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Abstract20

Identifying structural differences among proteins can be a non-trivial task. When contrasting ensembles21

of protein structures obtained from molecular dynamics simulations, biologically-relevant features can be22

easily overshadowed by spurious fluctuations. Here, we present SINATRA Pro, a computational pipeline23

designed to robustly identify topological differences between two sets of protein structures. Algorithmi-24

cally, SINATRA Pro works by first taking in the 3D atomic coordinates for each protein snapshot and25

summarizing them according to their underlying topology. Statistically significant topological features26

are then projected back onto an user-selected representative protein structure, thus facilitating the visual27

identification of biophysical signatures of different protein ensembles. We assess the ability of SINATRA28

Pro to detect minute conformational changes in five independent protein systems of varying complexities.29

In all test cases, SINATRA Pro identifies known structural features that have been validated by previous30

experimental and computational studies, as well as novel features that are also likely to be biologically-31

relevant according to the literature. These results highlight SINATRA Pro as a promising method for32

facilitating the non-trivial task of pattern recognition in trajectories resulting from molecular dynamics33

simulations, with substantially increased resolution.34

Significance35

Structural features of proteins often serve as signatures of their biological function and molecular binding36

activity. Elucidating these structural features is essential for a full understanding of underlying biophysical37

mechanisms. While there are existing methods aimed at identifying structural differences between protein38

variants, such methods do not have the capability to jointly infer both geometric and dynamic changes,39

simultaneously. In this paper, we propose SINATRA Pro, a computational framework for extracting key40

structural features between two sets of proteins. SINATRA Pro robustly outperforms standard techniques41

in pinpointing the physical locations of both static and dynamic signatures across various types of protein42

ensembles, and it does so with improved resolution.43
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Introduction44

Identifying structural features associated with macromolecular dynamics is crucial to our understanding45

of the underlying physical behavior of proteins and their broader impact on biology and health. Structural46

and dynamical properties of proteins often serve as signatures of their functions and activities [1]. Subtle47

topological changes in protein conformation can lead to dramatic changes in biological function [2,3], thus48

highlighting the importance of being able to accurately characterize protein conformational dynamics.49

Conventionally, the structural dynamics of proteins have been modeled using molecular dynamics50

(MD) simulations, which work by sampling structural ensembles from conformational landscapes. In51

infinite timescales, such structural ensembles are expected to represent all physical states such that their52

ensemble-averaged observables converge to true physical values and are thus physically meaningful. While53

MD simulations have provided key insights into the atomistic motions that underpin many protein func-54

tions [4], biologically-relevant structural changes can be overshadowed by spurious statistical noise caused55

by the thermal fluctuations that naturally arise during the course of these simulations [5]. In practice,56

this can often make important structural features difficult to identify and robustly interpret from MD57

trajectories. Traditionally, data from MD simulations are analyzed in a strictly goal-dependent manner58

by using computational methods that quantify and assess specific protein characteristics. For example,59

geometric changes that arise as a result of ligand binding, point mutations, or post-translational modifi-60

cations are usually inferred by analyzing the root mean square fluctuations (RMSF) of atomic positions61

or the per-domain radius of gyration with respect to a reference structure [6]. Unfortunately, these stan-62

dard approaches are less powerful when the relevant changes in protein structure are overshadowed by63

fluctuations irrelevant to the biological process of interest.64

Recently, more sophisticated methods have aimed to overcome these challenges by taking advantage65

of correspondences between the atomic positions on any two given proteins. For example, per-residue66

distance functions or contact maps can be calculated on each frame of a trajectory for clustering [7] or67

principal component analyses (PCA) [8,9], which project complex conformations onto a lower-dimensional68

space for ease of comparison. However, the downside to these methods is that they require diffeomor-69

phisms between structures (i.e., the map from protein A to protein B must be differentiable). There are70

many scenarios in protein dynamics where no such transformation is guaranteed because atomic features71

can be gained or lost during the evolution of the system [10]. Indeed, there are 3D shape algorithms72

that construct more general “functional” correspondences and can be applied even across shapes having73

different topology [11, 12]; however, previous work has shown that the performance of these algorithms74

drops significantly when the assumed functional mapping input is even slightly misspecified [13].75

In this work, we introduce SINATRA Pro: a topological data analytic pipeline for identifying biologically-76

relevant structural differences between two protein structural ensembles without the need for explicit con-77

tact maps or atomic correspondences. Our algorithm is an extension of a previous framework, SINATRA,78

which was broadly introduced to perform variable selection on physical features that best describe the79

variation between two groups of static 3D shapes [13]. Using a tool from integral geometry and differential80

topology called the Euler characteristic (EC) transform [14–17], SINATRA was shown to have the power81

to identify known morphological perturbations in controlled simulations and robustly identify anatomical82

aberrations in mandibular molars associated within four different suborders of primates. SINATRA Pro83

is an adaptation of the SINATRA framework for protein dynamics. Here, we develop a simplicial complex84

construction step to specifically model both 3D geometric and topological relationships between atomic85

positions on protein structures. We also utilize a new set of statistical parameters which we calibrate for86

complex protein systems.87

In this study, we demonstrate SINATRA Pro’s ability to identify key structural and dynamical fea-88

tures in a hierarchy of proteins with increasingly challenging features to statistically resolve. The five89

proteins studied, TEM β-lactamase, tyrosine-protein kinase Abl1, HIV-1 protease, EF-Tu (elongation90

factor thermo unstable), and Importin-β, undergo structural changes in response to a wide range of well-91

studied biological phenomena, including mutations and small molecule binding. We find that SINATRA92
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Pro outperforms standard analytic techniques including RMSF and PCA in consistently pinpointing93

physical locations of biologically-relevant conformational changes. Overall, we find that SINATRA Pro94

holds great promise for extracting topological differences between two sets of protein structures from95

meaningless statistical noise.96

Results97

Pipeline Overview98

The SINATRA Pro pipeline involves five key steps (see Fig. 1). First, the algorithm begins by taking99

aligned structures from two protein MD simulation trajectories of different phenotypic states (e.g., wild-100

type versus mutant) as inputs (Fig. 1(a)). In the second step, SINATRA Pro uses the atomic positions101

of each protein to create mesh representations of their 3D structures (Fig. 1(b)). Here, atoms within102

a predetermined physical distance cutoff (e.g., ∼6 Ångströms (Å) apart) are connected by “edges” and103

then triangles enclosed by the connected edges are filled to create “faces”. In the third step, we convert104

the resulting triangulated meshes to a set of topological summary statistics using an invariant called105

the “differential Euler Characteristics (DEC)” transform (Fig. 1(c)). In the fourth step, SINATRA Pro106

implements a nonlinear Gaussian process model to classify the protein structures using the topological107

summary statistics, with which association measures are computed for each topological feature to provide108

a statistical notion of “significance” (Fig. 1(d)). In the last step of the pipeline, SINATRA Pro maps109

the association measures back onto the original protein structures (Fig. 1(e)), which produces “evidence110

scores” that reveal the spatial locations that best explain the variance between two protein ensembles.111

Theoretical details of our implementation are fully detailed in the Materials and Methods sections.112

Software Overview113

The software for SINATRA Pro requires the following inputs: (i) 3D Cartesian coordinates correspond-114

ing to the atomic positions in each protein structure; (ii) y, a binary vector denoting protein class or115

phenotype (e.g., yi = 0 for wild-type or yi = 1 for mutant); (iii) r, the cutoff distance for simplicial116

construction (i.e., constructing the mesh representation for every protein); (iv) c, the number of cones117

of directions; (v) d, the number of directions within each cone; (vi) θ, the cap radius used to generate118

directions in a cone; and (vii) l, the number of sublevel sets (i.e., filtration steps) used to compute the119

differential Euler characteristic (DEC) curve along any given direction. Results for controlled simulations120

were done using free parameters {r = 1.0 Å, c = 20, d = 8, θ = 0.80, l = 120}, and results for real data121

analyses were done using parameters {r = 6.0 Å, c = 20, d = 8, θ = 0.80, l = 120}. All values were chosen122

via a grid search. Guidelines for how to choose the free parameters for the software are given in Table 1.123

Tables detailing the scalability of the current algorithmic implementation of SINATRA Pro can also be124

found in Supporting Information (see Tables S1-S3).125

Performance of SINATRA Pro on Benchmark Simulations126

We implemented a controlled simulation study designed to assess SINATRA Pro’s performance at iden-127

tifying structurally-perturbed regions in protein dynamics relative to other methods. Here, the premise128

behind “controlled simulations” is that topological artifacts (i.e., perturbations of atomic positions in a129

certain region) are manually introduced to a set of protein structures to establish a ground truth and sta-130

tistically evaluate the concept of power. The original and perturbed structures represent two phenotypic131

classes and are fed into SINATRA Pro to assess whether it can reliably identify the perturbed regions of132

interest.133

To generate data for these controlled simulations, we use real structural data of wild-type β-lactamase134

(TEM), an enzyme widely implicated in microbial resistance that has evolved numerous mutations of135
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clinical relevance. In the first phenotypic group (set A), original structures are drawn at 1 nanosecond136

(ns) intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . . , 99] ns + δ, where δ is a time offset137

parameter). Next, a comparable set of perturbed structures (set B) are drawn at 1 ns intervals but138

shifted by 0.5 ns with respect to the set A structures (e.g., tMD = [0.5, 1.5, 2.5, 3.5, . . . , 99.5] ns + δ) to139

allow for thermal noise to be introduced. Here, we displace the atomic positions of each atom in the140

Ω-loop (i.e., the region of interest or ROI) in each perturbed structure within set B by141

• a constant Cartesian vector set to (i) 0.5 Å, (ii) 1.0 Å, and (iii) 2.0 Å in each (x, y, z) direction;142

• a spherically uniform random vector where each (x, y, z) direction is first drawn from a standard143

Gaussian distribution N (0, 1) and then the vector is normalized to be of length (iv) 0.5 Å, (v) 1.0144

Å, and (vi) 2.0 Å.145

These simple, artificial control cases are designed to represent two different forms of structural changes146

that can happen within protein dynamics. Namely, scenarios (i)-(iii) involve a displacement of atoms by147

a constant amount in a constant direction, which emulates a static structural change; while, scenarios148

