantitative than on the database level. These graphs are 340

complex during protein quantification, as there is no unique peptide as an ”anchor”. 341

For D2 fasta, 4,908 graphs are formed that fall into 64 different isomorphism classes. 342

Again, the most common graph type is the most simple one (S3 Fig (a)). It is more 343

common than in D1 fasta with more than 87.5% of all graphs that cover in total 68.6% 344

of all protein nodes. This can be explained by the lower complexity of the analyzed 345

yeast compared to the mouse proteome, which leads to fewer connections between 346

proteins via shared peptides. The second largest class also is the same as for in D1 fasta 347

(M-shaped graph), with 8.54% of all graphs. The remaining classes are each relatively 348

seldom but nevertheless contain around 18% of all protein nodes. In all of the top 10 349

graph types all proteins nodes are connected to a unique peptide node. 350

On quantitative level (D2 quant, S3 Fig (b)), the percentage of the most simple 351

graph type only increases slightly compared to the database level. This increase is less 352

pronounced compared to data set D1, since the proportion of the simple graph type is 353

already very high on database level for D2 fasta, see also Fig 2. However, the N-shaped 354

graph type (which did not exist at all in D2 fasta) is now the second most common, like 355

for D1 quant, with 4.77%. The M-shaped graph type moves from place two to three and 356

still covers 4.56% of the graph types. Seven of the graph types in the top ten now 357

contain proteins without any unique peptide, which was not seen on database level. In 358

general, the decreasing frequency of larger graphs is the strongest for D2 among the 359

compared data sets, especially for the quantitative level, where the distribution of the 360

number of nodes is shifted to smaller numbers, as graphs split up due to disappearing 361

shared peptides (see Fig 2). 362

The graphs for data set D3 (S4 Fig (a) and (b)) behave more similarly to D1 than to 363

D2. While the percentage of the most simple graph type is higher for D3 fasta 364

compared to D1 fasta (almost 50% compared to 41%), this value is quite similar for 365

D3 quant and D1 quant (63% and 61%, respectively). Overall, the graph structure and 366

even the order of the ten largest isomorphism classes is nearly the same for D3 fasta 367

and D1 fasta. On the quantitative level it can be noted that nine of the top ten classes 368

contain protein nodes without unique peptides and there are three with only shared 369

peptides. The M-shaped graph is missing from the top ten here. The patterns shown in 370

Fig 2 are also very similar between D1 and D3. Larger graphs with ten or more nodes 371

occur more often in D3. Graphs without any unique peptide also occur more often in 372
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D3 quant than in any other of the analyzed quantitative data sets. 373

A summarization of these findings can be found in Fig 3. In general, the percentage 374

of the smallest graph type (Fig 3A, light grey bar) increases when going from database 375

to quantitative level. For D2, the difference is rather small, as the proportion of the 376

smallest graphs is already high on database level (87.5% vs. 89.5%). For D1 and D3, 377

this proportion increases much stronger, leaving a large number of systems (with an 378

even larger number of affected protein nodes) that are influenced by shared peptides. 379

Protein nodes without a unique peptide node are the most difficult to quantify and are 380

ignored completely or subsumed into protein subgroups by many quantification 381

methods. The percentage of graphs that contain at least one of these protein nodes (3B, 382

dark grey bar) increases on the quantitative level in comparison to the database level, 383

possibly explained by the disappearance of non-quantified unique peptides. For D2, the 384

increase is on a much lower level compared to D1. For D3, the proportion of graphs that 385

contain at least one protein node without unique peptides is the highest. 386

Fig 3C and D show the distribution of uniqueness for peptide and protein nodes. 387

The proportion of shared peptides slightly decreases from database to quantitative level 388

and is by far the lowest in D2. While the proportion of protein nodes with unique and 389

shared peptides both decrease from database to quantitative level, the proportion of 390

nodes with only one of the two peptide node types increases. Especially for D1 and D3, 391

the frequency of protein nodes with only shared peptides strongly increases. These 392

proteins are hard to quantify, as they are missing unique peptides and the shared 393

peptides are also influenced by other proteins. On the quantitative level, 46.6% and 394

