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Abstract

Oscillatory activity is commonly observed during the maintenance of information in short-
term memory, but its role remains unclear. Non-oscillatory models of short-term memory
storage are able to encode stimulus identity through their spatial patterns of activity, but
are typically limited to either an all-or-none representation of stimulus amplitude or exhibit
a biologically implausible exact-tuning condition. Here, we demonstrate a simple phase-
locking mechanism by which oscillatory input enables a circuit to generate persistent or
sequential activity patterns that encode information not only in their location but also in
their discretely graded amplitudes.

Significance

A core observation in many memory systems and tasks is the presence of oscillations
during memory maintenance. Here, we demonstrate a mechanism for the accumulation
and storage of information in short-term memory in which oscillatory activity enables a
solution to long-standing challenges in modeling the persistent neural activity underlying
working memory. These challenges include the ability to encode information with low
firing rates, multi-level storage of stimulus amplitude without extreme fine tuning, and
multi-level storage of information in sequential activity. Altogether, this work proposes a
new class of models for the storage of information in working memory, a new potential
role for brain oscillations, and a novel dynamical mechanism for multi-stability.
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Positive feedback model of working memory storage
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Figure 1. Failures of traditional positive feedback

models of working memory storage. (A) Simplified
model illustrating key features of positive feedback
models. In the absence of external input
(external input = 0), changes in the firing activity r(t)
of a population are determined by the relative balance
of network feedback (black, f(r)) and neuronal decay
processes (gray, —r). (B,C) Nonlinear models typically
exhibit a ‘low firing rate problem’. (B) During the memory
period when external input is absent, the intersections
of the decay (gray) and network feedback (black)
functions are such that there are no stable fixed points
(solid circles) within the range of firing rates typically
observed during persistent neural activity. (C) Firing
rates below the unstable fixed point (B,C, open circle)
decay to zero (green, purple, orange lines), while firing
rates above the unstable fixed point run off to
uncharacteristically high rates (red, blue lines). (D,E)
Linear models exhibit the fine tuning problem’: minute
changes in the strength of feedback (red: +5%, orange:
-5%) relative to the tuned value (blue) result in instability
and the inability to maintain stable persistent activity.

16);

3

The maintenance of information
in short-term memory is a key
component of a wide array of cognitive
(1, 2) and non-cognitive (3, 4)
functions. However, the biophysical
mechanisms that enable memory
storage over the seconds-long time
scale remain unclear.  Single-unit
studies have demonstrated a neural
correlate of memory maintenance in
the persistent activation of neurons
whose population activity spans the
memory period (reviewed in (2, 5, 6)).
Theoretical studies have shown how
such persistent activity can be
generated by recurrent network
feedback (7-9), but simple
instantiations of this idea are either
implausibly sensitive to mistuning or
can only maintain a single elevated
firing rate that is unrealistically high
(the ‘low firing rate problem’, reviewed
n (4, 10)), limiting storage about a
given item to a single bit (‘on’ or ‘off’)
of information.

Separately, previous studies
have identified distinct bands of
oscillatory activity in field potential
recordings and EEG during the
maintenance of working memory
(reviewed in (11)). Such activity can be
generated through cell-intrinsic
mechanisms, local circuitry, or long-
range interactions (12—-14). However,
it remains an open question whether
oscillatory activity is necessary,
sufficient, or even beneficial for
working memory storage. Previous
work has proposed how oscillations
can contribute to a variety of memory
functions such as the generation or
maintenance of persistent activity (15,

the structuring of spatial codes through frequency coupling (17); and the
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coordination, control, and gating of memory-related activity (18—29). By contrast, other
studies have suggested that oscillations could be an epiphenomenon of other
computational or network mechanisms (30-32). Here, we demonstrate a potential
mechanistic role for oscillations, regardless of source or frequency, by showing how the
addition of oscillatory inputs to simple recurrent feedback circuits can enable both low
firing rate persistent activity and a discretely graded set of persistent firing rates that
increases the information capacity of a memory network.

To illustrate the core challenges that arise when generating biologically plausible
models of persistent activity, consider an idealized circuit consisting of a memory neuron
(or lumped population) connected to itself through positive feedback (Fig. 1A); this basic
motif of recurrent excitation is the key component of most circuit models of persistent
neural activity (reviewed in (4)). This simple circuit receives a brief stimulus (Figs. 1A,C,E
external input) and needs to store it through persistent activity. Stable persistent activity

