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Abstract 

Oscillatory activity is commonly observed during the maintenance of information in short-
term memory, but its role remains unclear.  Non-oscillatory models of short-term memory 
storage are able to encode stimulus identity through their spatial patterns of activity, but 
are typically limited to either an all-or-none representation of stimulus amplitude or exhibit 
a biologically implausible exact-tuning condition. Here, we demonstrate a simple phase-
locking mechanism by which oscillatory input enables a circuit to generate persistent or 
sequential activity patterns that encode information not only in their location but also in 
their discretely graded amplitudes. 

 

 

Significance 

A core observation in many memory systems and tasks is the presence of oscillations 
during memory maintenance. Here, we demonstrate a mechanism for the accumulation 
and storage of information in short-term memory in which oscillatory activity enables a 
solution to long-standing challenges in modeling the persistent neural activity underlying 
working memory. These challenges include the ability to encode information with low 
firing rates, multi-level storage of stimulus amplitude without extreme fine tuning, and 
multi-level storage of information in sequential activity. Altogether, this work proposes a 
new class of models for the storage of information in working memory, a new potential 
role for brain oscillations, and a novel dynamical mechanism for multi-stability.   
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The maintenance of information 
in short-term memory is a key 
component of a wide array of cognitive 
(1, 2) and non-cognitive (3, 4) 
functions. However, the biophysical 
mechanisms that enable memory 
storage over the seconds-long time 
scale remain unclear.  Single-unit 
studies have demonstrated a neural 
correlate of memory maintenance in 
the persistent activation of neurons 
whose population activity spans the 
memory period (reviewed in (2, 5, 6)).  
Theoretical studies have shown how 
such persistent activity can be 
generated by recurrent network 
feedback (7–9), but simple 
instantiations of this idea are either 
implausibly sensitive to mistuning or 
can only maintain a single elevated 
firing rate that is unrealistically high 
(the ‘low firing rate problem’, reviewed 
in (4, 10)), limiting storage about a 
given item to a single bit (‘on’ or ‘off’) 
of information.  

Separately, previous studies 
have identified distinct bands of 
oscillatory activity in field potential 
recordings and EEG during the 
maintenance of working memory 
(reviewed in (11)). Such activity can be 
generated through cell-intrinsic 
mechanisms, local circuitry, or long-
range interactions (12–14). However, 
it remains an open question whether 
oscillatory activity is necessary, 
sufficient, or even beneficial for 
working memory storage. Previous 
work has proposed how oscillations 
can contribute to a variety of memory 
functions such as the generation or 
maintenance of persistent activity (15, 

16); the structuring of spatial codes through frequency coupling (17); and the 

 

Figure 1. Failures of traditional positive feedback 
models of working memory storage. (A) Simplified 
model illustrating key features of positive feedback 
models. In the absence of external input 
(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝑖𝑛𝑝𝑢𝑡 = 0), changes in the firing activity 𝑟(𝑡) 
of a population are determined by the relative balance 
of network feedback (black, 𝑓(𝑟)) and neuronal decay 
processes (gray, −𝑟). (B,C) Nonlinear models typically 
exhibit a ‘low firing rate problem’. (B) During the memory 
period when external input is absent, the intersections 
of the decay (gray) and network feedback (black) 
functions are such that there are no stable fixed points 
(solid circles) within the range of firing rates typically 
observed during persistent neural activity. (C) Firing 
rates below the unstable fixed point (B,C, open circle) 
decay to zero (green, purple, orange lines), while firing 
rates above the unstable fixed point run off to 
uncharacteristically high rates (red, blue lines). (D,E) 
Linear models exhibit the ‘fine tuning problem’: minute 
changes in the strength of feedback (red: +5%, orange: 
-5%) relative to the tuned value (blue) result in instability 
and the inability to maintain stable persistent activity. 
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coordination, control, and gating of memory-related activity (18–29). By contrast, other 
studies have suggested that oscillations could be an epiphenomenon of other 
computational or network mechanisms (30–32). Here, we demonstrate a potential 
mechanistic role for oscillations, regardless of source or frequency, by showing how the 
addition of oscillatory inputs to simple recurrent feedback circuits can enable both low 
firing rate persistent activity and a discretely graded set of persistent firing rates that 
increases the information capacity of a memory network. 

To illustrate the core challenges that arise when generating biologically plausible 
models of persistent activity, consider an idealized circuit consisting of a memory neuron 
(or lumped population) connected to itself through positive feedback (Fig. 1A); this basic 
motif of recurrent excitation is the key component of most circuit models of persistent 
neural activity (reviewed in (4)). This simple circuit receives a brief stimulus (Figs. 1A,C,E 
external input) and needs to store it through persistent activity.  Stable persistent activity 
(!"
!#
= 0, 𝑟 > 0) is achieved only when the intrinsic decay of the neuron (represented by the 

term −𝑟) and the recurrent drive to the neuron (𝑓(𝑟)) are equal in magnitude and cancel 
each other. This condition imposes two separate, but related, problems that depend on 
whether the rate function 𝑓(𝑟) is linear or nonlinear. In the typical nonlinear case (Fig. 
1B,C), if the stimulus is too weak, the memory neuron’s low initial firing rate provides 
insufficient recurrent feedback to overcome the post-stimulus intrinsic decay of activity 
(Fig. 1B, left of open circle). As a result, the firing rate of the network returns to a low (or 
zero) baseline firing rate (Fig. 1C, orange, purple, green traces).  By contrast, if the 
stimulus is stronger, the memory neuron’s initial firing provides recurrent feedback that 
exceeds the rate of intrinsic decay (Fig. 1B, right of open circle), leading to a reverberatory 
amplification of activity in which the rate rises until some saturation process brings the 
rate to rest at an elevated persistent level (Fig. 1C, blue and red traces). Thus, the only 
possibilities are that activity decays to its baseline level or that activity runs away to 
saturation at a high level of activity that, for typical neuronal nonlinearities, is 
unrealistically large. A different problem emerges in the case where the rate function 𝑓(𝑟) 
is linear (Figs. 1D,E). The linearity of the rate function in this case allows a continuum of 
persistent rates, corresponding to the continuous set of points at which the feedback and 
decay lines overlap, to be stored (Fig. 1D, blue line), unlike the nonlinear case. This 
comes at the cost of a ‘fine-tuning’ condition: the strength of the recurrent synapse(s) 
must be exactly tuned to counterbalance the strength of the rate decay; an arbitrarily small 
violation of this condition causes the rate to exhibit runaway growth (Fig. 1E red trace) or 
decay to a low baseline (Fig. 1E orange trace). Although presented here for a very simple 
example, these problems are also commonly observed in larger neural networks (33).   