(iv)-(vi) displace the atoms by a constant amount in a (spherically uniform) random direction, which149

emulates a dynamic or stochastic structural change. Altogether, we use datasets of N = 1000 protein150

structures per simulation scenario: 100 ns intervals × 5 different choices of δ = {0.0, 0.1, 0.2, 0.3, 0.4}151

ns × 2 phenotypic classes (wild-type versus perturbed). We evaluate all competing methods’ abilities152

to correctly identify perturbed atoms located within the Omega-loop region (Material and Methods).153

Here, we use receiver operating characteristic (ROC) curves that plot true positive rates (TPR) against154

false positive rates (FPR) (Fig. 2). This is further quantified by assessing the area under the curve155

(AUC). The results presented in the main text reflect using SINATRA Pro with parameters set to156

{r = 1.0 Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. Note that additional figures157

assessing how robust SINATRA Pro is to different free parameter value settings can be found in the158

Supporting Information (see sensitivity analysis in Fig. S1).159

Overview of Competing Baselines. In this section, we compare SINATRA Pro to four competing160

approaches: root mean square fluctuation (RMSF) calculations, principal component analysis (PCA),161

Elastic Net classification, and Neural Network classification. The first baseline is RMSF which computes162 √
‖x− 〈x〉||2‖, where x = (x, y, z) denotes the positions of the protein’s alpha-carbons (which we denote163

in shorthand by Cα) for each frame and 〈x〉 is the average position of that corresponding atom over164

the entire MD simulation. The difference in the RMSF values between the original and perturbed165

structures is taken as the score for feature selection. The second baseline performs PCA (based on singular166

value decomposition) over the Cartesian (x, y, z)-coordinates for the Cα atoms using scikit-learn [18],167

which reduces the sample space into 10 principal components. We sum the components (weighed by168

their singular values) for the original wild-type and perturbed data separately, and then determine the169

magnitudes of the change in the component sum between the the two protein classes as the score for170

feature selection. The last two baselines concatenate the coordinates of all atoms within each protein and171

treats them as features in a dataframe. The Elastic Net uses a regularized linear classification model via172

stochastic gradient descent in scikit-learn to assign sparse individual coefficients to each coordinate of173

every Cα atom, where the free regularization parameter is chosen with 90% training and 10% validation174

set splits. We assess the power of the Elastic Net by taking the sum of the coefficient values corresponding175

to each atomic position. The Neural Network uses the following architecture with Rectified Linear Unit176

(ReLU) nonlinear activation functions [19]: (1) an input layer of Cartesian coordinates of all of the atoms;177

(2) a hidden layer with H = 2048 neurons; (3) a second hidden layer with H = 512 neurons; (4) a third178

hidden layer with H = 128 neurons; and (5) an outer layer with a single node which uses a sigmoid179

link function for protein classification. Batch Normalization was implemented between each layer and a180

normalized saliency map to rank the importance of each atom [20]. The simplest saliency map attributes181

the partial derivatives ∂yi/∂xij as the importance of the coordinates for the j-th atom in the i-th protein182
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structure; here, yi denotes the neural network output after the sigmoid link function for the i-th protein183

structure. We then assign global importance to each atom by
∑Nc

i=1 |∂yi/∂xij | /Nc, where Nc denotes the184

number of protein structures in a given class. For the Neural Network, we assess power by taking the185

sum of the saliency map values corresponding to each atomic position.186

It is important to note that, while SINATRA Pro is implemented over the entire protein structure,187

the four baselines that we consider are limited to only assessing structural differences between Cα atoms.188

The main reason for this is that atomic features can be gained or lost due to mutations or phylogenetic189

variations that introduce heterogeneity in protein sequences, thus creating a lack of a one-to-one corre-190

spondence between any two given 3D structures. Without this explicit mapping between structures, none191

of the four coordinate-based competing approaches are able to be fully implemented as they all rely on192

(in some way or another) equal dimensionality across all proteins. We instead run these baselines on just193

the Cα atoms because the Cα atoms are located at the center “anchoring” position of each residue (i.e.,194

the center of an amino acid unit) and their correspondences are conserved over side-chain substitutions.195

Therefore, when assessing MD trajectories, the Cα atoms represent consistent “landmarks” that summa-196

rize the global geometry of the protein structure. Ultimately, we recognize that these method comparisons197

with SINATRA Pro are not equivalent; however, they do highlight a key and practical advantage of the198

topological data analytic approach used in SINATRA Pro which maintains its utility even when such199

atom-by-atom correspondences between protein structures are not available.200

Method Comparisons. The overall performance of each competing method to identify is dependent on201

two factors: (1) whether the structural changes are reproduced by static or stochastic conformations, and202

(2) the underlying statistical assumptions of the methods. For example, RMSF had the most difficulty203

identifying constant displacements in the protein structures (Figs. 2(a)-(c)). In these scenarios, RMSF204

was effectively a random classifier with an average AUC ≈ 0.5 and diagonal ROC curves showing no205

signal detected. These results are explained by that fact that RMSF effectively measures how much each206

atomic coordinate x deviates from the average atomic position in the ensemble 〈x〉. When conformations207

are constantly shifted, x and 〈x〉 are scaled by the same factor and, as a result, their differences remain208

unchanged. Therefore, static structural changes are essentially undetectable by RMSF. On the other209

hand, RMSF is perfectly well suited for stochastic structural changes because, when atomic displacements210

are caused by a random spherical vector, the scaling factors between each x and 〈x〉 are noticeably211

different (AUC ≥ 0.89 in Figs. 2(d)-(f)). Note that PCA follows a similar trend, but with much less212

power likely due to the fact that we only consider the top 10 PCs for these analyses.213

A slightly different intuition can be followed when looking at the results for the Elastic Net and Neural214

Network classifiers. When atomic positions are shifted equally by a constant Cartesian vector, the atoms215

in the ROI for the perturbed proteins become (in some cases) completely separable from those in the216

original structures. Therefore, an Elastic Net and Neural Network have no trouble assigning the true217

causal atoms non-zero effect sizes (AUC ≥ 0.85 for both approaches in Figs. 2(a)-(c)). This observation is218

similar to previous works which show coordinate-based regularization to be most effective when variation219

between 3D structures occurs on a global scale and in the same direction on the unit sphere [13]. In the220

cases of random spherical perturbations, the variance of the distribution of atoms in the ROI widens;221

hence, the Elastic Net and Neural Network have a more difficult time identifying features that differentiate222

two protein classes, unless those variations happen on a global scale (again see Figs. 2(d)-(f)).223

Most notably, SINATRA Pro performs consistently well in all simulation scenarios, identifying both224

static and dynamic differences better than most of the competing baselines that we considered (AUC ≥225

0.96 in Fig. 2). Although SINATRA Pro is not as adept as the Elastic Net (AUC = 1.00 in Figs. 2(a)-(c))226

at detecting static changes, it is able to robustly select significant features that are ignored by RMSF.227

In addition, SINATRA Pro is much better than the Elastic Net and Neural Network at identifying228

significant spherical perturbations that arise dynamically between protein structures. We hypothesize229

that summarizing atomic positions with Euler statistics is what enables SINATRA Pro to robustly capture230
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both varying topology and geometry, unlike its coordinate-based counterparts, regardless of whether those231

differences occur in a constant or stochastic way.232

Detecting Conformational Changes in Real Protein Systems233

To examine SINATRA Pro’s ability to identify known structural changes of biological significance in234

real data, we consider the following five protein systems (Table 2): (1) the wild-type and Arg164Ser235

mutant of TEM β-lactamase; (2) the wild-type and Ile50Val mutant of HIV-1 protease; (3) the guano-236

sine triphosphate (GTP) and guanosine diphosphate (GDP) bound states of EF-Tu; (4) the wild-type237

and Met290Ala mutant of Abl1 tyrosine protein kinase; and (5) unbound and IBB-bound importin-β.238

We choose to analyze these particular systems because they undergo varying degrees of conformational239

changes that have been well studied in the literature (again see Table 2). Here, we will treat these previ-240

ously identified features as ROIs, where the assumed “difficulty” for SINATRA Pro to statistically resolve241

structural signatures will be based on the stochasticity observed within each protein system. Namely,242

it will be more difficult to perform feature selection on structural ensembles that are highly dynamic as243

spurious fluctuations can interfere with detecting signal from the ROI. For each protein system, SINA-244

TRA Pro is implemented on ten different replicates of structures drawn from the same MD trajectory245

to affirm the consistency of the results. Atomic enrichments are illustrated in Figs. S2-S3, while residue-246

level structural enrichments are shown in Figs. 3-5 and S4-S12, respectively. To quantitatively assess247

the probability that SINATRA Pro is identifying any given ROI by chance, we implement a null region248

hypothesis test to estimate a P -value and an approximate Bayes factor (BF) corresponding to our power249

to reliably and robustly select certain features (Material and Methods). Reported results for the P -values250

and BF calculations are based on all simulated structures and can be found in Table 3. For comparison,251

we again implement the RMSF (Figs. 3-5, S6, S9, and S11-S12) and Elastic Net (Figs. S4-S5, S7-S8, and252

S10) baselines on the Cα atoms within these same protein systems. Here, we use scatter plots to illustrate253

the correlation between how each of these methods and SINATRA Pro rank the variable importance of254

the Cα atoms. All results presented in the main text reflect using SINATRA Pro with parameters set255

to {r = 6.0 Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. Note that additional figures256

assessing how robust SINATRA Pro is to different configurations of protein meshes for these data (i.e.,257

different radius cutoffs r values) can be found in the Supporting Information (Figs. S13-S17).258

Conformational Changes in the Active Site and Regulatory Ω-Loop of Arg164Ser259

TEM β-lactamase260

Previous studies suggest that the Arg164Ser mutation in β-lactamase (TEM) induces structural changes261

in a highly plastic region known as the Ω-loop (residues 163-178), which plays a major role in the262

regulation of enzymatic activity [21, 22]. In wild-type β-lactamase, Arg164 makes a salt bridge with263

