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Abstract  
  
The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by 
gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-
understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell 
RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 
fetal and 8 maternal cell types from placental villous tissue at term (n=15,532 cells). We deconvoluted eight 
published microarray case-control studies of preeclampsia (n=330). Deconvolution revealed excess 
extravillous trophoblasts and fewer mesenchymal cells. Adjustment for cellular composition reduced 
preeclampsia-associated differentially expressed genes (FDR<0.05) from 1,224 to 0, whereas pathway 
alterations exhibiting a metabolic adaptation to hypoxia were robust to cell type adjustment. Cellular 
composition explained 35.1% of the association between preeclampsia and FLT1 overexpression. Our findings 
indicate substantial placental cellular heterogeneity in preeclampsia that predicts previously observed bulk 
gene expression differences. Our deconvolution reference lays the groundwork for cellular heterogeneity-
aware investigation into placental dysfunction and adverse birth outcomes. 
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Introduction 
 

The public health burden of adverse pregnancy outcomes is substantial. An important example is 

preeclampsia, which affected 6.5% of all pregnant people in the United States in 2017 and is characterized by 

high maternal blood pressure and damage to other organ systems. Adverse pregnancy outcomes may lead to 

myriad health complications including elevated risk of chronic diseases throughout the life course [1]. The 

placenta, a temporary organ that develops early in pregnancy, promotes maternal uterine artery remodeling; 

mediates transport of oxygen, nutrients, and waste [2]; secretes hormones to regulate pregnancy; metabolizes 

various macromolecules and xenobiotics; and can serve as a selective barrier to some, but not all, pathogens 

and xenobiotics [3]. The executive summary of the Placental Origins of Adverse Pregnancy Outcomes: 

Potential Molecular Targets workshop recently concluded that most adverse pregnancy outcomes are rooted in 

placental dysfunction [4]. Despite this, the molecular underpinnings of placental dysfunction are poorly 

understood. 

 Placenta-specific cell types, including cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, 

and placental resident macrophage Hofbauer cells are all essential for placental development, structure, and 

function [5]. Dysfunction of these specific cell types likely plays a role in placental pathogenesis. For example, 

extravillous trophoblasts are responsible for invading into the maternal decidua early in pregnancy to remodel 

uterine arteries and increase blood flow to the placenta [2]. Inadequate or inappropriate invasion of extravillous 

trophoblasts has previously been implicated in preeclampsia etiology [6–8]. Despite some knowledge of the 

roles of specific placental cell types in the development of preeclampsia, relatively little is known about how 

individual cell types contribute to placental dysfunction. 

Existing research models used to investigate the function and dysfunction of individual cell types are 

limited. Protocols to isolate primary placental cells for experimental research are restricted to one or few cell 

types [9–14]. Cell type-specific assays are costly and require special techniques or training resulting in small 

sample sizes and have not yet been scalable to large epidemiological studies [15–17]. Furthermore, placental 

cell lines such as BeWo, derived from choriocarcinoma [18], and HTR-8/SVneo, immortalized by SV40 [19], 

are typically derived by processes that alter the DNA of the cells, limiting their in vivo translatability. 
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Consequently, the characteristics of even healthy placental cell type function and especially their connections 

to adverse outcomes such as preeclampsia are incompletely understood. 

Measures of gene expression in bulk placental tissue are used to better understand the biological 

mechanisms underlying adverse pregnancy outcomes [20–22] and are common in epidemiological studies 

[23]. Gene expression profiles differ systematically by cell type [24, 25]. Thus, bulk placental tissue-level gene 

expression measurements represent a convolution of gene expression signals from individual cells and cell 

types [26, 27]. Deconvolution refers to the bioinformatic process of estimating the distribution of cell types that 

constitute the tissue [28, 29]. Deconvoluting tissue-level gene expression profiles is essential to eliminate 

effects introduced by unmodeled cell type proportions [30] by disentangling shifts in cell type proportions from 

direct changes to cellular gene expression [31]. Reference-based deconvolution boasts biologically 

interpretable cell type proportion estimates with few modeling assumptions but relies on independently 

collected cell type-specific gene expression profiles as inputs [31]. Prior placental cell type-specific gene 

expression measures from term villous tissue [16] had a limited number of biological replicates and included 

neither technical replicates nor benchmarking against physically isolated placental cell types. A robust, 

accessible, and publicly available gene expression deconvolution reference is currently unavailable for healthy 

placental villous tissue.  

 To advance the field of perinatal molecular epidemiology, our goal was to develop an accessible and 

robust gene expression deconvolution reference for healthy placental villous tissue at term. We generated 

single-cell RNA-sequencing data with technical replicates for integration with existing cell type-specific 

placental gene expression data [16]. Additionally, we benchmarked these single-cell cell type-specific gene 

expression profiles against placental cell types isolated with more conventional fluorescence-activated cell 

sorting followed by RNA-sequencing. Finally, to apply our deconvolution approach and assess links between 

preeclampsia and placental cell types and their proportions, we applied our placenta cell type gene expression 

reference to deconvolute bulk placental tissues in a secondary data analysis of a case-control study [32] of 

preeclampsia. 

Results 

Single-cell gene expression map of healthy placental villous tissue 
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 From healthy term placental villous tissue, 9,942 cells across a total of two biological replicates and two 

technical replicates were sequenced and analyzed. These data were combined with single-cell RNA-

sequencing data of 6,313 cells from three healthy term villous tissue samples in a previously published study 

[16] (Supplementary Table 1). Cells were excluded if they were doublets or outliers in total RNA content, 

number of genes detected, or mitochondrial gene expression (Supplementary Figures 1-2). Fetal or maternal 

origin was determined by genetic variation in sequencing data. Fetal sex was determined by XIST expression 

(Supplementary Figure 3). The final analytic sample included 15,532 cells and 36,601 genes across five 

biological replicates, two of which had a technical replicate. 

 Uniform manifold approximation and projection [33] was used to visualize sequencing results in two 

dimensions (Figure 1A). Cells clustered into 19 fetal and 8 maternal cell types with 66.5% of all cells of fetal 

origin (Table 1). Observed placenta-specific trophoblast cell types included cytotrophoblasts, proliferative 

cytotrophoblasts, extravillous trophoblasts, and syncytiotrophoblasts. Proliferative cytotrophoblasts were 

distinguished by overexpression of genes related to the mitotic cell cycle (padj=7.1x10-64) (Supplementary 

Figure 4). Other fetal-specific cell types included mesenchymal stem cells, fibroblasts, endothelial cells, and 

Hofbauer cells (Figure 1B). Fibroblasts were distinguished from mesenchymal stem cells by their 

overexpression of type 1 collagen genes, e.g., COL1A1 (log2-Fold-Change (log2FC) = 3.0, padj=2.48x10-16). 

Lymphocytes, B cells, and monocytes were generally of mixed maternal and fetal origin (Figure 1B-C). 

 Cell type-defining transcripts were identified by comparing the expression of a transcript in one cell type 

against that gene’s average expression across all other cell types (Supplementary Table 2). FLT1 expression 

was upregulated in extravillous trophoblasts (log2FC=3.28), cytotrophoblasts (log2FC=0.73), and proliferative 

cytotrophoblasts (log2FC=0.27). Trophoblast cell types had the largest and most diverse transcriptomes, 

characterized by the largest number of RNA molecules and detected genes per cell (Supplementary Figure 

5). Cell-type defining biological processes were highlighted with functional enrichment analysis 

(Supplementary Table 3). For example, syncytiotrophoblasts were enriched for transcripts involved in 

hormone biosynthesis (padj<0.001) and growth hormone receptor signaling (padj=0.003). Technical replication in 

samples 1 and 2 appeared high in Uniform Manifold Approximation and Projection (UMAP) space 

(Supplementary Figure 6A-B). Indeed, the average intra-cluster gene expression between technical 
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replicates had an average Pearson correlation (mean ± standard deviation) of 0.94 ± 0.14 for sample 1 and 

0.88 ± 0.20 for sample 2 (p-values<0.001). 

Fluorescence-activated cell sorting of major placental cell types 

 We isolated bulk placental villous tissue, enriched syncytiotrophoblasts, and sorted five cell types 

(Hofbauer cells, endothelial cells, fibroblasts, leukocytes, extravillous trophoblasts, and cytotrophoblasts) via 

fluorescence-activated cell sorting (FACS) from four healthy term, uncomplicated Cesarean sections for bulk 

RNA sequencing, labelled samples 1 (same sample source as single-cell RNA sequencing sample 1), 6, 7, 

and 8 (Supplementary Table 4). Principal components analysis of sorted-cell bulk RNA sequencing revealed 

three loosely defined clusters along principal component (PC) 1: (i) composite tissue and syncytiotrophoblast, 

(ii) Hofbauer and fibroblast, and (iii) cytotrophoblast, extravillous trophoblast, and endothelial. Leukocyte 

samples were scattered along PC1 (Supplementary Figure 8). Comparison of the expression of a transcript in 

one cell type against that gene’s average expression in all other cell types identified cell type-defining 

transcripts (Figure 2). 37,929 genes were tested. 746 genes were dropped from the syncytiotrophoblast 

contrast due to excessively low counts, low variability, or extreme outlier status. Large-scale gene expression 

differences were observed for each cell type (Supplementary Table 5). Functional analysis of cell type-

defining transcripts revealed cell type-defining biological processes (Supplementary Table 6). For example, 

syncytiotrophoblasts were enriched for transcripts relevant to endothelium development, mesenchyme 

development, and vasculogenesis (padj<0.001). Normalized counts between sorted and single-cell RNA-

sequencing cell types had an average Spearman correlation of 0.73 ± 0.09 (p<0.001) (Supplementary Figure 

9).  

