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Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa plays a critical role in
coordinating numerous cellular processes. We extracted and quality controlled all publicly
available RNA-sequencing datasets for P. aeruginosa to find 281 high-quality transcriptomes.
We produced 83 new RNAseq data sets under critical conditions to generate a comprehensive
compendium of 364 transcriptomes. We used this compendium to reconstruct the TRN of P.
aeruginosa using independent component analysis (ICA). We identified 104 independently
modulated sets of genes (called iModulons), among which 81 (78%) reflect the effects of known
transcriptional regulators. We show that iModulons: 1) play an important role in defining the
genomic boundaries of biosynthetic gene clusters (BGCs); 2) show increased expression of the
BGCs and associated secretion systems in conditions that emulate cystic fibrosis (CF); 3) show
the presence of a novel BGC named RiPP (bacteriocin producer) which might have a role in
worsening CF outcomes; 4) exhibit the interplay of amino acid metabolism regulation and
central metabolism across carbon sources, and 5) clustered according to their activity changes
to define iron and sulfur stimulons. Finally, we compare the iModulons of P. aeruginosa with
those of E. coli to observe conserved regulons across two gram negative species. This
comprehensive TRN framework covers almost every aspect of the transcriptional regulatory
machinery in P. aeruginosa, and thus could prove foundational for future research of its
physiological functions.
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Introduction
Pseudomonas aeruginosa is an opportunistic pathogen that is found in such diverse
environments as hospitals, soil, water, and plants. It is one of the major causative agents of
hospital-acquired nosocomial infections and a major cause of lung infection in people with cystic
fibrosis (CF) 1. Indeed, the mortality rate of P. aeruginosa infections can reach up to 50% among
patients hospitalized with CF and cancer.

All major biological processes in P. aeruginosa are controlled by a complex transcriptional
regulatory network (TRN) that is yet to be fully elucidated. TRNs constitute the underlying
framework for understanding the developmental and physiological responses of organisms 2.
TRNs, which generally contain the relationships between transcription factors (TFs) and their
target genes, play a vital role in programming the bacterial response to diverse stimuli 3.
Knowledge of the TRN of P. aeruginosa and other pathogenic bacteria would be beneficial in
elucidating novel drug targets and understanding the functions of their various virulence factors
2. Thus, elucidation of these regulatory mechanisms would be beneficial to designing new or
combinatorial therapies against P. aeruginosa infections. Today, machine learning approaches
can be used to establish TRN structure in bacteria if there is sufficient transcriptomic data
available for analysis 4.

Independent component analysis (ICA), a method to identify independent signals in complex
data sets 5, has been applied to data sets of bacterial transcriptomes to identify independently
modulated sets of genes, called iModulons, and the transcriptional regulators that control them
6–8. iModulons have been used to study the adaptive evolution trade-off during oxidative stress
under naphthoquinone-based aerobic respiration 9, mutations in the OxyR transcription factor
and regulation of the ROS response 10, and the host response to expression of heterologous
proteins 11. We have also used ICA to elucidate the TRN structures of Escherichia coli 7,
Staphylococcus aureus 6, and Bacillus subtilis 8, which are presented in interactive dashboards
on the iModulonDB.org website12.

In this study, we apply ICA to high-quality RNA-seq expression profiles of P. aeruginosa to
decipher the overall structure of its TRN. A previous study used the ADAGE method 13 to extract
the microbe-host interaction in P. aeruginosa, but there is no study available that reveals the
structure of its TRN. We incorporated RNA-seq data from diverse conditions such as osmotic
stress, low pH, oxidative stress, and micronutrients, and integrated all publicly available data of
sufficient quality from the NCBI Sequence Read Archive as of October 20, 2020 14. We
assembled the largest possible RNA-seq compendium for P. aeruginosa, composed of 364
transcriptomes, and use ICA to reveal the relationship between iModulon activities and specific
stimuli. Further, our study identifies several hypotheses from the transcriptomic data that are
relevant to Pseudomonas infections. Specifically, we characterize the role of many biosynthetic
gene clusters (BGCs) which might play a significant role in CF virulence. The TRN structure
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established here represents a significant advance toward understanding the complex
transcriptional regulation of P. aeruginosa under different growth conditions.

Results
The iModulon structure of Pseudomonas aeruginosa’s transcriptome
We assembled the largest possible set of high quality RNAseq profiles for P. aeruginosa from
the literature and databases and augmented it with new RNAseq profiles for specific conditions
of interest. We included RNA-seq expression profiles from two strains of P. aeruginosa in this
study: PAO1 and K2733 (PAO1ΔmexB). The dataset included a range of growth conditions,
including micronutrient supplementation, nutrition source variation, osmotic stress, iron
starvation, and gene knock-outs (Supplementary Figure S1a and S1c). Expression profiles
were generated as a part of this study and downloaded from the NCBI SRA database.