(% = 0,7 > 0) is achieved only when the intrinsic decay of the neuron (represented by the
term —r) and the recurrent drive to the neuron (f(r)) are equal in magnitude and cancel
each other. This condition imposes two separate, but related, problems that depend on
whether the rate function f(r) is linear or nonlinear. In the typical nonlinear case (Fig.
1B,C), if the stimulus is too weak, the memory neuron’s low initial firing rate provides
insufficient recurrent feedback to overcome the post-stimulus intrinsic decay of activity
(Fig. 1B, left of open circle). As a result, the firing rate of the network returns to a low (or
zero) baseline firing rate (Fig. 1C, orange, purple, green traces). By contrast, if the
stimulus is stronger, the memory neuron’s initial firing provides recurrent feedback that
exceeds the rate of intrinsic decay (Fig. 1B, right of open circle), leading to a reverberatory
amplification of activity in which the rate rises until some saturation process brings the
rate to rest at an elevated persistent level (Fig. 1C, blue and red traces). Thus, the only
possibilities are that activity decays to its baseline level or that activity runs away to
saturation at a high level of activity that, for typical neuronal nonlinearities, is
unrealistically large. A different problem emerges in the case where the rate function f(r)
is linear (Figs. 1D,E). The linearity of the rate function in this case allows a continuum of
persistent rates, corresponding to the continuous set of points at which the feedback and
decay lines overlap, to be stored (Fig. 1D, blue line), unlike the nonlinear case. This
comes at the cost of a ‘fine-tuning’ condition: the strength of the recurrent synapse(s)
must be exactly tuned to counterbalance the strength of the rate decay; an arbitrarily small
violation of this condition causes the rate to exhibit runaway growth (Fig. 1E red trace) or
decay to a low baseline (Fig. 1E orange trace). Although presented here for a very simple
example, these problems are also commonly observed in larger neural networks (33).

We next illustrate what happens when a network with the same positive feedback
architecture is provided with a subthreshold oscillatory drive (Fig. 2). We demonstrate this
in the more biologically realistic case of a conductance-based spiking neuron model (34)
that facilitates the phase-locking phenomenon that we will describe. Without an oscillatory
input, the model exhibits the ‘low firing-rate problem’ (Figs. 2A,B) and can only maintain


https://doi.org/10.1101/2021.07.29.454329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454329; this version posted September 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

persistent activity at a high spiking rate or not spike at all. When a subthreshold oscillation
is added to the model (Figs. 2C-F), the oscillatory drive has two effects. First, it provides
extra input that allows small initial inputs to trigger low-rate spiking. Second, spiking of
the memory neuron does not lead to runaway feedback because, before the feedback
can run away, the oscillatory drive returns towards its trough, causing a cessation of
spiking. The net result is that the spike-driven feedback becomes discretized, forming a
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Figure 2. Baseline oscillatory input allows robust maintenance of discretely graded persistent activity levels in a
conductance-based, spiking neuron model. (A) Schematic of conductance-based autapse model. The model is
composed of potassium, sodium, and leak conductances, and receives feedback input (I, in Equation 1,
Methods) as well as input current from an external source. (B) Manifestation of the ‘low-firing-rate’ problem in
the conductance-based model without oscillatory input. Similar to the nonlinear firing rate model depicted in
Figure 1B, the conductance-based spiking model exhibits stable fixed points only at zero and high firing rates
(filled circles). Spiking rates between these two fixed points decay to zero from below the unstable fixed point
(open circle) or run off to high rates from above the unstable fixed point. (C) Schematic of conductance-based
neuron with the addition of an oscillatory baseline input. (D-F) Maintenance of discretely graded persistent
activity levels enabled by baseline oscillatory input. Phase-locking to the oscillatory input creates stable fixed
points at integer multiples of the baseline frequency. There is a trade-off between the number of firing rates that
can be maintained and the robustness of these fixed points, which is related to the spacing between the fixed
points. (D) Lower frequency oscillations enable a larger number of closely spaced fixed points. (E,F) Higher
frequency oscillations lead to fewer, more robust, fixed points.
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staircase whose step heights correspond to the number of spikes emitted by the neuron
per oscillation cycle (Figs. 2D-F). The phase locking of the spiking to the subthreshold
oscillatory drive constrains these spike numbers to be integer multiples of the oscillation.