55.0% of the protein nodes fall into this category for D1 quant and D3 quant, 395

respectively, while this proportion is only 6.3% for D2 quant. 396

September 1, 2022 11/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2021.07.28.454128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454128
http://creativecommons.org/licenses/by-nc-nd/4.0/


0%

25%

50%

75%

100%

D1_fasta

D1_quant

D2_fasta

D2_quant

D3_fasta

D3_quant

Data set

P
er

ce
nt

ag
e

1 ≥ 2

Protein nodes per graphA

0%

25%

50%

75%

100%

D1_fasta

D1_quant

D2_fasta

D2_quant

D3_fasta

D3_quant

Data set

P
er

ce
nt

ag
e

0 ≥ 1

Protein nodes without 
unique peptides per graph

B

0%

25%

50%

75%

100%

D1_fasta

D1_quant

D2_fasta

D2_quant

D3_fasta

D3_quant

Data set

P
er

ce
nt

ag
e

unique shared

Uniqueness of peptide nodesC

0%

25%

50%

75%

100%

D1_fasta

D1_quant

D2_fasta

D2_quant

D3_fasta

D3_quant

Data set

P
er

ce
nt

ag
e

only unique peptides

unique and shared peptides

only shared peptides

Breakdown of protein nodesD

Fig 3. Aggregated characteristics of bipartite peptide-protein graphs over
the different data sets A: Percentages of graphs with one or with more than one
protein node. The light grey bars reflects the percentage of the most simple graph type
with only one protein node compared to all graphs. The dark grey bars represents the
percentage of all larger graphs with two or more protein nodes. B: Percentages of
graphs with none vs. one or more protein nodes, that are not connected to any unique
peptide node. In the graphs represented by the light grey bars, each protein node has at
least one unique peptide. In the graphs represented by the dark grey bars, at least one
protein node exists without a unique peptide (which is a more complicated case for
protein inference and quantification). C: Percentages of unique vs. shared peptide nodes
in relation to all peptide nodes across all bipartite peptide-protein graphs. Uniqueness
is here defined as belonging to only one protein node, which may consist of multiple
protein accessions. D: Percentages of protein nodes with only unique peptides vs. unique
and shared peptides vs. only shared peptides in relation to all protein nodes across all
bipartite peptide-protein graphs. Uniqueness of the peptide nodes is here defined as
belonging to only one protein node, which may consist of multiple protein accessions.
Please note: As described in the ’Methods’ section, peptide nodes may contain multiple
peptide sequences and protein nodes may contain multiple protein accessions.
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Influence of the inclusion of isoforms 397

For data set D3 we conducted the analysis using two different protein sequence 398

databases. As described in section Data sets and corresponding protein databases, the 399

reference proteome databases from human and E. coli were downloaded from UniProt 400

once containing only canonical sequences and once also including isoforms. In total, the 401

database with isoforms contains almost 22,000 additional entries (12 from E. coli, the 402

remainder from the human part of the database). We chose D3 for this analysis because 403

the human database contains the most annotated isoforms among the three analyzed 404

species (for mouse, around 7,500 and for yeast 29 isoforms are annotated for the 405

corresponding reference proteomes). We expect the largest effect of adding isoforms for 406

this data set. 407

A summary of the characteristics of the generated bipartite peptide-protein graphs 408

with and without isoforms, on database and quantitative level, can be found in S5 Table. 409

The in silico digest of the database with isoforms now contains 27% more accessions, 410

only about 100,000 new peptides are generated, i.e. 3.4%. It can be observed that over 411

