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Abstract 14 

Biological nitrogen fixation in rhizobium-legume symbioses is of major importance for 15 

sustainable agricultural practices. To establish a mutualistic relationship with their 16 

plant host, rhizobia transition from free-living bacteria in soil to growth down infection 17 

threads inside plant roots and finally differentiate into nitrogen-fixing bacteroids. We 18 

reconstructed a genome-scale metabolic model for Rhizobium leguminosarum and 19 

integrated the model with transcriptome, proteome, metabolome and gene 20 

essentiality data to investigate nutrient uptake and metabolic fluxes characteristic of 21 

these different lifestyles. Synthesis of leucine, polyphosphate and AICAR is 22 

predicted to be important in the rhizosphere, while myo-inositol catabolism is active 23 

in undifferentiated nodule bacteria in agreement with experimental evidence. The 24 

model indicates that bacteroids utilize xylose and glycolate in addition to 25 

dicarboxylates, which could explain previously described gene expression patterns. 26 

Histidine is predicted to be actively synthesized in bacteroids, consistent with 27 

transcriptome and proteome data for several rhizobial species. These results provide 28 

the basis for targeted experimental investigation of metabolic processes specific to 29 

the different stages of the rhizobium-legume symbioses.30 
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Importance 31 

Rhizobia are soil bacteria that induce nodule formation on plant roots and 32 

differentiate into nitrogen-fixing bacteroids. A detailed understanding of this complex 33 

symbiosis is essential for advancing ongoing efforts to engineer novel symbioses 34 

with cereal crops for sustainable agriculture. Here, we reconstruct and validate a 35 

genome-scale metabolic model for Rhizobium leguminosarum bv. viciae 3841. By 36 

integrating the model with various experimental datasets specific to different stages 37 

of symbiosis formation, we elucidate the metabolic characteristics of rhizosphere 38 

bacteria, undifferentiated bacteria inside root nodules, and nitrogen-fixing bacteroids. 39 

Our model predicts metabolic flux patterns for these three distinct lifestyles, thus 40 

providing a framework for the interpretation of genome-scale experimental datasets 41 

and identifying targets for future experimental studies.42 
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Introduction 43 

Nitrogen is commonly the main limiting nutrient in agriculture because plants are 44 

unable to assimilate atmospheric N2 (1). Some legumes, such as peas, beans and 45 

lentils, circumvent this problem by entering into complex symbiotic relationships with 46 

soil bacteria called rhizobia. Legumes secrete signaling molecules (flavonoids) that 47 

are recognized by compatible rhizobia, which produce their own signaling molecules 48 

(Nod factors) in response. As a result of this signal exchange, rhizobia are typically 49 

entrapped by root hairs and grow down so-called infection threads until they are 50 

endocytosed by plant cells in the developing nodule. The bacteria then undergo 51 

further cell division and eventually differentiate into bacteroids converting 52 

atmospheric N2 into ammonia, which is secreted to the plant host in exchange for 53 

carbon sources, mainly dicarboxylates (2–4). 54 

Symbiosis formation is a multi-stage process, requiring distinct metabolic capabilities 55 

at each stage. The ability of rhizobia to adapt to various environmental conditions is 56 

reflected in their large genomes, which often comprise several replicons (5–7), and 57 

in the importance of different genomic regions for each lifestyle (8, 9). While 58 

significant research efforts have focused on understanding bacteroid metabolism in 59 

rhizobium-legume symbioses, several recent studies have begun to unravel the 60 

plant-bacteria interactions preceding the formation of differentiated nitrogen-fixing 61 

bacteroids. For example, transcriptomic changes in response to root exudates of 62 

different plants have been investigated (10, 11) and biosensors have been 63 

developed to elucidate nutrient availability in the rhizosphere (12). Importantly, a 64 

study using transposon-based insertion sequencing (INSeq) assessed gene 65 

essentiality in Rhizobium leguminosarum for rhizosphere bacteria, root-attached 66 
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bacteria, undifferentiated nodule bacteria and nitrogen-fixing bacteroids (13). It was 67 

found that 603 genetic regions were essential for a successful transition from free-68 

living bacteria to bacteroids, highlighting the complexity of development during 69 

formation of a successful symbiosis. Understanding the metabolic features at 70 

different stages of symbiosis is required for developing effective rhizobial inocula for 71 

agricultural applications. Rhizobia that efficiently fix nitrogen are not necessarily 72 

adapted to persistence in the rhizosphere as wells as nodulating a plant host in the 73 

presence of genetically different bacterial strains, a characteristic described as 74 

competitiveness (13–15). Knowledge of the nutrient exchanges between plants and 75 

rhizosphere bacteria is thus required for the design of microbial inocula that are 76 

competitive and stably persist when applied in the field (14, 16). Once rhizobia have 77 

successfully entered the plant root, elucidating the metabolism of undifferentiated 78 

rhizobia inside the nodule is also important to avoid delays in the onset of nitrogen 79 

fixation. 80 

Due to the complexity of nutrient exchanges in symbioses, metabolic modelling has 81 

become a popular tool for investigating rhizobium-legume interactions (3, 17). 82 

Metabolic models describe the reactions that are catalyzed by the enzymes 83 

annotated in an organism’s genome (18, 19). By defining nutrient availability as well 84 

as an objective function reflecting the metabolic strategy of the organism, flux 85 

distributions at steady state can be calculated using flux balance analysis (20). Due 86 

to the gene-protein-reaction associations contained in metabolic models, they also 87 

provide a convenient framework for contextualizing genome-scale data obtained by 88 

omics technologies, such as transcriptomics or proteomics (21). Most metabolic 89 

models of rhizobial species so far have focused on fully differentiated bacteroids 90 
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(22–25). One in silico study of Sinorhizobium meliloti has addressed the differences 91 

in metabolism for free-living growth in the bulk soil, growth the rhizosphere, and 92 

symbiotic nitrogen fixation during the bacteroid stage (9). However, this study 93 

focused on the contributions of the different replicons to fitness in the different 94 

environments rather than specifics of changes in metabolic flux distributions and did 95 

not integrate experimental data. Another study compared the metabolism of free-96 

living Bradyrhizobium japonicum with bacteroids (26). While transcriptome and 97 

proteome datasets were used to generate models for rhizosphere bacteria and 98 

bacteroids, the data for the rhizosphere model were obtained for bacteria grown in a 99 

laboratory culture. Only one recent study has addressed metabolic differences in the 100 

different nodule zones for the symbiosis between S. meliloti and Medicago truncatula 101 

(27). 102 

In this study, we reconstruct and extensively curate a genome-scale metabolic model 103 

(GSM) for R. leguminosarum bv. viciae 3841 (Rlv3841). Various experimental 104 

datasets exist for this strain at different stages of symbiosis with its native host pea. 105 

By integrating transcriptome, proteome and gene essentiality data with the GSM, we 106 

perform a detailed investigation of nutrient uptake and metabolic pathway usage of 107 

Rlv3841 in the rhizosphere, as nodule bacteria and as nitrogen-fixing bacteroids. 108 

This genome-scale approach for data integration reproduced experimentally 109 

observed phenotypes and particularly highlighted the role of different carbon sources 110 

and amino acids throughout the different stages of symbiosis. The metabolic model 111 

developed herein provides a valuable resource for targeted investigation of 112 

metabolic requirements of the different rhizobial lifestyles and may enable the 113 
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identification of strategies for engineering strains that are metabolically advantaged 114 

at all stages of symbiosis formation. 115 

 116 

Results 117 

Reconstruction of a genome-scale metabolic model for Rhizobium 118 

leguminosarum 119 

Most published metabolic models for rhizobia focus on bacteroids and are therefore 120 

limited to metabolic pathways active during nitrogen fixation. Curated genome-scale 121 

reconstructions are so far only available for B. japonicum (26) and S. meliloti (27). 122 

With the aim of investigating metabolism in the rhizosphere and during different 123 

stages of bacteroid development, we developed a GSM for Rlv3841 using multiple 124 

sources of information. As shown in Fig. 1A, automated reconstructions based on 125 

the KEGG (28) and MetaCyc (29) databases were combined with a homology-based 126 

reconstruction using a GSM for S. meliloti as a template and reactions from our 127 

previously reconstructed bacteroid model of Rlv3841 (23) (Fig. 1B). Extensive 128 

curation was then performed based on literature evidence, gene essentiality data 129 

(13, 30) and enzymatic functions predicted by DeepEC (31). Comparison with 130 

iML1515, a high-quality model for Escherichia coli (32) as well as the CarveMe 131 

template for Gram-negative bacteria (33) was further used to correct reaction 132 

stoichiometry and reversibility if required. We next defined a biomass function based 133 

on evidence from the literature (Table S1). Since our previous work showed the 134 

dependence of carbon polymer synthesis on environmental conditions (23), demand 135 

reactions for polymers such as glycogen, polyhydroxybutyrate (PHB) and 136 

exopolysaccharides were included in the model to allow for their flexible 137 
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accumulation. The final model (Supplementary Data 1 and 2) contained 1224 genes, 138 

1257 reactions and 984 metabolites (Table 1), and was named iCS1224 according to 139 

standard naming conventions. The largest groups of metabolic reactions were 140 

associated with amino acid and lipid metabolism (14.1% and 13.5% of model 141 

reactions, respectively), followed by cofactor metabolism (10.7%) and 142 

purine/pyrimidine metabolism (9.0%) (Fig. 1C). Cluster of orthologous genes (COG) 143 

(34) analysis of the model genes showed that all COG categories associated with 144 

metabolic reactions were represented in iCS1224 (Fig. S1). The quality of the 145 

reconstruction was evaluated using MEMOTE (35), where iCS1224 achieved an 146 

overall score of 89% (Supplementary Data 3).    147 

 148 

Model validation 149 

We validated our model for free-living Rlv3841 growing in minimal media using 150 

various experimental datasets. First, we experimentally assessed growth on 190 151 

different carbon sources using phenotype microarrays (36) (Supplementary Data 4). 152 

For the 109 carbon sources that were present as metabolites in iCS1224, an overall 153 

predictive accuracy of 89.9% with 90.9% precision and 96.4% recall was achieved 154 