Cell proportion deconvolution of bulk placental tissue dataset  

 Based on the single cell data, we created a placental signature gene matrix that incorporated an 

average of 10,044 differentially expressed genes for each of the 27 fetal and maternal cell types 

(Supplementary Figure 10). We applied this signature matrix to estimate cell proportions from bulk placental 

tissue in 157 preeclampsia cases and 173 controls in a dataset [32] compiled from eight previously published 

studies [32, 34–40]. Gestational age was 2.2 weeks younger in cases than controls (p-value<0.001, Table 2). 

All deconvoluted samples exhibited high goodness-of-fit between original bulk mixtures and the estimated cell 
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type proportion mixtures (p-values<0.001). Among the signature genes, original bulk and estimated mixtures 

had a Pearson correlation of 0.71 ± 0.03 and root mean square error of 0.74 ± 0.03 (Supplementary Table 

7). Fetal naïve CD4+ T cells and fetal B cells were estimated to be at 0% abundance in all samples and were 

dropped from downstream analyses. Cytotrophoblasts were the most abundant estimated fetal cell type (29% 

± 4%) followed by syncytiotrophoblasts (21% ± 4%) and naïve CD8+ T cells (9% ± 2%). The most common 

maternal cell types were naïve CD8+ T cells (3% ± 2%), natural killer cells (3% ± 2%), and plasma cells (3% 

± 2%). 

Differentially abundant cell type proportions in preeclampsia cases versus controls 

To test for differences in cell proportions between preeclampsia cases and controls (Supplementary 

Figure 11), we fit beta regression models adjusted for each cell type proportion and study source, fetal sex, 

and gestational age. Fetal memory CD4+ T cells (p=0.03) and extravillous trophoblasts (p<0.001) were more 

abundant (Figure 3) in preeclampsia cases relative to controls. The unadjusted median extravillous trophoblast 

abundance was 5.3% among cases compared to 2.6% among controls. Mesenchymal stem cells (median 

percent composition in cases vs. controls, 4.9% vs. 6.2%), Hofbauer cells (6.4% vs. 7.9%), and fibroblasts 

(6.1% vs. 6.7%) were all less abundant among preeclampsia cases compared to controls (p<0.001). Among 

maternal cell types, natural killer cells (1.6% vs. 1.4%) were more abundant among preeclampsia cases 

compared to controls (p=0.002). 

Differential expression between preeclampsia cases and controls attenuated by cell type proportion 

adjustment 

 To test whether microarray gene expression differences between preeclampsia cases and controls are 

partly driven by differences in cell type abundances, we fit differential gene expression models adjusted for 

covariates study source, fetal sex, and gestational age with and without adjustment for imputed cell type 

proportions. To reduce the number of model covariates and account for dependence between deconvoluted 

cell type proportions, we applied principal components analysis to the imputed cell type proportions. The first 

five PCs accounted for 77.8% of the variance and were added as additional covariates to form the cell type-

adjusted model. Variation in PCs 1 and 2 was largely driven by syncytiotrophoblasts (53.3%) and 

cytotrophoblast (21.5%) proportions and did not readily separate cases from controls (Supplementary 
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Figures 12A, C). Variation in PC3 was largely driven by extravillous trophoblast proportions (69.1%) and to a 

lesser extent Hofbauer cells (13.5%) and mesenchymal stems cells (6.1%). PC3 provided some separation 

between cases and controls (Supplementary Figures 12B, D). 

 In the cell type-naïve base model, 1,224 genes were differentially expressed in preeclampsia cases 

versus controls (Figure 4A). Gene set enrichment analysis identified 81 overrepresented pathways in the base 

model (Figure 5A). Biological process pathways such as cellular respiration (q-value<0.001), translational 

termination (q<0.001), and related pathways were downregulated whereas cell type differentiation pathways 

such as cornification (q<0.001) and endothelial cell development (q=0.04) were upregulated. Remarkably, 

when the base model was additionally adjusted for the first five PCs of imputed cell type proportions, there 

were zero differentially expressed genes between preeclampsia cases and controls (Figure 4B). Of the cell 

type-adjusted results, 40 pathways were overrepresented (Figure 5B). Downregulation of translation 

termination (q<0.001), cellular respiration (q<0.001), and related pathways and upregulation of glycolytic 

process through fructose 6-phosphate (q=0.01) were robust to cell type proportion adjustment. 

Differential expression of preeclampsia-associated gene FLT1 mediated by placental cell type 

proportions 

 Overexpression of FLT1 in placental tissue [41–44], detection of a soluble isoform of FLT1 in maternal 

circulation [45, 46], and fetal genetic variants near FLT1 [47] have implicated FLT1 in preeclampsia etiology. 

Because we observed cell type-specific expression patterns of FLT1 in trophoblasts, particularly in extravillous 

trophoblasts, we hypothesized that the observed attenuation of FLT1 differential expression may be due in part 

to the differences in cell type proportions observed between preeclampsia cases and controls. To test this 

hypothesis, we applied a unified mediation and interaction analysis to quantify the proportion of FLT1 

expression differences mediated by deconvoluted cell type proportions. We did not observe an interaction 

between preeclampsia status and placental cell composition (average mediated effect percent difference = -

3.8%, 95% CI [-23.4%, 15.7%]). 35.1% (95% CI [25.5%, 46.3%]) of the association between preeclampsia and 

FLT1 expression was attributable to differences in placental cell composition between preeclampsia cases and 

controls (Figure 6). 

Discussion 
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To create the largest, publicly available deconvolution reference of 19 fetal and 8 maternal cell type-

specific gene expression profiles, we newly sequenced placental villous cells, integrated those results with 

data from a previously published study, and built a signature gene matrix for deconvolution. To assess 

reproducibility, we assayed single-cell gene expression profiles for two term placentas in technical replicates 

following cryopreservation of dissociated villous tissue. To validate single-cell placental cell type expression 

profiles, we created a novel fluorescence-activated cell sorting scheme to enrich and sequence RNA from five 

important placental cell types as well as syncytiotrophoblasts. We applied our results to deconvolute cell type 

proportions in a previously published epidemiologic microarray study of the pregnancy complication 

preeclampsia, revealing placental cell type proportion differences between preeclampsia cases and controls at 

term. We then showed that large gene expression differences between preeclampsia cases and controls 

(n=1,224 genes, padj<0.05) were markedly attenuated after adjustment for cell type proportions (n=0 genes, 

padj<0.05). Preeclampsia associated pathways that were robust to cell type proportion adjustment included 

downregulation of replication-related and cellular respiration pathways and upregulation of glycolysis through 

fructose 6-phosphate. Finally, to quantify the attenuation of differential expression of the preeclampsia 

biomarker FLT1, we applied mediation analysis to show that approximately 35% of the association between 

increased FLT1 expression and preeclampsia was attributable to placental cell composition. Cell type 

proportions may be an important factor in gene expression differences in placental tissue studies. 

By integrating our new single-cell RNA-sequencing results with those from a previously published 

study, our integrated dataset, to our knowledge, is the largest for healthy, term placental villous tissue to date. 

We document term cell type-specific gene expression patterns for well-characterized placental cell types, 

including syncytiotrophoblasts [9], cytotrophoblasts [12], and extravillous trophoblasts [13]. In addition, we 

provide gene expression markers for relatively understudied placental cell types such as endothelial cells, 

mesenchymal stem cells, and Hofbauer cells as well as maternal peripheral mononuclear cells recovered from 

the maternal-fetal interface. Compared to the previous analysis of the published samples [16] which relied on 

predominately sex-specific gene expression markers to differentiate proliferative from non-proliferative 

cytotrophoblasts, we show that functional enrichment analysis revealed broad upregulation of proliferation 

pathways in proliferative cytotrophoblasts. We replicated the findings of a previous study [9] that size exclusion 
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filtration can enrich syncytiotrophoblasts from gently digested villous tissue based on comparison to single-cell 

results. We developed a novel fluorescence-activated cell sorting scheme to simultaneously isolate viable cells 

from five major placental cell types. This protocol can be used to simultaneously isolate placental cell types for 

functional assays or other experiments. The low representation of some cell types such as trophoblasts in our 

single-cell RNA-sequencing results suggest that these cell types may be sensitive to a conventional 

cryopreservation protocol, an extension of dissociation bias that has been previously documented in other 

tissues [48]. Future studies may propose alternative approaches to perform unbiased single-cell RNA in 

placental tissues. 

Our preeclampsia findings are consistent with prior pathophysiological understanding of the disorder, 

and we provide linked cell type and gene expression data in bulk tissue for the first time. Among preeclampsia 

cases, we observed an elevated proportion of extravillous trophoblasts and underrepresentation of stromal cell 

types, which may reflect an arrest in placental cell type differentiation and maturation following insufficient 

uterine spiral artery remodeling implicated in preeclampsia [49–51]. In the cell type-naïve differential 

expression model, consistent with previous findings, placentas from pregnancies with preeclampsia 

overexpressed FLT1, LEP, and ENG [41–44]. In our cell type-adjusted model, FLT1 and LEP remained only 

nominally significant whereas ENG was not differentially expressed. Mediation analysis confirmed that a 

significant proportion of FLT1 overexpression was attributable to changes in the cellular composition of the 

placenta. These results suggest that placental cell type proportion differences may be an overlooked factor in 

explaining the well-documented association between preeclampsia and FLT1 expression [41–44]. 

