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ABSTRACT 

A major challenge in the field of metagenomics is the selection of the correct combination of sequencing 

platform and downstream metagenomic analysis algorithm, or ‘classifier’. Here, we present the 

Metagenomic Evaluation Tool Analyzer (META), which produces simulated data and facilitates platform 

and algorithm selection for any given metagenomic use case. META-generated in silico read data are 

modular, scalable, and reflect user-defined community profiles, while the downstream analysis is done 

using a variety of metagenomic classifiers. Reported results include information on resource utilization, 

time-to-answer, and performance. Real-world data can also be analyzed using selected classifiers and 

results benchmarked against simulations. To test the utility of the META software, simulated data was 

compared to real-world viral and bacterial metagenomic samples run on four different sequencers and 

analyzed using 12 metagenomic classifiers. Lastly, we introduce ‘META Score’: a unified, quantitative 

value which rates an analytic classifier’s ability to both identify and count taxa in a representative sample.  

 

INTRODUCTION 

Since its inception, the field of metagenomics has proven to be one of the most challenging arenas of 

genomics research. Microbial communities are often dynamic, and the countless tools available for 

characterization all present their own strengths and weaknesses. Experimental design choices are 

frequently made with reagent cost, availability, and protocol ease in mind, with less emphasis placed on a 

thorough understanding of the limitations of a particular sequencer, metagenomic classification algorithm, 

reference database, or the complexity of the sample itself. Here, we introduce the Metagenomic 

Evaluation Tool Analyzer, or ‘META’, as a solution for predicting and testing  the best approach for a 

given metagenomic experiment (Table 1). Users are able to use this modular and easily updateable 

software to select, simulate, and compare the performance of different sequencer/classifier combinations 

towards more efficient use of available wetlab resources.   
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Table 1. META features and rationale.  

Need and existing work 

The difficulty inherent to the rapid and accurate classification of metagenomic sequencing data is a 

problem many researchers have attempted to solve, each publishing their own classification tools and 

comparing their performance against peer algorithms and/or third-party datasets.2 New algorithms are 

introduced on a constant basis, while older ones are updated to attempt to remain relevant. When you 

couple this with the steady progression of some sequencing platforms, it can be difficult for an end user to 

make an educated decision regarding the optimal sequencer/classifier pairing. META was developed to 

help users select from an ever-evolving landscape of emerging metagenomic classifier tools.1 As far as 

the authors can tell, only two other platforms have the potential to exist in the same application space as 

META: Galaxy and the Open-Community Profiling Assessment tooL (OPAL). However, while Galaxy 

could provide the foundation for side-by-side comparisons, there are no integrated evaluation tools3, and 

while OPAL provides more composition-level metrics for performance comparison, it lacks interactive 

data visualizations or table filtering options for classifier output4. Additionally, resource metrics such as 

run times and peak memory usage are not readily reported in the native installation state of OPAL, which 

requires a separate step of converting it to a Biobox Docker image. META provides all of these utilities 

by default, comparing the performance of more than ten classifiers and utilizing read simulators for the 

META feature Implemented by Enables Achieves

Futureproofing via ease of updating

Ease of expanding as new classifiers are published

Classification tools with diverse dependancies

Broader range of deployment options based on available hardware
Selection of optimal pipeline at large scale, and deployment on laptop

Read generation from a single source across sequencers

Evaluation and selection of analysis algorithms without costly sequencing

Interactive visualizations
Comparison of classifiers based on simulated or real reads

Data driven hardware assessment
Estimate of analysis time

Selection of the best classifier based on user needs
GUI-enabled bioinformatic analysis
Selection of optimal pipeline at large scale, and deployment on laptop

Modular Dockers

Scalable
Choice of tools and 

database size

Simulation
InSilicoSeq and 
DeepSimulator

Visualization D3.js

Optimization User

Resource Estimation
Tracking of compute time, 

RAM usage

The latest, best analysis 
algorithms

Validated, deployable 
bioinformatics

Downselection of 
sequencer and analysis 

Ease of use and 
interpretation

Validated, deployable 
bioinformatics

Optimal hardware 
utilization
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Illumina (MiSeq and iSeq instruments) and Oxford Nanopore Technologies (R9 and FLG flowcells) 

sequencing platforms5,6. META is openly available and can be accessed at the following github URLs: 

https://github.com/JHUAPL/meta-system, and https://github.com/JHUAPL/meta-simulator. 