(Fig. 2A), which is similar to the performance of curated GSMs for well-investigated 155 

bacteria, such as Pseudomonas aeruginosa (37) or E. coli (38). In addition, we 156 

evaluated the quality of gene essentiality predictions by comparing in silico gene 157 

essentiality with the results of an INSeq gene essentiality screen of Rlv3841 158 

performed in minimal media supplemented with succinate and ammonia (30). Since 159 

the classification of genes based on transposon mutagenesis screen is subject to 160 

some variability (39), the list of essential genes was further curated by comparison 161 
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with INSeq data for growth on complex media (13). Predictions by iCS1224 achieved 162 

an accuracy, precision and recall of 91.0%, 89.6% and 87.8%, respectively (Fig. 2B), 163 

thus showing good agreement with the INSeq data and indicating high quality of the 164 

gene-protein-reaction associations as well as suitability of the biomass objective 165 

function. 166 

Finally, we performed quantitative validation of our model by comparing the 167 

predicted flux values for 17 reactions involved in central carbon metabolism with 168 

published values measured by 13C metabolic flux analysis of Rlv3841 grown in 169 

minimal media with succinate and ammonia (40). As shown in Fig. 2C, we observed 170 

excellent agreement between predicted and experimentally measured flux values. In 171 

all cases, the measured flux was within the range determined by flux variability 172 

analysis. iCS1224 thus appears to be an accurate representation of the metabolism 173 

of Rlv3841, both qualitatively and quantitatively. 174 

 175 

Metabolism of rhizosphere bacteria 176 

Having validated the predictive capabilities of iCS1224, we sought to extract 177 

condition-specific models for metabolism of Rlv3841 (i) in the rhizosphere, (ii) as 178 

undifferentiated nodule bacteria and (iii) as nitrogen-fixing bacteroids (Fig. 3). We 179 

chose the recently developed RIPTiDe algorithm (41) to obtain condition-specific 180 

metabolic models. Based on gene expression data, RIPTiDe assigns weights to all 181 

gene-associated reactions, assuming that higher transcript abundance makes it 182 

more likely that the corresponding reaction is used in a certain environmental 183 

condition. The overall flux through the network is then minimized and inactive 184 

reactions are removed. Finally, flux sampling of the solution space is performed, 185 
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where flux through reactions associated with highly expressed genes is favored. In 186 

contrast to other methods for transcriptome data integration, RIPTiDe does not 187 

impose arbitrary thresholds on the gene expression data, it produces functional 188 

models with flux through the objective reaction, and takes flux parsimony into 189 

account, i.e., the overall flux is minimized to find cost-efficient solutions (41). 190 

Generation of a rhizosphere-specific model thus required information about available 191 

nutrients as well as gene expression data. Nutrient availability in the rhizosphere is 192 

mainly determined by plant root exudates, and plants modulate the composition of 193 

their root exudates to select for specific soil microbes (42, 43). However, only a 194 

subset of metabolites is used by the soil microbiota (44, 45), and elucidation of 195 

nutrient uptake by rhizosphere bacteria usually requires extensive metabolomics 196 

profiling (46, 47). Taking a top-down approach for defining the rhizosphere 197 

environment, we first compiled a list of compounds present in pea root exudates 198 

based on published experimental data (10, 12, 48, 49) (Table S2 and S3, 199 

Supplementary Text). For those compounds that could be matched to model 200 

metabolites, exchange reactions were added to the model with reaction bounds set 201 

to allow for unlimited uptake. RNA-Seq data for Rlv3841 in the rhizosphere of pea 202 

plants 7 days post inoculation (Supplementary Data 5) was used as an input dataset 203 

for model contextualization. In addition, a list of genes that were classified as 204 

essential or defective in the rhizosphere in an INSeq screen (13) was provided to 205 

prevent removal of reactions associated with these genes from the rhizosphere-206 

specific model. Biomass production was set as the objective and additional positive 207 

lower bounds were placed on exopolysaccharide, lipopolysaccharide and Nod factor 208 

synthesis, all of which are known to be important in the rhizosphere (4). During data 209 
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integration, constraining flux through the objective function to values between 50% 210 

and 95% of its maximum was tested to identify the scenario that gave the best match 211 

with the transcriptome data. Within the range of objective values tested, the highest 212 

correlation (Spearman’s Rho=0.237, P<0.001) between metabolic fluxes and 213 

transcript abundances was obtained with the biomass reaction constrained to carry 214 

at least 77.5% of its maximum flux, and the rhizosphere-specific model contained 215 

606 reactions and 576 metabolites (Supplementary Data 6). Remarkably, out of the 216 

134 nutrients available for uptake before data integration, only 51 were present in the 217 

rhizosphere-specific model.  218 

For the analysis of the contextualized model, we focused on those metabolic 219 

pathways that are either not universally essential or that are retained in the model 220 

despite their end product being available for uptake from the environment. Pathways 221 

such as membrane lipid or PHB synthesis, for instance, will always be retained in the 222 

model, since they are required to maintain flux through the biomass objective 223 

function and uptake of lipids and PHB is not possible. In addition, we limit our 224 

discussion to reactions that had a non-zero median flux value based on the flux 225 

sampling results, since those reactions are most likely to be active in the 226 

rhizosphere. The TCA cycle was predicted to be a central catabolic pathway (Fig. 4), 227 

which is consistent with previous reports of organic acids being the predominant 228 

carbon sources for rhizobia in the rhizosphere (9, 10). In particular, the model 229 

predicted high uptake of glycolate in agreement with the induction of C2 metabolism 230 

observed in previous gene expression studies (10). Glycolate was converted into 231 

pyruvate via glycolate oxidase and an aminotransferase. The model also showed 232 

high uptake rates for aspartate, which could explain the induction of a dctA biosensor 233 
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in Rlv3841 in the pea rhizosphere (12). Aspartate and 2-oxoglutarate were 234 

transaminated to produce glutamate and oxaloacetate, which is a TCA cycle 235 

intermediate.  236 

In addition to organic acids, amylotriose, which is hydrolyzed into glucose, was partly 237 

metabolized via the Entner-Doudoroff pathway and glycolysis in the model and 238 

entered the pentose phosphate pathway to enable production of nucleotides required 239 

for the synthesis of various polysaccharides and Nod factors. The solute-binding 240 

protein of a carbohydrate uptake transporter-1 (CUT1) family transporter (RL3840) 241 

was 2.6-fold upregulated in the pea rhizosphere compared to free-living cells (10), 242 

which supports the predicted uptake of a di- or oligosaccharide. Ribulose, a 243 

monosaccharide metabolized via the pentose phosphate pathway was also predicted 244 

to be taken up. Catabolism of a monosaccharide in the rhizosphere is highly 245 

probable considering the strong signals of a fructose and a xylose biosensor in the 246 

pea rhizosphere (12). The fructose biosensor is based on the solute-binding protein 247 

of the CUT2 family frcABC transporter, which has been shown to transport ribose in 248 

addition to fructose in S. meliloti (50) and may therefore also contribute to pentose 249 

uptake in the rhizosphere. The model further contained reactions for glycerol uptake 250 

and catabolism, which could explain the decreased competitiveness observed for a 251 

glycerol catabolism mutant of R. leguminosarum bv. viciae VF39 (51). 252 

With regard to amino acids, all of which are present in root exudates, biosynthetic 253 

pathways were generally retained in the rhizosphere model due to the essentiality of 254 

the associated genes. Low levels of uptake were however predicted for most amino 255 

acids, mainly to support protein synthesis. Notably, the biosynthetic pathway for 256 

leucine was predicted to be active, which was partly supported by uptake of 2-257 
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isopropylmalate, an intermediate of branched-chain amino acid synthesis. The need 258 

for leucine synthesis in the rhizosphere agrees with a leuD mutant of Rlv3841 259 

requiring the addition of 1 mM leucine to nodulate pea (52). Mutation of the 260 

isopropylmalate synthase gene in S. meliloti impaired nodulation even in the 261 

presence of leucine, and it was shown that either isopropylmalate synthase or 262 

intermediates of the leucine biosynthetic pathway are required for the activation of 263 

nod gene expression (53). It is therefore possible that the predicted leucine synthesis 264 

is at least partly related to the synthesis of Nod factors in the rhizosphere. High 265 

uptake rates were further predicted for glutamine, which is consistent with its high 266 

concentration in pea root exudates (49). Glutamine was converted into glutamate, 267 

which was mostly used to sustain leucine synthesis. The model also contained active 268 

uptake reactions for several nucleotides. This agrees with the reported uptake of 269 

nucleosides and nucleotides by rhizosphere bacteria (44, 47, 54) and agrees with 270 

the gene essentiality predictions for rhizosphere bacteria obtained by INSeq, where 271 

purine auxotrophs appear to be rescued by plant root exudates (13). 272 

Among biomass components that are present in root exudate but not predicted to be 273 

taken up, biosynthesis of the polyamine putrescine was retained in the model, 274 

attesting to the ability of the RIPTiDe algorithm to choose metabolic reactions that 275 

agree with gene expression and/or essentiality rather than choosing the least 276 

resource-intensive solution. Putrescine and related polyamines are important for 277 

survival under stress conditions and their synthesis has been suggested to play an 278 

important role during root colonization (55). As part of the model reconstruction, 279 

several demand reactions were included for compounds such as carbon polymers 280 

whose accumulation can vary with environmental conditions. The only non-essential 281 
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demand reactions that were not removed during the pruning process were those for 282 

glutathione and polyphosphate, where polyphosphate synthesis in particular had a 283 

non-zero median flux. Glutathione is important to deal with stress conditions, such as 284 

osmotic and oxidative stress, encountered in the rhizosphere, and mutants in 285 

glutathione biosynthesis are severely affected in rhizosphere colonization (56). The 286 

predicted catabolism of glycolate via glyoxylate produces the reactive oxygen 287 

species hydrogen peroxide, which could contribute to the need for glutathione 288 

synthesis. Polyphosphate has recently been suggested to play a role in the global 289 

carbon regulatory system (57), but its function remains to be investigated in detail. It 290 

is interesting to note that an exopolyphosphatase gene (RL1600) was classified as 291 

essential for persistence in the rhizosphere (13), indicating an important role for 292 

phosphate homeostasis in rhizosphere colonization and/or competition. 293 

Catabolism of several other compounds, such as erythritol, myo-inositol and 294 

homoserine, has been described to be important for competitiveness (10, 58, 59), 295 

however, these compounds were not included in the rhizosphere model. This could 296 

be due to the catabolism of these compounds being important at later stages of the 297 

symbiosis, e.g. for growth in infection threads rather than in the rhizosphere. 298 

Alternatively, uptake of these compounds could be masked in the model due to 299 

catabolic routes that are shared with other metabolites. For example, erythritol is 300 

metabolized via the pentose phosphate pathway (60), hence the predicted uptake 301 

and metabolism of ribulose could partly be due to erythritol catabolism.  302 
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Reporter metabolites highlight plant-specific rhizosphere metabolism 303 

As an independent validation and extension of our analysis of metabolic changes, 304 

we identified reporter metabolites using previously published microarray data 305 

comparing Rlv3841 in the rhizosphere of pea plants with free-living cells grown on 306 

minimal media with glucose and ammonium chloride (10). Based on the network 307 

topology defined by a metabolic model, the reporter metabolite algorithm identifies 308 

those compounds around which significant changes in gene expression occur (61). 309 

This method is therefore independent of specifying nutrient uptake from the 310 

environment. Reporter metabolites associated with upregulated genes matched 311 

several observations from the RNA-Seq data integration described in the previous 312 

section. In particular, several intermediates of branched-chain amino acid synthesis, 313 

such as acetolactate, 2-hydroxyethyl-thiamin diphosphate and 2-aceto-2-314 

hydroxybutanoate, were identified as reporter metabolites (Fig. 5A). Significant 315 

transcriptional changes were also observed around various nucleobase derivatives. 316 