The key requirements for this mechanism to enable discretely graded persistent
activity are the following: First, the oscillation must be strong enough to reset the activity
at its troughs. Second, there must be some process that enables the activity from one
cycle of the oscillation to carry through to the start of the next cycle and consequently
enable renewed spiking as the oscillatory input heads towards its peak. For the simple
case illustrated here, where all neurons receive oscillatory inputs that are perfectly aligned
in phase, the mechanism enabling inter-cycle memory is a slow NMDA-like (or local
dendritic) synaptic time constant (3, 10, 35). Alternatively, we show in the Supporting
Information that, if there is heterogeneity in the phases of the oscillations received by the
individual neurons in the network, the time between cycles may be bridged by the firing
of other neurons in the network (Fig. S1). Some degree of tuning of the feedback is
required to have multiple levels of response — such a tuning requirement is generic of
models of analog or finely discretized persistent activity. In the present case, the width
of the steps of the staircase provides a moderate level of robustness to mistuning,
especially for higher oscillation frequencies (Figs. 2D-F). Mechanistically, this robustness
occurs because errors in the tuning of feedback that are insufficient to systematically add
or subtract an extra spike per cycle do not persist from cycle to cycle, unlike in models
that have no oscillatory trough to reset (error-correct) the spiking activity. We illustrate
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Figure 3. Oscillation-based integrator model exhibits more robustness to changes in the recurrent feedback
weight than a traditional non-oscillation-based model. (A) Responses of oscillation-based model to a sequence
of positive and negative input pulses. Red and yellow traces show the conditions in which the recurrent feedback
strength has been detuned by +/- 5%, respectively. The activity levels remain persistent following detuning. (B)
Steady-state firing rates as a function of synaptic activity (I,, in Equation 1, Methods) that is held at steady
values; mistuning the autapse strength by +/- 5% has no effect on the existence and location of the stable fixed
points (intersections of black lines and horizontal stairs). (C) Responses of a traditional, approximately linear,
conductance-based model of persistent neural activity (adapted from model of (37)). Detuning the recurrent
feedback strength by 5% (orange and red traces) causes spiking activity to decay to 0 (orange, decreasing
feedback strength) or run off to high rates (red, increasing feedback strength). (D) Small weight changes cause
systematic loss of fixed points in the traditional model.
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this robustness to weight changes in Figure 3, where we compare the oscillatory autapse
memory model (Fig. 3A,B) to an approximately linear autapse model (36, 37) that can
produce (nearly) graded persistent activity (Fig. 3C,D). Each model receives an arbitrary
sequence of positive and negative input pulses, and must temporally accumulate and
store the pulses in persistent activity. The linear spiking autapse model requires fine
tuning to maintain persistent activity: very small deviations from the tuned autapse weight
lead to activity that grows to a saturating level or decays to zero activity (Figs. 3C,D). In
contrast, the same synaptic weight deviations have negligible effect on the accumulation
and multi-level storage capability of the nonlinear spiking neuron with oscillatory drive
(Figs. 3A,B).

The above examples demonstrate the basic mechanism by which oscillatory input
may permit discretely graded levels of firing rate to be robustly stored in a recurrent
excitatory network model of persistent activity. We next explored applications of this basic
principle in the case of three different network architectures: a spatially uniform (all-to-all)
network that temporally integrates its inputs (Fig. 4); a ‘ring-like’ architecture whose
activity can store both a spatial location and discretely graded levels at that location (Fig.
5); and a chain-like architecture that can generate sequences of activity with multiple
discretely graded amplitudes (Fig. 6).

We first extended the demonstration of temporal integration, shown in Figure 3,
to a spatially homogeneous (all-to-all) network composed of 1000 neurons (Fig. 4A,B).
This permitted us to not only examine the systematic mistuning of weights shown in the
autapse network, which produces identical results in the averaged activity of the 1000
neuron network (Methods), but also to examine the robustness to four different sources
of noise and variability: input noise, in which each neuron in the network received
independent exponentially filtered noise added to the subthreshold oscillatory drive (Fig.
4C); noise in the connection weights, in which each synapse in the network was initialized
with added random noise (Fig. 4D); randomly shuffled phases of the subthreshold
oscillatory drive, in which each neuron received an oscillatory signal whose phase was
randomly picked from a uniform distribution on [0, 2m) at initialization (Fig. S2A); and noisy
oscillation frequency and amplitude, in which the parameters of the subthreshold
oscillatory drive underwent noisy drift (given by an Ornstein-Uhlenbeck process) during
the simulations (Fig. S2B). In all of these cases, the network was able to accurately
maintain multi-level persistent activity despite moderate perturbations. Figures 4C-D and
Figure S2B illustrate the conditions for which the magnitude of the perturbations began
to adversely affect network performance — for noise less than this amount, persistent
activity was accurately maintained over a timescale of seconds, whereas larger noise
levels led to progressively larger drifts of activity.

Next we demonstrate that a similar temporal integration of inputs can also occur in
spatially structured networks. We consider a classic “ring model” architecture commonly
used to model spatial working memory tasks in which stimuli can be presented at any of
various locations arranged in a circular (ring-like) layout. The model consists of a ring of
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neurons with local excitatory connectivity and functionally wider inhibitory connectivity
(Fig. 5A, Methods). Such models can generate persistent activity at any spatial location
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Figure 4. Maintenance of persistent activity and robustness to noise in a fully connected network of 1000
neurons. (A) Schematic of network. All units make synapses on all other units, with uniform synaptic weights
(plus noise when present). (B) Spiking responses of network neurons to a sequence of positive and negative
input pulses, with spike rasters plotted for the time window indicated by the dashed grey lines (random sample
of 10 neurons from the 1000-neuron network). (C) Spiking responses of the network to the same input sequence
in the presence of continuous external input noise. The noise had zero mean and standard deviation roughly
one third the magnitude of the individual input pulses (¢ = 0.05 uA ms®5/cm?), the point at which network activity
noticeably began degrading. The network is able to maintain persistent activity despite the noisy input. (D)
Spiking responses of the network initialized with random noise in the connection weights. Noise with mean zero
and standard deviation of 10 times the mean connectivity strength (o = 0.055 uA/cm?), the point at which
network activity noticeably began degrading, is added to the individual connection weights between neurons.
Although individual neurons in the network respond with different rates, the network is able to maintain persistent
activity at many levels.
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along the ring, but typically have only a binary “on-off” representation at a given spatial
location (Fig. 5B). When we added an oscillatory input stimulus to such a ring model, the
network could store multiple, discretely graded levels of activity at any spatial location
(Fig. 5C) and could temporally integrate location-specific inputs into discretely graded
levels (Fig. 5D). While the spatial memory (bump attractor) networks proposed in (38—40)
are capable of generating graded persistent activity, the network presented here
represents, to our knowledge, the first spatial memory network to encode multi-level
activity without requiring an exact tuning condition.