We next illustrate what happens when a network with the same positive feedback 
architecture is provided with a subthreshold oscillatory drive (Fig. 2). We demonstrate this 
in the more biologically realistic case of a conductance-based spiking neuron model (34) 
that facilitates the phase-locking phenomenon that we will describe. Without an oscillatory 
input, the model exhibits the ‘low firing-rate problem’ (Figs. 2A,B) and can only maintain 
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persistent activity at a high spiking rate or not spike at all. When a subthreshold oscillation 
is added to the model (Figs. 2C-F), the oscillatory drive has two effects.  First, it provides 
extra input that allows small initial inputs to trigger low-rate spiking.  Second, spiking of 
the memory neuron does not lead to runaway feedback because, before the feedback 
can run away, the oscillatory drive returns towards its trough, causing a cessation of 
spiking. The net result is that the spike-driven feedback becomes discretized, forming a 

 

Figure 2. Baseline oscillatory input allows robust maintenance of discretely graded persistent activity levels in a 
conductance-based, spiking neuron model. (A) Schematic of conductance-based autapse model. The model is 
composed of potassium, sodium, and leak conductances, and receives feedback input (𝐼!"# in Equation 1, 
Methods) as well as input current from an external source. (B) Manifestation of the ‘low-firing-rate’ problem in 
the conductance-based model without oscillatory input. Similar to the nonlinear firing rate model depicted in 
Figure 1B, the conductance-based spiking model exhibits stable fixed points only at zero and high firing rates 
(filled circles). Spiking rates between these two fixed points decay to zero from below the unstable fixed point 
(open circle) or run off to high rates from above the unstable fixed point. (C) Schematic of conductance-based 
neuron with the addition of an oscillatory baseline input. (D-F) Maintenance of discretely graded persistent 
activity levels enabled by baseline oscillatory input. Phase-locking to the oscillatory input creates stable fixed 
points at integer multiples of the baseline frequency. There is a trade-off between the number of firing rates that 
can be maintained and the robustness of these fixed points, which is related to the spacing between the fixed 
points. (D) Lower frequency oscillations enable a larger number of closely spaced fixed points. (E,F) Higher 
frequency oscillations lead to fewer, more robust, fixed points. 
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staircase whose step heights correspond to the number of spikes emitted by the neuron 
per oscillation cycle (Figs. 2D-F). The phase locking of the spiking to the subthreshold 
oscillatory drive constrains these spike numbers to be integer multiples of the oscillation.    

The key requirements for this mechanism to enable discretely graded persistent 
activity are the following: First, the oscillation must be strong enough to reset the activity 
at its troughs. Second, there must be some process that enables the activity from one 
cycle of the oscillation to carry through to the start of the next cycle and consequently 
enable renewed spiking as the oscillatory input heads towards its peak. For the simple 
case illustrated here, where all neurons receive oscillatory inputs that are perfectly aligned 
in phase, the mechanism enabling inter-cycle memory is a slow NMDA-like (or local 
dendritic) synaptic time constant (3, 10, 35). Alternatively, we show in the Supporting 
Information that, if there is heterogeneity in the phases of the oscillations received by the 
individual neurons in the network, the time between cycles may be bridged by the firing 
of other neurons in the network (Fig. S1). Some degree of tuning of the feedback is 
required to have multiple levels of response – such a tuning requirement is generic of 
models of analog or finely discretized persistent activity.  In the present case, the width 
of the steps of the staircase provides a moderate level of robustness to mistuning, 
especially for higher oscillation frequencies (Figs. 2D-F).  Mechanistically, this robustness 
occurs because errors in the tuning of feedback that are insufficient to systematically add 
or subtract an extra spike per cycle do not persist from cycle to cycle, unlike in models 
that have no oscillatory trough to reset (error-correct) the spiking activity. We illustrate 

 

Figure 3. Oscillation-based integrator model exhibits more robustness to changes in the recurrent feedback 
weight than a traditional non-oscillation-based model. (A) Responses of oscillation-based model to a sequence 
of positive and negative input pulses. Red and yellow traces show the conditions in which the recurrent feedback 
strength has been detuned by +/- 5%, respectively. The activity levels remain persistent following detuning. (B) 
Steady-state firing rates as a function of synaptic activity (𝐼!"# in Equation 1, Methods) that is held at steady 
values; mistuning the autapse strength by +/- 5% has no effect on the existence and location of the stable fixed 
points (intersections of black lines and horizontal stairs). (C) Responses of a traditional, approximately linear, 
conductance-based model of persistent neural activity (adapted from model of (37)). Detuning the recurrent 
feedback strength by 5% (orange and red traces) causes spiking activity to decay to 0 (orange, decreasing 
feedback strength) or run off to high rates (red, increasing feedback strength). (D) Small weight changes cause 
systematic loss of fixed points in the traditional model. 
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this robustness to weight changes in Figure 3, where we compare the oscillatory autapse 
memory model (Fig. 3A,B) to an approximately linear autapse model (36, 37) that can 
produce (nearly) graded persistent activity (Fig. 3C,D). Each model receives an arbitrary 
sequence of positive and negative input pulses, and must temporally accumulate and 
store the pulses in persistent activity. The linear spiking autapse model requires fine 
tuning to maintain persistent activity:  very small deviations from the tuned autapse weight 
lead to activity that grows to a saturating level or decays to zero activity (Figs. 3C,D). In 
contrast, the same synaptic weight deviations have negligible effect on the accumulation 
and multi-level storage capability of the nonlinear spiking neuron with oscillatory drive 
(Figs. 3A,B).  