500,000 of formerly unique peptides are shared after adding isoforms, but the large 412

majority remains isoform-unique, i.e. peptides are shared but only between a canonical 413

sequence and its isoforms (see Table 2). From the new peptide sequences, the majority – 414

around 90% – is unique for one isoform. In total there is a shift from 43.2% shared 415

peptides in the canonical database to 58.4% in the database including isoforms (also 416

including isoform-unique peptides). It can be observed that the number of bipartite 417

peptide-protein graphs slightly decreases when isoforms are added. Two formerly 418

separate graphs may be connected by an isoform if it shares peptides with proteins from 419

both graphs. The number of graphs with only one protein node decreases by 11.6%. 420

Table 2. Unique and shared peptides stemming from in silico digestion of
D3 fasta and D3 iso fasta (without and with isoforms).

without isoforms
with isoforms unique shared not existing sum
unique* 1,218,900 0 93,856 1,312,756
isoform-unique** 485,723 0 10,087 495,810
shared 26,027 1,319,690 103 1,345,820
sum 1,730,650 1,319,690 104,046 3,154,386

* Unlike the rest of this paper, unique is defined here as unique for a protein accession.
However, the difference between protein nodes and accessions is negligible when looking
at the database level.
** Isoform-unique peptides are defined as shared peptides that are shared only between
isoforms of the same protein.

Allowing isoforms in the database leads to a slight decrease of quantified peptides. 421

Again, the number of graphs decreases. The largest ten isomorphism classes do not 422

change heavily, but it can be observed that graph types without any unique peptide 423

become more frequent (e.g. the W-shaped graph that rises from 2.73% to 3.80%, see S5 424

Fig (a) and (b)). As a conclusion, while the number of graphs decreases slightly, the 425

graphs become slightly larger and there are more protein nodes without unique peptides 426

when including isoforms (see Fig 4). 427
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Fig 4. Distribution of protein node types with and without the inclusion of
isoforms. Percentages of protein nodes with only unique peptides vs. unique and
shared peptides vs. only shared peptides for data set D3, with and without isoforms.
Please note: As described in the ’Methods’ section, peptide nodes may contain multiple
peptide sequences and protein nodes may contain multiple protein accessions.

Discussion 428

Despite the large number of methods and tools available for protein inference and 429

quantification, there is currently no commonly accepted method for dealing with shared 430

peptides. Especially the problem of quantifying proteins with only quantified shared 431

peptides is often overlooked by subsuming the protein into a protein group together 432

with the other proteins of the shared peptide. Bipartite peptide-protein graphs have 433

been used in the past to illustrate the protein inference and quantification problem. 434

Here, we used the characterization of these graphs as an approach to assess the 435

difficulty of this problem for a given data set. The investigation of bipartite 436

peptide-protein graphs is therefore highly relevant to the current research in proteomics. 437

Furthermore, the analysis of bipartite graphs can also be applied to the field of 438

proteoform research by including isoforms and peptides with PTMs [50]. 439

In our study we saw that the minimum peptide length is a crucial setting for the in 440

silico digestion of proteins and has a huge impact on the structures of the bipartite 441

graphs. Allowing too small peptides leads to large graphs that cover a majority of the 442

proteins inside a database which is not informative. It also does not reflect the situation 443

for real measurements, as small peptides are rarely found or even searched for in 444

database searches. The minimal peptide length that fits best to the data also varies by 445

database and organism. Here, we have chosen the smallest peptide length which caused 446

a large drop in the size of the largest graph and leads to a manageable size of it (in the 447

analyzed data covering between 1 and 8% of all protein nodes). We selected a minimal 448

peptide length of seven for D1 and D3 and six for D2 for further investigation. Smaller 449

peptides were not or very rarely quantified in the data sets and lead to a largest graph 450

that covers the majority of protein nodes. If such a large graph would really occur on 451

the quantitative level, this would be a complicated case for protein quantification, 452

because of the high complexity of the interactions of the different proteins via small 453
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shared peptides. If we further increase the minimal peptide length on the other hand, 454

we would omit a high number of edges and lose important information about the 455

connection between proteins via shared peptides, that we want to keep. Although we 456