Recent studies have shown that memory activity during a delay period also may
take the form of a sequence of activity that spans the delay (41—-43). Models of such
activity typically generate chain-like patterns of activity that attain only a single,
stereotyped level of firing rate. Consistent with this, when we constructed a network with
a chain-like architecture (Fig. 6), we found that, in the absence of oscillatory input, the
sequential network activity either quickly decayed when the initial stimulus amplitude was
too small or converged to a single saturated level of activity for larger stimuli (Fig. 6B).
By contrast, in the presence of a subthreshold oscillatory input, the network could exhibit
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Figure 5. Maintenance of discretely graded bumps of persistent activity in a ring network. (A) Schematic of
network structure. The spatial positions of neurons in the network are indexed by the angle theta from an arbitrary
reference neuron. (B) lllustration of low-rate problem in a ring network of conductance-based spiking neurons
without oscillatory input. Left, steady-state firing rate response of neurons in the network to input pulses of
different amplitudes at locations centered around network position= 7. Right, heatmaps illustrating the network’s
temporal firing-rate responses to short pulses of inputs at network locations labeled by colored bars. The network
is unable to maintain bump activity levels between the low and high fixed points. (C) Ring network with oscillatory
input is able to maintain discretely graded bumps of persistent activity. (D) Temporal integration in the ring
network. Short (100 ms) input pulses to the network are temporally integrated and stored in persistent activity.
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sequential activity with discretely
graded amplitudes for the same
pattern of input (Fig. 6C). Thus, as in

‘ ‘ . 200 ‘ the persistently active networks, the

No oscillatory input . oscillatory sequential memory network

0 could encode multiple discretized

B stimulus levels.
In  summary, this work
” demonstrates a simple mechanism by
which oscillatory input to a memory
network can transform it from storing

only binary amplitudes to maintaining
discretely graded amplitudes of
persistent activity. Memory networks
using this mechanism require a
cellular, synaptic, or network process
that can span the period of the
oscillation, suggesting a possible
tradeoff in memory storage: higher
0 frequency oscillations do not require
long timescale processes to span the
oscillation cycle, but due to their short
period may only store one or a few
values (Figure 2F); lower frequency
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Figure 6. Generation of sequences of discretely graded

activity in a network with asymmetric connectivity. (A)
Schematic of network structure. Asymmetric
connectivity underlies slow drift of activity bumps. (B)
lllustration of low-rate problem in a sequential-activity
network of conductance-based spiking neurons without
oscillatory input. Drifting bumps of activity in the
network initiated by short (100 ms) pulses (labeled by
colored bars) exhibit only a single level of activity. (C)
Sequential-activity network with oscillatory input is able
to maintain drifting bumps with discretely graded levels
of activity.

oscillations could store more items,
but require a process with longer
timescale to bridge the troughs
occurring in each cycle. Our work
complements traditional attractor
models of working memory that
typically fall into two classes: bistable
models that robustly maintain two

levels of activity (Figures 1B and 2B)
and continuous attractor models that can maintain nearly analog storage of memory but
require very precise tuning of connection weights (Figures 1D and 3C). Our model
represents an intermediate possibility with relatively moderate tuning requirements (Fig.
3B) and a discretely graded set of response levels. Previous work (44, 45) has suggested
how multiple, spatially distinct bistable processes in a cell can be coupled together to form
multiple stable levels of firing activity; here we demonstrate a complementary mechanism
for forming multi-stable representations that relies on temporal, rather than spatial,
patterning of inputs. Altogether, this work suggests a potential mechanism by which
oscillatory activity, which is commonly observed during working memory tasks, may
expand short-term memory capacity.
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Methods

The Wang-Buzsaki model neuron used for most spiking neuron simulations in this paper
is based upon the original model described in (34). Below, we show the equations for the
dynamical variables most relevant to the maintenance of discretely graded persistent
activity. The full model equations are included in the Supporting Information. The
membrane potential of the Wang-Buzsaki neuron obeys the current balance equation:

dav;
Cm d_tl = —Ina (Vi hi) — Ix(Vyn) = I,(V) + Isyn,i(sp v, Sy) + 1o +1(E)
(1)
+ Iext,i(t)

N
Isyn,i(s1; "-:SN) = zWUS] (2)

j=1

ds; .