After filtering the profiles based on quality criteria (see Methods), we compiled a transcriptomic
compendium containing 364 samples (83 new + 281 public expression profiles) (Figure 1d and
Supplementary Figure S1c). All the samples were shown to have Pearson’s correlation
coefficient (PCC) of 0.97 between replicates 4. To eliminate batch effects, each individual
experiment was normalized to a reference condition prior to calculating the iModulons 4.

iModulons represent a data-driven, top-down reconstruction of transcriptional regulatory
networks and can be characterized using transcriptional regulator binding7. To assign
transcriptional regulators to iModulons, we compared each iModulon against regulons published
in the literature. We compiled a TRN scaffold, using RegPrecise15, a manually curated database
containing 58 regulons. We then manually searched the literature for additional high-quality
transcription factor binding sites. In total, the resulting TRN scaffold contained binding
information for 134 TFs and the corresponding regulons. This data is available in
Supplementary Table S1.

We applied ICA to the transcriptomic compendium to identify independent signals in the data set
that represent the effects of transcriptional regulators (Figure 1a and 1b) 7. ICA resulted in the
identification of 104 iModulons. To annotate each iModulon, their genes were compared with the
those in the 134 regulons (Table S1) to find statistically significant enrichments (See Methods).
For iModulons with strong associations to known regulons, we used ‘iModulon recall’ and
‘regulon recall’ to evaluate our confidence in the associations (Supplementary Figure S1b).
The iModulon recall represents the fraction of shared genes and the genes in an iModulon while
regulon recall is the fraction of shared genes and the genes in a regulon (Supplementary
Figure S1b).

The relationship between the 134 regulons and the 104 iModulons are grouped into four
categories (Figure 1c): 1) The well-matched group (upper right quadrant) includes iModulons
with regulon recall and iModulon recall greater than 0.60. The genes in these iModulons
correspond to the existing regulons. 2) The subset of iModulons in the upper left quadrant has
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high iModulon recall and low regulon recall, thus these iModulons represent only a part of a
defined regulon. 3) The unknown-containing iModulons (lower right quadrant) have high regulon
recall and low iModulon recall. The iModulons in this category mostly include uncharacterized
genes. 4) The iModulons with closest match category (lower left quadrant) have low regulon and
iModulon recall. These iModulons contain co-expressed genes that showed statistically
significant enrichment levels and appropriate activity profiles 8. Thus, we identified 104
iModulons that are the regulated gene sets from complementary bottom-up and top-down
methods

Functional classification of the iModulons, their coverage of genes, and how they form
the variation in the RNAseq compendium
The 104 iModulons identified were annotated with different functions such as BGCs, secretion
systems, stress responses, prophages, metal homeostasis, structural components, amino acid
metabolism, and carbon metabolism. We identified 11 iModulons related to BGCs and 14
iModulons related to metal homeostasis. Pathogenicity could be related to three iModulons
representing type VI and type III secretion systems 16. We also functionally annotated iModulons
associated with carbon, amino acids, sulfur, iron, secondary, lipid, and nitrogen metabolism
(Figure 1f). iModulons associated with transcriptional regulators are functionally annotated
using the regulators’ name. As stated above, the regulator's binding site information was
extracted from the RegPrecise database and from various publications (Supplementary Table
S2).

ICA identified 104 iModulons that represent 65.63% of the variance in the gene expression
(Figure 1e). Note that the explained variance in the data compendium using iModulons is
fundamentally different from the explained variance of other statistical decomposition methods.
The iModulons are biologically meaningful signals in the data that are directly connected to
knowledge about regulator function. The explained variation in the data set that the iModulons
represents is based on molecular mechanistic knowledge about the transcriptional regulators.

Among the 104 iModulons, four contain single genes. The remaining 100 iModulons contain
1835 unique genes. 561 genes were found in more than one iModulon. We have provided the
information for each iModulon in the form of an interactive dashboard on iModulonDB.org 12.
The dashboard is user-friendly and researchers can search or browse the details of iModulons,
TRN, genes, or regulators of interest. Such an examination gives 1) a guide to the study of
molecular level mechanisms 17,18 or 2) systems level mechanisms, such as those of resource
allocation through changes in the transcriptome composition between conditions 7,11.
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Figure 1. iModulons computed from the Pseudomonas aeruginosa transcriptomic data
compendium. a) Overview of the methodology used in the study. It includes gathering
high-quality data from the NCBI-SRA as well as generated in the lab. The RNAseq reads were
processed and quality control was done. Further, the independent component analysis (ICA)
was applied to generate the iModulons that were characterized to get the regulatory networks of
P. aeruginosa (Adapted from Sastry et al. 4). b) ICA calculates the independently modulated sets
of genes (iModulons). A compendium of expression profiles (X) is decomposed into two
matrices: the independent components composed of a set of genes, represented as columns in
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the matrix M, and their condition-specific activities (A). c) Scatter plot showing the regulon recall
versus iModulon recall for all 104 iModulons found in the P. aeruginosa dataset. The scatter plot
is divided into four quadrants: Upper right represents the well-matched iModulons; upper left
shows iModulons representing a subset of regulon genes; lower right depicts the iModulons
containing uncharacterized genes; lower left contains the iModulons with the closest match. d)
Plot showing the amount of passed samples per year which is used in the study. e) Bar plot
showing the explained variance in all the iModulons with overall explained variance of 0.66. f)
Treemap of the 104 P. aeruginosa iModulons. The size of each box represents the fraction of
global expression variance that is explained by the iModulon. iModulons are grouped into 12
different categories: AA/Nucleotide Metabolism, Biosynthetic Gene Clusters, Carbon
Metabolism, Defense Mechanism, Energy Metabolism, Metal Homeostasis, Miscellaneous
Metabolism, Prophages, Quorum sensing, Secretion systems, Stress Responses, and Structural
Components. Abbreviations: AA - amino acids