used a smaller threshold for D2 (six amino acids), the impact of increasing it to seven 457

amino acids is very small and neglectable, so we conclude that we can still compare the 458

findings with those from D1 and D3. In favor of using more peptides that connect 459

proteins in a data set with comparably few shared peptides, we decided to continue with 460

a threshold of six rather than increasing it also to seven for D2. The qualitative message 461

with a large difference between D2 compared to D1/D3 is not influenced by this 462

decision. 463

To reflect the situation within a peptide search engine, we in silico digested the 464

whole protein database that was used for searching the respective raw data. We decided 465

to include all possible tryptic peptides within the desired length range. This also 466

includes all possible peptides with up to two missed cleavages, if they do not exceed the 467

upper limit of 50 amino acids. As a result, the number of peptides is blown up. 468

However, it is exactly the situation that the search engines face. Often, the miscleaved 469

peptides behave similar to the smaller counterparts in regard to uniqueness and will 470

therefore often be contained in the same peptide node. However, we still capture the 471

case in which a longer miscleaved peptides is unique while the shorter version is not. 472

In all analyzed settings, the most simple graph type with only one protein and one 473

peptide node is the most frequent one. In this case, the sequences in the peptide node 474

are unique to the protein node, which may consist of multiple protein accessions that 475

could not be distinguished by their peptides (i.e. they form a protein group). These 476

systems are an easy case for protein inference or quantification. As there are unique 477

peptides, there is strong evidence for the presence of the corresponding protein (or at 478

least one of the proteins within the node). A simple strategy for quantification, like 479

averaging the peptide quantities, may work well in these cases. However, one has to 480

keep in mind that no matter which quantification method is used, this will only lead to 481

a common quantity for all the members of a protein node if it consists of multiple 482

protein accessions. 483

The composition of graph types differs between database and quantitative level. 484

Larger bipartite graphs split up into smaller ones when going from the database to the 485

quantitative level, while at the same time graph types containing proteins without any 486

unique peptide become more prominent. Aggregated characteristics over the whole set 487

of bipartite graphs confirm these findings. There are two opposing effects when 488

comparing database level and quantitative level. First, the proportion of the smallest 489

possible graph (situation with simple solution for quantification) becomes larger. 490

Second, the proportion of proteins without unique peptides is considerably higher on 491

quantitative than on the database level. For these proteins, inference and quantification 492

becomes more challenging, especially in cases where there is no unique peptide in the 493

graph at all. This indicates the importance of considering the quantified peptides 494

instead of assessing the difficulty of quantification only based on the corresponding 495

databases. The reason for the huge differences between database and quantitative level 496

is that many theoretical peptides remain unquantified. These missing peptides cause 497

the graphs to fall apart if these are shared peptides. Missing unique peptides cause 498

some protein nodes to completely lose their unique peptides. These protein nodes may 499

collapse with another node with the exactly same set of quantified peptides, thus 500

leading to a smaller graph. In other cases, they remain in a protein node without 501

unique peptides, which is a challenge for protein quantification algorithms. 502

We defined the uniqueness of peptides on the level of nodes, i.e. a peptide is 503

considered unique if it belongs to only one single protein node. Especially on the 504

quantitative level, this protein node may contain multiple protein sequences/accessions 505
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that are indistinguishable regarding their quantified peptides. We have chosen this 506

definition because protein accessions within one node are not distinguishable regarding 507

their (quantified) peptides and therefore in any case only one quantity for this protein 508

group can be calculated. 509

There are also large differences in the characteristics of the bipartite graphs between 510

the three different data sets for theoretical as well as quantified peptides. For example, 511

the analysis of D2 leads to a higher proportion of unique peptide nodes and a more 512

frequent occurrence of the most simple graph type. This makes the overall protein 513

inference and quantification considerably easier than for D1 or D3. A possible 514

explanation could be the different complexities of the predominantly underlying 515

organisms, mouse (D1), yeast (D2), and human (D3). The yeast genome is clearly 516