Tsynd_tl = —S; + Asyn z §(t — t7%) ;
¢Spike (3)
I(t) =Y cos (wt) )

where h and n are time-varying channel variables (Supporting Information). The
parameter values used are specified in Tables S1 and S2. The Wang-Buzsaki neuron
receives several sources of inputs: (1) Isyy;(sy, ..., sy) represents recurrent feedback to
neuron i, the strength of which is determined by a weight matrix w;; defining the strength
of the connection from neuron j to neuron i, (2) I, is a constant current that shifts the
resting potential, and could represent tonic background input or intrinsic currents not
explicitly modeled, (3) I(t) is the external oscillatory input (1(t) = 0 for models with no
oscillatory input), and (4) L., ;(t) represents the external inputs to be accumulated and
stored by the memory network. To calculate spike times in equation 3, we used the time
of the peak of the action potential, with only action potentials exceeding a voltage of 0 mV
included. Integration was performed numerically using the fourth order Runge-Kutta
method with a time step At = 1072 ms.

In the single neuron case, there is a single recurrent synaptic weight, w [ud/cm?].
Values for all simulation parameters are included in Table S2. In Figures 4-6, we study
three different network architectures composed of Wang-Buzsaki neurons: an all-to-all
connectivity (Figure 4), a ring structure (Figure 5), and a directed structure (Figure 6).

The all-to-all connected networks of Figure 4 are composed of 1000 Wang-Buzsaki
neurons. Figures 4B,C implement a network with uniform connection strengths w;; =

11
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%[uA/cmz]. Figure 4D implements a network in which these uniform connection

strengths have been perturbed by adding static Gaussian noise of mean zero
independently to each connection. Exponentially filtered temporally white noise (Ornstein-
Uhlenbeck process) input was implemented in the network illustrated in Figure 4C; for
each neuron i, the additive noise was given independently by:

At At

n;(t) = Nit—at — Nit—at = T OnNir | (5)
Tn TTL

n;e ~ N(0,1) (6)

where g, is the standard deviation of the noise.

For the ring connectivity structure in Figure 5, the connection strength from neuron j to
neuron i is described by:

w;j = A+ B cos <%_1)> [tA/cm?] (7)

The directed structure illustrated in Figure 6 resembles the ring structure, but results
in a drift of the ‘activity bump’ in one direction. The connection strength from neuron jto
neuron /in this case is defined by:

At (i — §) . 2
wij=A+Bcos<T+0.1> H(C — |i —j]) [uA/cm?] (8)

where H is the Heaviside (step) function and C controls the spatial extent of the
connectivity.

Comparison to linear spiking autapse model

In Figure 3, we compare the robustness of discretely graded persistent activity of the
phase-locking nonlinear spiking model described above, to that of a spiking autapse
model in which analog persistent activity is enabled by excitatory feedback that is tuned
to offset the intrinsic decay of activity. The autapse model is described in detail in (37);
equations describing the dynamics of the model are included in the Supporting
Information.

Simple rate model
The equation for the simple rate model implemented for Figure 1 is given in Figure 1A.
The nonlinear term used for Figure 1B is:
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f) = Jwlx — xpr )4 (9)
withw =75, x4, = 10 [Hz].
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1 Model neurons and networks

In this supplement, we provide a detailed description of the neuronal and network models used in this work. The multi-
stable networks with oscillatory input make use of a conductance-based, single-compartment model neuron described in
[3], which we refer to here as the Wang-Buzsaki (WB) neuron. The equations and parameter values governing the intrinsic
response properties of this model, in which spiking is generated through Hodgkin-Huxley-type Na® and KT voltage-
dependent ion currents, are described in section 1.1 below. In section 1.2, we describe the network models based on
oscillatory input. In section 1.3, we describe the approximately linear autapse model, adapted from [1], whose robustness
to detuning of the autapse strength was compared to that of the WB autapse model.

1.1 Description of the Wang-Buzsaki neuron model
The membrane potential of the WB neuron obeys the current balance equation

dv

Cnar

= —INQ(V, h) — IK(VY, n) — IL(V) + Isyn + Iapp

where the kinetics are as described in [3]:

Ina(V, 1) = gnamZ (V)(V — Ena)
Ix(Vyn) = ggn*(V — Ex)
In(V) =gV - Ep)
dh dn

(V)G = 6 (haeV) = B), (V)G = Blnac(V) — )

_ ) 10 A S 1 L0 B

L oy (o S 70 R L R 7 i 70 ML o 70 S 17
(V) = ! (V) = !

ap(V)+ Br(V)’ an (V) + Bn(V)

V +35 V +60
V) =y S = e (-5
V 458 1
an(V) = 0.07exp (_ 20 ) - AV = oAV e 7 D)
V434 V + 44
an(V) = _0'01exp(70.1(V ey Brn (V) =0.125exp (— <0 )

The synaptic and applied currents, Iy, and I,,p, respectively, are specified for different model architectures in the
following sections. The common parameters used for all simulations involving WB model neurons are specified in Table 1.
We defined the spike times as occurring when the membrane potential first decreased (dV/dt < 0) after crossing the spike
threshold of 0 mV. Integration was performed numerically using the fourth-order Runge-Kutta method with time step
At = 1072 ms.