This may be related to their predicted uptake from plant root exudates but could also 317 

indicate an increased need for nucleotide synthesis for the production of 318 

polysaccharides and Nod factor. Phosphoribosyl-AMP and 319 

phosphoribosylformiminoaicar-phosphate are intermediates of histidine biosynthesis 320 

and direct precursors of AICAR, which is involved in purine metabolism. Seeing as 321 

no additional metabolites of the histidine biosynthetic pathway were identified as 322 

reporter metabolites, this analysis indicates an increase in AICAR synthesis, which 323 

seems to be required for successful legume infection by various Rhizobium species 324 

(62). 325 
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Comparison of the rhizosphere reporter metabolites for pea (host legume for 326 

Rlv3841) with those for alfalfa (non-host legume) (Fig. 5B) and sugar beet (non-327 

legume) (Fig. 5C) highlighted several plant-specific features. For alfalfa, 328 

phosphoribosyl-AMP was identified as a reporter metabolite similar to pea. In 329 

addition, phenylalanine and tyrosine support the role of aromatic amino acid 330 

metabolism in colonization competitiveness (10). Significant transcriptional changes 331 

also occurred around the carbon polymer beta-glucan and the diamine putrescine. 332 

While beta-glucan generally appears to be important for persistence in the 333 

rhizosphere (10, 13), its identification as a reporter metabolite together with 334 

putrescine indicates increased osmotic stress in the alfalfa rhizosphere compared to 335 

pea. For sugar beet, the identification of several compounds involved in nitrogen 336 

metabolism (ammonia, urea, urate) agrees with the suggested nitrogen limitation in 337 

the sugar beet rhizosphere, but nitrogen sufficiency in legume rhizospheres (10). 338 

This could also explain why the carbon polymer glycogen was a reporter metabolite 339 

specifically in the sugar beet rhizosphere, since glycogen synthesis is probably 340 

linked to nitrogen limitation (63). Notably, multiple mono- and disaccharides and their 341 

derivatives indicate an increased importance of sugar metabolism compared to 342 

legume rhizospheres. However, many genes involved in saccharide metabolism are 343 

associated with multiple reactions (e.g. unspecific glucoside hydrolases), and 344 

therefore the identity of the metabolized sugar cannot be derived from this analysis. 345 

Finally, the reporter metabolites 3-dehydrocarnitine and betainyl-CoA indicate either 346 

accumulation of amines for osmoprotection or catabolism of carnitine or related 347 

amines. These findings present interesting targets for future investigations using 348 

gene essentiality screens on different plant hosts. 349 
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Overall, both the context-specific model obtained by transcriptome data integration 350 

and the reporter metabolite analysis were in good agreement with experimental data 351 

for rhizobial metabolism in the rhizosphere without forcing the uptake of any 352 

compound through arbitrary constraints. Instead, insights into nutrient uptake were 353 

facilitated by the integration of gene expression and gene essentiality data with 354 

iCS1224. If biomass production were simply maximized with unlimited availability of 355 

all root exudate compounds, this would result in uptake of all available compounds 356 

that are required for biomass formation, which would not reflect a biologically 357 

meaningful scenario. 358 

 359 

Metabolism of undifferentiated nodule bacteria 360 

We next sought to develop models for Rlv3841 inside the nodule environment. For 361 

this purpose, it is important to differentiate between nodule bacteria at the tip of the 362 

nodule, which are dividing and undergoing differentiation, and bacteroids in the 363 

central nitrogen fixation zone of the nodule (64). While nodule bacteria are still 364 

dividing, bacteroids are growth-arrested and mainly catabolize plant-provided 365 

dicarboxylates to fix atmospheric N2 into ammonia. The distinction between these 366 

developmental stages is required in the context of gene essentiality analyses since 367 

genes required for the differentiation process may not be essential for nitrogen 368 

fixation and vice versa. Similar to the approach for the rhizosphere model, we used 369 

RIPTiDe to obtain models for nodule bacteria and bacteroids and performed flux 370 

sampling to identify those reactions that are most likely to be active in each 371 

contextualized model. 372 
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The model for nodule bacteria was obtained using published dRNA-Seq data for 373 

RNA extracted from nodule tips (65), as well as a list of genes that were predicted to 374 

be specifically essential for nodule bacteria (13). Nutrient availability was defined 375 

based on a study using biosensors to detect metabolites inside nodules (12) and our 376 

direct measurement of metabolites in pea root exudate, in pea bacteroids and in the 377 

nodule cytosol as described previously (40) (Table S4 and S5, Supplementary Data 378 

7). The biomass objective function was used to account for the cell division occurring 379 

as rhizobia grow down infection threads and differentiate into bacteroids and positive 380 

lower bounds were placed on demand reactions for exopolysaccharides and 381 

lipopolysaccharides. The nodule bacteria model contained 510 reactions and 502 382 

metabolites and achieved highest correlation with the transcriptome data 383 

(Spearman’s Rho=0.335, P<0.001) when the objective value was constrained to 384 

65% of its maximum (Supplementary Data 8). The observation that higher correlation 385 

was obtained for lower flux through the objective reaction (compared to the 386 

rhizosphere) indicates that the metabolism of nodule bacteria is not oriented towards 387 

maximum growth. This agrees with experimental data showing that growth of 388 

infection threads proceeds at highly variable rates controlled by the plant host (66). 389 

The improved correlation of flux predictions and gene expression data compared to 390 

the rhizosphere model can be explained by the lower number of essential genes, 391 

which places fewer constraints on the reactions included in the contextualized 392 

model. 393 

Malate, fructose, xylose, myo-inositol and g-aminobutyrate (GABA) were all predicted 394 

to be taken up by nodule bacteria (Figs. 6A and S2). Biosensors for these carbon 395 

sources were strongly induced in young nodules, whereas biosensors for the carbon 396 
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sources that were removed during the data integration process (erythritol, mannitol, 397 

formate, malonate, tartrate) only showed weak induction (12). Malate and GABA are 398 

both catabolized in the TCA cycle, indicating that it is an important catabolic route in 399 

differentiating nodule bacteria despite transport of dicarboxylates being non-essential 400 

for differentiation into bacteroids (67). Enzymes involved in GABA metabolism are 401 

highly induced in bacteroids, although GABA catabolism is not essential for effective 402 

nitrogen fixation (68). The predicted catabolism of fructose is consistent with the 403 

strong induction of a fructose-specific biosensor in nodules (12) as well as a previous 404 

modelling study of S. meliloti suggesting the use of sucrose-derived sugars as a 405 

carbon source by differentiating nodule bacteria (27). Sucrose uptake was removed 406 

from the nodule bacteria model, which may be due to the inability of the model to 407 

accurately distinguish between sucrose and fructose uptake based on the gene 408 

expression data. It is interesting to note that Rlv3841 bacteroids mutated in a subunit 409 

of succinyl-CoA synthetase, which had severely reduced nitrogen fixation capacity, 410 

had 168-fold higher levels of fructose than wild-type bacteroids and 151-fold 411 

elevated levels of sucrose (Supplementary Data 7), which may be the result of 412 

carbon source build-up in the developmentally impaired nodule bacteria and 413 

bacteroids. Myo-inositol is present in the rhizosphere (12) and abundant in pea 414 

nodules (69), and mutants in myo-inositol catabolism have strongly reduced 415 

competitiveness compared to wild-type Rlv3841 (58). However, the activity of 416 

enzymes involved in myo-inositol catabolism is very low in mature bacteroids (69), 417 

and mutants in myo-inositol catabolism were not disadvantaged during growth in the 418 

rhizosphere compared to wild-type Rlv3841 (58). In addition, it has been proposed 419 

that catabolism of rhizopines, which are inositol derivatives, by undifferentiated 420 
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nodule bacteria may be important as a kin selection strategy (70). Catabolism of 421 

myo-inositol is therefore most likely to play a role during infection and in 422 

undifferentiated nodule bacteria, which is correctly predicted by the model. Xylose 423 

enters the pentose phosphate pathway, and its predicted uptake could be related to 424 

the importance of nucleotide synthesis, both for DNA endoreduplication and 425 

synthesis of exopolysaccharides and lipopolysaccharides. Similarly, uptake reactions 426 

for the nucleoside guanosine and uridine as well as the nucleobase adenine were 427 

present in the model.  428 

Our nodule bacteria model predicted uptake of most amino acids, which agrees with 429 

the severe symbiotic defect of a gltB mutant unable to transport amino acids (71) but 430 

may also be a result of a beginning general downregulation of biosynthetic functions 431 

as rhizobia transition into growth-arrested bacteroids. Similar to the rhizosphere 432 

bacteria, leucine was predicted to be synthesized from 2-isopropylmalate. 433 

Expression of nod genes is elevated in nodule bacteria at 7 days post inoculation 434 

(72), which could explain the predicted leucine synthesis as discussed for the 435 

rhizosphere model. 436 

 437 

Metabolism of bacteroids 438 

To extract a model specific for nitrogen-fixing bacteroids, we used dRNA-Seq data 439 

derived from the middle of nodules (65), which contains fully differentiated bacteroids 440 

performing nitrogen fixation (64). In addition, a list of 38 genes that were present in 441 

the model and encoded proteins significantly upregulated in bacteroids compared to 442 

free-living bacteria (23) and the dct genes (73) were specified to ensure inclusion of 443 

those genes in the bacteroid model. Nitrogenase activity was set as the objective 444 
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function while low levels of protein and fatty acid production were enforced through 445 

demand reactions. Nutrient availability was specified similar to the considerations for 446 

nodule bacteria (Table S6). Gene essentiality data from the INSeq screen were not 447 

included for model contextualization due to the aforementioned difficulty of 448 

determining the developmental stage where a gene is essential inside the nodule 449 

environment. The bacteroid model contained 307 reactions and 308 metabolites 450 

(Supplementary Data 9) and achieved significant correlation with the transcriptome 451 

data (Spearman’s Rho=0.348, P<0.001) when nitrogenase activity was constrained 452 

to 65% of its maximum. The reduced model size compared to both the rhizosphere 453 

and the nodule bacteria model is in agreement with the reduced physiological 454 

complexity of the non-dividing bacteroids (3, 72).  455 

The bacteroid model contained the C4 dicarboxylates malate, succinate and 456 

fumarate as the main carbon sources in agreement with experimental evidence (67, 457 

