Crocosphaera as a major consumer of fixed nitrogen despite its capability of nitrogen fixation

Takako Masuda¹,²*, Keisuke Inomura³#, Taketoshi Kodama¹,⁴, Takuhei Shiozaki¹,⁵, Satoshi Kitajima¹,⁶, Gabrielle Armin³, Takato Matsui⁷, Koji Suzuki⁷, Shigenobu Takeda¹,⁸, Ondřej Prášil², Ken Furuya¹,⁹

¹Department of Aquatic Bioscience, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657 Japan
²Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 01 Třeboň, Czech Republic
³Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 02882, USA
⁴Present address: Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura, Yokohama, 236-8648, Japan
⁵Present address: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
⁶Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Taira-machi, Nagasaki, 851-2213, Japan
⁷Graduate School of Environmental Science/Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
⁸Present address: Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo, Nagasaki, 852-8521, Japan
⁹Present address: Graduate School of Science and Engineering, Soka University, Tangi, Hachioji, Tokyo, 192-8577, Japan
Running title: Marine N₂ fixer *Crocosphaera* may be a combined N consumer

Authors contributed equally to the study

*Corresponding author:

Email address: takako@alga.cz (T. Masuda)
Abstract

Crocosphaera watsonii (hereafter *Crocosphaera*) is a key nitrogen (N) fixer in the ocean, but its ability to consume combined N sources is still unclear. Using *in situ* microcosm incubations with an ecological model, we show that *Crocosphaera* has high competitive capability both under low and moderately high combined N concentrations. In field incubations, *Crocosphaera* accounted for the highest consumption of ammonium and nitrate, followed by pico-eukaryotes. The model analysis shows that cells have a high ammonium uptake rate (~7 mol N (mol N)$^{-1}$ d$^{-1}$ at the maximum), which allows them to compete against pico-eukaryotes and non-diazotrophic cyanobacteria when combined N is sufficiently available. Even when combined N is depleted, their capability of nitrogen fixation allows higher growth rates compared to potential competitors. These results suggest the high fitness of *Crocosphaera* in combined N limiting, oligotrophic oceans, and thus heightens its potential significance in its ecosystem and in biogeochemical cycling.
Introduction

Marine phytoplankton contribute about one half of the global net primary production and play a key role in regulating global biogeochemical cycles (1). Since phytoplankton are biochemically, metabolically, and ecologically diverse (2-4), understanding the contribution of different phytoplankton groups to ecosystem functioning is central to the precise estimation of the global carbon (C) and nitrogen (N) budget and in predicting the biogeochemical impact of future environmental changes (5).

In the oligotrophic subtropical gyres, combined N (defined as N covalently bonded to one or more elements other than N (6)) limits primary production and controls planktonic community composition (7-10). Therefore, N₂ fixing microorganisms (diazotrophs) are important as a source of combined N in oligotrophic ecosystems (11, 12). In the subtropic oligotrophic ocean, the unicellular diazotroph, Crocosphaera watsonii (2.5 – 6 µm), is widely distributed (10, 13-16) in addition to pico-sized (<3 µm) cyanobacteria (e.g., Prochlorococcus and Synechococcus) and pico-eukaryotes (17-19). Recent studies reveal Crocosphaera watsonii’s ability to assimilate dissolved inorganic nitrogen (DIN), such as ammonium (NH₄⁺) and nitrate (NO₃⁻), at a nanomolar level and keep fixing N₂ (20, 21). Model results indicate using DIN enables Crocosphaera to increase their abundance and expand their niche (22). These studies proposed that unicellular diazotrophs can be competitors with non-diazotrophic phytoplankton for combined N. However, how Crocosphaera competes for combined N is poorly evaluated. In this study, we combine an in situ microcosm experiment with N addition at the nanomolar level and model (23) to evaluate the competitiveness of Crocosphaera in a N limiting environment.