gna = 35 mS/cm?  Ey, = 55 mV ¢ =15
gk = 9mS/ecm?  Ex =-90mV C,, = 0.333 uF/cm?
gr = 0.5 mS/ecm?  Ep = -65 mV

Table 1: Common parameters of all WB neuron simulations

1.2 Networks of Wang-Buzsaki model neurons

The different network architectures used in this work are described in the following subsections. The simplest of these, a
single model neuron recurrently connected to itself (the autapse model), is described in section 1.2.1. In section 1.2.2, we
describe the multi-neuron cases of all-to-all connected networks, a ring network, and a network that exhibits sequential
drift of a bump of activity. The parameters specific to the autapse network simulations are listed in Table 2, and those
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Non-oscillatory input Oscillatory input
Weyn = 1 pA/cm? Weyn = 5.5 pA/em?
Iy = 4.005 pA/cm? Iy = 3.515 pA/cm?
¥ = 0 pA/cm? ¥ = -0.5 pA/cm?
Tsyn = 150 ms Tsyn = 150 ms
w = 0.05 ms™! (unless specified otherwise)

Table 2: Parameters specific to the single-neuron (autapse) networks

specific to multi-neuron networks are listed in Table 3. Equations and parameter values for the stochastic simulations of
multi-neuron networks are provided in Section 2.

1.2.1 Simplest network example: the autapse

The autapse model consisted of a WB model neuron recurrently connected to itself and was described as follows:

dVv
Cma = _INa(‘/a h) — IK(‘/, n) — IL(V) + Isyn(s) + IO + Iosc(t) + Iezt(t) (Sl)
d
Tsyn di =—s+ Asyn Z 6 tspzke (SS)
tsplkc
Tose(t) = 1) cos(wt) (S.4)

The neuron receives several sources of inputs: a recurrent synaptic feedback current Iy,(s), the strength of which
is determined by wgy,; a DC current offset Iy; an oscillatory input current Ios.(t) (set to zero for simulations with no
oscillatory input); and a current corresponding to the external stimulus I..¢(¢). The parameters specific to oscillatory and
non-oscillatory simulations are listed in Table 2. a4y, = 1.0 ms for all simulations.

1.2.2 Multi-neuron networks

For the networks composed of multiple WB neurons, each individual neuron i is governed by the same equations as for the
single neuron case, except that the synaptic current input Iy, ;(s1,...,sn5) depends on the activity of all other neurons j
of the network through the synaptic weights w;;:

dv;
Cvm dt = _INa(Vviv hz) - IK(V;,W/Z) - IL(‘/Z) + Isyn,i(sl» ceey SN) + IO + Iosc,i(t) + Ie:z:t,i(t)

N
Isyn,i<817~'~7sN) = E Wij5j
Jj=1

ds;
Tsyn dtl 51+asyn Z 5 splke

splkc

For all networks presented in this paper, we used a value of agy, = 1.0 ms.

Fully connected network

In Figure 4 and Figures S1-S2, we implemented fully connected (all-to-all) networks of N = 1000 WB neurons. Except
for the stochastic simulations described in Section 2, the connection strength from neuron j to neuron i was given by:

5.5

=2 [ fem?

’LUij =
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Non-oscillatory input Oscillatory input
Weyn = 1 pA/em? (unless specified otherwise) Wsyn = 5.5 A /em? (unless specified otherwise)
Tsyn = 150 ms Tsyn = 150 ms, 80 ms (Figure S1C), 30 ms (Figure S1A,B)
Ip = 4.01 pA/cm? Iy = 3.515 pA/cm?
¥ =0 pA/cm? ¥ = -0.5 pA/cm?
w = 0.05 ms™! (6 frequency, unless specified otherwise)

Table 3: Parameters specific to the multi-neuron networks of WB neurons

Ring network

For the ring network illustrated in Figure 5 (N = 100 neurons), the connection strength from neuron j to neuron ¢ was
described by a symmetric, rotationally invariant connection matrix:

w;; = A+ Bcos (W) (1A /em?).

A = —0.024 [pA/em?] and B = 0.1515 [uA/em?] for the non-oscillatory case, and A = —0.54 [uA/em?] and B =
0.909 [uA/cm?] for the oscillatory case.

Sequential activity network

In Figure 6, we illustrate an asymmetrically connected network (N = 100 neurons), which resembles the ring network, but

whose asymmetry enables a well-controlled drift of the bump attractor in one direction. The connection strength from

neuron j to neuron i was defined by:

Az (i —j)
N

W;j :A+Bcos( +0.1>7—[(C’—|i—j|) (1A /em?],

where H denotes the Heaviside (step) function. C' = 38 for all simulations. A = —0.18 [#A/em?] and B = 0.303 [pA /em?]

for the simulations with no oscillatory input, and A = —1.08 [uA/em?] and B = 1.818 [uA/em?] for the simulations with
oscillatory input.