iModulons provide a definition of genomic boundaries of biosynthetic gene clusters
BGCs are clusters of genes that synthesize sercreted secondary metabolites such as pyochelin,
pyoverdine, pyocyanin, and bacteriocins19. These metabolites are of particular interest because
of their range of functions, including antibiotics, anticancer molecules, polymers, nutraceuticals,
and many more. The comprehensive antiSMASH software uses sequence comparison to detect
BGCs, but assigns BGC borders arbitrarily at 20kb from both ends of the core genes 20. BGCs
normally form contiguous segments of DNA on the genome. However, iModulons can use
co-expression patterns to define the functional gene composition of a BGC, since genes in
biosynthetic pathways are usually co-expressed. Thus, iModulons can assist in annotating the
BGCs and their accessory functions.

The 104 iModulons contain 11 BGCs out of the 14 predicted BGCs in P. aeruginosa using
anti-SMASH (Figure 2a and Supplementary Figure S2a). The remaining 3 BGCs may not
have been transcriptionally activated by the conditions represented in the transcriptomic dataset
analyzed and thus ICA cannot detect them. The ErbR-2 iModulon contains coregulated genes
which are predicted to be redox-cofactors like Pyrroloquinoline quinone (PQQ) (Figure 2b and
c). The BGC’s boundaries defined by antiSMASH are arbitrarily marked from PA1977-PA1997.
However, the iModulon captured by ICA identifies an independent transcriptional signal from
PA1975 to PA1990. This BGC also includes the PA0565 gene which has a potential role in post
translational modification (PTM), protein turnover, and chaperones (Figure 2d). PTM is an
important process during the synthesis of secondary metabolites 21. All 11 iModulons related to
BGCs can be used to annotate their boundaries (Supplementary Figure S2b).

iModulons elucidate responses to simulated lung environment in CF patients
P. aeruginosa is one of the main bacterial pathogens responsible for causing lung deterioration
in CF patients 22. The sputum of CF patients shows increased concentrations of copper (Cu),
zinc (Zn), iron (Fe), and N-acetyl glucosamine (GlcNAc), compared to the sputum from
individuals with healthy lungs. These micronutrients are correlated with increased severity of the
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disease23. iModulons can be used to analyze transcriptomic changes during growth in
conditions with altered micronutrients or GlcNAc concentrations.

The NagQ operon is responsible for catabolism of GlcNAc 24. P. aeruginosa gets GlcNAc from
various sources in the host. For example, in the lungs, P. aeruginosa obtains GlcNAc by
degrading the eubacteria. The structural components (chitin and peptidoglycan) of the
degrading eubacteria serve as a major source of GlcNAc 24. Thus, the role of GlcNAc in driving
P. aeruginosa virulence and persistence in human lungs is important and provided an impetus
for additional data generation.

We grew P. aeruginosa PAO1 in M9 minimal media supplemented with different concentrations
of GlcNAc (1, 2, 4, and 8 g/l) as the bacteria’s sole carbon source and examined its impact on
iModulons related to BGCs, secretion systems, carbon metabolism, and amino acid metabolism
(Figure 3a-c). Among the BGCs, we found an increased expression of PvdS, which regulates
synthesis of pyoverdine, and a novel cluster named RiPP. The PvdS regulon is responsible for
the synthesis of pyoverdine, a siderophore, and led to increased pathogenesis during the lung
infections 22. The increased expression of pyoverdine in the presence of GlcNAc has been
previously reported in the Streptomyces species 25,26 but not in P. aeruginosa. Contrary to PvdS,
we found decreased expression of the pyocyanin secreting BGCs (QscR-2 iModulon).

We also found a previously unannotated BGC, named RiPP (ribosomally synthesized and
post-translationally modified peptide), which showed increased expression in the presence of
GlcNAc. The novel RiPP contains a DUF692-associated bacteriocin producing domain, as
predicted by anti-SMASH (Supplementary Figure S3a). This DUF692-associated bacteriocin
has not been reported in P. aeruginosa; however the evidence of its presence is reported in
Streptomyces and Methanobacteria sps 27. Because of its expression in the presence of
GlcNAc, this novel BGC of P. aeruginosa has a probable role in CF. It was also found to be
expressed in the presence of sodium hypochlorite (NaOCl) (Supplementary Figure S3b). The
role of hypochlorite is also established in the pathogenicity of the CF patients 28 and is one of
the major oxidants known to be generated by activated phagocytes 29.

iModulons reveal coordinated expression of secretion systems
The role of the secretion systems is well known to increase the pathogenicity of Pseudomonas
by the secretion of virulence factors 30. We found an increased expression of the H1-Type VI
secretion system (H1-T6SS) and Type III secretion system (T3SS) in the presence of GlcNAc
(Figure 3b). The H1-T6SS is known to target the prokaryotic cell and contributes to the survival
advantage of P. aeruginosa. In the H1-T6SS, the Tse1-Tse3 provides a fitness advantage to P.
aeruginosa during interspecies communication 31. In comparison, the T3SS in P. aeruginosa is
one of the major virulence factors that contributes to the cytotoxicity and acute infections. T3SS
is used to inject the effector proteins into the host cells 32. The activation of the secretion
systems might be helpful to export the products of the BGCs, such as pyoverdine and RiPP,
outside P. aeruginosa 32. Thus, we found that specific BGCs for pyoverdine and the
uncategorized RiPP as well as secretion systems are activated in the presence of GlcNAc, and
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are potentially linked to the deterioration of health in CF patients during infection with P.
aeruginosa.