74) (Figs. 6B and S3), and only low levels of GABA uptake were predicted. Ammonia 458 

was the only nitrogenous export product. Consistent with our previous modelling 459 

study of Rlv3841 bacteroids (23), constraining the oxygen uptake prior to data 460 

integration resulted in nitrogen partly being secreted as alanine. With the metabolites 461 

provided in initial simulations, the glyoxylate cycle comprising isocitrate lyase and 462 

malate synthase was contained in the model, which is consistent with the high 463 

induction of malate synthase (72) but disagrees with the lack of isocitrate lyase 464 

activity in pea bacteroids (75). The source of glyoxylate for the malate synthase 465 

reaction has so far not been elucidated. Because the metabolomics data showed 466 

that glycolate is present in the nodule cytosol and glycolate concentrations in 467 

bacteroids are 2-fold elevated compared to free-living cells (Supplementary Data 7), 468 
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we allowed for glycolate uptake by the bacteroid model and inactivated the isocitrate 469 

lyase reaction. This resulted in substantial uptake of glycolate, which was converted 470 

into glyoxylate that was used in the malate synthase reaction. Glycolate provision by 471 

the plant may therefore explain the increase in malate synthase expression in the 472 

absence of isocitrate lyase activity.  473 

The model also contained uptake of xylose, which was metabolized in the pentose 474 

phosphate pathway and supported synthesis of nucleotides. Dicarboxylate 475 

catabolism generally requires gluconeogenesis to provide precursors for the 476 

synthesis of nucleotides and some amino acids. Due to the predicted xylose uptake, 477 

only minor flux through the reactions involved in gluconeogenesis was predicted, 478 

highlighting the importance of this pathway in bacteroids as an interesting question 479 

to explore using targeted mutant studies. Proton uptake by bacteroids was further 480 

required as previously predicted for S. meliloti bacteroids (27) and a demand 481 

reaction for PHB was retained in the model. PHB synthesis was highly variable 482 

across flux samples, which is in agreement with its previously suggested role for 483 

carbon and redox balancing (23, 40). 484 

Low levels of uptake were predicted for most amino acids to support the required 485 

synthesis of protein, but no significant catabolism of any amino acid was observed. 486 

Mutant studies have shown a requirement for branched-chain amino acid supply to 487 

bacteroids (52), and isoleucine was predicted to be supplied by the plant. 488 

Interestingly, histidine was predicted to be synthesized rather than taken up by 489 

bacteroids. Several proteins involved in histidine synthesis were upregulated or 490 

unchanged in abundance in the bacteroid proteome compared to free-living Rlv3841 491 

(23), in contrast to the general downregulation of amino acid biosynthesis (3). Similar 492 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


23 
 

results were obtained in a proteome study of Rhizobium etli (24) and RNA-Seq data 493 

for bacteroids of R. leguminosarum bv. viciae A34 and R. leguminosarum bv. 494 

phaseoli 4292 (76). In addition, mutants of R. leguminosarum bv. trifolii lacking 495 

histidinol dehydrogenase activity formed ineffective nodules on clover (77). To 496 

investigate the requirement for histidine biosynthesis, we compared the amino acid 497 

composition of the Nif and Fix proteins, which are highly expressed in bacteroids, 498 

with the overall amino acid composition of the Rlv3841 proteome (Table S7). We 499 

found a significant (P=0.042) enrichment of histidine in the Nif and Fix proteins, 500 

which could at least partly explain why histidine biosynthesis is required in 501 

bacteroids. 502 

 503 

Discussion 504 

In this study, we present the first curated GSM for Rlv3841, a model strain for 505 

investigating rhizobium-legume interactions and a natural symbiont of the 506 

agriculturally important crop pea. GSMs have emerged as promising tools for 507 

informing experimental design, addressing fundamental research questions, and 508 

contextualizing experimental data (78). In order to obtain a high-quality model, 509 

integration of experimental data during model curation and validation is essential 510 

(79). We therefore evaluated our model using carbon source utilization, gene 511 

essentiality data and flux data obtained by 13C labelling and observed high 512 

agreement between model predictions and experimental data. 513 

We further used the GSM to elucidate metabolic changes in Rlv3841 as it transitions 514 

from a free-living soil bacterium in the rhizosphere to an undifferentiated nodule 515 

bacterium and finally to a nitrogen-fixing bacteroid. While significant advances in 516 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


24 
 

determining metabolic requirements for successful symbiosis formation have been 517 

made using transcriptome data (10) and gene essentiality screens (13), genome-518 

scale datasets are often difficult to interpret without the framework of a 519 

comprehensive model, especially when information about nutrient uptake is missing. 520 

To this end, we employed approaches integrating gene expression and metabolome 521 

data as well as gene essentiality predicted by INSeq to obtain condition-specific 522 

models. This allowed us to contextualize our model based on experimental data 523 

without assuming uptake rates for any nutrient. In addition, during the process of 524 

data integration, different fractions of the optimum objective value were tested as 525 

constraints to find a solution with the highest correlation between gene expression 526 

and associated reaction fluxes. Especially for nodule bacteria and bacteroids, using 527 

sub-optimal fluxes through the objective function as constraints during model 528 

contextualization was found to produce better agreement with experimental data. 529 

Objective functions can be difficult to define outside of defined growth in a laboratory 530 

culture, and our results highlight the need to adopt strategies beyond maximization 531 

of a biomass objective function to accurately capture metabolic behavior in complex 532 

environmental settings. A clear limitation of our approach is the imperfect correlation 533 

of gene expression and protein abundance, as well as protein abundance and 534 

enzyme activity (80, 81). Catabolic pathways common to multiple different 535 

compounds can further make it difficult to specifically determine which nutrient is 536 

taken up. Nevertheless, our model predictions are in good agreement with known 537 

metabolic characteristics of the different lifestyles of Rlv3841, attesting to the 538 

biological relevance of our findings. 539 
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The rhizosphere model showed substantial uptake of glycolate, aspartate and 540 

glutamine as well as mono- and oligosaccharides. These predictions are consistent 541 

with previous studies about gene expression (10) as well as nutrient uptake of a 542 

Rhizobium sp. from root exudates of Arabidopsis (44). We further identified a 543 

requirement for leucine synthesis in the rhizosphere, as well as a potentially 544 

important role for polyphosphate synthesis. However, the predicted nutrient uptake 545 

was not supported by gene essentiality predictions in all cases. While both INSeq 546 

gene essentiality assignments and our metabolic model generate predictions that 547 

warrant detailed investigation using isolated mutant strains, there are other possible 548 

explanations for this observation. First, root exudates might not contain sufficient 549 

quantities of a compound to complement an auxotrophy. In addition, the composition 550 

of plant root exudates has been shown to change over time (47), and compounds 551 

present at the time of RNA extraction may not be present from the time of 552 

inoculation, causing the loss of some mutants. Finally, for genes that are essential 553 

on complex media, the corresponding mutants may already be lost from or 554 

underrepresented in the bacterial population that is inoculated onto plants.  555 

The model for nodule bacteria confirmed previous results suggesting supply of 556 

nutrients other than dicarboxylates, in particular sucrose-derived sugars, during the 557 

differentiation process (27). Interestingly, we found that myo-inositol catabolism was 558 

only predicted for nodule bacteria, but not in the rhizosphere or in bacteroids. While 559 

the importance of myo-inositol catabolism for competitiveness has been established 560 

(58), our results suggest that it may be particularly important for differentiating 561 

bacteria rather than those in the rhizosphere. For bacteroids, biosynthesis of 562 

histidine was found to be important in contrast to the general uptake predicted for 563 
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most other amino acids. In addition, low levels of xylose uptake were predicted to 564 

support nucleotide synthesis in bacteroids. This result indicates that a carbon source 565 

metabolized in the pentose phosphate pathway may be provided to bacteroids, 566 

which presents an interesting area to explore experimentally using mutants affected 567 

in gluconeogenesis. Initial predictions of isocitrate lyase activity, which disagree with 568 

measured enzyme activities in bacteroids, led us to hypothesize that glycolate is 569 

provided to bacteroids. This is supported by metabolomics data and could explain 570 

the induction of malate synthase in bacteroids without concomitant expression of 571 

isocitrate lyase. 572 

In summary, our results provide insights into rhizobial metabolism in the rhizosphere, 573 

which can inform the design of more competitive rhizobial inocula as well as plants 574 

that secrete metabolites to specifically enrich beneficial bacterial strains. Our 575 

understanding of the nutrient exchanges between plants and rhizobia at different 576 

developmental stages inside nodules remains incomplete (3, 82), and the predictions 577 

presented herein provide a foundation for targeted investigation of amino acid and 578 

central carbon metabolism in particular. We anticipate that the highly curated 579 

metabolic model for Rlv3841 presented in this paper will provide a valuable resource 580 

for the reconstruction of GSMs for related species.   581 
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Materials and Methods 582 

Model reconstruction 583 

To reconstruct a GSM for Rlv3841, we combined information from multiple 584 

databases, which has been shown to significantly improve the scope of metabolic 585 

network reconstructions (83). All reconstructions were performed based on RefSeq 586 

assembly GCF_000009265.1. We used the RAVEN Toolbox 2.0 (84) to create draft 587 

models from KEGG (28) and MetaCyc (29) using the functions 588 

getKEGGModelForOrganism and getMetaCycModelForOrganism, 589 

respectively. In addition, template-based reconstruction based on BLAST 590 

bidirectional hits was performed using a curated GSM for S. meliloti 1021 (iGD1348 591 

(27)) as a template for the function getModelFromHomology. All models were 592 

merged into one reaction list and reaction and compound identifiers were unified 593 

based on the reaction database provided by the ModelSEED (85), followed by 594 

removal of duplicate reactions. Starting from this database of reactions compiled 595 

from different sources, the reconstruction was curated. First, reactions without gene 596 

association were removed. Reactions involving non-specific compounds such as 597 

“acceptor” or “protein” were also deleted, as well as reactions involved in the 598 

biosynthesis and catabolism of secondary metabolites and non-metabolic processes, 599 

such as DNA and RNA modification because those were outside of the scope of our 600 

model. Extensive curation was then performed by evaluating metabolic pathways 601 

guided by the literature and the KEGG database. Pathways for catabolism of small 602 

carbon sources in particular were reconstructed based on predictions obtained from 603 

GapMind (86). Gene-protein-reaction associations were curated based on published 604 
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gene essentiality data for growth in minimal (30) and complete (13) media as well as 605 

enzyme commission (EC) number predictions obtained from DeepEC (31).  606 

Transport reactions were annotated based on literature evidence, in particular 607 

homology to experimentally characterized transporters in S. meliloti (87) and the 608 

annotation obtained from TransportDB 2.0 (88). We manually reconstructed 609 

pathways for organism-specific biomass components, such as lipopolysaccharides 610 

and exopolysaccharides, as well as pathways which were not present in any of the 611 

databases used for reconstruction, such as carnitine metabolism. To improve 612 

information on reaction directionality, upper and lower bounds were adjusted 613 

according to the information in a highly curated model for E. coli (iML1515 (32)) and 614 

the CarveMe template model for Gram-negative bacteria (33). 615 

The biomass objective function was defined as follows: The composition of DNA was 616 

determined from the RefSeq genome sequence. Similarly, RNA and protein 617 

composition were determined by counting nucleotides or amino acids in the 618 

annotated RNAs and protein coding sequences, respectively. Since the lipid 619 

composition of Rlv3841 has not been investigated so far, we adopted the values 620 

reported R. leguminosarum bv. trifolii ANU843 (89). R. leguminosarum produces 621 

predominantly C18 fatty acids, as well as smaller quantities of C16 fatty acids (40, 622 