Asp179 that “pins down” the Ω-loop. Mutating Arg164 to serine breaks this salt bridge and disrupts a264

vast network of electrostatic and hydrogen interactions, dramatically affecting the dynamical behavior of265

the area surrounding the loop, parts of the active site, and potentially other protein domains [23]. These266

dynamical rearrangements confer multi-drug resistance to bacteria expressing TEM Arg164Ser, allowing267

them to hydrolyze a large number of cephalosporins such as ceftazidime, cefixime, and cefazolin, in lieu268

of hydrolyzing ampicillin [24]. Given the enormous burden of multiresistant bacteria on public health,269

it is important that we understand the molecular mechanisms behind the structural rearrangements270

responsible for the transition to the cephalosporinase phenotype in order to orient future antibiotic271

design. Although previous studies have probed these rearrangements with varying approaches [23], the272

full mechanism remains elusive, highlighting the need for novel sampling and analytical methods that can273

detect the very slight changes in TEM’s active site topology that lead to drug resistance in the Arg164Ser274

and similar mutants. To help bridge this gap in understanding, we ran all-atom MD simulations of275

unbound TEM-1 and its Arg164Ser mutant, generated by homology modeling, and analyzed the results276
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using SINATRA Pro, RMSF, and the Elastic Net baselines. Here, we expect SINATRA Pro to reveal new277

insights about the molecular mechanisms underlying the specificity shift precipitated by the Arg164Ser278

mutation, due its ability to detect both minute static and stochastic changes in topology that elude279

traditional methods.280

We compare the MD trajectories of wild-type and mutant TEM using aligned structures of the whole281

protein (Figs. 3(a) and S2(a)), residues 65-230 (Fig. 3(b) and S2(b)), and residues 65-213 (Fig. 3(c) and282

S2(c). In all three cases, statistical association measures from SINATRA Pro suggest that there are283

indeed significant structural changes in the Ω-loop (residues 163-178) relative to the rest of the regions284

in the protein (Fig. 3(d)), especially on residues 164 and 176-179, which are involved in the electrostatic285

interaction networks disrupted by the arginine to serine substitution. This ROI is not as prominently286

identified by the RMSF (see scatter plots in Fig. 3(e)-(g)) or the Elastic Net baselines (Fig. S4(b)-(d)).287

Alternatively, all three approaches were able to identify the region harboring residues 213-230, which288

undergoes a noticeable dynamic shift over the course the MD trajectory. These results are consistent289

with our controlled simulations, which showed that the only time that RMSF and the Elastic Net both290

exhibit relatively decent power for stochastic changes is when large structural deviations are introduced291

(e.g., see power comparisons in Fig. 2(f)).292

To more thoroughly assess if the Arg164Ser mutation contributes to the detected changes, we removed293

the Arg/Ser164 sidechain, as well as the whole residue (backbone and side chain), from our analyses. With294

the Arg/Ser164 atoms removed, association metrics of Arg/Ser164 and residues 176-179 diminished, which295

implies that signals pertaining to the dynamical contributions from the electrostatic interaction networks296

mediated by the side-chains of Arg164 and Glu179 are lost due to the missing topology. However,297

enrichment in the Ω-loop persisted, affirming that the identified topological differences are not just due298

to changes in these atoms. The null region test showed that the Ω-loop is indeed a robust significant299

structural feature in TEM, with P = 5.63 × 10−2 and BF = 2.27 when the whole TEM protein is300

analyzed (Table 3 with r = 6.0 Å), P = 6.85× 10−2 and BF = 2.00 when residues 65-230 are analyzed,301

and P = 7.22 × 10−4 and BF = 70.4 when residues 65-213 are analyzed. We hypothesize that the ROI302

P -value is larger than the nominal 0.05 level for analyses with the whole structure and residues 65-303

230 because movement in the Ω-loop occurs jointly with moderate fluctuations in the region harboring304

residues 210-230. Overall, when we limit our scope to just residues 65-213, the region test robustly rejects305

the null hypothesis of the Ω-loop being identified by chance.306

Our results are particularly interesting for the TEM β-lactamase example because they highlight the307

importance of codon positions 164 and 179 in controlling Ω-loop dynamics, which contributes to mod-308

ulating activity. Moreover, SINATRA Pro correctly captures the topological effects of the disruption of309

the electrostatic network formed by Arg164, Arg178, and Asp179 due to the Arg164Ser mutation. In310

addition to reaffirming previously observed phenomena, SINATRA Pro also identified meaningful shifts311

in the 210-230 segment in response to the resistance-granting Arg164Ser mutation. This suggests that the312

topology of the 210-230 segment, which forms the upper boundaries of the active site, is tightly correlated313

with shifts in the Ω-loop. Our results suggest an additional potential mechanism for activity modula-314

tion by Ω-loop fluctuations, where topological changes propagate from regulatory loops to parts of the315

active site, suggesting potential allosteric couplings between the Ω-loop and the 210-230 segment. These316

results function as a testament to SINATRA Pro’s capacity for distinguishing meaningful topological317

differences from the random fluctuations introduced by disorder-inducing mutations such as Arg164Ser,318

which obfuscates traditional analyses pipelines.319

Changes in the Flap Region of HIV-1 Protease Driven by the Ile50Val Muta-320

tion321

Our next analysis focuses on the HIV-1 protease, an enzyme that is essential for viral reproduction and is322

a well-established target for controlling HIV infections [25]. In vivo, the protease cleaves the HIV polypro-323
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teins Gag and Gag-Pol at multiple sites, creating the mature protein components of an HIV virion [26].324

Over the past 25 years, ten HIV protease inhibitors have been approved for human use by the Food325

and Drug Administration (FDA), with many more undergoing clinical trials [27]. Similar to TEM, point326

mutations in the protease gene lead to products that are considerably less susceptible to inhibition by327

current drugs, generating drug-resistant HIV variants that pose a considerable risk [28]. Many hypotheses328

have been proposed for the molecular mechanisms underlying the most common resistance-granting muta-329

tions, and recent studies have used sophisticated geometric analyses to classify conformational ensembles330

of mutant structures based on their influences on the dynamics [29]. Structurally, the HIV protease forms331

a homodimer with highly ordered domains [30]. Most resistance-granting mutations, such as the Ile50Val332

substitution, are thought to mainly affect the cross-correlated fluctuations of the flaps (residues 47-55),333

imparting minute changes to the fulcrum and lateral topology [29, 31, 32]. These findings suggest that334

mutations such as Ile50Val effectively rewire residue communication networks, allowing the enzyme to335

function even in the presence of the would-be inhibitor. These structural rearrangements lead to sur-336

prisingly nuanced changes to the topology, which as discussed previously, require refined quantitative337

methods to be detected. To test SINATRA Pro’s performance in detecting these small changes, we ran338

all-atom molecular dynamics simulations of “protein and ligand complex in water” systems containing339

HIV Protease or its Ile50Val mutant complexed with the antiviral drug Amprenavir [33]. We then fol-340

lowed that with analysis using either SINATRA Pro, RMSF, or the Elastic Net, with the objective of341

measuring each routine’s capacity for detecting and reporting the topological changes induced by the342

mutation.343

Even though MD simulations are performed on the protein’s native dimeric form, chains A and B were344

separately selected and aligned before being input into each statistical method to avoid alignment bias345

due to inter-chain orientation. This focuses SINATRA, RMSF, and the Elastic Net on identifying the346

structural differences within each chain (e.g., Figs. 4(a)-(b) and S2(d)-(e)). Overall, our analyses reveal347

that chains A and B seem to respond asymmetrically to the backbone effects of the mutation within the348

timeframe of the simulations (Table 3). This is not unexpected, as during the course of the simulations,349

the inhibitor Amprenavir affects dynamics asymmetrically by interacting more significantly with residues350

of Chain A. The change in RMSF for most of the residues in the flap are shown to be greater than 0.2351

Å for chain A and smaller than 0.2 Å for chain B, indicating that the flap became more dynamic in the352

MD simulations when the Ile50Val mutation was introduced into chain A (Figs. 4(d)-(e) and S11(b)).353

Meanwhile, the Elastic Net shows larger nonzero coefficients in the fulcrum for chain A than in chain B354

(Fig. S5(a)).355

While association metrics from SINATRA Pro identify structural changes in the flap for both chains356

(Fig. 4(c)), they also capture the geometric shifts within the fulcrum for chain A. We hypothesize that357

the coexistence of the two changes (flap and fulcrum) in chain A contributes to a smaller peak (i.e., a358

weaker signal) in the association metrics produced by SINATRA Pro in the flap for chain A than in chain359

B. This asymmetry is confirmed by the null test, as topological changes in the flap appear to be less360

statistically significant in chain A (P = 2.95× 10−1 and BF = 1.022) than in chain B (P = 8.14× 10−4361

and BF = 63.554) for this MD simulation data. Similar to β-lactamase, we assess if the Ile50Val mutation362

contributes to these detected topological changes. Upon removing the Ile/Val50 side-chain, the signal363

observed by SINATRA Pro in the flap drops with the missing topology, but still displays a significant peak364

relative to the rest of the protein, which implies that the change in association scores is not solely due to365

the structural differences upon introducing the Ile50Val mutation (Fig. 4(c)). Although SINATRA Pro366

clearly identified the effects of the isoleucine to valine substitution in flap topology and fulcrum dynamics,367

SINATRA Pro did not detect other previously elucidated structural signatures of the mutation, such as368

lateral extension [29]. As the baseline approaches also failed to identify these features, it is likely that369

their absence stems from sampling limitations inherent to the brute-force and relatively short production370

dynamics used to generate the conformational datasets.371

The HIV protease system presents a welcome test case for SINATRA Pro due to its relative structural372
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simplicity and the symmetry of the dimer. Encouragingly, SINATRA Pro’s results closely match those373

observed in previous studies that sought to characterize deltas in the backbone dynamics of the HIV374

protease in response to resistance-granting mutations [29].375

Domain 2 in EF-Tu Undergoes Structural Changes upon GTP Hydrolysis376

In our third analysis, we focus on EF-Tu (elongation factor thermo unstable), which is a G-protein that377

is responsible for catalyzing the binding of aminoacyl-tRNAs to the ribosome in prokaryotes. After378

binding GTP and a given aa-tRNA, EF-Tu strongly interacts with the ribosomal A site [34]. Following379

productive aa-tRNA binding, EF-Tu is released upon GTP hydrolysis [35]. The resultant GDP molecule380

is exchanged for GTP with EF-Ts (elongation factor thermo stable), allowing elongation to continue.381