In addition to GlcNAc, the CF lung microenvironment contains elevated levels of Cu, Zn, and Fe
23. We have generated the transcriptomic profiles for Cu, Zn, GlcNAc, Fe; and examined the
iModulon activities in the presence of these metals (Figure 3d). We found that the CueR
iModulon is upregulated in the presence of Cu. The expression of the Zur-2 and FpvR
iModulons are repressed in the presence of Zn and Fe, respectively. Both Zur-2 and FpvR
function in concert with other proteins to bring in Zn and Fe, respectively, into the cells during
growth in conditions with low Zn or Fe 33,34. However, the Zur-1 iModulon shows activation in the
presence of Zn because the genes responsible for binding the Zn show downregulation in this
iModulon. Interestingly, we also found that iModulons related to the secretion of pyochelin and
pyoverdine, as well as a novel bacteriocin producing (RiPP), are upregulated in presence of
these micronutrients. The PchR and PvdS iModulons are responsible for the expression and
secretion of the siderophores pyochelin and pyoverdine, respectively. The PchR iModulon
showed increased activity in the presence of Zn, while the PvdS is activated during growth with
both GlcNAc and Zn.

Figure 2. iModulons can aid in the definition of genomic boundaries of biosynthetic
gene clusters (BGCs). a) Genomic locations of the 14 predicted BGCs in the P. aeruginosa
PAO1 by using the anti-SMASH software. b) Scatter Plot showing the gene weights of the
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ErbR-2 iModulon with the color depicting the COG categories of the genes that it contains. c)
Venn diagram depicting the status of the genes in the ErbR-2 iModulons, ErbR regulon, and the
predicted redox-cofactor BGCs by using the anti-SMASH software. d) Genomic overview of the
redox-cofactor BGCs predicted by the anti-SMASH software, alongside the iModulons whose
boundaries are defined by genes between the PA1975-PA1990.

Figure 3. iModulon responses to GlcNAc culture. a) Scatter Plot showing the gene weights
of the NagQ iModulon; the color depicts the COG categories. The NagQ iModulons have two
regulons; one is GlcNAc catabolism and other is related to structural components. b) Heat map
depicting the activity of selected iModulons in different concentrations of GlcNAc (1g/l, 2g/l, 4g/l,
and 8g/l). It describes the change in differential activities in NagQ, biosynthetic gene clusters,
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secretion systems, carbon metabolism, amino acid metabolism, and nucleotide metabolism. c)
Activity plot of the conditions expressed in NagQ iModulon in the Paeru_Precise. d) Plot
showing iModulon activities in the presence of N-acetyl glucosamine (GlcNAc), ZnCl, CuSO4,
and FeSO4 micronutrients. The iModulons include the micronutrient metabolism (NagQ, CueR,
Zur-1, Zur-2, FpvR) and the biosynthetic gene clusters (PvdS, PchR, RiPP, NRPS, QscR-2, and
k-opioid).

iModulons describe central metabolic pathways
We found multiple iModulons related to central carbon metabolism, such as those that are
involved in the Entner–Doudoroff, peripheral, and glycolytic pathways (Supplementary Figure
S4). Among the identified metabolic iModulons, NagQ is related to the catabolism of GlcNAc
into glucosamine-6-phosphate (GlcN-6P) and then to Fructose-6-phosphate, a key glycolytic
intermediate. As mentioned previously, GlcNAc is well known for its role in the pathogenicity in
CF patients by activating various BGCs and secretion systems to target other bacterial species
as well as host cells 24. During growth in lungs with CF, the catabolism of GlcNAc serves as the
main carbon and energy source for P. aeruginosa 35. Furthermore, iModulons related to the
catabolism of the ethanolamine, glycerol, fructose, and 2-ketogluconate describe the state of the
metabolic network when these substrates serve as carbon sources (Figure 4a, Supplementary
Figure S4 and S5a).

Several of the identified iModulons mapped onto amino acid metabolic pathways, such as
branched chain amino acids (MmsR, AtuR, PrrF, and LiuR), aromatic amino acids (PhhR and
DhcR), arginine catabolism (CbrB), histidine utilization (HutC), arginine succinyltransferase
(ArgR-1 & 2), arginine deaminase (ArcR), and L-hydroxyproline (HypR) (Supplementary Figure
S4). We have found significant correlations among the iModulons regulating the branched-chain
amino acid (BCAA) and aromatic amino acid (AAA) pathways (Figure 4b). Amino acids provide
a supplemental nitrogen source and play a vital role in biofilm formation 36, and it has been
hypothesized that amino acids promote biofilm production in CF patients 37. In support of these
hypotheses, our data showed that iModulons related to amino acid metabolism pathways had
higher activities during growth in biofilm conditions compared to planktonic growth (Figure 4c
and Supplementary Figure S5b).