smaller than the mouse or human genome (around 12 Mb [51] vs. over 2,600 Mb [52] vs. 517

over 2,800 Mb [53], respectively), and the same holds for the proteome (around 6,000 vs. 518

over 50,000 vs. over 75,000 protein entries without isoforms in the UniProt reference 519

proteomes, respectively). Already on the database level, the percentage of unique 520

peptide nodes and of protein nodes with only unique peptides for D2 is much higher 521

than for D1 or D3. This indicates that the complexity of protein quantification can vary 522

a lot for different organisms and data sets, which may also have an impact on the choice 523

of a suitable protein quantification method. For D2 a simple quantification method, like 524

averaging the unique peptides, might work well for most proteins. For D1 or D3, in 525

contrast, this would leave many proteins unquantifiable (46.6% and 55.0%, respectively) 526

because of the lack of unique peptides and would also ignore a lot of information from 527

the large number of shared peptides (47.9% and 53.2%, respectively) (see Fig 3C and 528

D). In this case a more appropriate method that takes into account the shared peptides 529

and the graph structures is crucial to get the most out of the acquired peptide data. We 530

showed that the underlying organism has a huge effect both on the database and the 531

quantitative level. As a consequence, this kind of study should be repeated for other 532

organisms of interest. This again highlights the need to generate the bipartite graphs 533

also for only the quantified peptides and not only for all possible peptides from the 534

database, and then to compare these two scenarios. 535

One has to keep in mind, that not all three data sets were measured with the same 536

type of mass spectrometer. While data sets D2 and D3 were measured with an 537

LTQ-Orbitrap instrument, D1 was measured by a Q Exactive HF, both by Thermo 538

Fisher Scientific. Of course, using a different instrument type can have a large impact 539

on the number and accuracy of the quantified peptides. However, we see large 540

differences between the three organisms already on the level of theoretical graphs using 541

the FASTA files, without any quantitative information. Furthermore, also on the graphs 542

from the quantitative data, D1 and D3 behave very similar in our analysis, even though 543

they are measured on different instrument types. There are large differences between 544

D2 and D3, although they were measured on a comparable machine. Therefore, we can 545

conclude that the largest differences are indeed due to the different complexities of the 546

organisms (yeast vs. human). However, a comparison of the same data set measured by 547

different mass spectrometer types is necessary to fully elucidate the impact on the 548

bipartite graphs. 549

All three data sets were measured in the data-dependent acquisition mode (DDA), 550

so they are comparable in this regard. We expect differences for data from 551

data-independent acquisition (DIA), because usually here more peptides are identified 552

and quantified [16]. This may lead to more unique peptide nodes, which make the 553

inference and quantification of the proteins easier. On the other hand, more shared 554

peptides may be quantified, which may connect graphs to each other. For spectral 555

library-based DIA it would also make sense to compare the graphs from the 556

quantitative data with the ones generated by the peptides in the spectral library, in 557
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addition to the whole FASTA database. 558

One has to be careful though, as different specifications (e.g., enzyme for digestion, 559

mass spectrometer type, fragmentation and ionization techniques) may have an impact 560

on the resulting graphs on the quantitative level, although this was not investigated 561

here. Additionally, on the database level the complexity may appear higher or lower 562

dependent on small variations of the settings (e.g., minimal peptide length, allowed 563

number of missed cleavages). The additional consideration of isoforms was performed on 564

data set D3 as an example. While this makes the graphs more complicated and rises the 565

number of protein nodes without unique peptides, isoforms may explain otherwise 566

dubious peptide intensities and can be of high interest for the biological research 567

question. We did not investigate the influence of peptides with PTMs here, but the 568

bipartite graphs could be helpful for assessing the situation for quantifying different 569

proteoforms with the same peptide sequence. 570

Independent from the peptide quantification method applied, the characteristics 571

shown in this study can easily be generated and interpreted. In the future, different MS 572

techniques might turn out to generate graphs more close to the database level than 573