Simulated versus real world sequencing modes  

The META bioinformatics analysis pipeline enables the direct and simultaneous comparison of 

metagenomic abundance profiles derived from multiple classifiers using a set of in silico (simulated), or 

‘real-world’ sequencing reads (Figure 1). In this way, the system supports two modes of classifier 

comparisons. ‘Mode 1’ enables the multi-classifier analysis of an in silico generated read set using 

sequencing platform simulators that produce data reflecting a user-defined abundance profile. Results are 

reported using three metrics: area under the precision recall curve (AUPRC) 2, the Euclidean distance 

between the user-defined abundance profile and the predicted abundance profile (L2) 2, and the metascore, 

which is a normalized combination of these two values. The AUPRC is a measure of how well individual 

taxa are identified and is more sensitive to low-abundance taxa, while the L2 metric is a measure of how 

reliably the abundance is calculated, meaning it is more sensitive to high abundance taxa. A complete 

description of the L2, AUPRC, and metascore can be found in the materials and methods.  

‘Mode 2’ enables a comparison of output from multiple classifiers when the input consists of any FASTQ 

file, including those generated from real wet-lab experiments. Used in tandem, these two modes can help 

select the best sequencing and analysis approach prior to, and following, the experimental design phase.  
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Figure 1. (A) META system architecture. The META system supports two evaluation modes: Mode 1 (in silico generated reads), and 

Mode 2 (real-world generated reads). Mode 1 enables classifier output to be compared to “ground truth” abundance profiles as supplied 

by the user. Reads can be generated using multiple sequencing platform simulators. After selecting which classifiers to evaluate and 

submitting a job, the system metadata is tracked in a MongoDB database while each selected classifier is run in series. (B) Sample META 

analytics workflows. Workflows are generated upon user request, and include serially-run simulation, classification, and evaluation 

modules.  

 

Classifiers, modularity, and standardization 

The initial release of META contains a total of twelve classifiers (Table 2). There are seven k-mer-based 

algorithms: Bracken9, CLARK10, Kraken11, Kraken212, KrakenUniq13, Mash14, and MMseqs215. The 

remaining five classifiers use alignment-based algorithms: Centrifuge16, HS-BLASTN17, Kallisto18 

DIAMOND19, and Kaiju20. The former three utilize nucleotide sequence databases, while the latter two 

utilize protein sequence databases.  

 

META is modular, making extensive use of Docker architectures via Biocontainers, to facilitate rapid 

updating or addition of new classification tools as they become available7,8. The system also utilizes 
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currently-available common standards from the Global Alliance for Genomics & Health (GA4GH) to 

improve interoperability, security, privacy, data visualization, and compatibility7,21. Using these 

community-developed standards allows the system to have immediate utility across a wide range of 

scenarios and use cases.  

 

Table 2. Metagenomic classification tools and associated metrics that are available in initial META public release. Custom database 

build size refers to the custom databases generated from the normalized set of references (units are gigabytes (GB) unless otherwise 

noted). Average peak memory usage and run times were derived from a total of 16 Mode 1 jobs of varying metagenomic composition 

(FASTQ file size averaging approximately 1.0 GB), and using the custom built databases associated with each classifier. 

 

Test cases and simulated versus real world evaluation  

To test the utility of META, our group designed a set of two experiments using real world samples 

sequenced on multiple platforms (Figure 2A). Use case 1 was designed to represent an environmental 

surveillance scenario, in which an aerosol sample, containing the human pathogen Bacillus anthracis and 

two non-pathogenic near-neighbors, was collected in a background of seven common environmental 

bacteria (Figure 2A, B, C, and D). Use case 2 was designed to represent a sample collected from an 

animal infected with a potential human pathogen. Vaccinia virus, a simulant for smallpox, was used as the 

pathogen, and the chicken cells used to propogate the virus represented the infected animal (Figure 2A). 

All samples were sequenced on both Illumina and Oxford Nanopore platforms and in silico reads were 

generated on the same platforms. FASTA and FASTQ files for both wetlab and in silico simulated 

No. Classifier Synopsis
Custom Database 
Build Size (GB)