Phosphodiesterases stimulate the expression of branched-chain amino acids
c-di-GMP is a secondary messenger that regulates various important cellular processes like
quorum sensing, biofilm formation, and pathogenicity38. YhjH is a c-di-GMP phosphodiesterase
and, upon induction, it decreases c-di-GMP levels39. A decrease in c-di-GMP levels leads to a
decrease in the biofilm formation and increased biofilm dispersal. We found the knockouts of
YhjH (△yhjH, PRJNA381683)40 led to increased expression of BCAA metabolism iModulons,
subsequently increasing intermediates of the tricarboxylic acid (TCA) cycle (Figure 4c).
Likewise, the deletion of Crc (△crc) also led to increased expression of the BCAA iModulons
(Figure 4d), similar to YhjH. Crc is a global regulator that represses succinate metabolism and
BCAA assimilation in P. aeruginosa and P. putida 41.
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From our analysis, we observe that YhjH modulates biofilm formation, as previously reported by
Zhang et al 42.Thus, YhjH may be used as an important target to control the biofilm formation
and pathogenicity of P. aeruginosa. Activities of the identified iModulons were therefore able to
untangle complex relationships between metabolites, transcriptional regulators, and lifestyle in
P. aeruginosa.

Figure 4. iModulons related to Carbon metabolism and Amino acid/Nucleotide
metabolism. a) Heat map depicting the differential activity of glucose, sucrose, fructose,
N-acetylglucosamine, pyruvate, glycerol, Ca-MHB, and acetate w.r.t. HexR-1, NagQ, EutR,
FruR, HexR-2, GlpR, and PtxR iModulons. b) Correlation plot among the BCAA (LiuR and
MmsR) and the AAA (DhcR and PhhR). The outer layer is divided into the four arcs which depict
the four different iModulons. Thin lines represent the common genes among the iModulons, and
the thick line connecting different iModulons depicts the Pearson correlation coefficients (PCC).
c) Bar plot representing the iModulon activities of MmsR, LiuR, and PhhR under different
conditions. The x-label shows some conditions used in the study. The ‘△yhjH vs. wt’ is the
knockout of the yhjH, ‘Biofilm vs. Dispersed’ is the biofilm mode of growth, ‘pAMBL vs.
metabolite_wt’ is the pAMBL plasmid showing overexpression of metabolites, ‘△crc vs. wt’ is
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the deletion of the global regulator of crc, ‘PrePSA_gentamycin vs. wt’ is the pre-PatH-Cap
library of P. aeruginosa ("PSA" PAO1-GFP) treated with gentamycin ,’NaNO2_EDTA vs. wt’ is
the presence of sodium nitrite and EDTA in the media, and ‘Cisplatin vs. wt’ is the presence of
cisplatin and bile in the media. d) Scatter plot showing the correlation between the BCAA
pathways iModulons, i.e., LiuR and MmsR, with the PCC of 0.69.

Correlated activity changes of iModulons lead to definition of Stimulons

We have clustered the iModulons based on their correlation as set (Figure 5a and
Supplementary Figure 6a). Though iModulons are independently modulated throughout the
transcriptome, clusters of iModulons may be similarly expressed across most conditions in the
compendium and only diverge from one another under select conditions. Thus, a cluster of
iModulons with coordinated activity changes can be interpreted as a “stimulon”. Such clusters of
iModulons are of interest for understanding the broader structure of transcriptional regulation 43.
For example, we have found that sulfur stimulon {AtsR, CysB-1, and CysB-2} and iron stimulon
{FpvR, PvdS, PchR, FoxR, and Iron acquisition} are among the top clustered stimulons in P.
aeruginosa.

Sulfur acquisition: The iModulons AtsR, CysB-1, and CysB-2 form a sulfur acquisition stimulon
(Figure 5a). AtsR is a transcription factor that encodes the ABC transporters of sulfate and
other ions. We observed that the AtsR iModulon was activated during oxidative stress (paraquat
supplementation) (Figure 5c). The relationship between sulfate limitation and the oxidative
stress response has been established in E. coli 44 but not in P. aeruginosa . The CysB-1 and
CysB-2 regulators modulate sulfur uptake and cysteine biosynthesis, as well as influence the
genes involved in host colonization and virulence factor production 45. The two CysB iModulons
are highly expressed in planktonic growth conditions as well as in the presence of bile (Figure
5b). However, CysB’s direct connection with bile has not been previously established in the
literature. Taurine, a sulfur-containing amino acid, is one the primary components of bile acids.
We hypothesize that P. aeruginosa upregulates its sulfur acquisition genes in response to the
presence of taurine in the conjugated bile acid. Interestingly, in certain patients with CF, there
can be microaspirations of bile into the lungs, and studies have shown that bile affects the
transition of P. aeruginosa into biofilms 46. Therefore, CysB may play an important role in the
pathogenicity of P. aeruginosa in CF lungs through its role in acquiring sulfur from bile
aspirations.