90), and representative phospholipids in our model included fatty acids with these 623 

chain lengths. Lipopolysaccharides and exopolysaccharides were included with the 624 

fractions previously reported for S. meliloti (91). Cyclic beta-glucans have so far not 625 

been considered in metabolic models for rhizobia, however they can make up a 626 

significant fraction of the cellular dry weight (92) and were therefore also included as 627 

a biomass component. Apart from the main cell components, trace amounts of 628 
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cofactors identified as universally essential in prokaryotes (93) were included in the 629 

biomass objective function. Phytoene was also added to the biomass reaction due to 630 

the essentiality of the genes associated with its biosynthetic pathway. Carbon 631 

polymers such as glycogen, PHB and fatty acids, as well as polyamines such as 632 

homospermidine and putrescine are known to be produced by Rlv3841, however, 633 

the quantities in which they are produced vary depending on nutrient availability. 634 

Similar to our previous work (23), we therefore added demand reactions for these 635 

compounds to allow for variable accumulation. Glycogen and PHB were also 636 

included in the biomass objective function as they are commonly synthesized by 637 

free-living R. leguminosarum (94). A complete description of the biomass 638 

composition used in this study is given in Table S1. 639 

 640 

General modelling procedures 641 

Standard metabolic modelling computations were performed in MATLAB R2020b 642 

(Mathworks) using scripts from the COBRA Toolbox v3.0 (95) and the Gurobi 9.1.1 643 

solver (www.gurobi.com). When using the optimizeCbModel function, the Taxicab 644 

norm was minimized to avoid loops in the calculated flux distributions. All scripts are 645 

available on Github (https://github.com/CarolinSchulte/Rlv3481-lifestyles). 646 

 647 

Model validation 648 

To evaluate the agreement between model predictions and experimentally 649 

determined carbon source utilization, we limited our analysis to those compounds 650 

that were either present in the model or showed a positive growth phenotype in the 651 

phenotype microarray experiment.  The lower bounds for the exchange reactions 652 
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were then adjusted according to the composition of universal minimal salts (UMS) 653 

media (30) with ammonium as a nitrogen source, and flux through the biomass 654 

reaction was evaluated for each carbon source individually added to the model. 655 

Accuracy, precision and recall for carbon source utilization and gene essentiality 656 

analysis were calculated according to the following equations: 657 

 658 

!""#$!"% = 	 () + (+
() + (+ + ,) + ,+ 659 

-$."/0/12 = ()
() + ,) 660 

$."!33 = ()
,) + ,+ 661 

 662 

TP: true positives  FP: false positives 663 

TN: true negatives  FN: false negatives 664 

 665 

Gene essentiality analysis was performed using the function 666 

singleGeneDeletion with the MOMA (minimization of metabolic adjustment) 667 

option in the COBRA Toolbox, while all components of UMS media with succinate 668 

and ammonia were available without constraints on their uptake rate. The predictions 669 

were compared with gene essentiality data for Rlv3841 determined by INSeq (13, 670 

30). Genes that were experimentally classified as essential or defective were 671 

considered essential in our analysis. The threshold for a gene to be considered 672 

essential in silico was set to 50% of the wild-type growth rate since all mutant strains 673 

are grown in a single culture for an INSeq experiment, and a slower growth rate will 674 
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therefore decrease the abundance of a mutant even if the gene carrying the insertion 675 

is not absolutely essential. 676 

For comparison with 13C labelling data, boundary conditions were set to allow for 677 

unlimited uptake of UMS media components. The succinate uptake rate was 678 

constrained to 1 flux unit and flux balance analysis was performed maximizing the 679 

biomass objective function. In addition, loopless flux variability analysis was 680 

performed where the objective fraction was set to 95% of the optimum value. 681 

 682 

Data integration for model contextualization 683 

The Python implementation of RIPTiDe (https://github.com/mjenior/riptide) (41) was 684 

used to generate condition-specific models of iCS1224. Max fit RIPTiDe was run for 685 

objective flux fractions between 0.5 and 0.95 with 0.05 increments, and the context-686 

specific models with the highest correlation between flux values and transcriptome 687 

data were used in further analyses.  688 

In addition to the nutrient availability determined based on experimental data, trace 689 

elements and vitamins required for flux through the objective function were added to 690 

the in silico representation of each environment. If an exchange and transport 691 

reaction for a compound already existed in the model, the lower bound of the 692 

exchange reaction was set to -1000. If a compound was only present as an 693 

intracellular metabolite, a sink reaction for this metabolite with lower bound set to -694 

1000 and upper bound set to 0 was added. This was done to avoid erroneous 695 

exclusion of metabolites which are present in the environment, but for which 696 

transporters have not been identified. Some cofactors and central intermediates of 697 

carbon metabolism, such as glyceraldehyde 3-phsophate, were excluded from 698 
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environmental representations since their uptake would result in unspecific 699 

predictions for metabolic pathway activity (Supplementary Text). 700 

 701 

Data integration for rhizosphere model 702 

For the rhizosphere model, compounds that have been detected in pea root 703 

exudates (10, 12, 48, 49) and that could be matched to model metabolites were 704 

specified with unlimited availability (Table S2 and S3). Flux through the biomass 705 

reaction as described in the previous section was set as the objective function and in 706 

addition, a lower bound of one flux unit was set for demand reactions for Nod factor, 707 

lipopolysaccharides and exopolysaccharides, since these compounds are known to 708 

be produced as part of the root colonization process (4). RPKM values for RNA-Seq 709 

data obtained from Rlv3841 in the pea rhizosphere 7 days post inoculation were 710 

provided as an input, and all genes that are present in the model and were classified 711 

as essential or defective in the rhizosphere (13) were specified as model tasks to 712 

prevent removal of the associated reactions during the pruning process.  713 

 714 

Data integration for nodule bacteria model 715 

For nodule bacteria, all metabolites that were detected by rhizobial biosensors in pea 716 

nodules (12) were allowed to be taken up without limitation, as well as all amino 717 

acids and metabolites whose abundance was at least ten-fold higher in the nodule 718 

cytosol compared to root exudates (Table S4 and S5). A lower bound of one flux unit 719 

was set for lipopolysaccharide and exopolysaccharide demand reactions and 720 

biomass production was used as the objective function. RPKM values for dRNA-Seq 721 

data obtained from the tip of pea nodules were provided as an input, and all genes 722 
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that were classified as essential or defective for nodule bacteria (13) were specified 723 

as model tasks to prevent removal of the associated reactions during the pruning 724 

process.  725 

 726 

Data integration for bacteroids 727 

Similar to the nodule bacteria model, metabolites detected in nodules by rhizobial 728 

biosensors, and all amino acids were made available to the bacteroid model (Table 729 

S6). However, fructose and sucrose were not included since they are known to be 730 

poorly oxidized by bacteroids (96). Inclusion of the metabolites increased in the 731 

nodule cytosol compared to root exudates led to a decrease in correlation of flux 732 

predictions and gene expression data, and those metabolites were therefore omitted 733 

from the nutrients available to bacteroids. A lower bound of one flux unit was set for 734 

the synthesis of fatty acids and proteins and flux through the nitrogenase reaction 735 

was used as the objective function. RPKM values for dRNA-Seq data obtained from 736 

the middle of pea nodules were provided as an input, and all genes associated with 737 

proteins significantly upregulated in bacteroids compared to free-living cells (23) 738 

were specified as model tasks to prevent removal of the associated reactions during 739 

the pruning process.  740 

 741 

Phenotype MicroArrayTM analysis 742 

Carbon source utilization of Rlv3841 was assessed using the phenotype microarray 743 

technology (Biolog, Hayward, USA). A liquid culture of Rlv3841 was grown at 28 ºC 744 

in UMS media supplemented with 10 mM glucose, 10 mM ammonium chloride and a 745 

vitamin solution as previously described (30). Cells were spun down and washed 746 
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three times in UMS without addition of a carbon or nitrogen source. The optical 747 

density at 600 nM was then adjusted to 0.1 with UMS supplemented with 10 mM 748 

ammonium chloride and vitamins, and 100 ml of cell suspension were added to each 749 

well of the phenotype microarray plate. After overnight incubation without shaking at 750 

28 ºC, 10 ml of a 0.1 % (w/v) stock solution of 2,3,5-triphenyltetrazolium chloride in 751 

water were added to each well. Plates were then incubated in an Omega FluoStar 752 

plate reader with double orbital shaking at 500 rpm and the absorbance at 505 nm 753 

was measured every 15 min. Absorbance values were analyzed using the DuctApe 754 

software (97), and all carbon sources with an activity value higher than the water 755 

control were considered to support growth. For activity values close to the growth 756 

threshold, curves were manually inspected, and literature searches were performed 757 

to determine if the carbon source supports growth of R. leguminosarum. The full 758 

DuctApe output for the phenotype microarray analysis is available in Supplementary 759 

Data 4. 760 

 761 

Metabolomics data 762 

Metabolomics data were obtained in a previous study (40), where only values for 763 

metabolites relevant to the investigated metabolic pathways were published . The full 764 

metabolomics dataset is included as Supplementary Data 7. 765 

 766 

Sample preparation for RNA-Seq of rhizosphere bacteria 767 

For total RNA extraction from Rlv3841 in the pea rhizosphere, Pisum sativum cv. 768 

Avola seeds were surface sterilized and sown in sterilized boiling tubes with fine 769 

vermiculite and nitrogen-free rooting solution. Pea seeds were grown in the dark for 770 
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3 days and then transferred to a controlled environment room, where they were 771 

grown at 25 °C with a 16:8 h photoperiod for another 4 days. On day 7, 1 ml (108 772 

CFU/ml) of washed Rlv3841 cells was added near the root. At 7 days post 773 

inoculation, rhizobial cells were harvested from the rhizosphere as previously 774 

described (10). RNA was extracted for three biological replicates where the total 775 

RNA extracted from the pea rhizosphere of 16 boiling tubes was pooled for each 776 

replicate. Quality and quantity of the total RNA was assessed using Experion 777 

StdSens (Standard Sensitivity) and HighSens (High Sensitivity) analysis kits. Total 778 

RNA (3 mg per sample) was treated with the TURBO DNA-free kit (Invitrogen 779 

AM1907) as previously described (10). Depletion of genomic DNA was confirmed by 780 

performing a Qubit fluorometer double-stranded DNA broad range assay. Finally, the 781 

ribosomal RNA was depleted from the RNA sample using the Illumina Ribo-Zero 782 

rRNA removal kit - Gram-negative (MRZGN126) according to the manufacturer’s 783 

instructions. The rRNA-depleted mRNA was purified using the ZymoResearch RNA 784 

Clean & Concentrator 50. mRNA samples were used to generate barcoded cDNA 785 

libraries for multiplexing during sequencing using the Ion Total RNA-Seq kit v2 786 