Average Peak 
Memory Usage 

(GB)
Average Runtime 

(s)
1 Bracken k-mer based abundance estimation from raw reads 72 KB 0.210 0.04
2 Centrifuge alignment based on BWT and FM-indexing schemes 30 2.717 14.38
3 CLARK k-mer based species or genus level classification 255 9.901 0.04
4 DIAMOND alignment based, SW against protein database 24 0.935 145.47
5 HS-BLASTN An accelerated MegaBLAST search tool 274 28.282 74.08
6 Kaiju alignment based on BWT and FM-indexing of protein sequences 26 2.672 14.63
7 Kallisto alignment based, pseudoalignment procedure 15 2.524 0.05
8 Kraken k-mer based, exact alignment 45 0.240 4.95
9 Kraken2 k-mer based, exact alignment, and translated search mode 32 0.205 0.32
10 KrakenUniq k-mer based, exact alignment with smaller memory requirements 819 0.245 71.05
11 Mash k-mer based, locality sensitive hashing 16 KB 0.158 0.64
12 MMseqs2 k-mer based filtering with ungapped then ungapped alignments 651 0.373 0.07
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samples were then run through META’s classifier algorithms, and reports were generated describing

performance. 

Figure 2. Sample use-cases test META capabilities. (A). Sequencing results from two mock metagenomic DNA communities are

produced in the lab and mimicked in silico. Results using different classifiers are compared to the known sample content to identify the

best performing sequencer/classifier combination. (B). Mode 1 user-generated TSV file for use case 1 mimicking a community found on

an air filter. (C) Detailed components of community includes a threat agent (B. anthracis), two near neighbor organisms (B. anthracis

Sterne and B. atropheus), and seven background environmental organisms. (D) Phylogenetic distance between each component of use

case 1 community. 

 

RESULTS (usually contains a general description of the method followed by its validation) 

Survey and down-selection of classifiers for initial release 

A literature search identified eighty-one metagenomic classifiers that were subsequently down-selected

for inclusion in the initial release of the META system based on seven critical attributes (described in

detail in Methods). Eighteen classifiers remained after down-selection criteria, and twelve were
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successfully implemented (Table 2). Classifiers used a range of algorithm strategies and custom reference 

databases.  

 

Use-Case 1 

Mode 2 was utilized to evaluate the real-world data derived from experimental samples developed during 

use case generation. Classifiers were ranked by metascore for each read type (Illumina and ONT-

generated reads) using the known spiking concentration for each component of the sample. 

Corresponding in silico-generated reads were then processed using Mode 1. Accurate strain and species 

identifications were prioritized in all analyses as this facilitated the differentiation of pathogens from 

background organisms. 

The metascores for each sequencer/classifier pairing for use case 1 are shown in Figure 3. (L2 and 

AUPRC scores are displayed in Supplemental Figures S1 and S2). Separate analyses were run on 4 

sample types: the pathogen alone, the pathogen and two near-neighbors, the seven background 

environmental bacteria, and all ten components together. Most classifiers scored similarly within each 

sample type and for each read type at the strain rank, with Mash having the lowest metascore in all cases. 

In general, the average metascore among all sequencer/classifiers pairings decreased as the total number 

of known organisms in a sample decreases. This is not unexpected, as the ability to discriminate between 

the total reads available become more difficult when the available reads in a sample are nearly identical. 

For the ‘mix of all 10’ organism samples, KrakenUnique achieved the highest metascore for the Illumina 

(MiSeq) read type, and Centrifuge the highest score for the ONT (R9 flowcell) read type.  

 

Classifier performance for samples containing multiple organisms could also be determined by 

identifying (i) how many of the expected organisms were detected at any level, and (ii) how closely their 

respective abundance profiles matched the known spiking concentrations. While no classifier would be 

expected to identify all ten organisms, as the Bacillus atrophaeus subsp. globigii taxid was purposefully 
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omitted in the custom reference database, Kraken, Kraken2, and HS-BLAST were the best performers,

identifying all of the remaining 9 taxids when analyzing both Illumina and Nanopore reads (Table 3,

columns two and three). 

Figure 3. Use case 1 output. Classifier performance from in vitro data sets is illustrated using the metascore metric from superkingdom to

strain taxonomic ranking. All twelve available classifiers were run using data generated from Illumina MiSeq and the ONT R9 flowcell.

N=3 
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The ability of the classifiers to identify the pathogenic component of the 10-organism samples was of 

particular interest. The three classifiers listed above successfully identified BA in Nanopore data sets, and 

the same three, plus Kallisto, identified BA from Illumina data sets. Theoretically, the B. anthracis read 

abundance should fall at approximately 10% for all of these sequencer/classifier pairs, but of the four 

classifiers that identified the pathogen at all using Illumina results, three were below 1%, while HS-

BLASTN significantly over-represented its presence at >19%.  The three classifiers identified the B. 

anthracis taxid from ONT results, with Two of the three classifiers that identified BA using Nanioire data 

sets significantly under-represented abundance (<1%) with only HS-BLASTN coming within 7% the 

expected value.  