Structurally, EF-Tu is composed of a Ras-like catalytic domain (RasD), common to G-proteins, and two382

beta-barrel domains (D2 and D3) [36]. Previous studies probing dynamic fluctuations of GTPases have383

identified that, after hydrolysis (in the GDP-bound state), EF-Tu shows considerably increased flexibility384

of backbone atoms belonging to Domains 2 and 3, which are downstream of the nucleotide binding385

site in RasD [37]. These fluctuations are thought to be correlated with conformational rearrangements386

required for the exchange of GDP for GTP [37]. The conformational rearrangements are thought to occur387

on multiple millisecond timescales [37], presenting an obstacle for their study using all-atom molecular388

dynamics simulations. While the full relaxations associated with the change in ligand chemistry are389

challenging to sample effectively, the initial motions that lead to them can presumably be detected on390

much shorter timescales, offering a more viable path for probing.391

To compare our method’s performance to that of alternative techniques (Figs. S6-S7), we run SINA-392

TRA Pro, RMSF, and the Elastic Net on the whole structure (Figs. S2(f) and S6(a)) and fragment393

windows limited to residues 208-308 (Figs. S2(g) and S6(b)) and 311-405 (Figs. S2(h) and S6(c)). Note394

that all figures displaying the enrichment of structural features are projected onto the GTP-bound struc-395

tures. The evidence scores from SINATRA Pro reveal significant structural changes at Domain 2, with396

minimal structural changes in the majority of the Ras-like Domain, which agrees with findings in previ-397

ous studies [37]. The null region test shows that Domain 2 is indeed an important structural feature in398

EF-Tu identified by SINATRA Pro with P = 9.30 × 10−4 and BF = 56.657, which robustly rejects the399

null hypothesis of the ROI being identified by chance (Table 3).400

The chemical changes associated with the substitution of GTP with GDP in the EF-Tu system are401

thought to have significant impacts on backbone topology, making this a particularly interesting use case402

for SINATRA Pro. Despite the challenges associated with the considerable noise inherent to the complex403

EF-Tu system, SINATRA Pro succeeded in identifying the meaningful topological deltas that are thought404

to be important for function and that were elucidated in previous studies.405

N-pocket Enlargement and αC Helix Displacement in Met290Ala Abl1406

Protein tyrosine kinases (TKs) such as Abl1 and Src play significant roles in eukaryotic life, as phospho-407

rylation of tyrosine residues in key proteins act as on/off switches that regulate a plethora of cellular408

processes and allow for efficient message passing [38]. Deregulation of the activity of these enzymes due409

to mutations is usually associated with severe forms of cancer and other chronic diseases, posing a grave410

public health problem [39]. Due to their physiological importance, the enzymatic activity of tyrosine411

kinases is tightly regulated by a series of structural elements that fluctuate among metastable conforma-412

tions between the active and inactive states [40]. This highly dynamic behavior has been exploited for413

the development of TK inhibitors, such as the widely-known anticancer drug Imatinib, which exclusively414

targets the “DFG out” state of Abl1 [40–42]. In this conformation, the phenylalanine residue of the region415

known as the DFG motif (comprised of Asp381, Phe382, and Gly383) occupies Abl1’s ATP binding site,416

preventing substrate binding and inactivating the enzyme [43]. Other TK inhibitors such as Dasatinib417

are capable of binding to Abl1’s “DFG-in” conformation, in which the positions of the aspartic acid and418
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phenylalanine side-chains are inverted with respect to their positions in DFG-out conformations, acti-419

vating the enzyme (i.e., making it capable of productive phosphorylation) [42]. The transition from the420

DFG-in to the DFG-out state is thought to happen on the multi-millisecond timescale, which presents421

a challenge for capturing it with unbiased atomistic MD simulations [43]. As a workaround, previous422

studies have used an engineered Abl1 mutant, Met290Ala, in which the energy barrier for the DFG flip423

is considerably reduced, as the steric effect presented by the bulky methionine is removed [2]. Although424

the sampling of the entire DFG flip is out of the scope of this work, we hypothesize that the Met290Ala425

mutation should induce minute topological changes around the DFG motif even in shorter simulations.426

To test this hypothesis and further measure our method’s capacity for detecting localized topological427

changes, we ran molecular dynamics simulations on the TK domain of the unbound state of Abl1 and428

its Met290Ala mutant. Specifically, we run SINATRA Pro, RMSF, and the Elastic Net on the whole429

structure (Figs. 5(a) and S3(a)), fragments limited to residues 242-502 (Figs. 5(b) and S3(b)), and the430

N-lobe spanning residues 242-315 (Figs. 5(c) and S3(c)).431

Since we only simulated the kinase domain of Abl1, both the N-terminal and C-terminal domains432

are shown to be highly dynamic as they are no longer stabilized by the mass of the entire protein. As a433

result, whole structural changes are overshadowed by large and noisy fluctuations, and competing methods434

(Elastic Net and RMSF) have a difficult time identifying enrichment in the DFG motif (Figs. S8(a) and435

S12(a)). Nonetheless, SINATRA Pro is able to identify the enrichment in the DFG motif regardless of the436

inclusion or exclusion of the N- and C-terminal (Figs. 5). The signal in the DFG motif ROI becomes better437

statistically resolved when we remove some of the structural noise and concentrate on regions spanning438

residue fragments 242-502 and 242-315 (i.e., the N-lobe). The null region test results for SINATRA439

Pro show that the DFG motif is indeed an important structural feature in Abl1: P = 8.86 × 10−3 and440

BF= 8.783 for the whole structure analysis (i.e., including the termini) and P = 2.50×10−4 and BF= 178441

for the analysis on residues 242-502 (i.e., excluding the termini), both of which reject the null hypothesis442

of the ROI being identified by chance (Table 3). In these analyses, the structural differences around the443

DFG motif between unbound Abl1 and its Met290Ala mutant were large enough for both RMSF and444

the Elastic Net to have power. As a comparison, SINATRA Pro not only robustly identifies residues445

associated with the greater N-pocket cleft as being statistically significant (i.e., the DFG motif), but also446

the αC helix spanning residues 281-293 as a moderately enriched region (Fig. 5).447

From the SINATRA Pro output, we can postulate hypotheses regarding the involvement of specific448

codon positions outside of the DFG motif in the concerted motions that culminate in the flip, such as449

the two peaks of signal surrounding it (residues 350-360 and 390-400). These interesting results show450

that even short simulations can prove useful for gaining mechanistic insights regarding long-timescale451

macromolecular relaxations, as long as the heuristics employed to analyze the resulting trajectories are452

capable of detecting the often minute signals associated with these topological shifts.453

Opening of Superhelix Differentiates Unbound and IBB-bound Importin-β454

Our last analysis focused on the karyopherin Importin-β, an essential member of the nuclear import455

complex in eukaryotes, as it mediates the transportation of cargo from the cytosol to the nucleus [44].456

Molecular recognition by Importin-β often requires the cooperative binding of molecular adaptors that457

recognize and bind to nuclear localization sequences (NLS)—structural motifs present in cargo destined458

for the nucleus [44]. Structurally, Importin-β is organized as a superhelix composed of up to 20 tandem459

HEAT repeats, each of which contain two antiparallel alpha helices linked by a turn [45]. This highly or-460

dered structure is further stabilized by interactions with Importin-β-binding (IBB) domains of transport461

adaptors such Importin-α or Snurportin 1, which attach very strongly to Importin-β [46]. The release462

of IBB peptides after successful transport across the nuclear pore leads to large structural rearrange-463

ments and fluctuations that are propagated across most of Importin-β’s backbone [47]. Although not464

difficult to detect with traditional analysis pipelines, such as calculating per-residue root-mean-square465

fluctuations or the backbone’s radius of gyration, the pseudo-global nature of these rearrangements is466

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454240doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454240
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

diametrically opposite to most of the previously explored examples, presenting an important test for467

SINATRA Pro. Considering this, we ran MD simulations of unbound and IBB-bound Importin-β and, as468

with the previous examples, analyzed the resulting trajectories with SINATRA Pro to compare against469

standard methods. The structural features identified are projected onto the IBB-bound form (Figs. S3(d)470

and S9(a)). Association metrics from SINATRA Pro, RMSF, and the Elastic Net all indicate large-scale471

conformational changes occur upon IBB release that involve the majority of the importin-β structure472

(Figs. S9(b)-(c) and S10).473

Since Importin-β functions as a molecular spring due to its supercoiled structure and extensive in-474

teractions with targets for transport, the sudden removal of the bound IBB domain to generate the475

unbound structure leads to extensive and drastic fluctuations across most of the backbone during pro-476

duction dynamics, originating from multiple highly-correlated nodes in each HEAT repeat. These drastic477

rearrangements translate to significant deltas in the topology and per-residue fluctuations that are readily478

detected by all tested methods. Importantly, the SINATRA Pro output replicates the expected results479

for the IBB bound/unbound Importin-β system, demonstrating the method’s capacity for picking up480

relevant structural determinants not only for localized changes, but also for backbone-wide large-scale481

fluctuations.482

Discussion483

In this paper, we introduced SINATRA Pro: a topological data analytic approach designed to extract484

biologically-relevant structural differences between two protein ensembles. Through an extensive bench-485

mark simulation study, we assessed the utility and statistical properties of SINATRA Pro against com-486

monly used methods in the field. Here, we showed that our proposed framework can robustly identify both487

static and dynamic structural changes that occur between protein ensembles. We also highlighted that,488

unlike other standard approaches in the field, SINATRA Pro does not require atom-by-atom correspon-489

dences between structures and thus can be implemented using all atomic information that is available,490

rather than being limited to atomic features that are conserved over side-chain substitutions. With real491