(Thermo Fisher Scientific). Each barcoded cDNA library was quantified using the 787 

Agilent Bioanalyzer High Sensitivity DNA kit and diluted to a final concentration of 70 788 

pM. Equal volumes of the diluted cDNA libraries were pooled before loading on the 789 

IonChef for template preparation and chip loading. Finally, the chips were sequenced 790 

in an Ion Proton Semiconductor based sequencing platform (Thermo Fisher 791 

Scientific). The full dataset is available on the NCBI SRA database, BioProject 792 

number PRJNA748006. 793 

 794 
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Data analysis for RNA-Seq of rhizosphere bacteria 795 

RNA-Seq data was de-multiplexed based on valid barcodes and data for each library 796 

was downloaded in fastq format. The overall quality of the sequencing and the data 797 

was assessed based on the Torrent Browser suite sequencing run report summary. 798 

Data from each library was assessed using FastQC (Babraham Institute; 799 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and any remaining 800 

adapters and low-quality reads were filtered using cutadapt (98). The data for each 801 

library was mapped against the Rlv3841 genome using EDGE-pro (99) developed 802 

specifically for bacterial RNA-Seq data. EDGE-pro uses Bowtie2 to map the reads to 803 

the genome and calculates the frequencies per nucleotide. EDGE-pro calculates the 804 

number of reads and RPKM value for each gene feature in the genome including 805 

mRNA, rRNA, tRNA. The mapped reads from each library were visualized with the 806 

Integrative Genomics Viewer (100) for further analysis. 807 

 808 

dRNA-Seq data for nodule bacteria and bacteroids 809 

The dRNA-Seq data used for creation of the nodule bacteria and the bacteroid 810 

model were described previously (65) and are available on the NCBI SRA database, 811 

BioProject number PRJNA667846.  812 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


37 
 

References 813 

 814 

1.  Ågren GI, Wetterstedt JÅM, Billberger MFK. 2012. Nutrient limitation on 815 

terrestrial plant growth – modeling the interaction between nitrogen and 816 

phosphorus. New Phytol 194:953–960. 817 

2.  Udvardi M, Poole PS. 2013. Transport and metabolism in legume-rhizobia 818 

symbioses. Annu Rev Plant Biol 64:781–805. 819 

3.  Ledermann R, Schulte CCM, Poole PS. 2021. How rhizobia adapt to the 820 

nodule environment. J Bacteriol 203:e00539-20. 821 

4.  Poole P, Ramachandran V, Terpolilli J. 2018. Rhizobia: from saprophytes to 822 

endosymbionts. Nat Rev Microbiol 16:291–303. 823 

5.  Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull 824 

KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, 825 

Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, 826 

Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall 827 

K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, 828 

Parkhill J. 2006. The genome of Rhizobium leguminosarum has recognizable 829 

core and accessory components. Genome Biol 7:R34. 830 

6.  Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, 831 

Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, 832 

Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, 833 

Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, 834 

Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn 835 

ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, 836 

Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, 837 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


38 
 

Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh 838 

KC, Batut J. 2001. The composite genome of the legume symbiont 839 

Sinorhizobium meliloti. Science 293:668–672. 840 

7.  González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto 841 

A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-842 

Vides J, Dávila G. 2006. The partitioned Rhizobium etli genome: Genetic and 843 

metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci 844 

103:3834–3839. 845 

8.  Jiao J, Ni M, Zhang B, Zhang Z, Young JPW, Chan T-F, Chen WX, Lam H-M, 846 

Tian CF. 2018. Coordinated regulation of core and accessory genes in the 847 

multipartite genome of Sinorhizobium fredii. PLOS Genet 14:e1007428. 848 

9.  DiCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan 849 

TM, Galardini M, Fondi M. 2016. Metabolic modelling reveals the specialization 850 

of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat 851 

Commun 7:1–10. 852 

10.  Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS. 2011. 853 

Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet 854 

rhizospheres investigated by comparative transcriptomics. Genome Biol 855 

12:R106. 856 

11.  Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali 857 

C, diCenzo GC, Mengoni A. 2021. Nonadditive transcriptomic signatures of 858 

genotype-by-genotype interactions during the initiation of plant-rhizobium 859 

symbiosis. mSystems 6:e00974-20. 860 

12.  Pini F, East AK, Appia-Ayme C, Tomek J, Karunakaran R, Mendoza-Suárez 861 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


39 
 

M, Edwards A, Terpolilli JJ, Roworth J, Downie JA, Poole PS. 2017. Bacterial 862 

biosensors for in vivo spatiotemporal mapping of root secretion. Plant Physiol 863 

174:1289–1306. 864 

13.  Wheatley RM, Ford BL, Li L, Aroney STN, Knights HE, Ledermann R, East AK, 865 

Ramachandran VK, Poole PS. 2020. Lifestyle adaptations of Rhizobium from 866 

rhizosphere to symbiosis. Proc Natl Acad Sci 117:23823–23834. 867 

14.  Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A. 2017. Trade, 868 

diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Front 869 

Microbiol 8:2207. 870 

15.  Mendoza-Suárez MA, Geddes BA, Sánchez-Cañizares C, Ramírez-González 871 

RH, Kirchhelle C, Jorrin B, Poole PS. 2020. Optimizing Rhizobium-legume 872 

symbioses by simultaneous measurement of rhizobial competitiveness and N2 873 

fixation in nodules. Proc Natl Acad Sci 117:9822–9831. 874 

16.  Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, 875 

Eisen JA, Leach JE, Dangl JL. 2017. Research priorities for harnessing plant 876 

microbiomes in sustainable agriculture. PLOS Biol 15:e2001793. 877 

17.  DiCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, 878 

Mengoni A. 2019. Multidisciplinary approaches for studying rhizobium–legume 879 

symbioses. Can J Microbiol 65:1-33. 880 

18.  Nielsen J. 2017. Systems biology of metabolism. Annu Rev Biochem 86:245–881 

275. 882 

19.  Thiele I, Palsson B. 2010. A protocol for generating a high-quality genome-883 

scale metabolic reconstruction. Nat Protoc 5:93–121. 884 

20.  Orth JD, Thiele I, Palsson BO. 2010. What is flux balance analysis? Nat 885 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


40 
 

Biotechnol 28:245-248. 886 

21.  Blazier AS, Papin JA. 2012. Integration of expression data in genome-scale 887 

metabolic network reconstructions. Front Physiol 3:299. 888 

22.  Contador CA, Lo S-K, Chan SHJ, Lam H-M. 2020. Metabolic analyses of 889 

nitrogen fixation in the soybean microsymbiont Sinorhizobium fredii using 890 

constraint-based modeling. mSystems 5:e00516-19. 891 

23.  Schulte CCM, Borah K, Wheatley RM, Terpolilli JJ, Saalbach G, Crang N, de 892 

Groot DH, Ratcliffe RG, Kruger NJ, Papachristodoulou A, Poole PS. 2021. 893 

Metabolic constraints on nitrogen fixation by rhizobia in legume nodules. 894 

bioRxiv https://doi.org/10.1101/2021.02.16.431433. 895 

24.  Resendis-Antonio O, Hernández M, Salazar E, Contreras S, Batallar GM, 896 

Mora Y, Encarnación S. 2011. Systems biology of bacterial nitrogen fixation: 897 

high-throughput technology and its integrative description with constraint-898 

based modeling. BMC Syst Biol 5:120. 899 

25.  Zhao H, Li M, Fang K, Chen W, Wang J. 2012. In silico insights into the 900 

symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic 901 

reconstruction. PLoS One 7:e31287. 902 

26.  Yang Y, Hu X-P, Ma B-G. 2017. Construction and simulation of the 903 

Bradyrhizobium diazoefficiens USDA110 metabolic network: a comparison 904 

between free-living and symbiotic states. Mol BioSyst 13:607. 905 

27.  diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M. 2020. Genome-scale 906 

metabolic reconstruction of the symbiosis between a leguminous plant and a 907 

nitrogen-fixing bacterium. Nat Commun 11:1–11. 908 

28.  Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2016. KEGG: new 909 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


41 
 

perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 910 

45:353–361. 911 

29.  Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, 912 

Ong WK, Paley S, Subhraveti P, Karp PD. 2020. The MetaCyc database of 913 

metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 914 

48:D445–D453. 915 

30.  Wheatley RM, Ramachandran VK, Geddes BA, Perry BJ, Yost CK, Poole PS. 916 

2017. Role of O2 in the growth of Rhizobium leguminosarum bv. viciae 3841 917 

on glucose and succinate. J Bacteriol 199:e00572-16. 918 

31.  Ryu JY, Kim HU, Lee SY. 2019. Deep learning enables high-quality and high-919 

throughput prediction of enzyme commission numbers. Proc Natl Acad Sci 920 

116:13996–14001. 921 

32.  Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, Takeuchi R, Nomura W, 922 

Zhang Z, Mori H, Feist AM, Palsson BO. 2017. iML1515, a knowledgebase 923 

that computes Escherichia coli traits. Nat Biotechnol 35:904–908. 924 

33.  Machado D, Andrejev S, Tramontano M, Patil KR. 2018. Fast automated 925 

reconstruction of genome-scale metabolic models for microbial species and 926 

communities. Nucleic Acids Res 46:7542-7553. 927 

34.  Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin E 928 

V. 2021. COG database update: focus on microbial diversity, model 929 

organisms, and widespread  pathogens. Nucleic Acids Res 49:D274–D281. 930 

35.  Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, Bartell 931 

JA, Blank LM, Chauhan S, Correia K, Diener C, Dräger A, Ebert BE, 932 

Edirisinghe JN, Faria JP, Feist AM, Fengos G, Fleming RMT, García-Jiménez 933 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


42 
 

B, Hatzimanikatis V, van Helvoirt W, Henry CS, Hermjakob H, Herrgård MJ, 934 

Kaafarani A, Kim HU, King Z, Klamt S, Klipp E, Koehorst JJ, König M, 935 

Lakshmanan M, Lee DY, Lee SY, Lee S, Lewis NE, Liu F, Ma H, Machado D, 936 

Mahadevan R, Maia P, Mardinoglu A, Medlock GL, Monk JM, Nielsen J, 937 

Nielsen LK, Nogales J, Nookaew I, Palsson BO, Papin JA, Patil KR, Poolman 938 

M, Price ND, Resendis-Antonio O, Richelle A, Rocha I, Sánchez BJ, Schaap 939 

PJ, Malik Sheriff RS, Shoaie S, Sonnenschein N, Teusink B, Vilaça P, Vik JO, 940 

Wodke JAH, Xavier JC, Yuan Q, Zakhartsev M, Zhang C. 2020. MEMOTE for 941 

standardized genome-scale metabolic model testing. Nat Biotechnol 38:272–942 

276. 943 

36.  Bochner BR, Gadzinski P, Panomitros E. 2001. Phenotype microarrays for 944 

high-throughput phenotypic testing and assay of gene function. Genome Res 945 

11:1246–1255. 946 

37.  Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin 947 

JA. 2017. Reconstruction of the metabolic network of Pseudomonas 948 

aeruginosa to interrogate virulence factor synthesis. Nat Commun 8:14631. 949 

38.  Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, Feist 950 

AM, Palsson BØ. 2013. Genome-scale metabolic reconstructions of multiple 951 

Escherichia coli strains highlight strain-specific adaptations to nutritional 952 

environments. Proc Natl Acad Sci 110:20338–20343. 953 

39.  Blazier AS, Papin JA. 2019. Reconciling high-throughput gene essentiality 954 

data with metabolic network reconstructions. PLOS Comput Biol 15:e1006507. 955 

40.  Terpolilli JJ, Masakapalli SK, Karunakaran R, Webb IUC, Green R, Watmough 956 

NJ, Kruger NJ, Ratcliffe RG, Poole PS. 2016. Lipogenesis and redox balance 957 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