Downregulation of replication-related and cellular respiration pathways and upregulation of glycolysis through 

fructose 6-phosphate was robust to cell type adjustment, suggesting intracellular changes to these pathways. 

Together, these enrichment results suggest a metabolic adaption to hypoxia. Placental hypoxia is 

characteristic of preeclampsia [52, 53]. Because oxygen tension is a critical factor in trophoblast differentiation, 

inappropriate oxygenation may partially explain the elevated proportion of extravillous trophoblasts, though 

regulators of this process such as HIF1A and TGFB3 were not differentially expressed at the tissue level [54]. 

A recent single-cell RNA-sequencing case-control study of preeclampsia, however, identified upregulation of 

TGFB1 in extravillous trophoblasts, potentially indicative of altered trophoblast differentiation or invasion [55, 
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56]. Consistent with our other findings, this study also observed a similar trend in cell type proportion 

differences and upregulation of FLT1 in extravillous trophoblasts and ENG in syncytiotrophoblasts among 

between preeclampsia cases and controls [55]. Future work should consider and account for the cell type-

specific expression patterns of genes that regulate placental development or are associated with preeclampsia 

to better understand preeclampsia etiology. 

This study has several strengths. This is one of the first studies to profile the parenchymal healthy term 

villous tissue in the placenta and we integrate our dataset with samples from a previously published study to 

generate the largest cell type-specific placental villous tissue gene expression reference to date. Single-cell 

RNA-sequencing allows us to agnostically capture diverse placental cell types without a priori knowledge of 

cell types and their characteristics. To our knowledge, this is also the first study to demonstrate technical 

replication of single-cell RNA-sequencing in placental villous tissue. We verify our results with conventional 

RNA-sequencing of FACS-sorted placental cell types. We confirmed enrichment of syncytiotrophoblasts 

through size exclusion filtration is consistent with single-cell results. We also applied our findings to a large 

target deconvolution dataset of preeclampsia that contained placental measures from hundreds of participants 

across eight different studies. Most importantly, this is the first study of preeclampsia to account for cell type 

heterogeneity, a critical factor in bulk tissue assays, in an epidemiologic sample. 

This study also has several limitations. Although our cellular sample size comprised of 15,532 cells is 

relatively large compared to previous single-cell RNA-sequencing studies of term placental villous tissue, this 

dataset still represents a limited biologic replicate sample size. Our newly sequenced samples came from a 

convenience sample without available demographic information beyond healthy Cesarean-section status. 

Similarly, the sample size of FACS-sorted tissues was limited, and some cell type fractions were excluded due 

to low RNA quality. This study did not include placental tissues for single cell analysis from preeclamptic 

patients to confirm intracellular gene expression changes. Though deconvolution fit statistics were highly 

significant, we had no gold standard to verify accurate deconvolution of cell counts. Future studies may verify 

whether cell type proportions estimated in diseased or vaginally delivered tissues are robust to a deconvolution 

reference generated from healthy villous tissue delivered via Cesarean-section. Residual confounding may 

remain in our statistical models due to the limited number of common covariates across all eight preeclampsia 
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case-control studies. Due to the nature of villous tissue sampling, our study design is cross-sectional, limiting 

our ability to establish temporality between exposure and outcome to rule out reverse causation. As with any 

study conditioned on live birth, selection bias may affect our results. However, the effects of harmful exposures 

that lead to selection tend to be underestimated in these scenarios [57, 58]. Therefore, our results likely 

represent a conservative underestimate of the effects of preeclampsia on inappropriate cell composition and 

preeclampsia status on FLT1 expression. 

In summary, we provide a cell type-specific deconvolution reference via single-cell RNA-sequencing in 

the parenchymal placental term villous tissue. We verified this reference by developing a novel FACS scheme 

to characterize six major placental cell types with RNA-sequencing. We applied this deconvolution reference to 

an epidemiologic preeclampsia dataset to reveal biologically relevant shifts in placental cell type proportions 

between preeclampsia cases and controls. Once cell type proportion differences were accounted for, 

differential gene expression differences were markedly attenuated between preeclampsia cases and controls. 

Enrichment analysis revealed downregulation of replication-related and cellular respiration pathways and 

upregulation of glycolysis through fructose 6-phosphate in preeclampsia. A substantial proportion of the 

overexpression of the FLT1 in preeclampsia was mediated by placental cell composition. This is the first study 

to evaluate cell type proportion differences in an epidemiological study of placental parenchymal tissue and 

preeclampsia, or genome-wide gene expression differences adjusting for cell type heterogeneity. These results 

add to the growing body of literature that emphasizes the centrality of cell type heterogeneity in molecular 

measures of bulk tissues. We provide a publicly available placental cell type-specific gene expression 

reference for term placental villous tissue to overcome this critical limitation. 

Methods 

Placental tissue collection and dissociation 

Placentas were collected shortly after delivery from healthy, full term, singleton uncomplicated 

Cesarean sections at the University of Michigan Von Voigtlander Women’s Hospital. Villous placental tissue 

biopsies were collected and minced for dissociation after cutting away the basal and chorionic plates and 

scraping villous tissue from blood vessels [12]. We subjected approximately 1g minced dissected villous tissue 

to the Miltenyi Tumor Dissociation Kit on the GentleMACS Octo Dissociator with Heaters (Miltenyi Biotec) to 
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yield single-cell suspensions of viable placental cells in 5μM StemMACS™ Y27632 (Miltenyi Biotec) in RPMI 

1640 (Gibco) according to manufacturer’s instructions for “soft” tumor type. Red blood cells were depleted 

using RBC lysis buffer (Biolegend) according to manufacturer’s protocol A. Single-cell suspensions were size-

filtered at 100μm and subsequently 40μm. To collect a syncytiotrophoblast-enriched fraction, the fraction 

between 40μm and 100μm was washed from the 40μm strainers [9]. Single-cell suspensions <40μm were 

cryogenically stored in 5μM StemMACS™ Y27632 90% heat-inactivated fetal bovine serum (Gibco)/10% 

dimethyl sulfoxide (Invitrogen). For each placenta, additional whole villous tissue samples were stored in 

RNALater (Qiagen). 

Placental single-cell RNA sequencing 

Villous tissue single-cell suspensions were thawed and sorted via fluorescence-activated cell sorting 

with LIVE/DEAD Near-IR stain (Invitrogen) for viability and forward-scatter and side-scatter profiles to eliminate 

cellular debris and cell doublets. Viability- and size-sorted single-cell suspensions were submitted to the 

University of Michigan Advanced Genomics Core for single-cell RNA sequencing. Single cells were barcoded, 

and cDNA libraries constructed on the Chromium platform (10X Genomics, Single Cell 3' v2 chemistry). 

Asymmetric paired-end 110 base pair reads were sequenced on NovaSeq 6000 (Illumina). 

Single-cell RNA-sequencing preprocessing  

Raw reads were processed, deconvoluted, droplet filtered, and aligned at the gene level with the Cell 

Ranger pipeline using default settings (v4.0.0, 10X Genomics) based on the GRCh38 GENCODEv32/Ensembl 

98 reference transcriptome with STAR v2.5.1b [59]. Previously published single-cell RNA-sequencing raw data 

of healthy, term placental villous tissue samples (dbGaP ID phs001886.v1.p1) SRR10166478, SRR10166481, 

and SRR10166484 downloaded through the NCBI Sequence Read Archive were processed identically [16]. 

The freemuxlet function in the latest version (accessed 2021/12/05) of the ‘popscle’ package was used to 

assign fetal or maternal origin and identify 120 mosaic doublets for removal based on single nucleotide 

polymorphisms with minor allele frequency greater than 10% from the 1000 Genomes Phase 3 reference panel 

(released 2013/05/02) [60]. Per cell quality control criteria were total RNA molecules, unique genes, and 

percentage of reads mapping to mitochondrial genes [61]. We excluded 1,398 low-quality outlier cells defined 

as cells that exceeded four median absolute deviations in samples 1 and 2 or three median absolute deviations 
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in samples 3, 4, and 5 using the quickQCPerCell function in ‘scater’ (R package, version 1.18.6) with default 

settings [62] (Supplementary Figures 1-2).  

Single-cell RNA-sequencing clustering and cluster annotation  

Maternal and fetal cells were split into separate datasets for clustering. Mutual nearest neighbor batch 

correction by biological replicate with default settings was used to identify cell type clusters and visualize 

clustering results via uniform manifold projection [33] using FastMNN from ‘SeuratWrapper’ (R package, 

version 0.3.0) [63]. Iterative clustering and sub-clustering with ‘Seurat’ (R package, version 4.0.1) function 

FindClusters at different resolution parameters were evaluated using cluster stability via clustering trees in 

‘clustree’ [64, 65]. A priori canonical cell type marker gene expression patterns and cluster marker genes were 

used to assign cell types to cell clusters [16, 66–71]. Cells that fell outside cell type clusters and outlying in 

doublet density calculated with computeDoubletDensity were removed as putative doublets and doublet 

clusters were identified with findDoubletClusters for removal in ‘scDblFinder’ (R package, version 1.4.0)  [72]. 