Iron acquisition: We identified a cluster of five iron-related iModulons (FpvR, PvdS, PchR, FoxR,
and Iron acquisition) (Supplementary Figure 6a). The iron stimulon contains a set of five
correlated iModulons. The five iModulons involved in this cluster contained genes involved in
the uptake of iron through endogenous (pyoverdine, fpv, pvd) or exogenous (xenosiderophores,
FoxR and heme) carriers 47. The activities of both the endogenous PvdS and exogenous FoxR
iModulons were upregulated during the presence of the chelator EDTA and during planktonic
growth (PCC 0.67) (Supplementary Figure 6b). The iron acquisition iModulon was previously
uncharacterized and known as Uncharacterized-13, which was further annotated to be involved
in iron acquisition by clustering analysis. Additionally, the presence of an uncharacterized
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iModulon (Uncharacterized-13) in this cluster allowed us to annotate its potential function, which
we hypothesize as a role in pyoverdine synthesis. Several genes, such as PA2531, PA4709,
phuR, opmQ, pvdT, pvdR, pvdE, and PA2412 are shared between the PvdS and
Uncharacterized-13 iModulons (Supplementary Figure 6c). Thus, our analysis provides insight
into the interconnectedness of iron acquisition systems in P. aeruginosa.

iModulons show ‘Fear vs. Greed’ Trade-off

In previous studies of E. coli and S. aureus transcriptional regulation, a trade-off between the
expression of translation machinery and stress-hedging genes was observed 6,7. This global
trade-off was termed the “Fear vs. Greed” trade-off.

The allocation of the resources to the optimal growth (greed) versus its allocation towards the
bet-hedging strategies to attenuate its effect of the stressors in the environment (fear) 7,48 was
demonstrated using two iModulons in E. coli. We identified two iModulons in P. aeruginosa
(Translation-1 and RpoS-2 iModulons) that were orthologous to these E. coli iModulons
(translation and RpoS iModulons) (Supplementary Table S3). The RpoS-2 iModulon includes
the sigma factor (RpoS) and a central regulator of the stress response that allows cells to
survive environmental challenges. The translational iModulon represents the translational
machinery like ribosomal proteins and growth-related function of the transcriptome. We
identified an anti-correlation relationship between the RpoS-2 iModulon and the Translational-1
iModulon (Figure 5d). Further, the RpoS-2 iModulon also showed correlation (PCC 0.61,
p-value<10-10) with the expression level of the rpoS gene, which was also observed in E. coli
(Supplementary Figure 6d).

These results suggest that the ‘Fear vs Greed’ trade-off relationship is conserved among
bacterial species.
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Figure 5. Activity clustering of the iModulons among P. aeruginosa defines stimulons. a)
Sulfur acquisition cluster includes the grouping of AtsR, CysB-1, and CysB-2 iModulons with
silhouette score of 58. b) The scatter plot showing correlation between the CysB-1 and CysB-2
iModulons with PCC of 0.86. Both the iModulons show high activity in the planktonic condition
and bile salt medium of P. aeruginosa. c) Differential iModulon activity (DIMA) plot of the
M9glucAA and Paraquat v/s the control condition showing the upregulation of the AtsR
iModulon. d) The RpoS-2 iModulon activities were anti-correlated with the Translational-1
iModulon activities. All the stress conditions (hypoxia, iron starvation, osmotic stress, oxidative
stress, and low pH) were highlighted with different colors.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.28.454220doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454220
http://creativecommons.org/licenses/by/4.0/


Discussion
We have constructed a large compendium of P. aeruginosa transcriptomes from all publicly
available high-quality data, compiled a TRN of 134 regulons from literature, and computed and
characterized a data-driven TRN of 104 iModulons that matches well with the literature. The
regulons are based on targeted biomolecular studies, whereas iModulons result from data
analysis of a global compendium of transcriptomic data. These complementary approaches to
TRN elucidation synergize well. The iModulons were effective for clarifying BGC groups
(including identifying a new BGC), characterizing simple and disease-relevant growth conditions
from a transcriptomic perspective, clustering functional groups of genes, and comparing
regulatory modules across organisms.

From our analysis, we find that iModulons are likely useful in determining the boundary of
BGCs. Various initiatives have been undertaken to confirm the boundaries of BGCs, but
existing, arbitrary rules do not capture the important feature that they be co-transcribed 49. Thus,
we present improved annotations for 11 P. aeruginosa BGCs. Apart from the other BGCs, we
found a novel BGC (the RiPP) that is known to release bacteriocin and to upregulate
micronutrients known to be present in high amounts in the lungs of CF patients in the presence
of GlcNAc and Cu.

P. aeruginosa is an opportunistic pathogen and an important member of the ESKAPEE group of
pathogens. It is one of the dominant species responsible for worsening the condition of CF
patients 50. Interestingly, we have found that BGCs and secretion systems play a significant role
in intensifying infections in CF patients. Several BGCs, including the newly discovered RiPP
discussed earlier, are upregulated under the GlcNAc and Cu environments representative of CF
microenvironments. Apart from the BGCs, we find upregulation of the secretion systems
(H1-T6SS and T3SS) in the presence of the GlcNAc. These secretion systems are well known
to increase the pathogenicity in the host 32,51. Thus, we hypothesize that the BGCs and the
secretion system might play an important role in pathogenesis of P. aeruginosa during growth in
the CF lung. Bernier et al, demonstrated that several amino acids promoted biofilm formation of
P. aeruginosa 37; we find that the AAA and the BCAA related iModulons show upregulation in the
biofilm mode of growth.