43 
 

in nitrogen-fixing pea bacteroids. J Bacteriol 198:2864–2875. 958 

41.  Jenior ML, Moutinho  Jr. TJ, Dougherty B V, Papin JA. 2020. Transcriptome-959 

guided parsimonious flux analysis improves predictions with metabolic 960 

networks in complex environments. PLOS Comput Biol 16:e1007099. 961 

42.  Rudrappa T, Czymmek KJ, Pare ́PW, Bais HP. 2008. Root-secreted malic acid 962 

recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. 963 

43.  Biedrzycki ML, Bais HP. 2009. Root secretions: from genes and molecules to 964 

microbial associations. J Exp Bot 60:1533–1534. 965 

44.  Jacoby RP, Martyn A, Kopriva S. 2018. Exometabolomic profiling of bacterial 966 

strains as cultivated using Arabidopsis root extract as the sole carbon source. 967 

Mol Plant Microbe Interact 31:803–813. 968 

45.  Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, 969 

Chakraborty R, Bowen BP, Karaoz U, Cadillo-Quiroz H, Garcia-Pichel F, 970 

Northen TR. 2015. Exometabolite niche partitioning among sympatric soil 971 

bacteria. Nat Commun 6:8289. 972 

46.  Jacoby RP, Kopriva S. 2019. Metabolic niches in the rhizosphere microbiome: 973 

new tools and approaches to analyse  metabolic mechanisms of plant-microbe 974 

nutrient exchange. J Exp Bot 70:1087–1094. 975 

47.  Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, 976 

Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL. 2018. 977 

Dynamic root exudate chemistry and microbial substrate preferences drive 978 

patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–979 

480. 980 

48.  Gaworzewska ET, Carlile MJ. 1982. Positive chemotaxis of Rhizobium 981 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


44 
 

leguminosarum and other bacteria towards root exudates from legumes and 982 

other plants. Microbiology 128:1179–1188. 983 

49.  Knee EM, Gong F-C, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, 984 

Bauer WD. 2001. Root mucilage from pea and its utilization by rhizosphere 985 

bacteria as a sole carbon source. Mol Plant-Microbe Interact 14:775–784. 986 

50.  Annie L, Magne Ø, Karine M, Marie-Christine P, Daniel LR. 2001. Fructose 987 

uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding 988 

sassette transport system. J Bacteriol 183:4709–4717. 989 

51.  Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF. 2012. Glycerol utilization 990 

by Rhizobium leguminosarum requires an ABC transporter and affects 991 

competition for nodulation. Microbiology 158:1369–1378. 992 

52.  Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS. 2009. 993 

Legumes regulate Rhizobium bacteroid development and persistence by the 994 

supply of branched-chain amino acids. Proc Natl Acad Sci 106:12477–12482. 995 

53.  Sanjuán-Pinilla JM, Muñoz S, Nogales J, Olivares J, Sanjuán J. 2002. 996 

Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation 997 

genes by NodD1 and luteolin. Arch Microbiol 178:36–44. 998 

54.  Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS, Ryan EM, Wang 999 

G, Ul-Hasan S, McDonald M, Yoshikuni Y, Malmstrom RR, Deutschbauer AM, 1000 

Dangl JL, Visel A. 2017. Genome-wide identification of bacterial plant 1001 

colonization genes. PLOS Biol 15:e2002860. 1002 

55.  Becerra-Rivera VA, Dunn MF. 2019. Polyamine biosynthesis and biological 1003 

roles in rhizobia. FEMS Microbiol Lett 366:fnz084. 1004 

56.  Cheng G, Karunakaran R, East AK, Munoz-Azcarate O, Poole PS. 2017. 1005 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


45 
 

Glutathione affects the transport activity of Rhizobium leguminosarum 3841 1006 

and is essential for efficient nodulation. FEMS Microbiol Lett 364:fnx045. 1007 

57.  Webb I, Xu J, Sanchez-Cañizares C, Karunakaran R, Ramachandran V, 1008 

Rutten P, East A, Huang W, Watmough N, Poole P. 2021. Regulation and 1009 

characterization of mutants of fixABCX in Rhizobium leguminosarum. Mol 1010 

Plant-Microbe Interact https://doi.org/10.1094/MPMI-02-21-0037-R. 1011 

58.  Fry J, Wood M, Poole PS. 2001. Investigation of myo-inositol catabolism in 1012 

Rhizobium leguminosarum bv. viciae and its effect on nodulation 1013 

competitiveness. Mol Plant-Microbe Interact 14:1016–1025. 1014 

59.  Yost CK, Rath AM, Noel TC, Hynes MF. 2006. Characterization of genes 1015 

involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. 1016 

Microbiology 152:2061–2074. 1017 

60.  Barbier T, Collard F, Zúñiga-Ripa A, Moriyón I, Godard T, Becker J, Wittmann 1018 

C, Van Schaftingen E, Letesson JJ. 2014. Erythritol feeds the pentose 1019 

phosphate pathway via three new isomerases leading to D-erythrose-4-1020 

phosphate in Brucella. Proc Natl Acad Sci 111:17815–17820. 1021 

61.  Patil KR, Nielsen J. 2005. Uncovering transcriptional regulation of metabolism 1022 

by using metabolic network topology. Proc Natl Acad Sci 102:2685–2689. 1023 

62.  Newman JD, Diebold RJ, Schultz BW, Noel KD. 1994. Infection of soybean 1024 

and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-1025 

aminoimidazole-4-carboxamide riboside. J Bacteriol 176:3286–3294. 1026 

63.  Ofaim S, Sulheim S, Almaas E, Sher D, Segrè D. 2021. Dynamic allocation of 1027 

carbon storage and nutrient-dependent exudation in a revised genome-scale 1028 

model of Prochlorococcus. Front Genet 12:586293. 1029 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


46 
 

64.  Vasse J, F  de B, Camut S, Truchet G. 1990. Correlation between 1030 

ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa 1031 

nodules. J Bacteriol 172:4295–4306. 1032 

65.  Rutten PJ, Steel H, Hood GA, Ramachandran VK, McMurtry L, Geddes B, 1033 

Papachristodoulou A, Poole PS. 2021. Multiple sensors provide spatiotemporal 1034 

oxygen regulation of gene expression in a Rhizobium-legume symbiosis. 1035 

PLOS Genet 17:e1009099. 1036 

66.  Fournier J, Timmers ACJ, Sieberer BJ, Jauneau A, Chabaud M, Barker DG. 1037 

2008. Mechanism of infection thread elongation in root hairs of Medicago 1038 

truncatula and dynamic interplay with associated rhizobial colonization. Plant 1039 

Physiol 148:1985–1995. 1040 

67.  Ronson CW, Lyttleton P, Robertson JG. 1981. C(4)-dicarboxylate transport 1041 

mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc 1042 

Natl Acad Sci 78:4284–8. 1043 

68.  Prell J, Bourdés A, Karunakaran R, Lopez-Gomez M, Poole P. 2009. Pathway 1044 

of γ-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role 1045 

in symbiosis. J Bacteriol 191:2177–2186. 1046 

69.  Poole PS, Blyth A, Reid CJ, Walters K. 1994. Myo-inositol catabolism and 1047 

catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 1048 

140:2787–2795. 1049 

70.  Oono R, Denison RF, Kiers ET. 2009. Controlling the reproductive fate of 1050 

rhizobia: how universal are legume sanctions? New Phytol 183:967–979. 1051 

71.  Mulley G, White JP, Karunakaran R, Prell J, Bourdes A, Bunnewell S, Hill L, 1052 

Poole PS. 2011. Mutation of GOGAT prevents pea bacteroid formation and N2 1053 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


47 
 

fixation by globally downregulating transport of organic nitrogen sources. Mol 1054 

Microbiol 80:149–167. 1055 

72.  Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, 1056 

Mauchline TH, Prell J, Skeffington A, Poole PS. 2009. Transcriptomic analysis 1057 

of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum 1058 

sativum and Vicia cracca. J Bacteriol 191:4002–14. 1059 

73.  Finan TM, Wood JM, Jordan DC. 1983. Symbiotic properties of C4-1060 

dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 1061 

154:1403–1413. 1062 

74.  Mitsch MJ, DiCenzo GC, Cowie A, Finan TM. 2018. Succinate transport is not 1063 

essential for symbiotic nitrogen fixation by Sinorhizobium meliloti or Rhizobium 1064 

leguminosarum. Appl Environ Microbiol 84:e01561-17. 1065 

75.  Johnson G V, Evans HJ, Ching T. 1966. Enzymes of the glyoxylate cycle in 1066 

rhizobia and nodules of legumes. Plant Physiol 41:1330–1336. 1067 

76.  Green RT, East AK, Karunakaran R, Downie JA, Poole PS. 2019. 1068 

Transcriptomic analysis of Rhizobium leguminosarum bacteroids in 1069 

determinate and indeterminate nodules. Microb Genomics 5:e000254. 1070 

77.  Yadav, Vashishat, Kuykendall, Hashem. 1998. Biochemical and symbiotic 1071 

properties of histidine‐requiring mutants of Rhizobium leguminosarum biovar 1072 

trifolii. Lett Appl Microbiol 26:22–26. 1073 

78.  Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. 2019. Current status and 1074 

applications of genome-scale metabolic models. Genome Biol 20:121. 1075 

79.  Kim WJ, Kim HU, Lee SY. 2017. Current state and applications of microbial 1076 

genome-scale metabolic models. Curr Opin Syst Biol 2:10-18. 1077 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


48 
 

80.  Machado D, Herrgård M. 2014. Systematic evaluation of methods for 1078 

integration of transcriptomic data into constraint-based models of metabolism. 1079 