723 maternal-maternal or fetal-fetal putative doublets were excluded after integration and clustering. Fetal sex 

in phs001886.v1.p1 samples was determined by annotation and confirmed with XIST expression. The final 

analytic sample had 15,532 cells and 36,601 genes across five biological and two technical replicates. 

Single-cell RNA-sequencing differential expression and biological pathway enrichment statistical 

analysis  

Technical correlation was assessed by Pearson correlation after averaging the normalized expression 

for each gene by cluster and by technical replicate. Cluster marker genes were identified in ‘Seurat’ with the 

FindAllMarkers function with default settings on uncorrected single-cell gene expression counts [61, 65]. 

Specifically, including both maternal and fetal cell types, the expression level in each cell type cluster was 

compared against the average expression of that gene across all other cell types using the two-tailed Wilcoxon 

Rank Sum test with significance defined at a false discovery rate-adjusted p-value less than 0.05. Pairwise 

cluster markers were identified in ‘Seurat’ with the FindMarkers function with an identical testing regime. 

Overexpressed genes were ranked by decreasing log-fold change for functional enrichment analysis with 

‘gprofiler2’ (R package, version 0.2.0, database version e102_eg49_p15_7a9b4d6) using annotated genes as 
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the universe, excluding electronically generated annotations, with the g:SCS multiple testing correction method 

applying significance threshold 0.05 [73]. 

Fluorescence-activated cell sorting of major placental cell types from villous tissue 

Villous tissue single-cell suspensions were quickly thawed and stained with 5 fluorescently labeled 

antibodies (CD9-FITC, CD45-APC, HLA-A,B,C-PE/Cy7, CD31-BV421, and HLA-G-PE) as well as the 

LIVE/DEAD Near-IR stain (Invitrogen) to isolate 6 viable populations of placental cells by fluorescence 

activated cell sorting at the University of Michigan Flow Cytometry Core Facility. Initial flow cytometry 

experiments included fluorescence minus one, single color compensation, and isotype controls. Isotype 

controls were found to be the most conservative and were consequently included in all sorting experiments, as 

well as single-color compensation controls due to the large number of colors used in sorting. The six 

populations of cells were Hofbauer cells, endothelial cells, fibroblasts, leukocytes, extravillous trophoblasts, 

and cytotrophoblasts We developed a novel five-marker cell surface fluorescence activated cell sorting (FACS) 

scheme to sort cytotrophoblasts (HLA A,B,C-), endothelial cells (CD31+), extravillous trophoblasts (HLA-G+), 

fibroblasts (CD9+), Hofbauer cells (CD9-), and leukocytes (CD45+/CD9+) from villous tissue (Supplementary 

Figure 6) [10, 11, 13, 74–81]. Syncytiotrophoblast fragments were enriched from villous tissue digests. We 

isolated cell type fractions and composite villous tissue from four healthy term, uncomplicated Cesarean 

sections, labelled samples 1 (same sample source as single-cell RNA-sequencing sample 1), 6, 7, and 8. We 

subjected 24 cell type fractions with sufficient RNA content to RNA-sequencing, including five composite, two 

cytotrophoblast, one endothelial, three extravillous trophoblast, three fibroblast, four Hofbauer cell, four 

leukocyte, and two syncytiotrophoblast fractions (Supplementary Table 4). 

Detailed antibody information: FITC, marker CD9: Mouse IgG1-kappa, clone HI9a, Biolegend #312103, 

lot B188319, Biolegend #312104, lot B232916; isotype control: clone MOPC-21 Biolegend #400107, Lot 

B199152. APC, marker CD45: Mouse IgG1-kappa, clone 2D1, Biolegend #368511, Lot B215062; isotype 

control: clone MOPC-21, Biolegend #400121, lot B216780. PE/CY-7, marker HLA-ABC: Mouse IgG2a-kappa, 

clone W6/32, Biolegend #311429, lot B188649, Biolegend #3111430, lot B238602; isotype control: clone 

MOPC-173, Biolegend #400231, lot B209000. BV421, marker CD31: Mouse IgG1-kappa, clone WM59, 

Biolegend #303123, lot B204347, Biolegend #303124, lot B232010; isotype control: clone MOPC-21, 
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Biolegend #400157, lot B225357. PE, marker HLA-G: Mouse IgG2a-kappa, clone 87G, Biolegend #335905, lot 

B222326, Biolegend #335906, lot B199294; isotype control clone MOPC-173, Biolegend #400211, lot 

B227641. Mouse IgG1-kappa, clone MEM-G/9, Abcam #24384 Lot GR3176304-1; isotype control: monoclonal, 

Abcam #ab81200, lot GR267131-1. Validation information available on manufacturer's website under the 

catalog ID for each antibody. 

A cut-off of 0.1% events was used to set a series of gates. Cells were first gated on size and granularity 

(FSC-HxSSC-H) to eliminate debris (not shown), followed by doublet discrimination (FSC-HxFSC-W and SSC-

HxSSC-W) (not shown). Ax750 was used to sort on viability (not shown). Extravillous trophoblasts were 

isolated based on Human Leukocyte Antigen-G (HLA-G) expression (Supplementary Figure 7A). 

Cytotrophoblasts are HLA-ABC negative (Supplementary Figure 7B). HLA-ABC positive cells were then 

subjected to a CD45/CD9 gate to isolate Hofbauer cells and a heterogeneous population of leukocytes 

(Supplementary Figure 7C). Finally, CD45-/CD9- population is sorted into the endothelial or fibroblast bins 

based on CD31 expression (Supplementary Figure 7D). 

Bulk placental tissue and sorted placental cell type RNA extraction and sequencing  

Approximately 2mg of bulk RNALater-stabilized (Qiagen) bulk villous tissue was added to 350μL 1% β-

mercaptoethanol (Sigma-Aldrich) RLT Buffer Plus (Qiagen) to Lysing Matrix D vials (MP Biomedicals). 

Samples were disrupted and homogenized on the MP-24 FastPrep homogenizer (MP Biomedicals) at 6m/s, 

setting MP24x2 for 35s. For the homogenized bulk villous tissue, syncytiotrophoblast-enriched fraction, and 

sorted cell types, RNA extraction was completed according to manufacturer’s instructions using the AllPrep 

DNA/RNA Mini Kit (Qiagen) and stored at -80°C. RNA samples were submitted to the University of Michigan 

Advanced Genomics Core for RNA sequencing. Ribosomal RNAs were depleted with RiboGone (Takara) and 

libraries were prepared with the SMARTer Stranded RNA-Seq v2 kit (Takara). Paired- or single-end 50 base 

pair reads were sequenced on the HiSeq platform (Illumina). Raw RNA reads were assessed for sequencing 

quality using ‘FastQC’ v0.11.5 [82] and ‘MultiQC’ v1.7 [83]. Reads were aligned to the GRCh38.p12/ 

GENCODEv28 reference transcriptome using ‘STAR’ v2.6.0c with default settings [59]. featureCounts from 

‘subread’ v1.6.1 was used to quantify and summarize gene expression with default settings [84]. 
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Validation testing: Sorted placental cell type differential expression analysis and comparison to single-

cell results 

Cell type-defining transcripts were identified using the negative binomial linear model two-tailed Wald 

test in ‘DESeq2’ (R package, version 1.30.1) adjusted for biological replicate using default settings with 

contrasts comparing the expression of a gene in one cell type against the average expression across all other 

cell types at a false discovery rate-adjusted p-value less than 0.05 [85]. Differentially expressed genes for each 

contrast were descending-ranked by absolute value of the test statistic for gene set enrichment analysis in 

desktop version GSEA 4.1.0 with the GSEAPreranked tool with default settings [86, 87]. Sorted- and single-cell 

read counts were appropriately library-normalized and log-transformed. Diverse fetal and maternal immune cell 

types from the single-cell RNA-sequencing data were summed and collapsed to one leukocyte category, 

cytotrophoblast subtypes to one cytotrophoblast category, and mesenchymal stem cells and fibroblasts to one 

fibroblast category. Normalized sorted cell type gene expression was compared to normalized single-cell RNA-

sequencing results using Pearson and Spearman correlation coefficients to validate single-cell expression 

results. 

Application testing: Bulk placenta gene expression dataset and CIBERSORTx deconvolution  

Bulk placental tissue microarray gene expression (previously batch-corrected and normalized) from 

eight preeclampsia case-control studies was downloaded from the NCBI Gene Expression Omnibus 

(accession number GSE75010) for deconvolution [32]. We used the online version of CIBERSORTx 

(cibersortx.standford.edu, accessed 2021-01-25) to create a signature gene expression matrix for 

deconvolution with the following parameters: differential expression q-value<0.01, no minimum gene 

expression cutoff, and a 2000 gene feature selection ceiling [88]. We used the signature matrix to estimate 

constituent cell type proportions in GSE75010 using CIBERSORTx with cross-platform S-mode batch 

correction and 100 permutations to evaluate imputation goodness-of-fit. 