 

Table 3. Deviation of pathogenic target organism abundance from theoretical known value in use case 1. Values are representative of 

samples containing all 10 possible components at equal genome copy input. Nd= not detected. 

 

With respect to computer resource utilization, run times and peak memory usage varied widely based on 

the selected sequencer and classifier combination. Generally, though, no clear trend related these metrics 

with the metascore values, suggesting that users could not base their selection on these predictions alone. 

Full interactive reports are available for exploration on github (URL). 

 

Illumina ONT Illumina ONT

Bracken 1 1 nd nd

Centrifuge 5 4 nd nd

CLARK 1 1 nd nd

DIAMOND 1 1 nd nd

HS-BLASTN 9 9 19.20 10.65

Kaiju 1 0 nd nd

Kallisto 9 7 0.09 nd

Kraken 9 9 0.22 0.34

Kraken2 9 9 0.10 0.11

KrakenUniq 9 8 nd nd

Mash 0 0 nd nd

MMseqs2 9 8 nd nd

Number of Expected Taxids 
Identified in Output (Max = 9)

Calculated B. anthracis  abundance 
(Theoretical Max = 10%)
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Use case 2 

Results from the second use case are displayed in Figure 4 (metascores) and Supplemental Figures S3 

(AUPRC) and S4 (L2). For the Illumina data, the classifier achieving the highest metascore for "host", 

"extraction1", "spike1" and "spike2" was Mash (0.0572), CLARK (0.1787), CLARK (0.1165), and 

CLARK (0.0710), respectively. For the ONT data, the classifier achieving the highest metascore was 

DIAMOND (0.0571), CLARK (0.0861), DIAMOND (0.0673), and DIAMOND (0.0611), respectively 

(Figure 4). With respect to computer resource utilization, and only using those of the "spike2" sample, 

using the simulated Illumina read set CLARK was ranked 2nd for runtime at only 0.42 seconds, however it 

was ranked 11th for peak memory usage at over 118 GB RAM. Using the simulated ONT read set from 

the same sample profile, DIAMOND was ranked 11th for runtime at 345 seconds, and 7th for peak 

memory usage at only 8.6 GB RAM. Full interactive reports are available for exploration on github 

(URL).  

 

A note here on the effects of this use-case (a single target of interest) on the value of AUPRC and L2. The 

AUPRC is very low across all taxonomic ranks for each sample type, implying there are many false 

positive classifications which is likely due to the fact that there is only a single 'ground truth' tax ID for 

these samples (the spiked organism). The L2 metric is much more variable across both taxonomic rank 

and sample type, and is actually closer to the ground truth profile at the stain rank compared to the higher 

ranks. This is somewhat counter-intuitive as one would assume that a more specific classification (e.g. 

strain) is more difficult than a less specific classification (e.g. species). However, and again since there is 

only a single 'ground truth' tax ID for these samples, even an abundance profile vector containing zeros 

for all tax IDs is closer to the ground truth than a vector that contains even a single tax ID that is not in the 

ground truth set at any significant abundance. These points coupled with the fact that L2 is in the 

denominator of the metascore calculation yields the higher strain rank scores seen in Figure 4. 
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Figure 4. Use case 2 output. Classifier performance from in vitro data sets is illustrated using the metascore metric from superkingdom to 

strain taxonomic ranking. All twelve available classifiers were run using data generated from Illumina MiSeq and the ONT R9 flowcell. 

N=3 

 

Since the metascore is designed for the evaluation of classifier performance on more traditional 

metagenomic profiles, it was necessary to also check the deviation from the target ground truth 
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abundance, as was done for the environmental experiment (Table 4). The target genome proportion 

reflects the target (Vaccinia Virus) to host (Gallus gallus) ratio in the sample type. The effective ground 

truth abundance is the abundance used for deviation calculations. This value for sample type (1) is zero, 

and all classifiers did not report it in their output abundance profiles, therefore their deviation is a perfect 

0.00%. Sample types (2), (3), and (4) all have a target effective ground truth abundance of one, i.e. the 

input tsv column 3 for taxid 9031 (Gallus gallus) was set to 0, since it is not in the custom reference 

genome set. As the concentration of the target decreases, the deviation from target ground truth increases. 