The above examples demonstrate the basic mechanism by which oscillatory input 
may permit discretely graded levels of firing rate to be robustly stored in a recurrent 
excitatory network model of persistent activity.  We next explored applications of this basic 
principle in the case of three different network architectures: a spatially uniform (all-to-all) 
network that temporally integrates its inputs (Fig. 4); a ‘ring-like’ architecture whose 
activity can store both a spatial location and discretely graded levels at that location (Fig. 
5); and a chain-like architecture that can generate sequences of activity with multiple 
discretely graded amplitudes (Fig. 6). 

 We first extended the demonstration of temporal integration, shown in Figure 3, 
to a spatially homogeneous (all-to-all) network composed of 1000 neurons (Fig. 4A,B). 
This permitted us to not only examine the systematic mistuning of weights shown in the 
autapse network, which produces identical results in the averaged activity of the 1000 
neuron network (Methods), but also to examine the robustness to four different sources 
of noise and variability: input noise, in which each neuron in the network received 
independent exponentially filtered noise added to the subthreshold oscillatory drive (Fig. 
4C); noise in the connection weights, in which each synapse in the network was initialized 
with added random noise (Fig. 4D); randomly shuffled phases of the subthreshold 
oscillatory drive, in which each neuron received an oscillatory signal whose phase was 
randomly picked from a uniform distribution on [0, 2𝛑) at initialization (Fig. S2A); and noisy 
oscillation frequency and amplitude, in which the parameters of the subthreshold 
oscillatory drive underwent noisy drift (given by an Ornstein-Uhlenbeck process) during 
the simulations (Fig. S2B). In all of these cases, the network was able to accurately 
maintain multi-level persistent activity despite moderate perturbations. Figures 4C-D and 
Figure S2B illustrate the conditions for which the magnitude of the perturbations began 
to adversely affect network performance – for noise less than this amount, persistent 
activity was accurately maintained over a timescale of seconds, whereas larger noise 
levels led to progressively larger drifts of activity. 

Next we demonstrate that a similar temporal integration of inputs can also occur in 
spatially structured networks.  We consider a classic “ring model” architecture commonly 
used to model spatial working memory tasks in which stimuli can be presented at any of 
various locations arranged in a circular (ring-like) layout.  The model consists of a ring of 
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neurons with local excitatory connectivity and functionally wider inhibitory connectivity 
(Fig. 5A, Methods).  Such models can generate persistent activity at any spatial location 

 

Figure 4. Maintenance of persistent activity and robustness to noise in a fully connected network of 1000 
neurons. (A) Schematic of network. All units make synapses on all other units, with uniform synaptic weights 
(plus noise when present). (B) Spiking responses of network neurons to a sequence of positive and negative 
input pulses, with spike rasters plotted for the time window indicated by the dashed grey lines (random sample 
of 10 neurons from the 1000-neuron network). (C) Spiking responses of the network to the same input sequence 
in the presence of continuous external input noise. The noise had zero mean and standard deviation roughly 
one third the magnitude of the individual input pulses (𝜎 = 0.05	𝜇𝐴	𝑚𝑠$.&/𝑐𝑚'), the point at which network activity 
noticeably began degrading. The network is able to maintain persistent activity despite the noisy input. (D) 
Spiking responses of the network initialized with random noise in the connection weights. Noise with mean zero 
and standard deviation of 10 times the mean connectivity strength (𝜎 = 0.055	𝜇𝐴/𝑐𝑚'), the point at which 
network activity noticeably began degrading, is added to the individual connection weights between neurons. 
Although individual neurons in the network respond with different rates, the network is able to maintain persistent 
activity at many levels. 
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along the ring, but typically have only a binary “on-off” representation at a given spatial 
location (Fig. 5B).  When we added an oscillatory input stimulus to such a ring model, the 
network could store multiple, discretely graded levels of activity at any spatial location 
(Fig. 5C) and could temporally integrate location-specific inputs into discretely graded 
levels (Fig. 5D). While the spatial memory (bump attractor) networks proposed in (38–40) 
are capable of generating graded persistent activity, the network presented here 
represents, to our knowledge, the first spatial memory network to encode multi-level 
activity without requiring an exact tuning condition. 

Recent studies have shown that memory activity during a delay period also may 
take the form of a sequence of activity that spans the delay (41–43).  Models of such 
activity typically generate chain-like patterns of activity that attain only a single, 
stereotyped level of firing rate. Consistent with this, when we constructed a network with 
a chain-like architecture (Fig. 6), we found that, in the absence of oscillatory input, the 
sequential network activity either quickly decayed when the initial stimulus amplitude was 
too small or converged to a single saturated level of activity for larger stimuli (Fig. 6B).  
By contrast, in the presence of a subthreshold oscillatory input, the network could exhibit 

 

Figure 5. Maintenance of discretely graded bumps of persistent activity in a ring network. (A) Schematic of 
network structure. The spatial positions of neurons in the network are indexed by the angle theta from an arbitrary 
reference neuron. (B) Illustration of low-rate problem in a ring network of conductance-based spiking neurons 
without oscillatory input. Left, steady-state firing rate response of neurons in the network to input pulses of 
different amplitudes at locations centered around network position= 𝜋. Right, heatmaps illustrating the network’s 
temporal firing-rate responses to short pulses of inputs at network locations labeled by colored bars. The network 
is unable to maintain bump activity levels between the low and high fixed points. (C) Ring network with oscillatory 
input is able to maintain discretely graded bumps of persistent activity. (D) Temporal integration in the ring 
network. Short (100 ms) input pulses to the network are temporally integrated and stored in persistent activity. 
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sequential activity with discretely 
graded amplitudes for the same 
pattern of input (Fig. 6C). Thus, as in 
the persistently active networks, the 
oscillatory sequential memory network 
could encode multiple discretized 
stimulus levels. 