Results
Summary of the experiment. We carried out five nitrogen (N) and phosphorus (P)-addition bioassays (M1 to M5) at a station in the subtropical Northwestern Pacific (12°N, 135°E) from 6 to 25 June 2008 during the MR08-02 cruise on the R/V MIRAI. Nutrient concentrations initially were less than 36 nM for ammonium (NH$_4^+$), 7 nM for nitrate plus nitrite (NO$_3^-$ + NO$_2^-$) and 64 nM for phosphorus (PO$_4^{3-}$) (24). The physical and biological parameters at the initial condition of the experiments are described in (24). Hydrography and biochemistry at the station are described in (25). Although we performed pre-filtration with a 1 µm-filter to eliminate the effect of grazing, water samples contained plankton with up to ~5 µm in size.

Nutrient uptake and fate of enriched DIN. For 3 days of incubation, the phytoplankton community consumed NH$_4^+$ entirely at the end, while NO$_3^-$ was not always consumed completely (Fig. 1, Fig. S1). Estimated biomass explains about half of consumed combined N sources (Figs. 1, 2A), possibly due to luxury uptake (26, 27).

![Fig. 1 Temporal change in NH$_4^+$ and NO$_3^-$ concentrations of Ex. M3. (A) NH$_4^+$ concentration in the NH$_4^+$ treatment exponentially decreased during the experiment down to the detection limit of 6 nM on day 3. (B) NO$_3^-$ concentrations in the NO$_3^-$ treatment exponentially decreased during the experiment, but enriched NO$_3^-$ was not always entirely consumed. Error](https://doi.org/10.1101/2021.07.28.454264)
bar shows a standard deviation of triplicate. Temporal change in Urea-N concentration is shown in Fig. S2.

The greatest portion of estimated C and N in biomass were found in *Crocosphaera* (39-93% in all N addition incubations) followed by pico-eukaryotes (5-55% in N addition incubations) (Fig. 2A, Fig. S3). Although the origin of water mass changed from oligotrophic-water to mixed-water between experiments (Exs.) M1-M3 and M4-M5 (25), with more *Crocosphaera* in cell density at the latter environment (Table S1), the dominance of *Crocosphaera* as a C and N biomass was observed from all the experiments. N derived from N$_2$ fixation was not always sufficient to support the N demand of *Crocosphaera*, especially in N amendment (Fig. S4). Estimated N$_2$ fixation supported 0.5 – 12.7% of N demand of *Crocosphaera* in control and 0.5 – 11.6% in NH$_4^+$ treatment (Fig. S4), suggesting that *Crocosphaera* consumed amended N sources. Assimilation of combined nitrogen (NH$_4^+$ and NO$_3^-$), together with N$_2$ fixation by *Crocosphaera*, has been reported earlier (20, 21). Although enriched 100 nM NH$_4^+$ was completely consumed (< 6 nM; detection limit, on day 3), increases in N-biomass of non-diazotrophs for 3 days were limited to up to 58 nmol L$^{-1}$, again suggesting *Crocosphaera* took up combined nitrogen.
Fig. 2 (A) N in biomass in each treatment and its contribution of each phytoplankton group of experiment M3. (B) Contribution to total carbon C in biomass as a function of the contribution of NH$_4^+$ - N biomass for each phytoplankton group. (C) Contribution to total carbon C in biomass as a function of the contribution of NO$_3^-$ - N biomass for each phytoplankton group. Each circle shows data from a different day, and the size of the dots represents the total C in biomass (nmol C L$^{-1}$). Pro; Prochlorococcus, Syn; Synechococcus, Cro; Crocosphaera, PicoE; pico-eukaryotes.

Model analysis of the data. To quantitatively interpret the observed data, we used a simple model of the cellular growth, which is based on the uptake of NH$_4^+$ and NO$_3^-$ (see Methods).
We used the data from experiment M3 since it shows the clearest trends with low initial nutrient concentrations. The model captured the overall trend of the transition of cellular N (Fig. 3) based on the available nutrient (Fig. S5). The parameterization of the model reveals high rates of N uptake by *Crocosphaera*. Especially, we used about 7 (mol N (mol N)$^{-1}$ d$^{-1}$) for maximum NH$_4^+$ uptake to represent the data, which shows high combined-N uptake compared to other phytoplankton. Specifically, such parameterization was needed to reproduce the rapid growth of *Crocosphaera* under NH$_4^+$ added case between day 0 and day 1. The predicted maximum NO$_3^-$ uptake rate for *Crocosphaera* is also higher than for other phytoplankton, which is supported by *Crocosphaera*’s faster growth with NO$_3^-$ addition.