MD data, we used SINATRA Pro to analyze five different protein systems and demonstrated its ability to492

identify known regions of interest that have been validated by previous experimental and computational493

studies, as well as reveal novel structural features that are also likely to be biologically-relevant according494

to evidence in the literature. Overall, these results show the promise of SINATRA Pro as a hypothesis495

generation tool that practitioners can use to design more informed experiments for answering downstream496

scientific questions (e.g., whether a mutation or chemical change “induces” a specific structural change).497

There are many potential extensions to the SINATRA Pro pipeline. First, in its current form, SINA-498

TRA Pro treats all atomic features as being equally important a priori to the phenotype of interest.499

One particularly interesting extension of the method would be to up- or down-weight the contributions500

of different types of atomic features (e.g., carbons, hydrogens, or oxygens) or residues (e.g., serine versus501

arginine) to more accurately represent the topology of specific inter-atomic connections such as hydrogen502

and covalent bonds. In practice, this would require making such annotations and deriving topological503

summary statistics of protein structures based on a weighted Euler characteristic transform [48]. Another504

natural extension would be to apply the SINATRA Pro pipeline to other data types used to study varia-505

tion in 3D protein structures such as cryogenic electron microscopy (cryo-EM) and X-ray crystallography506

(i.e., electron density) data. Previous work has already shown that topological characteristics computed507

on tumors from magnetic resonance images (MRIs) have the potential to be powerful predictors of sur-508

vival times for patients with glioblastoma multiforme (GBM) [17, 48]; however, it has also been noted509

that the efficacy of current topological summaries decreases when heterogeneity between two phenotypic510

classes is driven by minute differences [13]. For example, cryo-EM images can look quick similar even511

for two proteins harboring different mutations. SINATRA Pro’s improved ability to capture inter-class512

variation is driven by local fluctuations in shape morphology, so it would be interesting to see if our513
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proposed pipeline could offer more resolved insights for these types of applications.514

URLs515

SINATRA Pro software, https://github.com/lcrawlab/SINATRA_Pro; Schrödinger Desmond software,516

https://www.schrodinger.com/products/desmond; GROMACS software, https://www.gromacs.org;517

Visual Molecular Dynamics (VMD) software, https://www.ks.uiuc.edu/Research/vmd/; MDAnal-518

ysis software, https://www.mdanalysis.org; UCSF Chimera software, https://www.cgl.ucsf.edu/519

chimera/.520
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Material and Methods540

Molecular Dynamics Simulations541

The protein structure data used in the current study are a result of molecular dynamic (MD) simulations.542

For large systems (i.e., IBB-bound Importin-β, unbound Importin-β) and those containing small-molecule543

ligands (i.e., wild-type HIV Protease, Ile50Val HIV protease, GTP-bound EF-Tu, and GDP-bound EF-544

Tu), we used Schrödinger’s Desmond (release 2020-1) [49] to run three independent 100 nanosecond (ns)545

simulations for each system. This decision is rooted in Desmond’s high performance when dealing with546

hundreds of thousands of atoms, and the extensive validation of the small-molecule parameters contained547

in the OPLS3e force-field [50]. The systems were built within a dodecahedron box extending 1 nanometer548

(nm) beyond the solute in all three dimensions and solvated with water molecules using the SPC model549

[51]. Charges were neutralized by replacing a varying number of solvent molecules with sodium and550

chloride ions. Before production dynamics, all systems were relaxed and equilibrated with Desmond’s551

standard relaxation protocol, which first performs energy minimization with 50 kcal/mol/Å2 restraints552

on the protein’s heavy atoms, followed by an extensive equilibration protocol. This protocol is detailed553

below:554

1. NVT equilibration at 10 K for 12 ps555

2. NPT equilibration at 10 K for 12 ps556

3. NPT equilibration at 300K with harmonic restraints on the protein’s heavy atoms for 120 ps557

4. NPT equilibration at 300 K, unrestrained, for 240 ps,558

where NVT denotes constant temperature and volume and NPT denotes constant temperature and559

pressure. After equilibration, unrestrained NPT production simulations were conducted at 300 K and 1560

atm for 100 ns for each system, in triplicates. Time steps for all simulations were set to their default561

values: 2:2:6 fs (bonded:near:far).562

For comparatively small systems without ligands (i.e., wild-type TEM, Arg164Ser TEM, wild-type563

Abl1, and Met290Val Abl1), we used GROMACS (release 2018-2) [52] to run three independent 100 ns564

simulations for each system (150 ns for Abl1). Simulations were conducted with a 2 fs time step using565

the Amberff14SB force-field [53] and the TIP3P water model [51]. As with the Desmond simulations, the566

systems were built within a dodecahedron box and charges neutralized by replacing a number of solvent567

atoms with sodium and chloride ions. For each system, energy was minimized using a steepest-descent568

algorithm until the maximum force on any given atom was less than 1000 kJ/mol/min. Solvent atoms were569

equilibrated in sequential 0.5 ns NVT and NPT simulations with solute heavy atoms restrained by a spring570

constant of 1,000 kJ/mol/nm2 using the LINCS algorithm [54]. After equilibration, production dynamics571

were conducted sans the position restraints. All simulations were conducted at 300 K and 1 atm. Lastly,572

using Visual Molecular Dynamics (VMD) (version 1.9.3) [55], we converted all trajectories employed573

in this study to a DCD file format and stripped solvent atoms to facilitate downstream computational574

analyses.575

Protein Structure Alignment576

In the current study, protein structures are aligned by minimizing the root-mean-square distance (RMSD)577

between the atoms on their backbone alpha-carbons (which we denote in shorthand by Cα). The first578

frame of the MD simulation is chosen as the reference structure. Next, all other frames (i.e., the mobile and579

fluctuating structures) in the dataset are aligned to this reference frame by (i) first centering the geometry580

of the Cα atoms to the same origin and then (ii) minimizing the RMSD rotation matrix. This calculation581

is performed using the MDAnalysis software package in Python (see Data and Software Availability)582

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454240doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454240
http://creativecommons.org/licenses/by-nc-nd/4.0/


14

[6,56–58]. For inter-class alignment when comparing protein class A to class B (e.g., mutants versus wild-583

type), the first frame in the trajectory of class B is aligned to the first frame in the trajectory of class A584

before the remaining frames are aligned. In the controlled simulation experiments, perturbed structures585

were obtained by directly modifying the atomic coordinates of the pre-aligned proteins; therefore, the586

perturbed structures do not need further alignment since their unperturbed regions remain aligned even587

after the controlled modifications.588

Converting Protein Structure Data to 3D Mesh Representations589

To convert aligned protein structures into a mesh representation, in the first step of the SINATRA Pro590

pipeline, we make use of a technique which we refer to as a “simplicial construction” (Fig. 1(b)). In this591

procedure, we treat the atomic positions for the protein as vertices on a 3D shape or surface. First, we592

draw an edge between any two atoms if their Euclidean distance is smaller than some radius cutoff r,593

namely dist|(x1, y1, z1), (x2, y2, z2)| < r. Next, we fill in all of the triangles (or faces) formed by these594

connected edges. The resulting triangulated meshes are then normalized to the unit sphere, which means595

that the coordinates for all atoms are scaled with respect to the mesh with the largest radius. We treat the596

normalized meshes as simplicial complexes which we then use to compute topological summary statistics.597

Topological Summary Statistics for Protein Mesh Representations598

Adopted from its predecessor [13], the second step of the SINATRA Pro pipeline uses a tool from integral599

geometry and differential topology called the Euler characteristic (EC) transform [14–17]. As a brief600

overview of this approach, given the mesh representationM of a protein structure, the Euler characteristic601

is an accessible topological invariant defined as602

χ = #V (M)−#E(M) + #F (M), (1)603

where the collection {#V (M),#E(M),#F (M)} denotes the number of vertices (atoms), edges (con-604

nections between atoms), and faces (triangles enclosed by edges) of the mesh, respectively. An EC curve605

χν(M) tracks the change in the Euler characteristic with respect to a given filtration of length l in some606

direction ν. Theoretically, this is done by first specifying a height function hν(x) = xᵀν for some atomic607

position x ∈ M in direction ν. This height function is then used to define sublevel sets (or subparts) of608

the meshMa
ν in direction ν, where hν(x) ≤ a. In practice, the EC curve is χ(Ma

ν) computed over a range609

of l filtration steps in direction ν. The corresponding EC transform is defined as the collection of EC610

curves across a set of ν = 1, . . . ,m directions, and maps onto a 3D protein structure as a concatenated611

J = (l ×m)-dimensional feature vector to be used for statistical analyses.612

In previous studies, it has been observed that the Euler characteristic can be a less-than-optimal shape613

summary statistic when inter-class variation between 3D objects is high and driven by local fluctuations614

in morphology [13,16,17,59,60]. Given that this situation can be quite common in molecular dynamics,615

we introduce a new topological invariant which we refer to as the differential Euler characteristic (DEC)616

(see Fig. 1(c)). As an alternative to Eq. (1), the DEC is computed as the following617

∆χ = ∆V (M)−∆E(M) + ∆F (M), (2)618

where, for some lag parameter t, we define ∆V (M) = #Vl(M) − #Vl−t(M), ∆E(M) = #El(M) −619

#El−t(M) and ∆F (M) = #Fl(M) − #Fl−t(M). In this study, we set t = 1 such that, intuitively,620

the DEC tracks the changes (i.e., the local appearance or disappearance of topological features) in the621

number of vertices, edges, and faces from one sublevel set to the next. Much like with the original Euler622

characteristic, the DEC curve is ∆χ(Ma
ν) computed over a range of l filtration steps in a given direction623

ν and the DEC transform is similarly defined as the collection of DEC curves across a set of ν = 1, . . . ,m624

directions. Overall, for each dataset with N total proteins, an N × J design matrix X is statistically625
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analyzed, where the columns denote the differential Euler characteristic computed at a given filtration626

step and direction. Each sublevel set value, direction, and set of atomic positions used to compute a DEC627

curve are stored by the algorithm for the association mapping and projection phases of the pipeline.628