In summary, this work 
demonstrates a simple mechanism by 
which oscillatory input to a memory 
network can transform it from storing 
only binary amplitudes to maintaining 
discretely graded amplitudes of 
persistent activity. Memory networks 
using this mechanism require a 
cellular, synaptic, or network process 
that can span the period of the 
oscillation, suggesting a possible 
tradeoff in memory storage:  higher 
frequency oscillations do not require 
long timescale processes to span the 
oscillation cycle, but due to their short 
period may only store one or a few 
values (Figure 2F); lower frequency 
oscillations could store more items, 
but require a process with longer 
timescale to bridge the troughs 
occurring in each cycle. Our work 
complements traditional attractor 
models of working memory that 
typically fall into two classes: bistable 
models that robustly maintain two 
levels of activity (Figures 1B and 2B) 

and continuous attractor models that can maintain nearly analog storage of memory but 
require very precise tuning of connection weights (Figures 1D and 3C). Our model 
represents an intermediate possibility with relatively moderate tuning requirements (Fig. 
3B) and a discretely graded set of response levels. Previous work (44, 45) has suggested 
how multiple, spatially distinct bistable processes in a cell can be coupled together to form 
multiple stable levels of firing activity; here we demonstrate a complementary mechanism 
for forming multi-stable representations that relies on temporal, rather than spatial, 
patterning of inputs. Altogether, this work suggests a potential mechanism by which 
oscillatory activity, which is commonly observed during working memory tasks, may 
expand short-term memory capacity. 

 

Figure 6. Generation of sequences of discretely graded 
activity in a network with asymmetric connectivity. (A) 
Schematic of network structure. Asymmetric 
connectivity underlies slow drift of activity bumps. (B) 
Illustration of low-rate problem in a sequential-activity 
network of conductance-based spiking neurons without 
oscillatory input. Drifting bumps of activity in the 
network initiated by short (100 ms) pulses (labeled by 
colored bars) exhibit only a single level of activity. (C) 
Sequential-activity network with oscillatory input is able 
to maintain drifting bumps with discretely graded levels 
of activity. 
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Methods 
The Wang-Buzsaki model neuron used for most spiking neuron simulations in this paper 
is based upon the original model described in (34). Below, we show the equations for the 
dynamical variables most relevant to the maintenance of discretely graded persistent 
activity. The full model equations are included in the Supporting Information. The 
membrane potential of the Wang-Buzsaki neuron obeys the current balance equation: 

𝐶$
𝑑𝑉%
𝑑𝑡 = −𝐼&'(𝑉% , ℎ%) − 𝐼((𝑉% , 𝑛%) − 𝐼)(𝑉%) + 𝐼*+,,%(𝑠., … , 𝑠&) + 𝐼/ + 𝐼(𝑡)

+ 𝐼01#,%(𝑡) 
(1) 

𝐼*+,,%(𝑠., … , 𝑠&) =5𝑤%2𝑠2

&

23.

 (2) 

𝜏*+,
𝑑𝑠%
𝑑𝑡 = −𝑠% + 𝛼*+, 5 𝛿9𝑡 − 𝑡%

*4%50:
#(
)*(+,

 
(3) 

𝐼(𝑡) = 𝜓 𝑐𝑜𝑠 (𝜔𝑡)	 (4) 

where ℎ and 𝑛 are time-varying channel variables (Supporting Information). The 
parameter values used are specified in Tables S1 and S2.  The Wang-Buzsaki neuron 
receives several sources of inputs: (1) 𝐼*+,,%(𝑠., … , 𝑠&) represents recurrent feedback to 
neuron 𝑖, the strength of which is determined by a weight matrix 𝑤%2 defining the strength 
of the connection from neuron 𝑗 to neuron 𝑖, (2) 𝐼/ is a constant current that shifts the 
resting potential, and could represent tonic background input or intrinsic currents not 
explicitly modeled, (3) 𝐼(𝑡) is the external oscillatory input (𝐼(𝑡) = 0 for models with no 
oscillatory input), and (4) 𝐼01#,%(𝑡) represents the external inputs to be accumulated and 
stored by the memory network. To calculate spike times in equation 3, we used the time 
of the peak of the action potential, with only action potentials exceeding a voltage of 0 mV 
included. Integration was performed numerically using the fourth order Runge-Kutta 
method with a time step ∆t = 10−2 ms.   

In the single neuron case, there is a single recurrent synaptic weight, 𝑤	[𝑢𝐴/𝑐𝑚6]. 
Values for all simulation parameters are included in Table S2. In Figures 4-6, we study 
three different network architectures composed of Wang-Buzsaki neurons: an all-to-all 
connectivity (Figure 4), a ring structure (Figure 5), and a directed structure (Figure 6).  

The all-to-all connected networks of Figure 4 are composed of 1000 Wang-Buzsaki 
neurons. Figures 4B,C implement a network with uniform connection strengths 𝑤%2 =
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7
&
 [𝑢𝐴/𝑐𝑚6]. Figure 4D implements a network in which these uniform connection 

strengths have been perturbed by adding static Gaussian noise of mean zero 
independently to each connection. Exponentially filtered temporally white noise (Ornstein-
Uhlenbeck process) input was implemented in the network illustrated in Figure 4C; for 
each neuron 𝑖, the additive noise was given independently by: 

𝑛=(𝑡) = 𝑛=,?@A? − 𝑛=,?@A?
𝛥𝑡
𝜏B
+ 𝜎B𝜂=,?,

𝛥𝑡
𝜏B

 (5) 

𝜂%,# ∼ 𝑁(0,1) (6) 

where 𝜎, is the standard deviation of the noise. 