CLARK was identified as the best performer using Illumina read type via metascore, and also consistently 

achieves the lowest deviation from target ground truth abundance for all sample types. Although 

DIAMOND was identified as the best performer in a majority of sample types using the ONT read type 

via metascore, it had a consistently high deviation from target ground truth abundance. Based on the 

deviation measure, CLARK, HS-BLASTN, or KrakenUniq may be a better substitute for identifying this 

target using the ONT read type. 

 

Table 4.  Deviation of pathogenic target organism abundance from theoretical known abundance in use case 2. Known abundance was 

set to 100%, as host genome was not included in the custom reference database.  Nd= not detected

Bracken nd -82.12% -83.22% -92.17% nd -84.44% -94.30% -99.36%
Centrifuge nd -4.80% -36.93% -85.23% nd -0.90% -85.84% -98.50%

CLARK nd -1.24% -11.78% -58.87% nd -0.70% -66.78% -95.15%
DIAMOND nd -94.42% -94.74% -95.22% nd -98.69% -99.12% -100.00%

HS-BLASTN nd -2.57% -18.05% -68.57% nd 0.00% -77.48% -97.32%
Kaiju nd -100.00% -100.00% -100.00% nd -100.00% -100.00% -100.00%

Kallisto nd -77.18% -79.64% -90.78% nd -82.05% -90.82% -100.00%
Kraken nd -81.57% -84.82% -92.93% nd -74.88% -88.64% -97.44%

Kraken2 nd -88.58% -89.85% -94.82% nd -86.11% -94.44% -99.37%
KrakenUniq nd -15.22% -24.55% -64.05% nd -1.40% -69.38% -95.80%

Mash nd -100.00% -100.00% -100.00% nd -100.00% -100.00% -100.00%
MMseqs2 nd -2.78% -53.42% -92.54% nd -37.80% -88.07% -99.18%

Infected LysateHost Only
Neat 1:10 1:100

Host Only Infected Lysate
Neat 1:10 1:100
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DISCUSSION 

There is currently no bioinformatics tool that automates (i) the de novo simulation of Illumina and Oxford 

Nanopre Technologies (ONT) metagenomic sequencing data, (ii) the simultaneous classification of this in 

silico or real-world sequencing data using multiple algorithms, and (iii) provides performance metric 

information for each algorithm. Here, we present a software package and user interface called META to 

fill this gap. With META, researchers, can rapidly and inexpensively identify the best classification tool 

for a specific metagenomics use-case instead of settling on a strategy based on more subjective or 

qualitative comparisons potentially derived from unrelated data sets. META analysis outputs include a 

novel metric, the metascore, that utilizes both AUPRC to L2 measurements, allowing for a balanced and 

objective view of classifier performance . Feature-rich data visualizations are also produced, enabling the 

user to explore each analysis to the depth that suits their unique needs, eventually coming to their own 

conclusion about which classifier and read type combination will be most effective. The system is set up 

to rapidly add new classifiers, or update existing ones, so that a user can determine which sequencer and 

classifier combination is best suited to their use case, even as the technology continues to change and 

improve. Applications for this technology are numerous, including environmental monitoring, 

diagnostics, research, forensics, and industrial processes. 

The next major release of META is expected to include a new mode that will enable reads from a known 

in vitro metagenomic sample dataset to be compared with an expected abundance profile. Assembly and 

alignment modules will also be added in order to support classification tools that require a contig or 

alignment file as input, respectively. 

 

METHODS 

Custom Reference Sequence Sets 

In order to directly compare the performance of each classifier,  a custom database was generated from 

the same set of reference organisms. This database included all archaea (347), bacteria (16,678), fungi 
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(11), and viral (8,999) assemblies available on NCBI RefSeq that had a “latest” version status and an 

assembly classified as a complete genome. The approximate total size of the custom nucleic acid database 

was 69 GB, and the protein sequence database was 24 GB. 

 

Classifier Inclusion Criteria 

Seven critical features were analyzed for each metagenomic classifier in order to down-select the final list 

for inclusion in the initial release of META: open source accessibility, availability on the Bioconda 

software package manager, date of last update, local data storage options, custom database input options, 

classification strategy, and analysis type. To be included in the META system, a classifier had to be be 

open source and available on Bioconda, a software package manager whose support increases ease of 

deployment and integration of the classifier. The presence of a classifier on Bioconda also implies that the 

tool is well-accepted and rigorously tested in the broader bioinformatics community. Recent updates were 

required to ensure that only actively maintained classifiers were selected, and as META requires 

classifiers to be run locally, any tool deployed only in a cloud-based environment was filtered out.  