From the functional clustering of iModulons can annotate an uncharacterized iModulon
(Uncharacterized-13) which might be responsible for additional iron acquisition. Furthermore, we
found a potential correlation of the bile and sulfur acquisition, which might be an important factor
for P. aeruginosa infection in CF patients. We performed interspecies iModulon comparison. We
found 20 iModulons from P. aeruginosa showing high correlation with the E. coli iModulons, with
the translational iModulon being the most important among them. Additionally, we find that the
stress related iModulon (RpoS-2) shows anti-correlation with the translational (Translational-1)
iModulon, which demonstrates the survival strategy of P. aeruginosa under stress conditions.
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All the activity and expression profiles as well as the details of iModulons would be very useful
for microbiologists to tackle the nosocomial infection causing P. aeruginosa. The code for the
pipeline is available on github (https://github.com/akanksha-r/modulome_paeru1.0 ). The
framework of the Pseudo Precise iModulons would be helpful to elucidate the regulatory
metabolic networks, transcription factors, and various cross-talk among mechanisms. To browse
or search dashboards for each iModulon and gene analyzed in this study, visit iModulonDB.org
(https://imodulondb.org/dataset.html?organism=p_aeruginosa&dataset=modulome).

In this study, we implemented machine learning to identify the TRN in P. aeruginosa. We
incorporated high quality transcriptomics data, both from in-house generated data as well as all
publicly available, high quality data from the SRA database, to get the independently
co-regulated sets of genes (iModulons) which provide a genome-wide, top-down perspective of
the TRN of P. aeruginosa. We have demonstrated its usefulness for characterizing BGCs,
metabolism, and virulence, and its wide scope could enable additional insights into many other
processes in P. aeruginosa. It may also serve as the basis for comparisons in regulation across
the phylogenetic tree, as we have demonstrated with E. coli.

Methods
RNA extraction and library preparation
The P. aeruginosa PAO1 and K2733 (PAO1ΔmexB) strains were used in this study. We
extracted RNA samples for 25 unique conditions including different media types (M9, CAMHB,
LB, RPMI+10%LB), treatment with oxidative stress (Paraquat), iron starvation (DPD), osmotics
stress (NaCl), low pH, various carbon sources (succinate, glycerol, pyruvate, fructose, sucrose,
N-acetyl glucosamine), micronutrients (copper, iron, zinc, sodium hypochlorite), knockouts, and
many more. All conditions were collected in biological duplicates and untreated controls were
also collected for each set to rule out the possibility of the batch effect.

In brief, strains were grown overnight at 37oC, with rolling, in appropriate media types for the
testing condition of choice. Overnight cultures were then diluted to a starting OD600 of ~0.01 and
grown at 37oC, with stirring. Once cultures reached the desired OD600 of 0.4, 2 mL cultures were
immediately added to centrifuge tubes containing 4 mL RNAprotect Bacteria Reagent (Qiagen),
vortexed for 5 seconds and incubated at room temperature for 5 min. Samples were then
centrifuged for 10 minutes at 5000xg and the supernatant was removed prior to storage at -80oC
until further processing. In conditions involving antibiotic treatment, when the bacterial culture
had reached an OD600 of ~0.2, antibiotics were added at 2X or 5X their MIC in the appropriate
media type and allowed to incubate at 37oC, with stirring, for an additional hour prior to sample
collection.

Total RNA was isolated and purified using a Zymo Research Quick-RNA Fungal/Bacterial
Microprep Kit from frozen cell pellets previously harvested using Qiagen RNAprotect Bacteria
Reagent according to the manufacturers' protocols. Ribosomal RNA was removed from 1 ug
Total RNA with the use of a thermostable RNase H (Hybridase) and short DNA oligos
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complementary to the ribosomal RNA, performed at 65 degrees C to prevent non-specific
degradation of mRNA. The resulting rRNA-subtracted RNA was made into libraries with a
KAPA RNA HyperPrep kit incorporating short Y-adapters and barcoded PCR primers. The
libraries were quantified with a fluorescent assay (dsDNA AccuGreen quantitation kit, Biotium)
and checked for proper size distribution and average size with a TapeStation (D1000 Tape,
Agilent). Library pools were then assembled and a 1X SPRI bead cleanup performed to remove
traces of carryover PCR primers. The final library pool was quantified and run on an Illumina
instrument (NextSeq, Novaseq).

Data acquisition and preprocessing
Apart from the in-house generated data, we also used all the high throughput data available in
the literature and obtained from NCBI-SRA. Further, the quality control was done using various
filters in multiqc packages like fastqc which includes per_base_sequence_quality,
per_tile_sequence_quality, per_base_n_content, and adapter_content 52. Further, the aligned
reads for the coding sequences (i.e. mRNA) were checked and the too few reads were removed
such as to improve the sensitivity. Finally, after the removal of the failed samples, we get 474
samples (97 in-house + 377 literature) for further downstream processing. The raw reads of the
RNAseq experiment were mapped on the P. aeruginosa reference genome (NC_002516.2)
using bowtie2 (v2.3.4) 53. The ORFs were assigned to the aligned reads through the
HTSeq-counts 54. Further, the DSeq2 was used to perform the differential expression analysis 55,
which finally resulted in the transcripts per million (TPM).