For the ring connectivity structure in Figure 5, the connection strength from neuron 𝑗 to 
neuron 𝑖  is described by: 

𝑤%2 = 𝐴 + 𝐵 𝑐𝑜𝑠 M
2𝜋(𝑖 − 𝑗)

𝑁 P 	 [𝜇𝐴/𝑐𝑚6] (7) 

The directed structure illustrated in Figure 6 resembles the ring structure, but results 
in a drift of the ‘activity bump’ in one direction. The connection strength from neuron j to 
neuron i in this case is defined by: 

𝑤%2 = 𝐴 + 𝐵 𝑐𝑜𝑠 M
4𝜋(𝑖 − 𝑗)

𝑁 + 0.1P 	𝐻(𝐶 − |𝑖 − 𝑗|) [𝜇𝐴/𝑐𝑚6] (8) 

where 𝐻 is the Heaviside (step) function and C controls the spatial extent of the 
connectivity. 

Comparison to linear spiking autapse model 
In Figure 3, we compare the robustness of discretely graded persistent activity of the 
phase-locking nonlinear spiking model described above, to that of a spiking autapse 
model in which analog persistent activity is enabled by excitatory feedback that is tuned 
to offset the intrinsic decay of activity. The autapse model is described in detail in (37); 
equations describing the dynamics of the model are included in the Supporting 
Information. 

Simple rate model 
The equation for the simple rate model implemented for Figure 1 is given in Figure 1A. 
The nonlinear term used for Figure 1B is:  
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𝑓(𝑥) = W𝑤[𝑥 − 𝑥#8"]9 (9) 

with 𝑤 = 75 , 𝑥#8" = 10		[𝐻𝑧]. 
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Qb+BHH�iQ`v BMTmiVc �M/ � +m``2Mi +Q``2bTQM/BM; iQ i?2 2ti2`M�H biBKmHmb Iext(t)X h?2 T�`�K2i2`b bT2+B}+ iQ Qb+BHH�iQ`v �M/
MQM@Qb+BHH�iQ`v bBKmH�iBQMb �`2 HBbi2/ BM h�#H2 kX ↵syn = 1.0 Kb 7Q` �HH bBKmH�iBQMbX

RXkXk JmHiB@M2m`QM M2irQ`Fb
6Q` i?2 M2irQ`Fb +QKTQb2/ Q7 KmHiBTH2 q" M2m`QMb- 2�+? BM/BpB/m�H M2m`QM i Bb ;Qp2`M2/ #v i?2 b�K2 2[m�iBQMb �b 7Q` i?2
bBM;H2 M2m`QM +�b2- 2t+2Ti i?�i i?2 bvM�TiB+ +m``2Mi BMTmi Isyn,i(s1, ..., sN ) /2T2M/b QM i?2 �+iBpBiv Q7 �HH Qi?2` M2m`QMb j
Q7 i?2 M2irQ`F i?`Qm;? i?2 bvM�TiB+ r2B;?ib wij ,

Cm

dVi

dt
= �INa(Vi, hi)� IK(Vi, ni)� IL(Vi) + Isyn,i(s1, ..., sN ) + I0 + Iosc,i(t) + Iext,i(t)

Isyn,i(s1, ..., sN ) =
NX

j=1

wijsj

⌧syn
dsi
dt

= �si + ↵syn

X

t
spike
i

�(t� tspike
i

)

6Q` �HH M2irQ`Fb T`2b2Mi2/ BM i?Bb T�T2`- r2 mb2/ � p�Hm2 Q7 ↵syn = 1.0 KbX

6mHHv +QMM2+i2/ M2irQ`F
AM 6B;m`2 9 �M/ 6B;m`2b aR@ak- r2 BKTH2K2Mi2/ 7mHHv +QMM2+i2/ U�HH@iQ@�HHV M2irQ`Fb Q7 N = 1000 q" M2m`QMbX 1t+2Ti
7Q` i?2 biQ+?�biB+ bBKmH�iBQMb /2b+`B#2/ BM a2+iBQM k- i?2 +QMM2+iBQM bi`2M;i? 7`QK M2m`QM j iQ M2m`QM i r�b ;Bp2M #v,

wij =
5.5

N
[µ�/cm2]

j
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LQM@Qb+BHH�iQ`v BMTmi Pb+BHH�iQ`v BMTmi
wsyn = 1 µ�f+K2 UmMH2bb bT2+B}2/ Qi?2`rBb2V wsyn = 5.5 µ�f+K2 UmMH2bb bT2+B}2/ Qi?2`rBb2V

⌧syn 4 R8y Kb ⌧syn 4 R8y Kb- 3y Kb U6B;m`2 aR*V- jy Kb U6B;m`2 aR�-"V
I0 4 9XyR µ�f+K2 I0 4 jX8R8 µ�f+K2

 4 y µ�f+K2  4 @yX8 µ�f+K2

! 4 yXy8 Kb�1 U✓ 7`2[m2M+v- mMH2bb bT2+B}2/ Qi?2`rBb2V

h�#H2 j, S�`�K2i2`b bT2+B}+ iQ i?2 KmHiB@M2m`QM M2irQ`Fb Q7 q" M2m`QMb

_BM; M2irQ`F
6Q` i?2 `BM; M2irQ`F BHHmbi`�i2/ BM 6B;m`2 8 UN = 100 M2m`QMbV- i?2 +QMM2+iBQM bi`2M;i? 7`QK M2m`QM j iQ M2m`QM i r�b
/2b+`B#2/ #v � bvKK2i`B+- `Qi�iBQM�HHv BMp�`B�Mi +QMM2+iBQM K�i`Bt,

wij = A+B cos

✓
2⇡(i� j)

N

◆
[µ�/cm2].