Application testing: Preeclampsia case-control differential cell type abundance, differential gene 

expression statistical analysis, and mediation analysis 

To test for differences in estimated cell type proportions between preeclampsia cases and controls, 

estimated cell type proportions for GSE75010 were regressed on preeclampsia case-control status using beta 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

regression models adjusted for gestational age, sex, and study source [89]. Statistical significance was 

assessed using the two-tailed Wald test applying a nominal significance threshold of 0.05. Cell types imputed 

at zero percent abundance across all samples were excluded. 

Differential expression analysis was conducted in limma [90] with default linear models adjusted for 

gestational age, fetal sex, and study source. A cell type-adjusted model was built on the base model 

additionally adjusted for the first five principal components of deconvoluted cell type proportions. Principal 

components analysis was performed with prcomp from ‘stats-package’ (R, version 4.0.5) without scaling and 

default settings. Statistical significance was assessed at false discovery rate-adjusted q-value<0.05. 

Differentially expressed genes were descending-ranked by absolute value of the test statistic for gene set 

enrichment analysis in desktop version GSEA 4.1.0 with the GSEAPreranked tool with default settings [86, 87].  

A unified mediation and interaction analysis [91] was conducted in ‘CMAverse’ (R package, version 

0.1.0) [92] via the g-formula approach [93] to estimate causal randomized-intervention analogues of natural 

direct and indirect effects [94] through direct counterfactual imputation. The model was operationalized with 

preeclampsia status as the binary exposure, normalized FLT1 expression as the continuous outcome, and the 

first five principal components of deconvoluted cell type proportions as continuous mediators. Baseline 

covariates included fetal sex and study source. Continuous gestational age was included as a confounder of 

the mediator-outcome relationship affected by the exposure. Confidence intervals were bootstrapped with 1000 

boots with otherwise default settings. Statistical tests were two-tailed and interpreted at a p-value significance 

threshold of 0.05. 

Statistical Information 

Technical replication measured by average intra-cluster gene expression between technical replicates 

was tested via the two-tailed Pearson correlation test within Samples 1 and 2 assessed across all 36,601 

genes. The number of cells contributing expression data for each cell type are available in Table 1. Single-cell 

cluster marker genes were identified in ‘Seurat’ with the FindAllMarkers function with default settings on 

uncorrected single-cell gene expression counts [61, 65]. Specifically, including cells from both maternal and 

fetal cell types, the expression level in each cell type cluster was compared against the average expression of 

that gene across all other cell types using the two-tailed Wilcoxon Rank Sum test with significance defined at a 
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false discovery rate-adjusted p-value less than 0.05 (n=15,532 cells). Pairwise cluster markers were identified 

in ‘Seurat’ with the FindMarkers function with an identical testing regime (n=2,835 cells for proliferative vs. non-

proliferative cytotrophoblasts). Overexpressed genes (498.37 ± 400.82 genes across 27 cell type clusters or 

746 differentially expressed genes for proliferative vs. non-proliferative cytotrophoblasts) were ranked by 

decreasing log-fold change for functional enrichment analysis with ‘gprofiler2’ (R package, version 0.2.0, 

database version e102_eg49_p15_7a9b4d6) using annotated genes as the universe, excluding electronically 

generated annotations, with the g:SCS multiple testing correction method applying significance threshold 0.05 

[73]. Overexpressed genes per cell type cluster are available in Supplementary Table 2. 

 Cell type-defining transcripts were identified using the negative binomial linear model two-tailed Wald 

test in ‘DESeq2’ (R package, version 1.30.1) adjusted for biological replicate using default settings with 

contrasts comparing the expression of a gene in one cell type against the average expression across all other 

cell types at a false discovery rate-adjusted p-value less than 0.05 [85] (n=19 cell type fraction samples with 

breakdown by cell type available in Supplementary Table 4). Overexpressed genes for each contrast (1,261 

± 866.83 genes across 7 cell types) were descending-ranked by absolute value of the test statistic for gene set 

enrichment analysis in desktop version GSEA 4.1.0 with the GSEAPreranked tool with default settings [86, 87]. 

Differentially expressed genes per cell type available in Supplementary Table 5 and number of differentially 

expressed genes is summarized in Figure 2. Sorted- and single-cell read counts were appropriately library-

normalized and log-transformed. Diverse fetal and maternal immune cell types from the single-cell RNA-

sequencing data were summed and collapsed to one leukocyte category, cytotrophoblast subtypes to one 

cytotrophoblast category, and mesenchymal stem cells and fibroblasts to one fibroblast category. Normalized 

sorted cell type gene expression (n=19 cell type fraction samples) was compared to normalized single-cell 

RNA-sequencing (n=15,484 cells) results across 7 cell types using two-tailed Pearson and Spearman 

correlation coefficient tests to validate single-cell expression results across 27,490 common genes 

(Supplementary Figure 9). Statistical tests were interpreted at a p-value significance threshold of 0.05. 

Bulk placental tissue microarray gene expression (previously batch-corrected and normalized) from 

eight preeclampsia case-control studies was downloaded from the NCBI Gene Expression Omnibus 

(GSE75010) for deconvolution (n=330) [32]. We used the online version of CIBERSORTx 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

(cibersortx.standford.edu, accessed 2021-01-25) to create a signature gene expression matrix for 

deconvolution with the following parameters: differential expression q-value<0.01, no minimum gene 

expression cutoff, and a 2000 gene feature selection ceiling [88]. We used the signature matrix to estimate 

constituent cell type proportions in GSE75010 using CIBERSORTx with cross-platform S-mode batch 

correction and 100 permutations to evaluate imputation goodness-of-fit. 

To test for differences in estimated cell type proportions between preeclampsia cases and controls 

(n=330), estimated cell type proportions for GSE75010 were regressed on preeclampsia case-control status 

using beta regression models (n=25 cell type proportion outcomes) adjusted for gestational age, sex, and 

study source [89]. Cell types imputed at zero percent abundance across all samples were excluded (n=2 

excluded). Statistical significance was assessed using the two-tailed Wald test applying a nominal significance 

threshold of 0.05. 

Differential expression analysis was conducted in limma [90] with default linear models adjusted for 

gestational age, fetal sex, and study source (n=330). A cell type-adjusted model was built on the base model 

additionally adjusted for the first five principal components of deconvoluted cell type proportions. Principal 

components analysis was performed with prcomp from ‘stats-package’ (R, version 4.0.5) without scaling and 

default settings. Statistical significance was assessed at false discovery rate-adjusted q-value<0.05. 

Differentially expressed genes were descending-ranked by absolute value of the test statistic for gene set 

enrichment analysis in desktop version GSEA 4.1.0 with the GSEAPreranked tool with default settings [86, 87].  

A unified mediation and interaction analysis [91] was conducted in ‘CMAverse’ (R package, version 

0.1.0) [92] via the g-formula approach [93] to estimate causal randomized-intervention analogues of natural 

direct and indirect effects [94] through direct counterfactual imputation. The model (n=330) was operationalized 

with preeclampsia status as the binary exposure, normalized FLT1 expression as the outcome, and the first 

five principal components of deconvoluted cell type proportions as continuous mediators. Baseline covariates 

included fetal sex and categorical study source. Continuous gestational age was included as a confounder of 

the mediator-outcome relationship affected by the exposure. Confidence intervals were bootstrapped with 1000 

boots with otherwise default settings. Statistical tests were two-tailed and interpreted at a p-value significance 

threshold of 0.05. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

Data Availability 
 

The cell type signature matrix and related files to deconvolute bulk gene expression measures are 

available through Github (https://github.com/bakulskilab). Raw placental single-cell RNA-sequencing and raw 

placental bulk RNA-sequencing generated by this study are available in the Gene Expression Omnibus 

repository (accession number GSE182381). The placental single-cell RNA-sequencing data that support the 

findings of this study are available in the Database of Genotypes and Phenotypes (accession number 

phs001886.v1.p1) [16]. The preeclampsia case-control microarray data that support the findings of this study 

are available in Gene Expression Omnibus repository (accession number GSE75010) [32]. 

Code Availability 

All scripts to perform preprocessing, analyses, and deconvolution is available 

(https://github.com/bakulskilab). 
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Figure 1. (A) Uniform Manifold Approximation and Projection (UMAP) plot of all cells, with each cell colored by cell type cluster. (B) UMAP plot of 
fetal cells only, with each cell colored by cell type cluster. (C) UMAP plot of maternal cells only, with each cell colored by cell type cluster. 
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Table 1. Number of cells captured by single-cell RNA sequencing in the final analytic dataset for each cell type by sample source. Overall cell 
composition by cell count provided for each cell type.  
 