Choosing the Number of Directions and Filtration Steps. In this paper, we use a series of629

simulations and sensitivity analyses to develop an intuition as to how to set the granularity of sublevel630

filtrations l and choose the number of directions m for real protein structure data (Figs. 1 and S1, and631

Table 1). Since the structural changes that a protein class exhibits can occur on both a global and local632

scale, depending on its biophysical and chemical properties, we recommend choosing the former parameter633

l via cross validation or a grid-based search. For the latter, the SINATRA Pro software defines the total634

number of directions m as the union of c sets of cones of directions D =
⋃
Ck(θ), where each cone635

Ck(θ) = {νk,1, . . . , νk,d | θ} for k = 1, . . . , c is parameterized by a cap radius θ from which equidistant636

vectors are generated over the unit sphere. We use cones because local shape information matters most637

when determining reconstructed manifolds and it has been shown that topological invariants that are638

measured in directions of close proximity contain similar local information [13,15,61,62]. This naturally639

leads to the construction of sets Ck(θ) where the angle θ between them is relatively small (again see640

Table 1). In general, we use sufficiency results for topological transforms (see Theorem 7.14 in Curry641

et al. [15]) to motivate the notion that considering larger numbers of m = c × d directions will lead to642

a more robust summary of 3D shapes and surfaces. Hence, ideally, one would select an effectively large643

number of c cones (and d directions within these cones) to ensure that SINATRA Pro is summarizing644

all relevant structural information about the variance between phenotypic classes (e.g., mutants versus645

wild-type).646

Probabilistic Model for Protein Structure Classification647

In the third step of the SINATRA Pro pipeline, we use (weight-space) Gaussian process probit regression648

model to classify protein structures based on their topological summaries generated by the DEC trans-649

formation via Eq. (2). Here, we specify the following probabilistic hierarchical model (Fig. 1(d)) [63–67]650

y ∼ B(π), g(π) = Φ−1(π) = f , f ∼ N (0,K), (3)651

where y is an N -dimensional vector of Bernoulli distributed phenotypic class labels (e.g., mutants versus652

wild-type), π is an N -dimensional vector representing the underlying probability that a shape is classified653

as a “class” (e.g., y = 1 if “mutant”), g(·) is a probit link function with Φ(·) the cumulative distribution654

function (CDF) of the standard normal distribution, and f is an N -dimensional vector estimated from655

the data. We take a classic kernel regression approach [66, 68–70] where we posit that f lives within656

a reproducing kernel Hilbert space (RKHS) defined by some (nonlinear) covariance function, which im-657

plicitly accounts for higher-order interactions between features, leading to more complete classifications658

of structural data [71–73]. To this end, we assume f is normally distributed with mean vector 0 and659

covariance matrix K with elements defined by the radial basis function Kij = exp{−ϑ‖xi − xj‖2} with660

bandwidth ϑ set using the “median criterion” approach to maintain numerical stability and avoid ad-661

ditional computational costs [74]. Here, xj denotes the j-th topological feature in X. The full model662

specified in Equation (3) is commonly referred to as “Gaussian process classification” (GPC).663

Given the complete specification of the GPC, we use Bayesian inference to draw samples from the pos-664

terior distribution of the latent variables, which is proportional to p(f |y) ∝ p(y |f)×p(f). Here, p(y |f)665

denotes the likelihood of the observed binary labels given the functions (i.e., the Bernoulli distribution),666

and p(f) is the prior distribution for the latent variables (i.e., the multivariate normal distribution).667

The probit likelihood in Eq. (3) makes it intractable to estimate the posterior distribution p(f |y) via668

a closed-form solution. We instead use a Markov chain Monte Carlo (MCMC) method called “elliptical669

slice sampling” to conduct posterior inference (see Data and Software Dependencies) [75].670
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Feature Selection of Topological Summary Statistics671

After implementing the elliptical slice sampling algorithm to estimate the posterior distribution of the672

latent variables f in Eq. (3), we define a nonparametric effect size for each topological summary statistic673

via the following standard projection [72,76]674

β = (XᵀX)+Xᵀf , (4)675

where M+ is used to denote the generalized inverse of a matrix M, and each element in β details676

the nonlinear relationship between the DEC topological summary statistics and the variance between677

protein structures. In order to determine a statistical rank ordering for these effect sizes, we assign an678

information theoretic-based measure of relative centrality to each j-th topological feature using Kullback-679

Leibler divergence (KLD) [73]680

KLD(βj) := KL [p(β−j) ‖ p(β−j |βj = 0)] =

∫
β−j

log

(
p(β−j)

p(β−j |βj = 0)

)
p(β−j) dβ−j . (5)681

for j = 1, . . . , J topological features. Finally, we normalize to obtain an association metric (Fig. 1(d)),682

γj = KLD(βj)/
∑

KLD(βl). (6)683

There are two key takeaways from this scaled formulation. First, the KLD is non-negative, and it equals684

zero if and only if the posterior distribution of β−j is independent of the effect βj . Intuitively, this is685

equivalent to saying that removing an unimportant topological feature has no impact on explaining the686

variance between different protein structure. Second, γ = (γ1, . . . , γJ) is bounded on the unit interval687

[0, 1] with the natural interpretation of providing relative evidence of association for each DEC statistic688

(where values close to 1 suggest greater importance). From a classical hypothesis testing point-of-view,689

the null hypothesis for Eq. (6) assumes that every DEC feature equally contribute to the total variance690

between proteins, while the alternative hypothesis proposes that some DEC features are better associated691

with biophysical changes in protein structures than others [13,73].692

Closed Form Solution for Atomic-Level Association Measures For simplicity, we assume that693

the implied posterior distribution of β (deterministically given in Eq. (4)) is approximately multivariate694

normal with an empirical mean vector µ and positive semi-definite covariance/precision matrix Σ = Λ−1695

[13, 73]. Given these values, we iteratively partition such that, for each j-th topological feature:696

β =

(
βj
β−j

)
; µ =

(
µj
µ−j

)
; Σ =

(
σj σᵀ

−j
σ−j Σ−j

)
; Λ =

(
λj λᵀ

−j
λ−j Λ−j

)
. (7)697

Under normality assumptions, Eq. (5) has the following closed form solution698

KLD(βj) =
1

2

[
−log|Σ−jΛ−j |+ tr(Σ−jΛ−j) + 1− J + αj(βj − µj)2

]
, (8)699

where log| · | represents the matrix log-determinant function, and tr(·) is the matrix trace function.700

Importantly, the term αj = λᵀ
−jΛ

−1
−jλ−j characterizes the linear (and non-negative) rate of change of701

information when the effect of any topological feature is absent from the analysis [73]. By symmetry702

in the notation for elements of the sub-vectors and sub-matrices, we simply permute the order of the703

variables in β and iteratively compute the KLD to measure the centrality of each DEC transform.704
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Approximate Computation In practice, we use a few approximations to scale the otherwise compu-705

tationally expensive steps in Eq. (8). The first approximation involves computing the log determinant.706

With a dataset of reasonably dense meshes, the number of topological features is expected to be large707

(i.e., J � 0). In this setting, the term −log(|Σ−jΛ−j |) + tr(Σ−jΛ−j) + (1− p) remains relatively equal708

for each feature j and makes a negligible contribution to the entire sum. Thus, we simplify Eq. (8) to709

KLD(βj) ≈ αj(βj − µj)2/2. (9)710

This approximation of the KLD still relies on the full precision matrix Λ. For a large number of topological711

features J , this calculation is expensive; however, it is only done once and and can be done with efficient712

matrix decomposition. The rate of change parameter αj = λᵀ
−jΛ

−1
−jλ−j , on the other hand, depends on713

the partitioned matrix Λ−1−j for every j-th topological feature. This requires inverting a (J − 1)× (J − 1)714

matrix J times. Fortunately, we can reduce this computational burden by taking advantage of the fact715

that any Λ−1−j is formed by removing the j-th row and column from the precision matrix Λ. Therefore,716

given the partition in Eq. (7), we can use the Sherman-Morrison formula [77] to efficiently approximate717

these quantities using the following rank-1 update for each topological feature718

Ω(j) = Λ−Λσjσ
ᵀ
jΛ/

(
1 + σᵀ

jΛσj
)

j = 1, . . . , J. (10)719

Here, σj is the j-th column from the posterior covariance matrix Σ, and each Λ−1−j is approximated by720

removing the j-th row and column from Ω(j). Ultimately, this reduces the computational complexity of721

Equation (9) to just J-independent O(J2) operations which can be parallelized.722

Reconstruction and Visualization of Biophysical Signatures723

After obtaining association measures γ for each topological feature computed via Eq. (6), in the fourth724

step of the SINATRA Pro pipeline, we map this information back onto the original structures to visualize725

topological differences between the protein classes. The main idea is that we want to select or prioritize726

atoms that correspond to the topological features with the greatest association measures. To do this,727

we perform a criterion-based reconstruction algorithm [13]. In each direction, each atom (i.e., vertex)728

lies along a filtration step that corresponds to a γj value. Therefore, each atom corresponds to m =729

(c× d) values in γ. To perform the reconstruction, we sort the values in γ from smallest to largest and730

continuously increase a threshold. If all of the γ values corresponding to an atom are larger than the731

threshold, the atom is considered “alive”. As the threshold is increased, when the criterion is no longer732

satisfied, the atom is considered “dead” and that minimum value below the threshold (which we will733

denote by γ̂) is assigned the atom as its evidence score. This calculation is repeated for each frame in734

the dataset. For atomic-level evidence scores (e.g., Figs. S2 and S3), the γ̂ values are ranked among all735

atoms and scaled from 0 (lowest) to 100 (highest) to facilitate the visualization and interpretation of736

structural and biophysical enrichment. To compute residue-level evidence scores (e.g., Figs. 3-5, S6, and737

S9), we take the average of the γ̂ values for all atoms within a residue which are then also ranked and738

scaled from 0 to 100.739

Performance Assessment for Controlled Simulation Study740

We demonstrate the power of the SINATRA Pro pipeline for identifying biophysical signatures in protein741

dynamics via multiple controlled simulations studies using the sequential procedure:742