A = �0.024 [µ�/cm2] �M/ B = 0.1515 [µ�/cm2] 7Q` i?2 MQM@Qb+BHH�iQ`v +�b2- �M/ A = �0.54 [µ�/cm2] �M/ B =
0.909 [µ�/cm2] 7Q` i?2 Qb+BHH�iQ`v +�b2X

a2[m2MiB�H �+iBpBiv M2irQ`F
AM 6B;m`2 e- r2 BHHmbi`�i2 �M �bvKK2i`B+�HHv +QMM2+i2/ M2irQ`F UN = 100 M2m`QMbV- r?B+? `2b2K#H2b i?2 `BM; M2irQ`F- #mi
r?Qb2 �bvKK2i`v 2M�#H2b � r2HH@+QMi`QHH2/ /`B7i Q7 i?2 #mKT �ii`�+iQ` BM QM2 /B`2+iBQMX h?2 +QMM2+iBQM bi`2M;i? 7`QK
M2m`QM j iQ M2m`QM i r�b /2}M2/ #v,

wij = A+B cos

✓
4⇡(i� j)

N
+ 0.1

◆
H (C � |i� j|) [µ�/cm2],

r?2`2 H /2MQi2b i?2 >2�pBbB/2 Ubi2TV 7mM+iBQMX C = 38 7Q` �HH bBKmH�iBQMbX A = �0.18 [µ�/cm2] �M/ B = 0.303 [µ�/cm2]
7Q` i?2 bBKmH�iBQMb rBi? MQ Qb+BHH�iQ`v BMTmi- �M/ A = �1.08 [µ�/cm2] �M/ B = 1.818 [µ�/cm2] 7Q` i?2 bBKmH�iBQMb rBi?
Qb+BHH�iQ`v BMTmiX

RXj JQ/B}2/ a2mM; �mi�Tb2 KQ/2H
AM 6B;m`2 j- r2 bBKmH�i2/ � KQ/B}2/ p2`bBQM Q7 i?2 KQ/2H /2b+`B#2/ BM (R) U`272``2/ iQ ?2`2 �b i?2 a2mM; �mi�Tb2 KQ/2HV BM
Q`/2` iQ +QKT�`2 Bib `Q#mbiM2bb iQ i?�i Q7 i?2 q" �mi�Tb2 KQ/2H rBi? Qb+BHH�iQ`v BMTmiX h?2 BMi`BMbB+ M2m`QM T�`�K2i2`b
�`2 #�b2/ QM i?2 KQ/2H BMi`Q/m+2/ #v a?`BFB �M/ +QHH2�;m2b (k)- r?B+? 2t?B#Bib �M �TT`QtBK�i2Hv HBM2�` 7@A +m`p2 /m2 iQ
i?2 BM+HmbBQM Q7 �M �@ivT2 TQi�bbBmK +m``2Mi UIA(Vk, bk) BM i?2 2[m�iBQMb #2HQrVX h?2 KQ/2H `2+2Bp2b 722/#�+F +m``2Mi
i?`Qm;? � bvM�Tb2 QMiQ Bib2H7 U�mi�Tb2VX h?2 KQ/2H 2[m�iBQMb �`2,

Cm

dV

dt
= �INa(V, h)� IK(V, n)� IL(V )� IA(V, b) + IE + Iext UaX8V

IE(V ) = (wSS + gO)(V � EE) UaXeV

9
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gNa 4 Ryy Kaf+K2 ENa 4 88 Ko ↵s 4 R Cm 4 R µ6f+K2

gK 4 9y Kaf+K2 EK 4 @3y Ko ✓s 4 @ky Ko � 4 Ry
gL 4 yXk Kaf+K2 EL 4 @e8 Ko �s 4 k Ko ⌧A 4 ky Kb
gA 4 ky Kaf+K2 EE 4 y Ko wS 4 RX33k Kaf+K2 ⌧S 4 Ryy Kb

gO 4 yXyj8j Kaf+K2

h�#H2 9, S�`�K2i2`b Q7 i?2 KQ/B}2/ a2mM; �mi�Tb2 KQ/2H

r?2`2 i?2 FBM2iB+b �`2 �b /2b+`B#2/ BM (R),

INa(V, h) = gNam
3
1(V )h(V � ENa)

IK(V, n) = gKn4(V � EK)

IL(V ) = gL(V � EL)

IA(V, b) = gAa
3
1(V )b(V � EK)

⌧A
db

dt
= b1(V )� b

⌧
dS

dt
= �S + ↵S(1� S)�k(V )

⌧h(V )
dh

dt
= �(h1(V )� h), ⌧n(V )

dn

dt
= �(n1(V )� n)

m1(V ) =
↵m(V )

↵m(V ) + �m(V )
, h1(V ) =

↵h(V )

↵h(V ) + �h(V )
, n1(V ) =

↵n(V )

↵n(V ) + �n(V )

⌧h(V ) =
1

↵h(V ) + �h(V )
, ⌧n(V ) =

1

↵n(V ) + �n(V )

↵m(V ) = �0.1
V + 30

exp(�0.1(V + 30))� 1
, �m(V ) = 4 exp

✓
�
V + 55

18

◆

↵h(V ) = 0.07 exp

✓
�
V + 44

20

◆
, �h(V ) =

1

exp(�0.1(V + 14)) + 1

↵n(V ) = �0.01
V + 34

exp(�0.1(V + 34))� 1
, �n(V ) = 0.125 exp

✓
�
V + 44

80

◆

a1(V ) =
1

exp
�
�

V+50
20

�
+ 1

, b1(V ) =
1

exp
�
V+80

6

�
+ 1

�(V ) =
1

1 + exp
⇣
�

V�✓s
�s

⌘

AM/BpB/m�H T�`�K2i2`b �`2 HBbi2/ BM h�#H2 9X aTBF2 iBK2b �`2 /2}M2/ �b i?2 iBK2b Q7 i?2 /QrMr�`/ x2`Q +`QbbBM;b Q7 i?2
K2K#`�M2 TQi2MiB�H �7i2` +`QbbBM; � i?`2b?QH/ Q7 20 KoX AMi2;`�iBQM r�b T2`7Q`K2/ MmK2`B+�HHv mbBM; i?2 7Qm`i? Q`/2`
_mM;2@Emii� K2i?Q/ rBi? iBK2 bi2T �t = 2 · 10�3 KbX