PLoS Comput Biol 10:e1003580. 1080 

81.  Liu Y, Beyer A, Aebersold R. 2016. On the dependency of cellular protein 1081 

levels on mRNA Abundance. Cell 165:535–550. 1082 

82.  Dunn MF. 2015. Key roles of microsymbiont amino acid metabolism in 1083 

rhizobia-legume interactions. Crit Rev Microbiol 41:411–451. 1084 

83.  Griesemer M, Kimbrel JA, Zhou CE, Navid A. 2018. Combining multiple 1085 

functional annotation tools increases coverage of metabolic annotation. BMC 1086 

Genomics 19:948. 1087 

84.  Wang H, Marcišauskas S, Sánchez BJ, Domenzain I, Hermansson D, Agren 1088 

R, Nielsen J, Kerkhoven EJ. 2018. RAVEN 2.0: A versatile toolbox for 1089 

metabolic network reconstruction and a case study on Streptomyces 1090 

coelicolor. PLOS Comput Biol 14:e1006541. 1091 

85.  Henry CS, Dejongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. 2010. 1092 

High-throughput generation, optimization and analysis of genome-scale 1093 

metabolic models. Nat Biotechnol 28:977–982. 1094 

86.  Price MN, Deutschbauer AM, Arkin AP. 2020. GapMind: Automated annotation 1095 

of amino acid biosynthesis. mSystems 5:e00291-20. 1096 

87.  Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole 1097 

PS, Finan TM. 2006. Mapping the Sinorhizobium meliloti 1021 solute-binding 1098 

protein-dependent transportome. Proc Natl Acad Sci 103:17933-17938. 1099 

88.  Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. 2017. TransportDB 2.0: a 1100 

database for exploring membrane transporters in sequenced genomes from all 1101 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


49 
 

domains of life. Nucleic Acids Res 45:D320–D324. 1102 

89.  Orgambide GG, Huang Z-H, Gage DA, Dazzo FB. 1993. Phospholipid and 1103 

fatty acid compositions ofRhizobium leguminosarum biovartrifolii ANU843 in 1104 

relation to flavone-activated pSymnod gene expression. Lipids 28:975–979. 1105 

90.  Théberge M-C, Prévost D, Chalifour F-P. 1996. The effect of different 1106 

temperatures on the fatty acid composition of Rhizobium leguminosarum bv. 1107 

viciae in the faba bean symbiosis. New Phytol 134:657–664. 1108 

91.  diCenzo GC, Benedict AB, Fondi M, Walker GC, Finan TM, Mengoni A, 1109 

Griffitts JS. 2018. Robustness encoded across essential and accessory 1110 

replicons of the ecologically versatile bacterium Sinorhizobium meliloti. PLoS 1111 

Genet 14:e1007357. 1112 

92.  Breedveld MW, Miller KJ. 1994. Cyclic beta-glucans of members of the family 1113 

Rhizobiaceae. Microbiol Rev 58:145-161. 1114 

93.  Xavier JC, Patil KR, Rocha I. 2017. Integration of biomass formulations of 1115 

genome-scale metabolic models with experimental data reveals universally 1116 

essential cofactors in prokaryotes. Metab Eng 39:200-208. 1117 

94.  Lodwig EM, Leonard M, Marroqui S, Wheeler TR, Findlay K, Downie JA, Poole 1118 

PS. 2005. Role of polyhydroxybutyrate and glycogen as carbon storage 1119 

compounds in pea and bean bacteroids. Mol Plant-Microbe Interact 18:67–74. 1120 

95.  Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, 1121 

Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V, Magnusdóttir S, Ng 1122 

CY, Preciat G, Žagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, 1123 

Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Valcarcel L V., 1124 

Apaolaza I, Ghaderi S, Ahookhosh M, Ben Guebila M, Kostromins A, 1125 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


50 
 

Sompairac N, Le HM, Ma D, Sun Y, Wang L, Yurkovich JT, Oliveira MAP, 1126 

Vuong PT, El Assal LP, Kuperstein I, Zinovyev A, Hinton HS, Bryant WA, 1127 

Aragón Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M, 1128 

Saunders MA, Maranas CD, Lewis NE, Sauter T, Palsson BØ, Thiele I, 1129 

Fleming RMT. 2019. Creation and analysis of biochemical constraint-based 1130 

models using the COBRA Toolbox v.3.0. Nat Protoc 14:639–702. 1131 

96.  Glenn AR, Dilworth MJ. 1981. Oxidation of substrates by isolated bacteroids 1132 

and free-living cells of Rhizobium leguminosarum 3841. Microbiology 126:243–1133 

247. 1134 

97.  Galardini M, Mengoni A, Biondi EG, Semeraro R, Florio A, Bazzicalupo M, 1135 

Benedetti A, Mocali S. 2014. DuctApe: A suite for the analysis and correlation 1136 

of genomic and OmniLogTM Phenotype Microarray data. Genomics 103:1–10. 1137 

98.  Martin M. 2011. Cutadapt removes adapter sequences from high-throughput 1138 

sequencing reads. EMBnet.journal 17:10-12. 1139 

99.  Magoc T, Wood D, Salzberg SL. 2013. EDGE-pro: Estimated degree of gene 1140 

expression in prokaryotic genomes. Evol Bioinform Online 9:127–136. 1141 

100.  Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, 1142 

Mesirov JP. 2011. Integrative genomics viewer. Nat Biotechnol 29:24–26.  1143 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


51 
 

Data availability 1144 

All data need to evaluate the conclusions in this paper are present in the paper 1145 

and/or the Supplementary Materials. RNA-Seq data for Rlv3841 in the pea 1146 

rhizosphere are available on the NCBI SRA database, BioProject number 1147 

PRJNA748006. All code is available on Github 1148 

(https://github.com/CarolinSchulte/Rlv3481-lifestyles). 1149 

 1150 

Acknowledgements 1151 

This work was supported by funding from the Biotechnology and Biological Sciences 1152 

Research Council (BBSRC) [grant numbers BB/M011224/1, BB/R017859/1, 1153 

BB/T001801/1 and BB/T006722/1]. C.C.M.S. is supported by the Clarendon Fund 1154 

(Oxford University) and the Keble College De Breyne Scholarship. A.P. was funded 1155 

in part by the Engineering and Physical Sciences Research Council (EPSRC) [grant 1156 

number EP/M002454/1]. 1157 

 1158 

Author contributions 1159 

Conceptualization: CCMS, AP, PSP 1160 

Methodology: CCMS, AP, PSP 1161 

Formal analysis: CCMS, VKR 1162 

Investigation: CCMS, VKR, AP, PSP 1163 

Visualization: CCMS 1164 

Supervision: AP, PSP 1165 

Writing—original draft: CCMS 1166 

Writing—review & editing: CCMS, VKR, AP, PSP 1167 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


 52 

Supplementary Data 

Supplementary Data 1: sbml file of iCS1224 

Supplementary Data 2: Excel file of iCS1224 

Supplementary Data 3: MEMOTE report for iCS1224 

Supplementary Data 4: Phenotype microarray data for Rlv3841 

Supplementary Data 5: RNA-Seq data for Rlv3841 in the pea rhizosphere 

Supplementary Data 6: Rhizosphere model of Rlv3841 

Supplementary Data 7: Metabolomics data 

Supplementary Data 8: Nodule bacteria model of Rlv3841 

Supplementary Data 9: Bacteroid model of Rlv3841 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454262doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454262


 53 

Table 1: Properties of iCS1224. 

 

Feature Value 

Genes 1224 

Metabolites 984 

Unique EC identifiers 603 

Reactions 1257 

Metabolic reactions 913 

Gene-associated metabolic reactions 897 

Transport reactions 162 

Gene-associated transport reactions 142 

Sink reactions 155 

Demand reactions 15 

Other reactions (e.g. DNA synthesis, 

protein synthesis, biomass objective function) 

12 
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Fig. 1: Reconstruction of a genome-scale model for Rhizobium leguminosarum 

bv. viciae 3841. A: Reconstruction process for iCS1224 using automated 

reconstruction, template-based reconstruction, and data-based curation. B: Sources 

for the 913 metabolic reactions in iCS1224. Numbers indicate how many reactions 

from KEGG, MetaCyc or the template-based reconstruction were included in the final 

model, with numbers in the overlapping areas indicating reactions that were present 

in multiple draft reconstructions. C: Classification of the reactions in iCS1224.
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Fig 2. Validation of iCS1224. A: Table showing the agreement between carbon 

source utilization experimentally measured with phenotype microarrays and 

predicted by iCS1224. B: Table showing the agreement between gene essentiality 

determined by insertion sequencing (13, 30) and predicted by iCS1224. C: 

Comparison of metabolic fluxes determined by 13C metabolic flux analysis for 

Rlv3841 grown on succinate (40) with flux rates predicted by iCS1224. For 

experimental data, symbols and bars indicate mean ± SD. Note the error bars are 
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too small to be visible for most data points. For in silico data, symbols represent the 

flux rate predicted by flux balance analysis, with lines indicating upper and lower 

bounds for each flux determined by flux variability analysis with at least 95% of the 

optimum flux through the biomass objective function. Labels on the x axis indicate 

the name of the reaction as reported in (40) (in bold), as well as the reaction 

identifier in the model. 
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Fig. 3: Approach for generating lifestyle-specific models for Rhizobium leguminosarum bv. viciae. Based on iCS1224,  

transcriptome, gene essentiality and proteome data specific to a certain lifestyle were used to inform the extraction of context- 

specific models for the rhizosphere, nodule bacteria and nitrogen-fixing bacteroids. Boundary conditions were defined based on  

metabolome data and/or literature information.
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Fig. 4: Metabolism of Rhizobium leguminosarum in the pea rhizosphere. A 

rhizosphere-specific model was extracted from iCS1224 using the RIPTiDe algorithm 

with RNA-Seq and gene essentiality data for R. leguminosarum in the rhizosphere of 

pea plants. A: Schematic representation of the main pathways predicted to be active 
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in the rhizosphere-specific model. Compounds predicted to be taken up are indicated 

in bold green. Note that the magnitude of flux is not indicated in this summary map. 

B: Bar graph showing the uptake rates of metabolites predicted to be taken up from 

pea root exudate. Absolute flux values for the exchange reactions were normalized 

by flux through the biomass reaction in each sample. Only metabolites with non-zero 

median uptake for the 500 samples of the contextualized model are shown. Uptake 

of ions and cofactors has been omitted for clarity. Bars and lines indicate median 

and interquartile range, respectively. 
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Fig. 5: Reporter metabolites in different rhizospheres. Reporter metabolites were calculated using microarray data for 

Rhizobium leguminosarum bv. viciae 3841 in the rhizosphere of pea (A), alfalfa (B), and sugar beet (C) compared to free living cells 

grown in minimal media with glucose and ammonia (10). The heatmaps show the negative decimal logarithm of the P value for 

those metabolites that were associated with significant (P<0.05) transcriptional changes among genes upregulated in the 

rhizosphere. [c0] and [e0] indicate cytosolic and extracellular metabolites, respectively.
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Fig. 6: Metabolism of undifferentiated nodule bacteria and nitrogen-fixing bacteroids. Maps showing schematic 

representations of the main pathways predicted to be active in undifferentiated nodule bacteria (A) and nitrogen-fixing bacteroids 

(B). Compounds predicted to be taken up are indicated in bold green. Note that the magnitude of flux is not indicated in these 

summary maps. 
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