1.3 Modified Seung autapse model

In Figure 3, we simulated a modified version of the model described in [1] (referred to here as the Seung autapse model) in
order to compare its robustness to that of the WB autapse model with oscillatory input. The intrinsic neuron parameters
are based on the model introduced by Shriki and colleagues [2], which exhibits an approximately linear f-I curve due to
the inclusion of an A-type potassium current (I4(Vj,bx) in the equations below). The model receives feedback current
through a synapse onto itself (autapse). The model equations are:

O S = —InalV) ~ Lic(Vim) = Io(V) = L4 (Vi) + I + Lo (55)
Ip(V) = (wsS +go)(V — Ek) (S.6)
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gna = 100 mS/cm®  Ey, = 55 mV as =1 Cp = 1 uF/cm?
g = 40 mS/cm? Ex =-80 mV 0, = -20 mV ¢ =10
gr = 0.2 mS/cm? E; =-65 mV os =2 mV T4 = 20 ms
ga = 20 mS/cm? Ep=0mV  wg = 1.882 mS/cm? 75 = 100 ms
9o = 0.0353 mS/cm?

Table 4: Parameters of the modified Seung autapse model

where the kinetics are as described in [1]:

Ina(Voh) = gnami (V)M(V — En)
Ix(V,n) = ggn*(V — Ek)
IL(V)=g.(V - EL)
L4(V,b) = gaa,(V)b(V — Ex)

A = boelV) — b
T% = —S+as(l—S)o(V)
e A
moe(V) = W%”;%a hoo (V) = ah<%hivﬁ)h<V>’ re=V) = M%ivﬁ)W)
(V) = m (V) = m
am(V) = 0.1exp(_0.‘1/(; iogo)) —» Pm(V) = 4exp <V ;55>
an(V) = 0.07exp (—V ;044> » AV) = exp(—O.l(; +14)) +1
an(V) = _0'01exp(70.‘1/(; i434)) —p PalV) = 002%exp <_V ;044)
(V)= oo (ég)) o == exp(”zg‘))+1
o(v) 1

1+ exp (——V;(’]S)

s

Individual parameters are listed in Table 4. Spike times are defined as the times of the downward zero crossings of the
membrane potential after crossing a threshold of 20 mV. Integration was performed numerically using the fourth order
Runge-Kutta method with time step At =2 - 1073 ms.

2 Stochastic simulations

For the multi-neuron networks, we considered the effects of several forms of stochasticity: simulations with time-varying
random noise in the inputs (section 2.1), simulations with “frozen” (not time-varying) noise in the synaptic weights of
the network (section 2.2), and simulations in which the phases of the oscillatory external input to different neurons were
randomized (section 2.3). We describe our methods for each of these cases below.

2.1 Networks with time-varying noise in their inputs

In Figure 4C and Figure S2B, we simulated fully connected networks of 1000 WB neurons with two different types of
time-varying noise: the addition of exponentially filtered Gaussian noise, n;(t), to the input (Figure 4C), or the inclusion
of multiplicative filtered noise in the amplitude and frequency parameters (¢ (t) and w(t), respectively) of the oscillatory
input I;(t) (Figure S2B). In all cases, the noise was independent for each neuron in the network. The resulting models
are described by:
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dv;
CmE —Ina(Vishi) = I (Visni) = IL(Vi) + Lsyn,i(81, s SN) + Lo + Losc,i(t) + Leat,i(t) +ni(t)

Iosc,i (t) = % (t) COS(Wi (t)t)

where n;(t), ¥;(t), and w;(t) vary in time, as described in the sections below.

Noisy external input n;(t)

For the simulations illustrated in Figure 4C, exponentially filtered white noise (an Ornstein-Uhlenbeck process) input was
implemented for each individual neuron 7 as:

At
ni(t) = Nig—nar — Nig—ar— + TnMig\| —

Tn Tn
Mg ~ N(O7 1)

with o, = 0.05 gA ms®®/cm?.

Noisy oscillatory parameters ;(t) and w;(t)

For the simulations illustrated in Figure S2B, the amplitude (¢;) and frequency (w;) of the oscillatory input to each neuron
evolved over time through multiplicative noise chosen independently for each neuron 7 of the network:

Vit) = Yni

w; (t) = (Im,;vw,t

At At
Nt = Niggt—at + (1= Nigr—at) — + opmipey | —
@ Ty

At aoy, At
it = Niwi—nt + (1 —Niwi—nt)— + —Niwit| —

Tw t Tw
Ni,x,t ~~ N(Oa 1)

with parameters 1/; =-0.5 uA/ch, Oy = 102, Ty = 500 ms, w = 0.05 ms~! a=103% o, =5-10"%, and 7, = 500 ms.

2.2 Networks with (frozen) noise in their synaptic weights

In the simulations illustrated in Figure 4D, the synaptic weights of the networks were initialized by independently adding
random noise to the uniform synaptic weights. The random values were independently drawn from a normal distribution
with g = 0 [gA/cm?] and standard deviation o = 0.055 [pA/cm?]. The value of the standard deviation was chosen to
correspond to approximately where the network’s ability to maintain multi-level persistent activity became significantly
degraded. This can be thought of as an approximate tolerance value of the 1000-neuron network to variation in the
synaptic weights.