k aiQ+?�biB+ bBKmH�iBQMb
6Q` i?2 KmHiB@M2m`QM M2irQ`Fb- r2 +QMbB/2`2/ i?2 2z2+ib Q7 b2p2`�H 7Q`Kb Q7 biQ+?�biB+Biv, bBKmH�iBQMb rBi? iBK2@p�`vBM;
`�M/QK MQBb2 BM i?2 BMTmib Ub2+iBQM kXRV- bBKmH�iBQMb rBi? ǳ7`Qx2MǴ UMQi iBK2@p�`vBM;V MQBb2 BM i?2 bvM�TiB+ r2B;?ib Q7
i?2 M2irQ`F Ub2+iBQM kXkV- �M/ bBKmH�iBQMb BM r?B+? i?2 T?�b2b Q7 i?2 Qb+BHH�iQ`v 2ti2`M�H BMTmi iQ /Bz2`2Mi M2m`QMb r2`2
`�M/QKBx2/ Ub2+iBQM kXjVX q2 /2b+`B#2 Qm` K2i?Q/b 7Q` 2�+? Q7 i?2b2 +�b2b #2HQrX

kXR L2irQ`Fb rBi? iBK2@p�`vBM; MQBb2 BM i?2B` BMTmib
AM 6B;m`2 9* �M/ 6B;m`2 ak"- r2 bBKmH�i2/ 7mHHv +QMM2+i2/ M2irQ`Fb Q7 Ryyy q" M2m`QMb rBi? irQ /Bz2`2Mi ivT2b Q7
iBK2@p�`vBM; MQBb2, i?2 �//BiBQM Q7 2tTQM2MiB�HHv }Hi2`2/ :�mbbB�M MQBb2- ni(t)- iQ i?2 BMTmi U6B;m`2 9*V- Q` i?2 BM+HmbBQM
Q7 KmHiBTHB+�iBp2 }Hi2`2/ MQBb2 BM i?2 �KTHBim/2 �M/ 7`2[m2M+v T�`�K2i2`b U (t) �M/ !(t)- `2bT2+iBp2HvV Q7 i?2 Qb+BHH�iQ`v
BMTmi Ii(t) U6B;m`2 ak"VX AM �HH +�b2b- i?2 MQBb2 r�b BM/2T2M/2Mi 7Q` 2�+? M2m`QM BM i?2 M2irQ`FX h?2 `2bmHiBM; KQ/2Hb
�`2 /2b+`B#2/ #v,

8
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Cm

dVi

dt
= �INa(Vi, hi)� IK(Vi, ni)� IL(Vi) + Isyn,i(s1, ..., sN ) + I0 + Iosc,i(t) + Iext,i(t) + ni(t)

Iosc,i(t) =  i(t) cos(!i(t)t)

r?2`2 ni(t)-  i(t)- �M/ !i(t) p�`v BM iBK2- �b /2b+`B#2/ BM i?2 b2+iBQMb #2HQrX

LQBbv 2ti2`M�H BMTmi ni(t)

6Q` i?2 bBKmH�iBQMb BHHmbi`�i2/ BM 6B;m`2 9*- 2tTQM2MiB�HHv }Hi2`2/ r?Bi2 MQBb2 U�M P`Mbi2BM@l?H2M#2+F T`Q+2bbV BMTmi r�b
BKTH2K2Mi2/ 7Q` 2�+? BM/BpB/m�H M2m`QM i �b,

ni(t) = ni,t��t � ni,t��t

�t

⌧n
+ �n⌘i,t

r
�t

⌧n
⌘i,t ⇠ N (0, 1)

rBi? �n = 0.05 µ� Kb0.5f+K2X

LQBbv Qb+BHH�iQ`v T�`�K2i2`b  i(t) �M/ !i(t)

6Q` i?2 bBKmH�iBQMb BHHmbi`�i2/ BM 6B;m`2 ak"- i?2 �KTHBim/2 U iV �M/ 7`2[m2M+v U!iV Q7 i?2 Qb+BHH�iQ`v BMTmi iQ 2�+? M2m`QM
2pQHp2/ Qp2` iBK2 i?`Qm;? KmHiBTHB+�iBp2 MQBb2 +?Qb2M BM/2T2M/2MiHv 7Q` 2�+? M2m`QM i Q7 i?2 M2irQ`F,

 i(t) =  ̄ni, ,t

!i(t) = !̄ni,!,t

ni, ,t = ni, ,t��t + (1� ni, ,t��t)
�t

⌧ 
+ � ⌘i, ,t

s
�t

⌧ 

ni,!,t = ni,!,t��t + (1� ni,!,t��t)
�t

⌧!
+

a�!
t
⌘i,!,t

r
�t

⌧!
⌘i,x,t ⇠ N (0, 1)

rBi? T�`�K2i2`b  ̄ = �0.5 µ�f+K2- � = 10�2- ⌧ = 500 Kb- !̄ = 0.05 Kb�1- a = 103- �! = 5 · 10�4- �M/ ⌧! = 500 KbX

kXk L2irQ`Fb rBi? U7`Qx2MV MQBb2 BM i?2B` bvM�TiB+ r2B;?ib
AM i?2 bBKmH�iBQMb BHHmbi`�i2/ BM 6B;m`2 9.- i?2 bvM�TiB+ r2B;?ib Q7 i?2 M2irQ`Fb r2`2 BMBiB�HBx2/ #v BM/2T2M/2MiHv �//BM;
`�M/QK MQBb2 iQ i?2 mMB7Q`K bvM�TiB+ r2B;?ibX h?2 `�M/QK p�Hm2b r2`2 BM/2T2M/2MiHv /`�rM 7`QK � MQ`K�H /Bbi`B#miBQM
rBi? µ = 0 (µ�f+K2) �M/ bi�M/�`/ /2pB�iBQM � = 0.055 (µ�f+K2)X h?2 p�Hm2 Q7 i?2 bi�M/�`/ /2pB�iBQM r�b +?Qb2M iQ
+Q``2bTQM/ iQ �TT`QtBK�i2Hv r?2`2 i?2 M2irQ`FǶb �#BHBiv iQ K�BMi�BM KmHiB@H2p2H T2`bBbi2Mi �+iBpBiv #2+�K2 bB;MB}+�MiHv
/2;`�/2/X h?Bb +�M #2 i?Qm;?i Q7 �b �M �TT`QtBK�i2 iQH2`�M+2 p�Hm2 Q7 i?2 Ryyy@M2m`QM M2irQ`F iQ p�`B�iBQM BM i?2
bvM�TiB+ r2B;?ibX