Computing robust independent components
The procedure to calculate the robust independent components was described by McConn et al
7,56.

In brief, the independent components (ICs) were processed using the decomposition method
FastICA available in the Scikit-learn library (v0.23.2) 57 using the convergence tolerance of 10-7,
contrast function of log(cosh(x)), 100 iterations, and parallel search. All the components were
calculated such as to reconstruct 99% variance during Principal component analysis.

After the 100 iterations of the ICs were clustered using the DBSCAN algorithm with the
minimum size of 50 and epsilon 0.1 58. Further, to confirm the reproducibility of the component of
each cluster, all the signs of the clusters were inverted in order to get the highest weighted gene
with positive sign. The centroids of each cluster were set to the weighting of the ICs.

Further, to confirm the robustness of the components, dimensionality reduction was done. The
overall process was repeated multiple times, from dimensions 10 to 420 with the step size of 20.
The optimal dimensionality was extracted by comparing the number of ICs with single genes to
that of the number of ICs with the largest dimension (PCC 0.70). Finally, the number of
dimensions were selected where the number of non-single ICs was equal to the number of final
components in that dimension.
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Determination of the gene coefficient threshold
Each gene of 104 components of the M matrix contains a large amount of the values which are
near to zeros. Further, the threshold for differentiating the near zero values of the genes to the
other contributing values was set in order to identify the set of genes for each iModulon by using
the D’Agostino K2 test 59. The D’Agostino K2 statistic test combines the skewness and Kurtosis
of the normally distributed components to determine their gaussianity. All genes with the highest
absolute weights were removed and the removal process will continue until the K2 statistics falls
below the threshold. The sensitivity analysis was used to calculate the threshold between the
computed iModulons and the regions reported in literature, RegPrecise 15, and Pseudomonas
genome database 60. Further, the threshold of 320 (range) was set to perform the D’Agostino K2

test for computing the iModulons through Fisher’s exact test. The precise and recall of all the
overlapped iModulons were calculated. Thus, the threshold was chosen which led to the highest
harmonic mean (F1) between the recall and precision as described in Sastry et al 4.

Regulator enrichment
The transcriptional regulatory network (TRN) was annotated using the information from the
RegRrecise15, Pseudomonas genome db60, and literature. The iModulons with coding RNAs
were included in the annotation while the non-coding RNAs were excluded. However, in case of
the P. aeruginosa very few information of the TRN were available in RegPrecise and
Pseudomonas genome db. For the unannotated iModulons we use the Gene Ontology 61 and
KEGG pathway 62 annotations using the precision, recall, p-value, and q-values. Furthermore,
the remaining unannotated iModulons were manually annotated from literature.

Differential activation analysis
We calculated the difference in the iModulons activities between two or more conditions by fiting
the log-normal distribution to the difference. The statistical significance was checked by
calculating the difference between the absolute values of the activities among the iModulons,
and further confirmed by the p-values. However, the p-values were adjusted using the
Banjamini-Hochberg correction. While calculating the differential activation among the
iModulons, the difference with >5 was considered significant.

Characterizing functionally correlated iModulons
We used the Pearson’s correlation matrix to identify the biologically similar iModulons.
Furthermore, Agglomerative (hierarchical) clustering is used under the hood. Thus, a distance
threshold for defining "flat" clusters from the hierarchical structure must be determined. By
default, this distance threshold is automatically calculated using a sensitivity analysis. Different
distance thresholds (this value is between 0 and 1) are tried, and the resulting clustering is
assessed using a silhouette score, which is a measure of how separate the clusters are. The
distance threshold yielding the maximum silhouette score is automatically chosen.

Prediction of the biosynthetic gene clusters
We used the antiSMASH algorithm to predict the BGCs in the P. aeruginosa 20. While using the
anti-SMASH software, we used the P. aeruginosa (NC_002516.2) with the ‘relaxed’ detection
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strictness. The antiSMASH algorithm predicts different types of the BGCs like NRPS, PKS,
RiPP, redox-cofactors, and many more. Apart from the predicted BGCs, antiSMASH also
provides the gene ontology annotations for the BGCs components.

Generating iModulonDB Dashboards
iModulonDB dashboards were generated using the PyModulon package 4,12; the pipeline for
doing so can be found at
https://pymodulon.readthedocs.io/en/latest/tutorials/creating_an_imodulondb_dashboard.html.
Where applicable, we provide links to gene information in Pseudomonas.com 60.

Data availability
All the in-house generated sequences were deposited in the NCBI-Sequence Read Archive
database. The accession number of the deposited reads is provided in the Supplementary
Table S7. While the X, M and A matrices are available in the Supplementary Table S4, S5,
and S6 and GitHub (https://github.com/akanksha-r/modulome_paeru1.0 ). Each gene and
iModulon have interactive, searchable dashboards on iModulonDB.org, and data can also be
downloaded from there.

Code availability
The customized code for the ICA analysis is provided on GitHub
(https://github.com/akanksha-r/modulome_paeru1.0 ). While various files including the X, M, A
matrices, TRN regulator file, gene annotated files, gene ontology and kegg pathway annotation
files are available on GitHub (https://github.com/akanksha-r/modulome_paeru1.0 ).
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