Fig. 3 Simulated transition of cellular N with nutrient addition compared with data. (A)(B) NH$_4^+$ added case. (C)(D) NO$_3^-$ added case. Croco: *Crocosphaera*. Other: other phytoplankton. Data are from experiment M3.
To test the competitiveness of *Crocosphaera*, we simulated a simple ecological situation. Here, we simulate zooplankton with Kill the Winner Theory (KWT) (28), which is based on a commonly observed active prey-switching behavior of zooplankton (29-31). The result shows the high competitiveness of *Crocosphaera* both under high and low nutrient concentrations. Under high nutrient concentration, *Crocosphaera* may dominate other phytoplankton due to the high rate of nutrient uptake (Fig. 4A, S6B). However, under extremely low nutrient conditions (NH$_4^+$ and NO$_3^-$ are both at 1 nmol L$^{-1}$), *Crocosphaera* is slightly outcompeted (Fig. 4B, S6B). This is due to the relatively high half-saturation constant for NH$_4^+$, which is manifested by the sudden decrease in growth rate with a drop in NH$_4^+$ under NH$_4^+$ addition (Fig. 3A, S5A). However, this relationship flips if we consider the effect of N$_2$ fixation, which maintains their growth rates at a higher level rather than relying on external N under N depletion (Fig. 4C, S6C). These results suggest that possession of nitrogenase (an enzyme complex involved in N$_2$ fixation) allows for *Crocosphaera*'s survival under low nutrient environments.

![Fig. 4 Simulated transition of cellular N in a simple ecosystem model for three different scenarios. (A) The concentrations for NH$_4^+$ and NO$_3^-$ are both 100 nmol L$^{-1}$ (B) The concentrations for NH$_4^+$ and NO$_3^-$ are both 1 nmol L$^{-1}$. In only (C) *Crocosphaera* may acquire N via N$_2$ fixation; in (A) and (B) the effect of N$_2$ fixation is neglected. Croco: *Crocosphaera*. Other: other phytoplankton. Parameters are based on NH$_4^+$ added case.](https://doi.org/10.1101/2021.07.28.454264)
Our study shows high uptake of N by *Crocosphaera* under relatively high N concentration. The results counter the general image of *Crocosphaera* since it is mostly known as a diazotroph and is considered to be a provider of N to the environment. Rather, our result supports more recent studies, where *Crocosphaera* does not increase the productivity of other phytoplankton (32) or even compete with other species over combined N (22). Surprisingly, our study even shows higher maximum uptake rates of NH$_4^+$ and NO$_3^-$, which allow its dominance just by uptake of combined N. When nitrogen concentration is extremely low, they could be outcompeted in N uptake, but their N$_2$ fixation allows maintaining *Crocosphaera* biomass at a certain level, which can still be higher than those of non-diazotrophic phytoplankton. This high consumption of NO$_3^-$ may differ from UCYN-A (15, 33-35), which keeps fixing nitrogen under high NO$_3^-$ availability (36, 37), leading to their unique niche acquisition. These results suggest that *Crocosphaera* has high competitiveness under both low and high nutrients.

Despite that, we generally do not observe the oligotrophic ocean completely dominated by *Crocosphaera*. One reason might be the grazing selection. *Crocosphaera* is a unicellular cyanobacterium a few microns to 6 µm in diameter (38), and its tight coupling with predators is reported recently (39). The new production of *Crocosphaera* is estimated to support up to 400% of C demand of the main grazers, and the grazing rates of the main predator *Protoperidinium* were found to be nearly equivalent to growth rates of *Crocosphaera* (39). On the other hand, its potential competitor, *Trichodesmium*, a major N$_2$ fixer in the ocean, is reported to produce a toxin (40-42), and creates large colonies of ~104 cells (43), potentially protecting themselves from grazing. Another reason might be the growth limitation by other nutrients such as P and Fe. Although there are some reports that *Crocosphaera* shows adaptation for low P and low Fe, their relative fitness to such low P or low Fe environments compared to other organisms has not been quantified. Since having nitrogenase enzymes require a high concentration of Fe, non-nitrogen fixers, such as *Prochlorococcus* and
Synechococcus, may have lower Fe requirements and are more adapted to Fe depletion. Also, Crocosphaera does not seem to fully utilize sulpholipid, which would save P use, as opposed to other cyanobacteria, such as Synechococcus (44, 45), and thus may not compete strongly under P limitation.