1. Fit the Gaussian process classification (GPC) model using elliptical slice sampling and compute743

relative centrality association measures γj for each j-th topological feature (i.e., differential Euler744

characteristic or DEC per sublevel set filtration). Recall, the total number of features J = c× d× l745

is a product of (i) c, the number of cones of directions; (ii) d, the number of directions within each746
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cone; and (iii) l, the number of sublevel sets (i.e., steps in the filtration) used to compute the DEC747

along a given direction.748

2. Sort the topological features from largest to smallest according to their association measures γ1 ≥749

γ2 ≥ · · · ≥ γp.750

3. By iteratively moving through the sorted measures Tk = γk (starting with k = 1), we reconstruct751

the atoms corresponding to the topological features with {j : γj ≥ Tk}.752

An atom is “detected” when the sublevel set in which it resides is selected across all of the directions753

within a particular cone. We form a union of the set of detected atoms across all cones to construct754

the set of reconstructed vertices at a given level Tk. Using this set of vertices, we compute the true755

positive rate (TPR) and false positive rate (FPR) by assessing overlap with the set of truly associated756

(i.e., perturbed) atoms used to generate the protein classes:757

TPR =

∑
TP∑
P
, FPR =

∑
FP∑
N

(11)758

where TP is the number of correctly detected true atoms, P is the total number of causal atoms, TN759

stands for the true negatives detected by the SINATRA Pro pipeline, and N stands for the total number760

of non-causal atoms. In this manner, we obtain a receiver operating characteristic (ROC) curve for the761

simulation studies (see Figs. 2 and S1).762

ROI Null Experiment and Statistical Assessment763

To statistically assess whether SINATRA Pro is identifying the known regions of interest (ROI) in proteins764

by chance (see Table 2), we use a previously developed null-based scoring method [13]. The goal of this765

analysis is to estimate the probability of obtaining a result from SINATRA Pro under the assumption that766

the null hypothesis H0 of there being no structural differences between mutant and wild-type proteins767

is true. Here, we treat the K atoms located within each ROI of every mutant protein as a landmark.768

We construct a test statistic τ∗ for each ROI by summing the association metric scores of every atom it769

contains. To construct a “null” distribution and assess the strength of any score τ∗, we randomly select T770

“seed” atoms across the mesh outside the ROI for each mutant protein and uniformly generate T -“null”771

regions that are also K-atoms wide. We then compute similar (null) scores τ1, . . . , τT for each randomly772

generated region. A “P -value”-like quantity (for the i-th mutant protein) is then generated by:773

Pi =
1

T + 1

T∑
t=1

I(τ∗i ≤ τt), i = 1, . . . , N (12)774

where I(·) is an indicator function, and a smaller Pi means more confidence in either method’s ability to775

find the desired paraconid landmark. To ensure the robustness of this analysis, we generate the N -random776

null regions using a K-nearest neighbors (KNN) algorithm on each of the T -random seed vertices [78].777

We also use a calibration formula to transform each P -value to an approximate Bayes factor (BF) [79],778

which is defined as the ratio of the marginal likelihood under the alternative hypothesis H1 (i.e., that779

there is indeed a structural difference between phenotypic classes) versus the null hypothesis H0:780

BF(Pi)10 = [−e Pi log(Pi)]
−1, i = 1, . . . , N (13)781

for Pi < 1/e and BF(Pi)10 is an estimate of Pr(H1 |M)/Pr(H0 |M), where M is again used to denote782

the protein meshes. We take the median of the Pi and BF(Pi)10 values in Eqs. (12) and (13) across all783

mutant proteins, respectively, and report them in Table 3.784
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Data and Software Dependencies785

Code for implementing the SINATRA Pro pipeline is freely available at https://github.com/lcrawlab/786

SINATRA_Pro, and is written in Python (version 3.6.9). As part of this procedure: (i) inference for the787

Gaussian process classification (GPC) model is based on an elliptical slice sampling algorithm adapted788

from the R package FastGP (version 1.2) [80] and (ii) the computation of nonlinear effect sizes and as-789

sociation measures for the differentiated Euler characteristic (DEC) curves was done by adapting the790

“RelATive cEntrality (RATE)” source code originally written in R (version 1.0.0; https://github.com/791

lorinanthony/RATE) [73]. Visualizing the reconstructed protein regions outputted by SINATRA Pro was792

done using the extensive molecular modeling system software Chimera (version 1.14) [81]. Molecular dy-793

namic simulations were performed using Schrödinger’s Desmond (release 2020-1) [49] and GROMACS (release794

2018-2) [52]. Furthermore, preprocessing steps for the protein structures resulting from MD simulations795

examined in the study were performed using Visual Molecular Dynamics (VMD) (version 1.9.3) [55] and796

the Python library MDAnalysis (version 1.1.1) [6,56–58]. Data generated from the MD simulations can be797

downloaded at https://www.dropbox.com/sh/l4fj3paagyrpu2f/AAA65_NbNaX5IUllrazScZo9a?dl=0.798
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Figures and Tables799
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Figure 1. Schematic overview of SINATRA Pro: a novel framework for discovering biophys-
ical signatures that differentiate classes of proteins. (a) The SINATRA Pro algorithm requires
the following inputs: (i) (x, y, z)-coordinates corresponding to the structural position of each atom in
every protein; (ii) y, a binary vector denoting protein class or phenotype (e.g., mutant versus wild-type);
(iii) r, the cutoff distance for simplicial construction (i.e., constructing the mesh representation for every
protein); (iv) c, the number of cones of directions; (v) d, the number of directions within each cone;
(vi) θ, the cap radius used to generate directions in a cone; and (vii) l, the number of sublevel sets
(i.e., filtration steps) used to compute the differential Euler characteristic (DEC) curve along a given
direction. Guidelines for how to choose the free parameters are given in Table 1. (b) Using the atomic
positions for each protein, we create mesh representations of their 3D structures. First, we draw an edge
between any two atoms if the Euclidean distance between them is smaller than some value r, namely
dist|(x1, y1, z1), (x2, y2, z2)| < r. Next, we fill in all of the triangles (or faces) formed by these connected
edges. We treat the resulting triangulated mesh as a simplicial complex with which we can perform topo-
logical data analysis. (c) We select initial positions uniformly on a unit sphere. Then for each position,
we generate a cone of d directions within angle θ using Rodrigues’ rotation formula [82], resulting in a
total of m = c× d directions. For each direction, we compute DEC curves with l sublevel sets. We con-
catenate the DEC curves along all the directions for each protein to form vectors of topological features
of length J = l×m. Thus, for a study with N -proteins, an N × J design matrix is statistically analyzed
using a Gaussian process classification model. (d) Evidence of association measures for each topological
feature vector are determined using relative centrality measures. We reconstruct corresponding protein
structures by identifying the atoms on the shape that correspond to “statistically associated” topological
features. (e) The reconstruction enables us to visualize the enrichment of biophysical signatures that best
explain the variance between the two classes of proteins. The heatmaps display atomic (or residue-level,
which we define as a collection of atoms) evidence potential on a scale from [0− 100], with a score of 100
meaning most enriched.
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Free Parameters in SINATRA Pro Software

Notation Description Range General Guidelines

r
Radius cutoff (Å) for simplicial

reconstruction
[0,∞)

Use smaller r ≤ 2.0 Å for rigid proteins and
r ∈ [2.0 Å, 6.0 Å] for flexible proteins.

c Number of cones of directions [1,∞)
Set much greater than 1 as more power is generally

achieved by taking filtrations over multiple directions

d Number of directions per cone [1,∞)
Set much greater than 1 as more power is generally

achieved by taking filtrations over multiple directions

θ
Cap radius used to generate

directions within a cone
(0, 2π]

Set between [0.1, 0.8] since cones should be defined by
directions in close proximity

l
Number of sublevel sets

(filtration steps)
[1,∞)

Optimal choice depends on the size of protein molecule
being analyzed so use grid search

Table 1. General guidelines for choosing values for the free parameters in the SINATRA
Pro pipeline software. The guidelines provided are based off of intuition gained through the simulation
studies provided in the main text and Supporting Information. In practice, we suggest specifying multiple
cones c > 1 and utilizing multiple directions d per cone (see monotonically increasing power in Fig. S1 in
Supporting Information). While the other two parameters (θ and l) do not have monotonic properties,
their effects on SINATRA’s performance still have natural interpretations. Selection of θ ∈ [0.1, 0.8]
supports previous theoretical results that cones should be defined by directions in close proximity to each
other [13, 15]; but not so close that they explain the same local information with little variation. Note
that our sensitivity analyses suggest that the power of SINATRA Pro is relatively robust to the choice of
θ. Optimal choice of l depends on the size of the protein molecules that are being analyzed. Intuitively,
for rigid proteins, coarse filtrations with too few sublevel sets cause SINATRA Pro to miss or “step over”
structural shifts that occur locally during the course of a molecular dynamic (MD) trajectory. In practice,
we recommend choosing the angle between directions within cones θ and the number of sublevel sets l
via cross validation or some grid-based search.
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Figure 2. Receiver operating characteristic (ROC) curves comparing the power and robustness of SINATRA Pro to
competing 3D mapping approaches in controlled molecular dynamic (MD) simulations. To generate data for these simulations,
we consider two phenotypic classes using the real structural data of wild-type β-lactamase (TEM). In the first phenotypic class, structural
protein data are drawn from equally spaced intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . . , 99] ns + δ, where δ is a time
offset parameter). In the second phenotypic class, proteins are drawn at 1 ns intervals shifted 0.5 ns with respect to the first set (e.g.,
tMD = [0.5, 1.5, 2.5, 3.5, . . . , 99.5] ns + δ) to introduce thermal noise, and then we displace the atomic positions of each atom in the Ω-loop
region by (top row) a constant Cartesian vector of (a) 0.5 Ångströms (Å), (b) 1.0 Å, and (c) 2.0 Å, or (bottom row) by a spherically
uniform random vector of (d) 0.5 Å, (e) 1.0 Å, and (f) 2.0 Å. Altogether, we have a dataset of N = 1000 proteins per simulation
scenario: 100 ns interval × 5 different choices δ = {0.0, 0.1, 0.2, 0.3, 0.4} ns × 2 phenotypic classes (original wild-type versus perturbed).
The ROC curves and corresponding area under the curves (AUC) depict the ability of SINATRA Pro to identify “true class defining”
atoms located within the Ω-loop region using parameters {r = 1.0 Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. We
compare SINATRA Pro to four methods: root mean square fluctuation (RMSF) (orange); principal component analysis (PCA) (green);
Elastic Net classification (pink); and a Neural Network (brown). For details on these approaches, see Materials and Methods.
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Protein PDB ID Chemical Change Structural Signature Difficulty Ref(s)