Cell Type 1A 1B 2A 2B 3 4 5 Fetal (%) Maternal (%) 

Fetal B Cells 111 152 199 233 39 28 16 7.5% - 

Fetal CD14+ Monocytes 240 196 186 204 52 28 43 9.2% - 

Fetal CD8+ Cytotoxic T Cells 220 210 148 163 79 76 6 8.7% - 

Fetal Cytotrophoblasts 4 9 1 1 378 921 891 21.4% - 

Fetal Endothelial Cells 5 11 23 15 1 5 6 0.6% - 

Fetal Extravillous Trophoblasts 0 0 0 0 11 229 6 2.4% - 

Fetal Fibroblasts 1 1 0 3 26 17 50 0.9% - 

Fetal GZMB+ Natural Killer 10 7 7 7 48 16 7 1.0% - 

Fetal GZMK+ Natural Killer 7 13 8 11 107 90 10 2.4% - 

Fetal Hofbauer Cells 26 26 112 134 117 121 277 7.9% - 

Fetal Memory CD4+ T Cells 26 42 43 47 70 54 29 3.0% - 

Fetal Mesenchymal Stem Cells 54 47 56 65 387 13 512 11.0% - 

Fetal Naive CD4+ T Cells 225 216 227 217 30 56 25 9.6% - 

Fetal Naive CD8+ T Cells 52 38 108 127 17 38 9 3.8% - 

Fetal Natural Killer T Cells 32 37 24 35 56 43 8 2.3% - 

Fetal Nucleated Red Blood Cells 1 0 1 0 25 6 15 0.5% - 

Fetal Plasmacytoid Dendritic Cells 5 4 2 7 24 18 8 0.7% - 

Fetal Proliferative Cytotrophoblasts 0 1 1 0 124 200 304 6.1% - 

Fetal Syncytiotrophoblasts 4 15 3 2 6 80 0 1.1% - 

Maternal B Cells 117 143 348 339 1 21 0 - 18.6% 

Maternal CD14+ Monocytes 284 298 187 212 22 6 8 - 19.5% 

Maternal CD8+ Cytotoxic T Cells 433 419 225 248 22 38 3 - 26.7% 

Maternal FCGR3A+ Monocytes 120 137 50 69 36 11 84 - 9.7% 

Maternal Naive CD4+ T Cells 51 36 47 58 9 19 3 - 4.3% 

Maternal Naive CD8+ T Cells 69 94 178 168 6 32 3 - 10.6% 

Maternal Natural Killer Cells 110 138 64 59 12 8 3 - 7.6% 

Maternal Plasma Cells 36 37 30 46 0 7 2 - 3.0% 
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Figure 2. Volcano plots for fluorescence-activated-cell-sorted bulk RNA-seq differential expression in one cell type against average gene 
expression across other cell types. The y-axis encodes -log10 transformation of the false discovery-controlled q-value, with the cut-off for statistical 
significance at 0.05. The x-axis encodes log2 fold change of gene expression for the contrast of interest. The upper-right inset describes the number 
of differentially regulated genes per contrast. 37,929 genes were tested. 746 genes were dropped from the syncytiotrophoblast contrast by 
DESeq2’s default automatic filtering algorithm due to excessively low counts, low variability, or extreme outlier status. (A) Cytotrophoblast. (B) 
Endothelial cell. (C) Extravillous trophoblast. (D) Fibroblast. (E) Hofbauer cell. (F) Leukocyte. (G) Syncytiotrophoblast.
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Table 2. Demographic characteristics of eight previously published bulk microarray placental gene expression 
case-control studies (accessed through GSE75010) for deconvolution application testing. 

 Control 
(N=173) 

Preeclampsia 
(N=157) 

P-value 

Fetal Sex    

Female 78 (45.1%) 81 (51.6%) 0.28 

Male 95 (54.9%) 76 (48.4%)  

Gestational Age (wks)    

Mean (SD) 35.2 (3.97) 33.0 (3.17) <0.001 

Median [Min, Max] 37.0 [25.0, 41.0] 33.0 [25.0, 39.0]  

Study    

GSE10588 26 (15.0%) 17 (10.8%) 0.39 

GSE24129 8 (4.6%) 8 (5.1%)  

GSE25906 37 (21.4%) 23 (14.6%)  

GSE30186 6 (3.5%) 6 (3.8%)  

GSE43942 7 (4.0%) 5 (3.2%)  

GSE44711 8 (4.6%) 8 (5.1%)  

GSE4707 4 (2.3%) 10 (6.4%)  

GSE75010 77 (44.5%) 80 (51.0%)  

Bivariate batch with Kruskal-Wallis ANOVA (regular ANOVA homogeneity 
of variances violated) for continuous variables and Chi-square test for 
categorical outcomes. 
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Figure 3. Forest plot of multivariate beta regression models’ prevalence odds ratio adjusted for study source, 
gestational age, and fetal sex tested for a difference in each cell type’s proportions in cases versus controls. 
Horizontal lines indicate the range of the 95% confidence interval. 
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Figure 4. Volcano plots comparing differentially expressed genes in samples from preeclampsia cases versus 
healthy controls identified as significant by two models: (A) the base model adjusted for covariates fetal sex, 
study source, and gestational age and (B) the model additionally adjusted for the first five principal 
components of estimated cell type proportions. Dotted line represents a false discovery rate-adjusted q-value 
of 0.05. FLT1 and LEP are labelled as a gene of interest in preeclampsia or as an outlier in log2 fold change, 
respectively. 

 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


28 
 

 
Figure 5. Top Gene Set Enrichment Analysis pathways from the Gene Ontology: Biological Processes database results for the differential 
expression analysis by preeclampsia case-control status. Results arranged by descending magnitude of the absolute value of the normalized 
enrichment score. Pathways colored red are significant at a false discovery rate-adjusted (FDR) q-value of 0.05 whereas pathways in blue are 
statistically insignificant. (A) Top pathways from the cell type-unadjusted analysis. (B) Top pathways from the cell type-adjusted analysis 
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Figure 6. Mediation by placental cell type composition. Placental cell composition was operationalized as first five principal components of 
estimated cell type proportions. 95% confidence intervals are provided after effect estimates for each model parameter. 

Preeclampsia 

Placental Cell 
Composition 

FLT1 
Expression  

35.1% (25.5%, 
46.3%) of Total Effect 
Mediated by Placental 

Composition 

Average Direct Effect = +0.68 (0.51, 0.86) 
Normalized Counts 

Average Mediated Effect = +0.37 (0.27, 0.47) 
Normalized Counts 

Total Effect = +1.05 (0.90, 1.21) 
Normalized Counts 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


30 
 

References 
 
1.  Barker DJP, Thornburg KL (2013) Placental programming of chronic diseases, cancer and lifespan: 

A review. Placenta 34:841–845. https://doi.org/10.1016/j.placenta.2013.07.063 

2.  Maltepe E, Fisher SJ (2015) Placenta: The Forgotten Organ. Annual Review of Cell and Developmental 
Biology 31:523–552. https://doi.org/10.1146/annurev-cellbio-100814-125620 

3.  Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. 
Thrombosis Research 114:397–407. https://doi.org/10.1016/j.thromres.2004.06.038 

4.  Ilekis JV, Tsilou E, Fisher S, et al (2016) Placental origins of adverse pregnancy outcomes: potential 
molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of 
Child Health and Human Development. American Journal of Obstetrics and Gynecology 215:S1–S46. 
https://doi.org/10.1016/j.ajog.2016.03.001 

5.  Castellucci M, Kaufmann P (2006) Basic Structure of the Villous Trees. In: Benirschke K, Kaufmann P, 
Baergen R (eds) Pathology of the Human Placenta. Springer New York, New York, NY, pp 50–120 

6.  Lyall F, Robson SC, Bulmer JN (2013) Spiral Artery Remodeling and Trophoblast Invasion in 
Preeclampsia and Fetal Growth Restriction. Hypertension 62:1046–1054. 
https://doi.org/10.1161/HYPERTENSIONAHA.113.01892 

7.  Naicker T, Khedun SM, Moodley J, Pijnenborg R (2003) Quantitative analysis of trophoblast invasion in 
preeclampsia. Acta Obstetricia et Gynecologica Scandinavica 82:722–729. https://doi.org/10.1080/j.1600-
0412.2003.00220.x 

8.  Kaufmann P, Black S, Huppertz B (2003) Endovascular Trophoblast Invasion: Implications for the 
Pathogenesis of Intrauterine Growth Retardation and Preeclampsia. Biology of Reproduction 69:1–7. 
https://doi.org/10.1095/biolreprod.102.014977 

9.  Yabe S, Alexenko AP, Amita M, et al (2016) Comparison of syncytiotrophoblast generated from human 
embryonic stem cells and from term placentas. PNAS 113:E2598–E2607. 
https://doi.org/10.1073/pnas.1601630113 

10.  Tang Z, Tadesse S, Norwitz E, et al (2011) Isolation of Hofbauer Cells from Human Term Placentas with 
High Yield and Purity. American Journal of Reproductive Immunology 66:336–348. 
https://doi.org/10.1111/j.1600-0897.2011.01006.x 

11.  Li L, Schust DJ (2015) Isolation, purification and in vitro differentiation of cytotrophoblast cells from 
human term placenta. Reprod Biol Endocrinol 13:. https://doi.org/10.1186/s12958-015-0070-8 

12.  Petroff MG, Phillips TA, Ka H, et al (2006) Isolation and culture of term human trophoblast cells. Methods 
Mol Med 121:203–217 

13.  Hirano T, Higuchi T, Ueda M, et al (1999) CD9 is expressed in extravillous trophoblasts in association 
with integrin α3 and integrin α5. Mol Hum Reprod 5:162–167. https://doi.org/10.1093/molehr/5.2.162 

14.  Robin C, Bollerot K, Mendes S, et al (2009) Human Placenta Is a Potent Hematopoietic Niche Containing 
Hematopoietic Stem and Progenitor Cells throughout Development. Cell Stem Cell 5:385–395. 
https://doi.org/10.1016/j.stem.2009.08.020 