At the same time, it is largely possible that Crocosphaera dominates at some regions in the oligotrophic ocean given its high competitiveness under N limitation, which is the characteristic of the oligotrophic ocean (7, 46). For example, a study of flow cytometry shows a high abundance of Crocosphaera-like cells in a wide region of the North Pacific (47), where the abundance of Trichodesmium seems limited (48). Also, a recent study shows multiple gene copies of Trichodesmium (up to ~700 gene copied per cell) (49), which would overestimate their abundance (50). Given these factors and our analysis showing their high fitness to both low and high nitrogen concentration, it is possible that we are still underestimating the relative abundance and role of Crocosphaera in global biogeochemical cycling.

Materials and methods

Experimental setup and sample collection. The dataset presented herein originates from an experimental setup described in (24). Briefly, we carried out five macro-nutrient (N and P)-addition bioassays (M1 to M5) using natural phytoplankton assemblages collected at a station in the subtropical Northwestern Pacific (12°N, 135°E) from 6-25 June 2008 during the MR08-02 cruise on the R/V MIRAI. For macro-nutrient bioassays, we distributed pre-filtered seawater from 10 m depth into 4-liter polycarbonate bottles. We performed three treatments with 100 nM addition of N as NaNO₃, NH₄Cl, or urea, and one treatment with 10 nM of NaH₂PO₄. Our control was without nutrient addition. Bottles were incubated on deck for three days with daily sample harvest in flow-through seawater tanks covered with a neutral density screen to attenuate light intensity to 50% of its corresponding surface value.
Macro-nutrient and iron concentrations. Concentrations of NO$_3^-$+NO$_2^-$ (N + N), NH$_4^+$, Soluble Reactive Phosphorus (SRP), and urea were measured using a high-sensitivity colorimetric approach with an AutoAnalyzer II (Technicon) and Liquid Waveguide Capillary Cells (World Precision Instruments, USA) as outlined (51). We analyzed urea concentrations using the diacetyl monoxime method (52). Detection limits of NO$_3^-$ + NO$_2^-$, NH$_4^+$, and SRP were 3, 6, and 3 nM, respectively.

Flow cytometry. Flow-cytometry (FCM) identified *Prochlorococcus, Synechococcus*, pico-eukaryotes, and *Crocosphaera* based on cell size and chlorophyll- or phycoerythrin-fluorescence. Aliquots of 4.5 mL were preserved in glutaraldehyde (1% final concentration), flash-frozen in liquid N$_2$, and stored at -80°C until analysis on land by flow cytometry (PAS-III, Partec, GmbH, Münster, Germany) equipped with a 488 nm argon-ion excitation laser (100 mW). We recorded forward- and side-angle scatter (FSC and SSC), red fluorescence (>630 nm, FL3), and orange fluorescence (570–610 nm, FL2). FloMax® (Partec, GmbH, Münster, Germany) distinguished *Synechococcus, Prochlorococcus, Crocosphaera*, and pico-eukaryotes based on their auto-fluorescence properties and their size.

Gene analysis. We collected DNA samples from each treatment of the Fe addition bioassay and collected aliquots of 0.5 to 1.0 L of sample on 0.2 µm SUPOR® polyethersulfone membrane filters, which we then placed in sterile tubes containing glass beads, frozen in liquid N$_2$, and stored at -80°C until further analysis. DNA was extracted according to (53) to determine the abundance of *Crocosphaera watsonii* by quantitative PCR (qPCR) using a 5’ nuclease assay as described in (54).
Quantitative PCR showed that cell densities of FCM-identified *Crocosphaera* were significantly, positively correlated with *nifH* gene copies used to quantify the proportion of *Crocosphaera*, indicating that *nifH* abundance accounted for 68% of the variation in FCM-identified *Crocosphaera* ($r^2 = 0.463$, $n = 48$, $p=0.001$, Pearson Product Moment correlation). Therefore, this study treated FCM-identified *Crocosphaera* as diazotroph *Crocosphaera*. Cell abundance estimated by qPCR was 0.63 ± 0.23 fold lower than those measured by FCM.