As mentioned above, in order to directly compare performance across classifiers, each tool had to allow 

for the use of a custom database, and due to the limited specificity of classifications based on marker 

genes, particularly 16S rRNA, all classifiers utilizing this strategy were excluded. This study aimed to 

review metagenomic classifier tools only, meaning other sequencing data analysis tool (e.g. assemblers, 

aligners, wrappers, etc.) were excluded, but could be included in future iterations of META in order to 

test and evaluate more complex analysis pipelines. 

 

System Architecture and Workflow 

All META files and installation instructions are openly available on Github at 

https://github.com/JHUAPL/meta-system, and https://github.com/JHUAPL/meta-simulator. META is 

designed to run as a local web server based on Python Flask, accessible via RESTful API or user interface 
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optimized for Google Chrome and Firefox using the Vue.js framework22,23(Figure 1A). The architecture 

leverages Bioconda and BioContainers, Docker container versions of the most commonly used 

metagenomic classifiers, in order to provide consistent deployment7,8,24,25. META has been designed to 

easily incorporate new metagenomic classifiers, providing a modular template for integration via a 

standard META YAML description26. 

 

Towards interoperability, it was necessary to identify tool-specific commands that executed the four basic 

stages of metagenomic classification: download, build, classify, and report. This allowed for simultaneous 

processing of the same dataset by multiple classifiers without requiring individual inputs for each tool 

selected by the user. The following assumptions were made about all tools integrated with META; the 

tool database relies on a set of reference nucleotide or protein sequences for classification, and the tool 

can perform an analysis that provides output that allows for relative abundance calculations to be 

produced. These assumptions led to the following definitions within the META ecosystem: (i) Download: 

the command that downloads the set of reference nucleotide or protein sequences. Depending on the use-

case, the set of reference sequences may already be present on the host machine. This is likely the case for 

those seeking to build custom reference databases. Currently, this command is not automatically executed 

within the META system. (ii) Build: the command(s) that build the database indices and relevant files 

from the set of downloaded reference sequences. An example of this is 'kraken-build --db kraken_db --

build'. Currently, this command is not automatically executed within the META system. (iii) Classify: the 

command that runs classification of sequence input. Classification analysis can be performed using 

several algorithms, including, but not limited to, distance metrics, string comparisons, or expectation 

maximizations (EMs). The command ideally contains an argument that specifies an output directory or 

output file path. An example of this is `kraken --db $db --output $output $input'. (iv) Report: the 

command pro that formats outputs. An example of this is 'kraken-report --db $db $output'. An additional 

command may be necessary to rename the formatted report to '<tool_name>.report'. Some tools may not 
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bundle a reporting utility, in which case, the META report file will be generated in the classify stage, and 

no report command needs to be identified. Notice that a set of installation commands are not required. 

This highlights the advantage of using BioContainer Docker images for deployment, as it does not require 

end users to install the tool and its dependencies prior to using it. 

 

When a user is ready to process data using META, they must first submit a request in Mode 1 or Mode 2. 

To run a comparison using Mode 1 (in silico generated reads), an abundance profile must be provided in 

the form of a 3-column tab-separated variables (TSV) file. This file includes (i) the taxonomic ID (taxID) 

of the organisms making up the metagenomic community that will be simulated, (ii) the relative 

abundance of the associated taxID (abundance must sum to a total of 1.000000), and (iii) whether the 

taxID should (1) or should not (0) be considered in the relative abundance evaluation calculations. Users 

may opt to disclude certain taxID for abundance profile generation if the reads map to background 

genomic material or organisms of low interest. All input taxIDs in this file should map to an organism 

with a reference genome in NCBI's RefSeq database, and a job will terminate and return an error message 

if a reference genome cannot be found for one or more taxIDs in an input TSV file. To run a comparison 

using Mode 2, the user must only provide a FASTQ file. All other parameters available to the user may be 

selected via check boxes on the job submission page, which include available classifiers to run and, for 

Mode 1 only, which read type(s) will be simulated for the provided abundance profile. 

 

A META analytics workflow is automatically generated upon user request. Workflow components 

include simulation, classification, and evaluation modules that are processed serially. In Mode 1, for 

every simulated read type, there is an associated simulation module, and for every metagenomic classifier 

selected, there is an associated classification module. In Mode 2, the simulation module is excluded. In all 

modes, every FASTQ file has an associated evaluation module for computing metrics across all selected 

classifiers. Example workflows can be seen in Figure 1B. By distilling the workflow to these three 
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composable modules (simulate, classify, evaluate) and four command types (download, build, classify, 

report), META prevents the “decision paralysis” inherent to more complex workflow environments and 

description languages27,28. 