β-lactamase
(TEM)

1BTL Arg164Ser
Increased dynamics of Ω-Loop

(Residues 163-178)
Easy [21,22]

HIV-1 Protease 3NU3 Ile50Val
Reduced stability in the flaps

(Residues 47-55)
Medium [29,31,32]

EF-Tu 1TTT GTP Hydrolysis
Increased flexibility of Domain 2

(Residues 208-308)
Easy [37,83,84]

Abl1 3KFA Met290Ala
Fluctuations in the DFG motif
and displacement of helix αC

Hard [2, 43,85–87]

Importin-β 2P8Q IBB Release
Uncoiling in the conformation of

the superhelix
Hard [45–47]

Table 2. Detailed overview of the different protein systems analyzed in this study. The
columns of this table are arranged as follows: (1) the name of each protein studied; (2) the corresponding
Protein Data Bank (PDB) ID for each molecule [88]; (3) the known chemical change or mutation type that
is considered; (4) the specific structural signatures that are known to be associated with each chemical
change or mutation type; (5) the presumed difficulty level for SINATRA Pro to detect each structural
signature based on the homogeneity in shape variation between the wild-type and mutant proteins; and (6)
references that have previously suggested some level of association or enrichment between each structural
change and the mutation of interest.
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r = 2 Å r = 4 Å r = 6 Å

Protein ROI Fragment P -value Bayes Factor P -value Bayes Factor P -value Bayes Factor

TEM Ω-Loop

Whole 5.95× 10−1 — 3.35 × 10−4 137.121 5.63× 10−2 2.270

65-230 1.20× 10−1 1.447 4.16 × 10−2 2.783 6.85× 10−2 2.004

65-213 7.22 × 10−4 70.438 7.22 × 10−4 70.438 7.22 × 10−4 70.438

HIV-1 Flap
Chain A 2.33× 10−1 1.084 4.03 × 10−2 2.841 2.95× 10−1 1.022

Chain B 8.14 × 10−4 63.554 8.14 × 10−4 63.554 8.14 × 10−4 63.554

EF-Tu Domain 2 Whole 9.30 × 10−4 56.657 9.30 × 10−4 56.657 9.30 × 10−4 56.657

Abl1 DFG Motif
Whole 1.94× 10−1 1.157 5.38× 10−1 — 8.86 × 10−3 8.783

242-502 1.54× 10−1 1.279 2.50 × 10−4 177.614 2.50 × 10−4 177.614

Table 3. Null hypothesis experiment to evaluate SINATRA Pro’s ability to find regions of
interest (ROI) in each of the proteins analyzed in this study. Here, we assess how likely it is that
SINATRA Pro finds the region of interest (ROI) by chance. These ROIs include: (i) the Ω-loop (residues
163-178) in TEM; (ii) the flap region (residues 47-55) in HIV-1 protease; (iii) Domain 2 (residues 208-
308) in EF-Tu; and (iv) the DFG motif (residues 381-383) in Abl1. Note that protein structures were
only analyzed if they contained an entire ROI. For example, in the context of Importin-β, the superhelix
includes the entire structure and so we do conduct a null analysis. In this experiment, to produce the
results above, we generate “null” regions on each protein using a K-nearest neighbors (KNN) algorithm
on different atoms as random seeds [78], and exclude any generated regions that overlap with the ROI.
Next, for each region, we sum the association metrics of all its atoms. We compare how many times
the aggregate scores for the ROI are higher than those for the null regions. These “P -values,” and their
corresponding calibrated Bayes factors (BF) when the computed P < 1/e, are provided above. Note that
P -values less than the nominal size 0.05 and BFs greater than 2.456 are in bold. Results above are based
on SINATRA Pro using parameters {c = 20, d = 8, θ = 0.80, l = 120} while varying the radius cutoff
parameter r for mesh construction on each protein structure.
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Figure 3. Real data analyses aimed at detecting structural changes in the Ω-loop of β-
lactamase (TEM) induced by an R164S mutation. In this analysis, we compare the molecular
dynamic (MD) trajectories of wild-type β-lactamase (TEM) versus R164S mutants [21, 22]. For both
phenotypic classes, structural data are drawn from equally spaced intervals over a 100 ns MD trajectory
(e.g., tMD = [0, 1, 2, 3, . . . , 99] ns + δ, where δ is a time offset parameter). Altogether, we have a final
dataset of N = 2000 protein structures in the study: 100 ns long interval × 10 different choices δ =
{0.0, 0.1, 0.2, . . . , 0.9} ns × 2 phenotypic classes (wild-type versus mutant). This figure depicts results
after applying SINATRA Pro using parameters {r = 6.0 Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a
grid search. The heatmaps in panels (a)-(c) highlight residue evidence potential on a scale from [0−100].
A maximum of 100 represents the threshold at which the first residue of the protein is reconstructed, while
0 denotes the threshold when the last residue is reconstructed. Panel (a) shows the residue-level evidence
potential when applying SINATRA Pro to the whole protein, while panels (b) and (c) illustrate results
when strictly applying the SINATRA Pro pipeline to atoms in residues 65-230 and 65-213, respectively.
Annotated regions of interest are color coded and correspond to the shaded residue windows in panel
(d). Panel (d) shows the mean association metrics (and their corresponding standard errors) computed
for each residue within each analysis (see Material and Methods). Here, the overlap shows the robustness
of SINATRA Pro to identify the same signal even when it does not have access to the full structure of
the protein. The final row plots the correlation between the SINATRA Pro association metrics and the
root mean square fluctuation (RMSF) for the backbone Cα atoms in the (e) whole protein, (f) fragment
65-230, and (g) fragment 65-213.
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Figure 4. Real data analyses recover structural changes in the flap region of HIV-1 protease driven by a Ile50Val
mutation. In this analysis, we compare the molecular dynamic (MD) trajectories of wild-type HIV-1 protease versus Ile50Val mutants
(i.e., within residues 47-55). For both phenotypic classes, structural data are drawn from from equally spaced intervals over a 100 ns MD
trajectory (e.g., tMD = [0, 1, 2, 3, . . . , 99] ns + δ, where δ is a time offset parameter). Altogether, we have a final dataset of N = 2000
proteins in the study: 100 ns long interval × 10 different choices δ = {0.0, 0.1, 0.2, . . . , 0.9} ns × 2 phenotypic classes (wild-type versus
mutant). This figure depicts results after applying SINATRA Pro using parameters {r = 6.0 Å, c = 20, d = 8, θ = 0.80, l = 120} chosen
via a grid search. The heatmaps in panels (a) and (b) highlight residue evidence potential on a scale from [0− 100]. A maximum of 100
represents the threshold at which the first residue of the protein is reconstructed, while 0 denotes the threshold when the last residue is
reconstructed. Panel (a) shows residue-level evidence potential when applying SINATRA Pro to chain A, while panel (b) depicts results
for chain B. Annotated regions of interest are color coded and correspond to the shaded residue windows in panel (c). Panel (c) shows
the association metrics (and their corresponding standard errors) computed for each residue in chains A and B, with and without the 50th
residue’s side chain being included in the analysis (see Material and Methods). Here, the overlap shows the robustness of SINATRA Pro
for identifying the same signal even when it does not have access to the full structure of the protein. The final row plots the correlation
between the SINATRA Pro association metrics and the root mean square fluctuation (RMSF) for the backbone Cα atoms in (d) chain A
and (e) chain B, respectively. Highlighted are backbone Cα atoms found in regions of the protein corresponding to the fulcrum (brown),
elbow (purple), flap (blue), cantilever (red), and I/V50 (yellow) [29,31,32].
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Figure 5. Real data analyses identify enrichment in the N-terminal pocket of the Abl1
Tyrosine protein kinase due to a M290A mutation in the αC helix. In this analysis, we compare
the molecular dynamic (MD) trajectories of wild-type Abl1 versus M290A mutants [2, 43, 85–87]. For
both phenotypic classes, structural data are drawn from equally spaced intervals over a 150 ns MD
trajectory (e.g., tMD = [0, 1, 2, 3, . . . , 99] × 1.5 ns + δ, where δ is a time offset parameter). Altogether,
we have a final dataset of N = 3000 proteins in the study: 150 ns long interval × 15 different choices
δ = {0.0, 0.1, 0.2, . . . , 1.4} ns × 2 phenotypic classes (wild-type versus mutant). This figure depicts results
after applying SINATRA Pro using parameters {r = 6.0 Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a
grid search. The heatmaps in panels (a)-(c) highlight residue evidence potential on a scale from [0−100].
A maximum of 100 represents the threshold at which the first residue of the protein is reconstructed, while
0 denotes the threshold when the last residue is reconstructed. Panel (a) shows residue-level evidence
potential when applying SINATRA Pro to the whole protein, while panels (b) and (c) illustrate results
when strictly applying the SINATRA Pro pipeline to atoms in residues 242-502 and 242-315, respectively.
Annotated regions of interest are color coded and correspond to the shaded residue windows in panel
(d). Panel (d) shows the association metrics (and their corresponding standard errors) computed for
each residue within each analysis (see Material and Methods). Here, the overlap shows the robustness
of SINATRA Pro to identify the same signal even when it does not have access to the full structure of
the protein. The final row plots the correlation between the SINATRA Pro association metrics and the
root mean square fluctuation (RMSF) for the backbone Cα atoms in the (e) whole protein, (f) fragment
242-502, and (g) fragment 242-315.
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