Nitrogen fixation. To measure *in situ* N$_2$ fixation activity, we used the acetylene reduction assay of (55, 56). We dispensed a total of 550 milliliter bioassay samples into 1200 mL HCl–rinsed glass PETG bottles with 6 replicates and sealed with butyl rubber stoppers. Aliquots of 120 mL of acetylene (99.9999% (v:v), Kouatsu Gas Kogyo, Japan) were injected through the stopper by replacing the same volume of headspace. After 24 h in the on-deck flow-through seawater tanks, we analyzed ethylene concentrations by converting the ethylene to fixed nitrogen with a molar ratio of 4:1 (57).

Cellular C and N estimation. We used a conversion factor of 235 fg Cμm3 for *Prochlorococcus*, *Synechococcus* and *Crocosphaera* (58) to estimate cellular carbon content. For picoeukaryotes, we represented cell volume by converting it into carbon per cell, using a modified Strathmann equation (58, 59):

$$\log C(pg/cell) = 0.94 \times \log Vol(\mu m^3) - 0.6.$$

Then, using an earlier reported C:N ratio (C:N ratio = 9.1 for *Prochlorococcus*, 8.6 for *Synechococcus*, 8.7 for *Crocosphaera*, 6.6 for picoeukaryotes), we converted the cellular C content into cellular N (21, 60, 61).
Statistical analysis. Phytoplankton cell densities of each bioassay were first compared between treatments using repeated measurements Analysis of Variance (RM-ANOVA) with nutrient treatments as a between-subjects factor (5 levels) and time (4 levels) as the within-subjects factor. Treatment effects were considered significant if p < 0.05. Then, means between five treatments were compared by post hoc Turkey test (n = 3 replicates per treatment throughout, degrees of freedom = 40).

Quantitative model of microbial growth. To quantitatively analyze the fitness of *Crocosphaera* under N limiting conditions, we ran two simulations. One was to represent the incubation experiment to extract parameters manually and the other was the simple ecosystem model to simulate their competitiveness under different nutrient concentrations and scenarios. The list of parameters and used values are in Table S2 and S3, respectively.

Simulation of the incubation experiment. We used the following equations for the growth of phytoplankton to represent the field incubation experiment:

\[
\frac{dN_i}{dt} = \mu_i N_i - m_i N_i \tag{eq. 1}
\]

where \(N_i\) (nmol L\(^{-1}\)) is the cellular nitrogen concentration of phytoplankton \(i\) (\(i = \text{Cro, Oth: *Crocosphaera* and other phytoplankton, respectively}\)) per volume water, \(t\) (d) is time, \(\mu_i\) (d\(^{-1}\)) is the growth rate of phytoplankton \(i\), and \(m_i\) (d\(^{-1}\)) is a mortality rate of phytoplankton \(i\).

To represent the growth of *Crocosphaera* and other phytoplankton, we used simple growth equations based on the sum of Monod kinetics (62) for each nutrient:

\[
\mu_i = V_{\text{Max},i}^{\text{NH}_4} \frac{[\text{NH}_4^+]}{[\text{NH}_4^+] + K_i^{\text{NH}_4}} + V_{\text{Max},i}^{\text{NO}_3} \frac{[\text{NO}_3^-]}{[\text{NO}_3^-] + K_i^{\text{NO}_3}} \tag{eq. 2}
\]

\(V_{\text{Max},i}^{\text{NH}_4}\) and \(V_{\text{Max},i}^{\text{NO}_3}\) (d\(^{-1}\)) are the maximum uptake rate of phytoplankton for \(\text{NH}_4^+\) and \(\text{NO}_3^-\), respectively, \([j]\) (nmol L\(^{-1}\)) is the concentration of nutrient \(j\) (\(j = \text{NO}_3^-, \text{NH}_4^+\)), and \(K_i^{\text{NH}_4}\) and \(K_i^{\text{NO}_3}\)
(nmol L$^{-1}$) are half-saturation constant of nutrient for phytoplankton i respectively. We used the data-fitted quadratic curve of nutrient concentrations (Fig. S5).