others, which may have a huge impact on the quality and difficulty of protein 574

quantification. To reach the same graph shape as on the database level, not all of the 575

theoretically possible peptide sequences need to be identified and quantified but at least 576

one peptide sequence per peptide node, which is much more realistic. 577

Besides protein and peptide nodes there may also be a third type of nodes, the MS2 578

spectrum nodes. MS2 spectra can be chimeric, i.e. containing the fragment ions of two 579

or more co-eluting precursors. In a 3-partite graph, these nodes may therefore build new 580

connections between peptide nodes. In this manuscript, we ignored these potential 581

connections (in about 1% of the spectra a second peptide was identified). Depending on 582

the measurement technique and algorithms used, it may be possible or not to separate 583

the MS1 level quantifications for different precursors inside the same MS2 spectrum. It 584

should be further investigated what implications these connections inside the 3-partite 585

graphs may have for protein quantification. 586

Conclusion 587

In this paper, we analyzed bipartite graphs of protein-peptide relationships using three 588

different quantitative data sets, originating from different(ly complex) species, as well as 589

the corresponding protein databases. Our aim was to better understand the relationship 590

between proteins and peptides and the implications for protein inference and 591

quantification. In general, looking at bipartite peptide-protein graphs and aggregated 592

characteristics is helpful to judge how complex the protein inference and quantification 593

will be for a particular data set. It can also give a hint whether simple protein 594

quantification methods like averaging the unique peptide intensities would lead to a 595

sufficient proportion of quantified proteins or if they would miss a large potential of the 596

data. Depending on the data set, shared peptides can make up a large proportion of all 597

quantified peptides, especially when isoforms are considered. This is accompanied by a 598

large number of protein nodes without unique peptides, which are often overlooked by 599

protein quantification algorithms. As a consequence, there is an urgent need for protein 600

quantification methods that take into account the graph structures and that can use 601

this information to reliably quantify proteins without unique peptides. In conclusion we 602

recognize three main benefits from our study: 1) the systematic characterization of 603

occurring bipartite peptide-protein graphs, which has not been done before, 2) the gain 604

of insights about the impact of the choice of the minimal peptide length for the in silico 605

digestion and 3) the recognition of the potential for using these insights for development 606

of protein inference and quantification algorithms. 607

September 1, 2022 17/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2021.07.28.454128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454128
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments 608

The authors thank Anika Frericks-Zipper for help with the PRIDE upload. 609

Availability of data and materials 610

The datasets supporting the conclusions of this article are available in the 611

ProteomXChange Consortium at http://proteomecentral.proteomexchange.org via the 612

PRIDE partner repository and can be accessed with the dataset identifiers PXD024684 613

(D1), PXD030577 (D2) and PXD030603 (D3). 614

Competing interests 615

The authors declare that they have no competing interests. 616

Funding 617

This work was supported by the German Network for Bioinformatics Infrastructure 618

(de.NBI), a project of the German Federal Ministry of Education and Research (BMBF) 619

[FKZ 031 A 534A to K.S. and M.T.]. The funding of M.E. relates to PURE and 620

VALIBIO, projects of Northrhine-Westphalia. J.U. is funded by the research building 621

Center for Protein Diagnostics (PRODI), funded by North Rhine-Westphalia state and 622

German Federal funds. 623

Authors’ contributions 624

K.S.: Conceptualization, Methodology, Software, Formal Analysis, Writing – Original 625

Draft, Visualization 626

M.T.: Conceptualization, Methodology, Validation, Writing – Review & Editing 627

J.U.: Formal Analysis, Writing – Review & Editing 628

J.R.: Conceptualization, Methodology, Writing – Review & Editing, Supervision 629

M.E.: Conceptualization, Methodology, Writing – Review & Editing, Supervision, 630

Funding acquisition 631

All authors read and approved the final manuscript. 632

References

1. Zhang Y, Fonslow BR, Shan B, Baek MCC, Yates JR. Protein analysis by
shotgun/bottom-up proteomics. Chemical Reviews. 2013;113(4):2343–2394.
doi:10.1021/cr3003533.