When a job is submitted, the user may view currently running jobs, and may select or download 

completed job reports for viewing or additional analysis. Most tables, graphs, and charts available in the 

report are fully interactive, sortable, and tips are provided where relevant. An additional ‘quick answers’ 

menu, in the form of Frequently Asked Questions (FAQs) is available in order to guide the selection of 

classifier(s) based on a particular metric of interest. When a FAQ is selected, this function automatically 

adjusts the data outputs to answer that specific question. Examples of questions include: ‘Which species 

has the highest L2?’, or ‘Which species and classifier combination has the largest AUPRC?’ 

(Supplemental Figure 5).  

 

Evaluation and Visualization 

In Mode 1, the presence of known user-defined abundance profiles allows for direct comparison of 

classifier performance to ground truth values. This comparison is based on the ratio of the area under the 

precision recall curve (AUPRC) and the Euclidean distance between the user-defined abundance profile 

and the predicted abundance profile (L2) for each tool. These metrics are utilized because they are 

complementary as AUPRC is more sensitive to low abundance taxa, while L2 is more sensitive to high 

abundance taxa2. For AUPRC, each point on the curve represents the precision and recall scores at a 

specific abundance threshold. Abundance thresholds from 0 to 1 are used to generate the full curve. is 

generated, and the area calculated. The L2 metric is based on the pairwise Euclidean distance between the 

ground truth and classifier output taxa abundance vectors. Finally, a META score (referred to as 

metascore) is calculated from AUPRC and L2 by the following formula: 

metascore= (((AUPRC+1)/((L2/sqrt(2))+1))-0.5)/1.5 

Dividing L2 by its maximum value (sqrt(2)) normalizes the range to that of AURPC (0 to 1). The addition 
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of one to both metrics before taking their ratio bounds the ratio's range from to 1/2 to 2. Finally, 

subtracting 0.5 from the ratio then dividing by 1.5 adjusts the range of the metascore to 0 to 1. 

Classifier performance characteristics reported for both Mode 1 and 2 include a scatter/half-violin plot 

with a consensus call table, a parallel coordinates plot of resource utilization that includes CPU time, 

wall-clock time, and peak memory usage, and a sunburst plot of abundance that may be scaled and 

colored on various parameters to assist in data exploration. Visualizations were built using d3.js alongside 

the Vue.js frontend framework23,29. Each visualization is interactive and dynamic based upon user input 

and parameters attributed to a job. All tables available on the report page may be sorted and filtered and 

are linked to a single visualization. 

 

The scatter/half-violin plot is designed to show the distribution of abundance calls across all classifiers for 

any number of read types (Mode 1 only) and specified ranks. Users may directly filter on any of these 

parameters within the plot by choosing from a dropdown menu or by zooming into a y-axis region. A 

table is also provided to display the specific point on the scatter plot that is attributed to a particular taxid 

upon cursor hover-over. An abundance thresholding distribution is provided to allow adjustment of the 

range of desired abundances to display. 

 

Resource metrics including CPU time, wall-clock time, and peak memory usage for all selected classifiers 

(and read type for Mode 1) are plotted in a parallel coordinates plot. Each y-axis attributed to a metric is 

brushable to filter out undesired entries and is transferable (left-right) across the plot’s space for custom 

organization. Each line is hoverable to provide more information for that specific entry. A table is also 

provided that is directly linked to each line of the plot that is essential for identifying the best performing 

classifier-read type combination via metric sorting. 

 

Finally, the sunburst provides a hierarchical representation of all taxids from superkingdom to strain ranks 
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for a given classifier (and read type for Mode 1). Each slice size is based on the size of the abundance call 

for a given slice relative to the parent taxid and all sibling slices. Each slice is directly linked to an entry 

in a table and when clicked (table entry or slice), the plot dynamically updates to hide all ranks higher 

than the specified slice’s as well as all sibling slices at that rank. Color coding is selectable, and is based 

on either rank (Modes 1 and 2, default for Mode 2) or relative deviation from ground truth (input) 

abundance (mode 1 only, default for Mode 1; Supplemental Figure 6). Users may update the sunburst at 

any time with a dropdown selection of either the selected classifier and/or read type. An abundance 

threshold is also provided to allow users to adjust what range of reported abundances are to be observed 

in the plot, which is useful for classifiers that may call many unique taxids at exceedingly low 

abundances. 