Simple ecosystem simulation. To simulate the simple ecosystem situation, we introduced the grazing by zooplankton:

$$\frac{dN_i}{dt} = \mu_i N_i - G_i N_i \quad \text{[eq. 3]}$$

$$\frac{dN_{\text{Zoo}}}{dt} = (G_{\text{Cro}} + G_{\text{Oth}}) N_{\text{Zoo}} - m_{\text{Zoo}} N_{\text{Zoo}}^2 \quad \text{[eq. 4]}$$

where G_i (d$^{-1}$) is the grazing rate of phytoplankton i by zooplankton, N_{Zoo} (nmol L$^{-1}$) is the nitrogen concentration in zooplankton per volume water, and M_{Zoo} (d$^{-2}$) is a quadratic mortality rate of zooplankton. When we allow nitrogen fixation, we used $\mu_{\text{Cro}} = 0.31$ (d$^{-1}$) (a typical growth rate under diazotrophic conditions (63), if the computation based on [eq. 2] yields a value below 0.31 (d$^{-1}$).

For G_i we have applied the KTW method:

$$G_i = G_{\text{max}} \left(\frac{N_i^2}{N_{\text{Cro}}^2 + N_{\text{Oth}}^2} \right) \left(\frac{(X_{\text{Cro}} + X_{\text{Oth}})^2}{(X_{\text{Cro}} + X_{\text{Oth}})^2 + K_G^2} \right) \quad \text{[eq. 5]}$$

where G_{max} (d$^{-1}$) is the maximum grazing rate and K_G (nmol L$^{-1}$) is grazing half-saturation. This equation reflects the commonly observed prey-switching behavior of zooplankton (29-31), which stabilizes ecosystems (64, 65).

Code availability

The model developed in this paper has been uploaded in GitHub/Zenodo and is freely available at https://zenodo.org/record/5095790 (DOI: 10.5281/zenodo.5095790).

Author contributions
T. Masuda, K.F and S.T designed the in situ microcosm experiments, T. Masuda. T.K, T.S, S.K, and
T. Matsui carried out the experiment and analyzed data supervised by K.F, S.T and K.S. T. Masuda and
K.I shaped the concept of the study with the supervision of O.P. K.I. and G.A. developed and ran the
model. T. Masuda and K.I. wrote the original draft with substantial input from all the authors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the captain, crew and technicians of the R/V MIRAI for assistance and support during the
research cruise. This research was financially supported by MEXT grants for Scientific Research on
Innovative Areas (24121001, 24121005, K.F.), Czech Research Foundation GAČR (project 20-17627S
to O.P. and T. Masuda), the Simons Foundation (Life Sciences-Simons Postdoctoral Fellowships in
Marine Microbial Ecology, Award 544338, K.I.), and the National Science Foundation (NSF) under
EPSCoR Cooperative Agreement (#OIA-1655221, K.I.).
References