2.3 Networks with randomized phases of oscillatory input

In Figures S1-S2, we demonstrate how the distribution of relative phases of oscillatory inputs affects the synaptic time
constant needed to maintain multi-level persistent activity. The individual phases of the inputs to the network illustrated
in Figures S1B and S2A were initialized by drawing randomly and independently from a uniform distribution on [0, 27).
In Figure S1C, the phases were initialized by drawing randomly and independently from a von Mises distribution with
© = 0 and concentration parameter k = 1.0. In all cases, the networks consisted of 1000 homogeneously connected WB
neurons.


https://doi.org/10.1101/2021.07.29.454329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454329; this version posted September 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3 Parameters specific to simulations

Any parameter values used to generate figures included in the text or Supporting Information that were not stated above
or in the figures are listed below.

Figure 1

All external input durations were 50 ms. The amplitudes of the pulses used to generate Figure 1C were [10 (green), 30
(purple), 40 (orange), 45 (red), 60 (blue)] Hz. The times of stimulus onset in Figure 1E were [100, 2000, 4000, 6000,
8000] ms. The amplitudes of the pulses used to generate Figure 1E (orange traces) were [70, 70, 70, -20, -20] Hz. The
amplitudes of the pulses used to generate Figure 1E (blue traces) were [50, 50, 50, -40, -40] Hz. The amplitudes of the
pulses used to generate Figure 1E (red traces) were [30, 30, 30, -130, -130] Hz.

Figure 2

All external input durations were 100 ms and the time of stimulus onset was t=100 ms. The amplitudes of the pulses
used to generate Figure 2B were [0.011 (green), 0.015 (purple), 0.0175 (orange), 0.13625 (red), 0.2 (blue)] uA/cm?. The
amplitudes of the pulses used to generate Figures 2D,E,F were [0.05 (green), 0.2 (purple), 0.3 (orange), 0.45 (red), 0.6
(blue)] pA /cm?.

Figure 3

All external input durations were 100 ms for Figure 3A and 50 ms for Figure 3C; the times of stimulus onset were [100,
1100, 2100, 3100, 4100, 5100, 6100, 7100, 8100, 9100] ms. The amplitudes of the pulses used to generate Figure 3A were
[0.2,0.1125, 0.15, -0.225, 0.225, -0.225, -0.1125, 0.15, -0.15, 0.1125] A /cm?. The amplitudes of the pulses used to generate
Figure 3C were [2.0, 0.75, 1.0, -1.5, 1.5, -1.5, -0.75, 1.0, -1.0, 0.75] pA/cm?.

Figure 4

All external input durations were 100 ms and the times of stimulus onset were [100, 2000, 4000, 6000, 8000, 10000, 12000,
14000, 16000, 18000] ms. The amplitudes of the pulses used to generate Figure 4B were [0.1125, 0.125, 0.1375, 0.175,
0.175, 0.2, -0.175, -0.175] uA/cm?. The amplitudes of the pulses used to generate Figure 4C were [0.1, 0.125, 0.125,
0.1375, 0.175, 0.175, 0.2, -0.175, -0.175, -0.175] pA/cm?. The amplitudes of the pulses used to generate Figure 4D were
0.1, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, -0.175, -0.175, -0.175] A /cm?.

Figure S1

All external input durations were 50 ms and the times of stimulus onset were [125, 2125, 4125, 6125, 8125, 10125] ms.
The amplitudes of the pulses used to generate Figure S1A were [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] A /cm?. The amplitudes of
all pulses used to generate Figure S1B were 0.03125 A /cm?. The amplitudes of all pulses used to generate Figure S1B
were 0.075 pA/cm?.
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Figure S1. Heterogeneity in the
phases of oscillations in the
network  enables discretely
graded persistent activity using
synaptic time constants that are
shorter than the oscillation cycle.
(A) Failure of network with
perfectly aligned phases and
shorter synaptic time constants
to maintain persistent activity.
When all oscillatory phases are
perfectly aligned (left), the
currents provided by the shorter
time constant synapses (t =30
ms) cannot bridge the troughs of
the oscillation cycles, and the
network fails to maintain
persistent firing (right). Times
and sizes of external pulses of
increasing magnitude are
depicted along the x-axis with
(n+) denoting a pulse of n times
the magnitude of (+). (B)
Distributed phases of oscillatory
inputs enables the network to
store discretely graded activity
even with 30 ms synaptic time
constants. When phases of the
oscillatory inputs to the network
are independently drawn from a
uniform distribution (left), the
relative spread of spiking
responses in the network can
bridge the oscillation cycles and
enable discretely graded
persistent activity. (C) Network
response to a distribution of
oscillatory inputs intermediate
between the phase distributions
illustrated in  (A,B). Left,
distributions were generated by
sampling the phases from a Von
Mises distribution (concentration
parameter k = 1.0). Right, the
network can maintain discretely
graded persistent activity with
synaptic time constants (t = 80
ms shown here) typically used in
studies of persistent activity.
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