15.  Tsang JCH, Vong JSL, Ji L, et al (2017) Integrative single-cell and cell-free plasma RNA transcriptomics 
elucidates placental cellular dynamics. PNAS 114:E7786–E7795. 
https://doi.org/10.1073/pnas.1710470114 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


31 
 

16.  Pique-Regi R, Romero R, Tarca AL, et al (2019) Single cell transcriptional signatures of the human 
placenta in term and preterm parturition. eLife 8:. https://doi.org/10.7554/eLife.52004 

17.  Ma Y, Krikun G, Abrahams VM, et al (2007) Cell Type-specific Expression and Function of Toll-like 
Receptors 2 and 4 in Human Placenta: Implications in Fetal Infection. Placenta 28:1024–1031. 
https://doi.org/10.1016/j.placenta.2007.05.003 

18.  Pattillo RA, Gey GO (1968) The establishment of a cell line of human hormone-synthesizing trophoblastic 
cells in vitro. Cancer Res 28:1231–1236 

19.  Graham CH, Hawley TS, Hawley RG, et al (1993) Establishment and characterization of first trimester 
human trophoblast cells with extended lifespan. Exp Cell Res 206:204–211. 
https://doi.org/10.1006/excr.1993.1139 

20.  Brew O, Sullivan MHF, Woodman A (2016) Comparison of Normal and Pre-Eclamptic Placental Gene 
Expression: A Systematic Review with Meta-Analysis. PLOS ONE 11:e0161504. 
https://doi.org/10.1371/journal.pone.0161504 

21.  Lekva T, Lyle R, Roland MCP, et al (2016) Gene expression in term placentas is regulated more by spinal 
or epidural anesthesia than by late-onset preeclampsia or gestational diabetes mellitus. Scientific Reports 
6:1–12. https://doi.org/10.1038/srep29715 

22.  Delahaye F, Do C, Kong Y, et al (2018) Genetic variants influence on the placenta regulatory landscape. 
PLOS Genetics 14:e1007785. https://doi.org/10.1371/journal.pgen.1007785 

23.  McHale CM, Zhang L, Thomas R, Smith MT (2013) Analysis of the transcriptome in molecular 
epidemiology studies. Environmental and Molecular Mutagenesis 54:500–517. 
https://doi.org/10.1002/em.21798 

24.  Meissner A, Mikkelsen TS, Gu H, et al (2008) Genome-scale DNA methylation maps of pluripotent and 
differentiated cells. Nature 454:766–770. https://doi.org/10.1038/nature07107 

25.  Reinius LE, Acevedo N, Joerink M, et al (2012) Differential DNA Methylation in Purified Human Blood 
Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. PLOS ONE 7:e41361. 
https://doi.org/10.1371/journal.pone.0041361 

26.  Holbrook JD, Huang R-C, Barton SJ, et al (2017) Is cellular heterogeneity merely a confounder to be 
removed from epigenome-wide association studies? Epigenomics 9:1143–1150. 
https://doi.org/10.2217/epi-2017-0032 

27.  Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association 
studies. Genome Biology 15:R31. https://doi.org/10.1186/gb-2014-15-2-r31 

28.  Shen-Orr SS, Gaujoux R (2013) Computational deconvolution: extracting cell type-specific information 
from heterogeneous samples. Current Opinion in Immunology 25:571–578. 
https://doi.org/10.1016/j.coi.2013.09.015 

29.  Teschendorff AE, Zheng SC (2017) Cell-type deconvolution in epigenome-wide association studies: a 
review and recommendations. Epigenomics 9:757–768. https://doi.org/10.2217/epi-2016-0153 

30.  Hunt GJ, Freytag S, Bahlo M, Gagnon-Bartsch JA (2019) dtangle: accurate and robust cell type 
deconvolution. Bioinformatics 35:2093–2099. https://doi.org/10.1093/bioinformatics/bty926 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


32 
 

31.  Campbell KA, Colacino JA, Park SK, Bakulski KM (2020) Cell Types in Environmental Epigenetic Studies: 
Biological and Epidemiological Frameworks. Curr Envir Health Rpt 7:185–197. 
https://doi.org/10.1007/s40572-020-00287-0 

32.  Leavey K, Benton SJ, Grynspan D, et al (2016) Unsupervised Placental Gene Expression Profiling 
Identifies Clinically Relevant Subclasses of Human Preeclampsia. Hypertension 68:137–147. 
https://doi.org/10.1161/HYPERTENSIONAHA.116.07293 

33.  McInnes L, Healy J, Melville J (2018) UMAP: Uniform Manifold Approximation and Projection for 
Dimension Reduction. arXiv:180203426 [cs, stat] 

34.  Sitras V, Paulssen RH, Grønaas H, et al (2009) Differential placental gene expression in severe 
preeclampsia. Placenta 30:424–433. https://doi.org/10.1016/j.placenta.2009.01.012 

35.  Nishizawa H, Ota S, Suzuki M, et al (2011) Comparative gene expression profiling of placentas from 
patients with severe pre-eclampsia and unexplained fetal growth restriction. Reprod Biol Endocrinol 
9:107. https://doi.org/10.1186/1477-7827-9-107 

36.  Tsai S, Hardison NE, James AH, et al (2011) Transcriptional profiling of human placentas from 
pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune 
signalling pathways. Placenta 32:175–182. https://doi.org/10.1016/j.placenta.2010.11.014 

37.  Meng T, Chen H, Sun M, et al (2012) Identification of differential gene expression profiles in placentas 
from preeclamptic pregnancies versus normal pregnancies by DNA microarrays. OMICS 16:301–311. 
https://doi.org/10.1089/omi.2011.0066 

38.  Xiang Y, Cheng Y, Li X, et al (2013) Up-regulated expression and aberrant DNA methylation of LEP and 
SH3PXD2A in pre-eclampsia. PLoS One 8:e59753. https://doi.org/10.1371/journal.pone.0059753 

39.  Blair JD, Yuen RKC, Lim BK, et al (2013) Widespread DNA hypomethylation at gene enhancer regions in 
placentas associated with early-onset pre-eclampsia. Mol Hum Reprod 19:697–708. 
https://doi.org/10.1093/molehr/gat044 

40.  Nishizawa H, Pryor-Koishi K, Kato T, et al (2007) Microarray analysis of differentially expressed fetal 
genes in placental tissue derived from early and late onset severe pre-eclampsia. Placenta 28:487–497. 
https://doi.org/10.1016/j.placenta.2006.05.010 

41.  Enquobahrie DA, Meller M, Rice K, et al (2008) Differential placental gene expression in preeclampsia. 
Am J Obstet Gynecol 199:566.e1-566.11. https://doi.org/10.1016/j.ajog.2008.04.020 

42.  Várkonyi T, Nagy B, Füle T, et al (2011) Microarray Profiling Reveals That Placental Transcriptomes of 
Early-onset HELLP Syndrome and Preeclampsia Are Similar. Placenta 32:S21–S29. 
https://doi.org/10.1016/j.placenta.2010.04.014 

43.  Vennou KE, Kontou PI, Braliou GG, Bagos PG (2020) Meta-analysis of gene expression profiles in 
preeclampsia. Pregnancy Hypertension 19:52–60. https://doi.org/10.1016/j.preghy.2019.12.007 

44.  Sitras V, Fenton C, Acharya G (2015) Gene expression profile in cardiovascular disease and 
preeclampsia: A meta-analysis of the transcriptome based on raw data from human studies deposited in 
Gene Expression Omnibus. Placenta 36:170–178. https://doi.org/10.1016/j.placenta.2014.11.017 

45.  Luttun A, Carmeliet P (2003) Soluble VEGF receptor Flt1: the elusive preeclampsia factor discovered? J 
Clin Invest 111:600–602. https://doi.org/10.1172/JCI18015 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


33 
 

46.  Maynard SE, Min J-Y, Merchan J, et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) 
may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 
111:649–658. https://doi.org/10.1172/JCI17189 

47.  McGinnis R, Steinthorsdottir V, Williams NO, et al (2017) Variants in the fetal genome near FLT1 are 
associated with risk of preeclampsia. Nature Genetics 49:1255–1260. https://doi.org/10.1038/ng.3895 

48.  Hedlund E, Deng Q (2018) Single-cell RNA sequencing: Technical advancements and biological 
applications. Molecular Aspects of Medicine 59:36–46. https://doi.org/10.1016/j.mam.2017.07.003 

49.  Raymond D, Peterson E (2011) A Critical Review of Early-Onset and Late-Onset Preeclampsia. 
Obstetrical & Gynecological Survey 66:497–506. https://doi.org/10.1097/OGX.0b013e3182331028 

50.  Brosens IA, Robertson WB, Dixon HG (1972) The role of the spiral arteries in the pathogenesis of 
preeclampsia. Obstet Gynecol Annu 1:177–191 

51.  Meekins JW, Pijnenborg R, Hanssens M, et al (1994) A study of placental bed spiral arteries and 
trophoblast invasion in normal and severe pre-eclamptic pregnancies. BJOG: An International Journal of 
Obstetrics & Gynaecology 101:669–674. https://doi.org/10.1111/j.1471-0528.1994.tb13182.x 

52.  Staff AC (2019) The two-stage placental model of preeclampsia: An update. Journal of Reproductive 
Immunology 134–135:1–10. https://doi.org/10.1016/j.jri.2019.07.004 