Table S1. *In situ* nitrogen fixation rate at 10 m depth and cell density of *Crocosphaera* in the incubation bottle at initial. For all data, means are shown with ± standard deviation for triplicate samples.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Date</th>
<th>In 2008</th>
<th>In situ N₂ fixation rate (nmol N L⁻¹ d⁻¹)</th>
<th>In situ N₂ fixation rate <10µm (nmol N L⁻¹ d⁻¹)</th>
<th>Crocosphaera at initial (cells mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>6 June</td>
<td>1.33 ± 1.81</td>
<td>2.75 ± 4.68</td>
<td>32 ± 62</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>10 June</td>
<td>2.37 ± 0.59</td>
<td>0.66 ± 0.96</td>
<td>270 ± 225</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>14 June</td>
<td>0.19 ± 2.06</td>
<td>0.28 ± 2.40</td>
<td>126 ± 32</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>18 June</td>
<td>6.65 ± 2.52</td>
<td>2.37 ± 0.77</td>
<td>1513 ± 684</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>22 June</td>
<td>4.94 ± 1.38</td>
<td>4.75 ± 1.72</td>
<td>306 ± 112</td>
<td></td>
</tr>
</tbody>
</table>
Table S2 Used symbols, units and definitions in the quantitative model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>n.a.</td>
<td>$i = \text{Cro, Oth}$</td>
</tr>
<tr>
<td>j</td>
<td>n.a.</td>
<td>$j = NO_3^-, NH_4^+$</td>
</tr>
<tr>
<td>N_i</td>
<td>nmol L$^{-1}$</td>
<td>Cellular nitrogen concentration of phytoplankton i per volume water</td>
</tr>
<tr>
<td>t</td>
<td>d</td>
<td>Time</td>
</tr>
<tr>
<td>μ_i</td>
<td>d$^{-1}$</td>
<td>Growth rate of phytoplankton i</td>
</tr>
<tr>
<td>m_i</td>
<td>d$^{-1}$</td>
<td>Mortality rate of phytoplankton i</td>
</tr>
<tr>
<td>$V_{\text{Max},i}$</td>
<td>d$^{-1}$</td>
<td>Maximum uptake rate of nutrient j by phytoplankton i</td>
</tr>
<tr>
<td>$[j]$</td>
<td>nmol L$^{-1}$</td>
<td>Concentration of nutrient j</td>
</tr>
<tr>
<td>K_i^j</td>
<td>nmol L$^{-1}$</td>
<td>Half saturation constant of nutrient j</td>
</tr>
<tr>
<td>G_i</td>
<td>d$^{-1}$</td>
<td>Grazing rate of phytoplankton i</td>
</tr>
<tr>
<td>N_{Zoo}</td>
<td>nmol L$^{-1}$</td>
<td>Nitrogen concentration in zooplankton per volume water</td>
</tr>
<tr>
<td>m_{Zoo}</td>
<td>d$^{-2}$</td>
<td>Quadratic mortality rate of zooplankton</td>
</tr>
<tr>
<td>G_{Max}</td>
<td>d$^{-1}$</td>
<td>Maximum grazing rate</td>
</tr>
<tr>
<td>K_G</td>
<td>nmol L$^{-1}$</td>
<td>Grazing half saturation</td>
</tr>
</tbody>
</table>
Table S3 Values used for parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_i</td>
<td>d$^{-1}$</td>
<td>0.4</td>
</tr>
</tbody>
</table>

For NH$_4^+$ added case

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{CRO}</td>
<td>nmol L$^{-1}$</td>
<td>2.50*</td>
</tr>
<tr>
<td>N_{OTH}</td>
<td>nmol L$^{-1}$</td>
<td>5.00*</td>
</tr>
<tr>
<td>$V_{NH4}^{Max,CRO}$</td>
<td>d$^{-1}$</td>
<td>6.6</td>
</tr>
<tr>
<td>$V_{NH4}^{Max,OTH}$</td>
<td>d$^{-1}$</td>
<td>2.8</td>
</tr>
<tr>
<td>$V_{NO3}^{Max,CRO}$</td>
<td>d$^{-1}$</td>
<td>1.1</td>
</tr>
<tr>
<td>$V_{NO3}^{Max,OTH}$</td>
<td>d$^{-1}$</td>
<td>1.8</td>
</tr>
<tr>
<td>K_{NH4}</td>
<td>nmol L$^{-1}$</td>
<td>140</td>
</tr>
<tr>
<td>K_{NO3}</td>
<td>nmol L$^{-1}$</td>
<td>80</td>
</tr>
<tr>
<td>K_{NH4}^{CRO}</td>
<td>nmol L$^{-1}$</td>
<td>6</td>
</tr>
<tr>
<td>K_{NO3}^{CRO}</td>
<td>nmol L$^{-1}$</td>
<td>500</td>
</tr>
</tbody>
</table>