2. Gillet LC, Leitner A, Aebersold R. Mass Spectrometry Applied to Bottom-Up
Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annual
Review of Analytical Chemistry. 2016;9(1):449–472.
doi:10.1146/annurev-anchem-071015-041535.

3. Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC. A
Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of
This Field. Proteomes. 2020;8(3):14. doi:10.3390/proteomes8030014.

September 1, 2022 18/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2021.07.28.454128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454128
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Audain E, Uszkoreit J, Sachsenberg T, Pfeuffer J, Liang X, Hermjakob H, et al.
In-depth analysis of protein inference algorithms using multiple search engines
and well-defined metrics. Journal of Proteomics. 2017;150:170–182.
doi:10.1016/j.jprot.2016.08.002.

5. Huang T, Wang J, Yu W, He Z. Protein inference: A review. Briefings in
Bioinformatics. 2012;13(5):586–614. doi:10.1093/bib/bbs004.

6. Blein-Nicolas M, Xu H, de Vienne D, Giraud C, Huet S, Zivy M. Including
shared peptides for estimating protein abundances: A significant improvement for
quantitative proteomics. Proteomics. 2012;12(18):2797–2801.
doi:10.1002/pmic.201100660.

7. Dost B, Bandeira N, Li X, Shen Z, Briggs SP, Bafna V. Accurate mass
spectrometry based protein quantification via shared peptides. Journal of
Computational Biology. 2012;19(4):337–348. doi:10.1089/cmb.2009.0267.

8. Zhang Y, Wen Z, Washburn MP, Florens L. Improving label-free quantitative
proteomics strategies by distributing shared peptides and stabilizing variance.
Analytical Chemistry. 2015;87(9):4749–4756. doi:10.1021/ac504740p.

9. Blein-Nicolas M, Zivy M. Thousand and one ways to quantify and compare
protein abundances in label-free bottom-up proteomics. Biochimica et Biophysica
Acta. 2016;1864(8):883–895. doi:10.1016/j.bbapap.2016.02.019.
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S5 Table. Comparison of bipartite graph characteristics without and with
isoforms on data set D3 (with minimal peptide length of seven amino
acids).

S1 Fig. Count and percentages of shared and unique peptide sequences
depending on the peptide length. The peptide length is given in amino acids. As
an example, here the values for data set D1 are shown. Uniqueness is here defined as
belonging to only one protein node, which may consist of multiple protein accessions.

S2 Fig. Distribution of numbers of different node types for the bipartite
peptide-protein graphs. The leftmost column shows the distribution of number of
protein nodes for D1, D2 and D3, on database level (* fasta) and on the level of
quantified peptides (* quant). On the x-axis the number of protein nodes are shown
and on the y-axis the proportion of graphs with this exact number of protein nodes in
comparison to all graphs. E.g., the bar at x = 1 is the proportion of graphs with only
one protein node compared to all graphs. The sum of all bar heights adds up to one for
each subfigure. Similarly, the distribution of the number of total peptide nodes, unique
peptide nodes and shared peptide nodes are shown in the following columns. Minimal
peptide lengths were chosen as seven for D1 and D3 and six for D2. The rightmost bar
with the label ”10+” comprises the values of 10 and above.

S3 Fig. Representative bipartite graphs of the ten largest isomorphism
classes found in data set D2. (a) D2 fasta, (b) D2 quant, with number of
occurrences and percentage of all graphs.

S4 Fig. Representative bipartite graphs of the ten largest isomorphism
classes found in data set D3 (a) D3 fasta, (b) D3 quant, with number of
occurrences and percentage of all graphs.

S5 Fig. Representative bipartite graphs of the ten largest isomorphism
classes found in data set D3 iso. (a) D3 iso fasta, (b) D3 iso quant, with number
of occurrences and percentage of all graphs.
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