 

Experimental Use-case Scenario 1: Pathogenic Target in Mixed Environmental Background 

Use-case 1 was composed of equal genome copies from ten bacteria; Bacillus anthracis strain Ames (the 

“target” pathogenic organism), two taxonomic near neighbors of B. anthracis, and seven phylogentically 

separate environmental organisms that are also represented in the ATCC environmental microbiome 

standard set. Live Bacillus anthracis was acquired from BEI Resources (NR-411), while the near 

neighbors Bacillus anthracis strain Sterne UT238 and Bacillus globigii were grown from in-house stocks. 

All cells were streaked on TSA plates and incubated for 48 hours at 37°C. Colonies were selected from 

the plates and processed for nucleic acids using the DNeasy Blood and Tissue kit (Qiagen 69504). All 

other bacterial nucleic acids were obtained directly from ATCC as lyophilized reagents using the 

following catalog numbers: Acinetobacter baumannii (17978), Bacteroides vulgatus (8482), 

Bifidobacterium adolescentis (15703), Clostridium beijerinckii (35702), Cutibacterium acnes (11828), 

Rhodobacter sphaeroides (17029), Staphylococcus epidermidis (12228). Lyophilized nucleic acids were 

resuspended in nuclease-free water prior to combining. Organism nucleic acids were combined to 
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generate four unique sample types for evaluation: (i) B. anthracis alone, (ii) B. anthracis and near-

neighbors, (iii) 7 background organisms, and (iv) all ten components. For each sample type, all organisms 

were spiked at equal genome copy per organism with an expected metagenomic profile of equal relative 

abundances. 

 

Experimental Use-case Scenario 2: Pathogenic Target in Host Background 

Use case 2 was composed of a viral pathogenic target present in a host cell background. Vaccinia virus 

strain MVA was acquired from BEI (NR-1) and was selected as the target viral pathogen due to ease of 

propagation, its DNA genome, and its similarity to the biothreat agent smallpox. VACV was grown in 

chicken (Gallus gallus) embryo fibroblast cells (ATCC CRL-1590) according to vendor 

recommendations. Briefly, cells were grown to 80% confluency at 37°C and 5% CO2 in growth media 

containing DMEM supplemented with 5% fetal bovine serum (FBS) and 5% tryptose phosphate broth, 

and infected at a multiplicity of infection (MOI) of 0.05 in inoculation media containing DMEM only. 

Following a 1-hour incubation period, inoculation media was removed and replaced with growth media. 

Three days post-infection, cells were scraped, centrifuged at 1200 x g for 10 minutes at 4°C, and 

resuspended in DMEM supplemented with 2% FBS. Cells were lysed using 3 freeze-thaw cycles and the 

final lysate was sonicated in ice water. Aliquots were stored at -80°C. Nucleic acid was isolated from both 

viral lysates and host cell lysates using the Qiagen QIAmp DNA Mini kit (51304). Viral and host nucleic 

acid was combined to generate four unique samples types: (i) host cells alone, (ii) neat viral lysate, (iii) 

1:10 dilution of viral lysate in host background, and 4) 1:100 dilution of viral lysate in host background. 

Exact abundance of viral nucleic acid relative to host in samples 2-4 was not known prior to sequencing. 

 

Illumina and Oxford Nanopore Technologies Sequencing 

All Oxford Nanopore Technologies (ONT) libraries were generated using Rapid barcoding sequencing 
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kits (cat# SQK-RBK004). Sample libraries were multiplexed up to five samples per run and sequenced on 

three separate sequencing runs using ONT R9 flowcells (cat# FLO-MIN106D). Illumina MiSeq libraries 

were generated using Illumina Nextera XT library preparation kits (cat# FC-131-1096). All thirty libraries 

generated from both use cases were multiplexed together on a 2X300 paired end sequencing run using a 

600 cycle MiSeq reagent kit (cat# MS-102-3003). 
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containers are not part of the system itself (i.e. are not packaged with it before installation). Additional 

META software dependencies include Node 10+ and NPM 6+ (front-end), and Python 3.7+ (back-end). 

The software was developed on an Ubuntu 18.04 virtual machine containing 32 CPU cores, 512 GB 

RAM, and 10 TB disk space. Illumina and ONT data is available on NCBI's SRA, accession 

PRNJXXXXX. 
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