For NO$_3^-$ added case

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{CRO}</td>
<td>nmol L$^{-1}$</td>
<td>4.36*</td>
</tr>
<tr>
<td>N_{OTH}</td>
<td>nmol L$^{-1}$</td>
<td>5.83*s</td>
</tr>
<tr>
<td>$V_{NH4}^{Max,CRO}$</td>
<td>d$^{-1}$</td>
<td>8</td>
</tr>
<tr>
<td>$V_{NO3}^{Max,CRO}$</td>
<td>d$^{-1}$</td>
<td>1.3</td>
</tr>
<tr>
<td>$V_{NH4}^{Max,OTH}$</td>
<td>d$^{-1}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$V_{NO3}^{Max,OTH}$</td>
<td>d$^{-1}$</td>
<td>0.5</td>
</tr>
<tr>
<td>K_{NH4}</td>
<td>nmol L$^{-1}$</td>
<td>70</td>
</tr>
<tr>
<td>K_{NO3}</td>
<td>nmol L$^{-1}$</td>
<td>90</td>
</tr>
<tr>
<td>K_{NH4}^{CRO}</td>
<td>nmol L$^{-1}$</td>
<td>2</td>
</tr>
<tr>
<td>K_{NO3}^{CRO}</td>
<td>nmol L$^{-1}$</td>
<td>700</td>
</tr>
</tbody>
</table>

Ecosystem simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{CRO}</td>
<td>nmol L$^{-1}$</td>
<td>1000*</td>
</tr>
<tr>
<td>N_{OTH}</td>
<td>nmol L$^{-1}$</td>
<td>1000*</td>
</tr>
<tr>
<td>N_{ZOO}</td>
<td>nmol L$^{-1}$</td>
<td>1000*</td>
</tr>
<tr>
<td>m_{ZOO}</td>
<td>d$^{-2}$</td>
<td>0.01*</td>
</tr>
<tr>
<td>G_{max}</td>
<td>d$^{-1}$</td>
<td>7.5</td>
</tr>
<tr>
<td>K_{G}</td>
<td>d$^{-1}$</td>
<td>500*</td>
</tr>
</tbody>
</table>

Fig. S1. Temporal change in NH$_4^+$ and NO$_3^-$ concentrations of Ex. M1, M2, M4 and M5. (A) NH$_4^+$ concentration in the NH$_4^+$ treatment exponentially decreased during the experiment down to the detection limit of 6 nM on day 3. (B) NO$_3^-$ concentrations in the NO$_3^-$ treatment exponentially decreased during the experiment but enriched NO$_3^-$ was not always entirely consumed. Error bar shows a standard deviation of triplicate.
Fig. S2 Temporal change in Urea-N concentration. Concentration in control was measured only at the initial. Error bar shows the standard deviation of triplicate samples.
Fig. S3 N in biomass in each treatment and its contribution of each phytoplankton group of experiment M1, M2, M4 and M5. Pro; Prochlorococcus, Syn; Synechococcus, Cro; Crocosphaera, PicoE; pico-eukaryotes.
Fig. S4 Nitrogen demand and N derived from N₂ fixation in Control (A) and NH₄⁺ treatment (B) for each experiment (M1-M5). Nitrogen demand is N in biomass in 3 days. N₂ fixation rate was estimated from the reported maximum cellular N₂ fixation rate 1.12 fmol N mol cell⁻¹ day⁻¹ (valued obtained in day 3 in Fe + N treatment of Fe³⁺ (Masuda et al Pre print)) and cell density.
Fig. S5 Measured NH$_4^+$ and NO$_3^-$ concentrations for NH$_4^+$ and NO$_3^-$ added cases. Dashed lines show quadratic interpolation. Data are from experiment M3.
Fig. S6 Simulated transition of cellular N in a simple ecosystem model for three different scenarios. (A) The concentrations for NH\textsubscript{4}+ and NO\textsubscript{3}- are both 100 nmol L-1. (B)(C) The concentrations for NH\textsubscript{4}+ and NO\textsubscript{3}- are both 1 nmol L-1. In only (C) Crocosphaera may acquire N via N\textsubscript{2} fixation. Croco: Crocosphaera. Other: other phytoplankton. Parameters are based on NO\textsubscript{3}- added case.