53.  Soleymanlou N, Jurisica I, Nevo O, et al (2005) Molecular Evidence of Placental Hypoxia in 
Preeclampsia. The Journal of Clinical Endocrinology & Metabolism 90:4299–4308. 
https://doi.org/10.1210/jc.2005-0078 

54.  Caniggia I, Mostachfi H, Winter J, et al (2000) Hypoxia-inducible factor-1 mediates the biological effects of 
oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest 105:577–587. 
https://doi.org/10.1172/JCI8316 

55.  Zhang T, Bian Q, Chen Y, et al (2021) Dissecting human trophoblast cell transcriptional heterogeneity in 
preeclampsia using single-cell RNA sequencing. Mol Genet Genomic Med e1730. 
https://doi.org/10.1002/mgg3.1730 

56.  Cheng J-C, Chang H-M, Leung PCK (2013) Transforming Growth Factor-β1 Inhibits Trophoblast Cell 
Invasion by Inducing Snail-mediated Down-regulation of Vascular Endothelial-cadherin Protein. J Biol 
Chem 288:33181–33192. https://doi.org/10.1074/jbc.M113.488866 

57.  Bruckner TA, Catalano R (2018) Selection in utero and population health: Theory and typology of 
research. SSM Popul Health 5:101–113. https://doi.org/10.1016/j.ssmph.2018.05.010 

58.  Whitcomb BW, Schisterman EF, Perkins NJ, Platt RW (2009) Quantification of collider-stratification bias 
and the birthweight paradox. Paediatr Perinat Epidemiol 23:394–402. https://doi.org/10.1111/j.1365-
3016.2009.01053.x 

59.  Dobin A, Davis CA, Schlesinger F, et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 
29:15–21. https://doi.org/10.1093/bioinformatics/bts635 

60.  (2021) statgen/popscle. Center for Statistical Genetics 

61.  Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Molecular 
Systems Biology 15:e8746. https://doi.org/10.15252/msb.20188746 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


34 
 

62.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R | 
Bioinformatics | Oxford Academic. https://academic.oup.com/bioinformatics/article/33/8/1179/2907823. 
Accessed 28 Jan 2021 

63.  Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018) Batch effects in single-cell RNA-sequencing data 
are corrected by matching mutual nearest neighbors. Nature Biotechnology 36:421–427. 
https://doi.org/10.1038/nbt.4091 

64.  Zappia L, Oshlack A (2018) Clustering trees: a visualization for evaluating clusterings at multiple 
resolutions. Gigascience 7:. https://doi.org/10.1093/gigascience/giy083 

65.  Stuart T, Butler A, Hoffman P, et al (2019) Comprehensive Integration of Single-Cell Data. Cell 177:1888-
1902.e21. https://doi.org/10.1016/j.cell.2019.05.031 

66.  Vento-Tormo R, Efremova M, Botting RA, et al (2018) Single-cell reconstruction of the early maternal-fetal 
interface in humans. Nature 563:347–353. https://doi.org/10.1038/s41586-018-0698-6 

67.  Liu Y, Fan X, Wang R, et al (2018) Single-cell RNA-seq reveals the diversity of trophoblast subtypes and 
patterns of differentiation in the human placenta. Cell research 28:819–832. 
https://doi.org/10.1038/s41422-018-0066-y 

68.  Villani A-C, Satija R, Reynolds G, et al (2017) Single-cell RNA-seq reveals new types of human blood 
dendritic cells, monocytes, and progenitors. Science 356:. https://doi.org/10.1126/science.aah4573 

69.  Baboolal TG, Boxall SA, Churchman SM, et al (2014) Intrinsic multipotential mesenchymal stromal cell 
activity in gelatinous Heberden’s nodes in osteoarthritis at clinical presentation. Arthritis Res Ther 
16:R119. https://doi.org/10.1186/ar4574 

70.  Zhao Y, Li X, Zhao W, et al (2019) Single-cell transcriptomic landscape of nucleated cells in umbilical 
cord blood. Gigascience 8:giz047. https://doi.org/10.1093/gigascience/giz047 

71.  Bulmer JN, Morrison L, Johnson PM (1988) Expression of the proliferation markers Ki67 and transferrin 
receptor by human trophoblast populations. J Reprod Immunol 14:291–302. https://doi.org/10.1016/0165-
0378(88)90028-9 

72.  Pierre-Luc (2021) plger/scDblFinder 

73.  Raudvere U, Kolberg L, Kuzmin I, et al (2019) g:Profiler: a web server for functional enrichment analysis 
and conversions of gene lists (2019 update). Nucleic Acids Research 47:W191–W198. 
https://doi.org/10.1093/nar/gkz369 

74.  Schmon B, Hartmann M, Jones CJ, Desoye G (1991) Insulin and Glucose Do not Affect the Glycogen 
Content in Isolated and Cultured Trophoblast Cells of Human Term Placenta. J Clin Endocrinol Metab 
73:888–893. https://doi.org/10.1210/jcem-73-4-888 

75.  Boyd AW (1987) Human Leukocyte Antigens: An Update on Structure, Function and Nomenclature. 
Pathology 19:329–337. https://doi.org/10.3109/00313028709103879 

76.  Blaschitz A, Weiss U, Dohr G, Desoye G (2000) Antibody Reaction Patterns in First Trimester Placenta: 
Implications for Trophoblast Isolation and Purity Screening. Placenta 21:733–741. 
https://doi.org/10.1053/plac.2000.0559 

77.  Gonen-Gross T, Goldman-Wohl D, Huppertz B, et al (2010) Inhibitory NK Receptor Recognition of HLA-
G: Regulation by Contact Residues and by Cell Specific Expression at the Fetal-Maternal Interface. PLoS 
One 5:. https://doi.org/10.1371/journal.pone.0008941 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


35 
 

78.  Kaplan A, Chung K, Kocak H, et al (2008) Group B streptococcus induces trophoblast death. Microbial 
Pathogenesis 45:231–235. https://doi.org/10.1016/j.micpath.2008.05.003 

79.  Zozzaro-Smith PE, Bushway ME, Gerber SA, et al (2015) Whole mount immunofluorescence analysis of 
placentas from normotensive versus preeclamptic pregnancies. Placenta 36:1310–1317. 
https://doi.org/10.1016/j.placenta.2015.09.001 

80.  Coukos G, Makrigiannakis A, Amin K, et al (1998) Platelet-endothelial cell adhesion molecule-1 is 
expressed by a subpopulation of human trophoblasts: a possible mechanism for trophoblast-endothelial 
interaction during haemochorial placentation. Mol Hum Reprod 4:357–367. 
https://doi.org/10.1093/molehr/4.4.357 

81.  Cervar‐Zivkovic M, Stern C (2011) Trophoblast Isolation and Culture. In: The Placenta. John Wiley & 
Sons, Ltd, pp 153–162 

82.  Andrews S (2010) FastQC: A quality control tool for high throughput sequence data. 

83.  Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools 
and samples in a single report. Bioinformatics 32:3047–3048. 
https://doi.org/10.1093/bioinformatics/btw354 

84.  Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics 30:923–930. 
https://doi.org/10.1093/bioinformatics/btt656 

85.  Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and  dispersion for RNA-seq 
data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8 

86.  Subramanian A, Tamayo P, Mootha VK, et al (2005) Gene set enrichment analysis: A knowledge-based 
approach for interpreting genome-wide expression profiles. PNAS 102:15545–15550. 
https://doi.org/10.1073/pnas.0506580102 

87.  Mootha VK, Lindgren CM, Eriksson K-F, et al (2003) PGC-1α-responsive genes involved in oxidative 
phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34:267–273. 
https://doi.org/10.1038/ng1180 

88.  Newman AM, Steen CB, Liu CL, et al (2019) Determining cell type abundance and expression from bulk 
tissues with digital cytometry. Nature Biotechnology 37:773–782. https://doi.org/10.1038/s41587-019-
0114-2 

89.  Grün B, Kosmidis I, Zeileis A (2012) Extended Beta Regression in R: Shaken, Stirred, Mixed, and 
Partitioned. Journal of Statistical Software 48:1–25. https://doi.org/10.18637/jss.v048.i11 

90.  Smyth GK (2005) limma: Linear Models for Microarray Data. In: Gentleman R, Carey VJ, Huber W, et al 
(eds) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer New York, 
New York, NY, pp 397–420 

91.  VanderWeele TJ (2014) A unification of mediation and interaction: a four-way decomposition. 
Epidemiology 25:749–761. https://doi.org/10.1097/EDE.0000000000000121 

92.  Shi B, Choirat C, Coull BA, et al (2021) CMAverse: A Suite of Functions for Reproducible Causal 
Mediation Analyses. Epidemiology 32:e20–e22. https://doi.org/10.1097/EDE.0000000000001378 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/


36 
 

93.  Robins J (1986) A new approach to causal inference in mortality studies with a sustained exposure 
period—application to control of the healthy worker survivor effect. Mathematical Modelling 7:1393–1512. 
https://doi.org/10.1016/0270-0255(86)90088-6 

94.  VanderWeele TJ, Vansteelandt S, Robins JM (2014) Effect decomposition in the presence of an 
exposure-induced mediator-outcome confounder. Epidemiology 25:300–306. 
https://doi.org/10.1097/EDE.0000000000000034 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.07.29.454041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454041
http://creativecommons.org/licenses/by-nc/4.0/