kXj L2irQ`Fb rBi? `�M/QKBx2/ T?�b2b Q7 Qb+BHH�iQ`v BMTmi
AM 6B;m`2b aR@ak- r2 /2KQMbi`�i2 ?Qr i?2 /Bbi`B#miBQM Q7 `2H�iBp2 T?�b2b Q7 Qb+BHH�iQ`v BMTmib �z2+ib i?2 bvM�TiB+ iBK2
+QMbi�Mi M22/2/ iQ K�BMi�BM KmHiB@H2p2H T2`bBbi2Mi �+iBpBivX h?2 BM/BpB/m�H T?�b2b Q7 i?2 BMTmib iQ i?2 M2irQ`F BHHmbi`�i2/
BM 6B;m`2b aR" �M/ ak� r2`2 BMBiB�HBx2/ #v /`�rBM; `�M/QKHv �M/ BM/2T2M/2MiHv 7`QK � mMB7Q`K /Bbi`B#miBQM QM (y- k⇡VX
AM 6B;m`2 aR*- i?2 T?�b2b r2`2 BMBiB�HBx2/ #v /`�rBM; `�M/QKHv �M/ BM/2T2M/2MiHv 7`QK � pQM JBb2b /Bbi`B#miBQM rBi?
µ = 0 �M/ +QM+2Mi`�iBQM T�`�K2i2` k = 1.0X AM �HH +�b2b- i?2 M2irQ`Fb +QMbBbi2/ Q7 Ryyy ?QKQ;2M2QmbHv +QMM2+i2/ q"
M2m`QMbX

e
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j S�`�K2i2`b bT2+B}+ iQ bBKmH�iBQMb
�Mv T�`�K2i2` p�Hm2b mb2/ iQ ;2M2`�i2 };m`2b BM+Hm/2/ BM i?2 i2ti Q` amTTQ`iBM; AM7Q`K�iBQM i?�i r2`2 MQi bi�i2/ �#Qp2
Q` BM i?2 };m`2b �`2 HBbi2/ #2HQrX

6B;m`2 R
�HH 2ti2`M�H BMTmi /m`�iBQMb r2`2 8y KbX h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 R* r2`2 (Ry U;`22MV- jy
UTm`TH2V- 9y UQ`�M;2V- 98 U`2/V- ey U#Hm2V) >xX h?2 iBK2b Q7 biBKmHmb QMb2i BM 6B;m`2 R1 r2`2 (Ryy- kyyy- 9yyy- eyyy-
3yyy) KbX h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 R1 UQ`�M;2 i`�+2bV r2`2 (dy- dy- dy- @ky- @ky) >xX h?2
�KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 R1 U#Hm2 i`�+2bV r2`2 (8y- 8y- 8y- @9y- @9y) >xX h?2 �KTHBim/2b Q7 i?2
TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 R1 U`2/ i`�+2bV r2`2 (jy- jy- jy- @Rjy- @Rjy) >xX

6B;m`2 k
�HH 2ti2`M�H BMTmi /m`�iBQMb r2`2 Ryy Kb �M/ i?2 iBK2 Q7 biBKmHmb QMb2i r�b i4Ryy KbX h?2 �KTHBim/2b Q7 i?2 TmHb2b
mb2/ iQ ;2M2`�i2 6B;m`2 k" r2`2 (yXyRR U;`22MV- yXyR8 UTm`TH2V- yXyRd8 UQ`�M;2V- yXRjek8 U`2/V- yXk U#Hm2V) µ�f+K2X h?2
�KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2b k.-1-6 r2`2 (yXy8 U;`22MV- yXk UTm`TH2V- yXj UQ`�M;2V- yX98 U`2/V- yXe
U#Hm2V) µ�f+K2X

6B;m`2 j
�HH 2ti2`M�H BMTmi /m`�iBQMb r2`2 Ryy Kb 7Q` 6B;m`2 j� �M/ 8y Kb 7Q` 6B;m`2 j*c i?2 iBK2b Q7 biBKmHmb QMb2i r2`2 (Ryy-
RRyy- kRyy- jRyy- 9Ryy- 8Ryy- eRyy- dRyy- 3Ryy- NRyy) KbX h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 j� r2`2
(yXk- yXRRk8- yXR8- @yXkk8- yXkk8- @yXkk8- @yXRRk8- yXR8- @yXR8- yXRRk8) µ�f+K2X h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2
6B;m`2 j* r2`2 (kXy- yXd8- RXy- @RX8- RX8- @RX8- @yXd8- RXy- @RXy- yXd8) µ�f+K2X

6B;m`2 9
�HH 2ti2`M�H BMTmi /m`�iBQMb r2`2 Ryy Kb �M/ i?2 iBK2b Q7 biBKmHmb QMb2i r2`2 (Ryy- kyyy- 9yyy- eyyy- 3yyy- Ryyyy- Rkyyy-
R9yyy- Reyyy- R3yyy) KbX h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 9" r2`2 (yXRRk8- yXRk8- yXRjd8- yXRd8-
yXRd8- yXk- @yXRd8- @yXRd8) µ�f+K2X h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 9* r2`2 (yXR- yXRk8- yXRk8-
yXRjd8- yXRd8- yXRd8- yXk- @yXRd8- @yXRd8- @yXRd8) µ�f+K2X h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 9. r2`2
(yXR- yXRk8- yXRk8- yXRk8- yXRk8- yXRk8- yXRk8- @yXRd8- @yXRd8- @yXRd8) µ�f+K2X

6B;m`2 aR
�HH 2ti2`M�H BMTmi /m`�iBQMb r2`2 8y Kb �M/ i?2 iBK2b Q7 biBKmHmb QMb2i r2`2 (Rk8- kRk8- 9Rk8- eRk8- 3Rk8- RyRk8) KbX
h?2 �KTHBim/2b Q7 i?2 TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 aR� r2`2 (yXy8- yXR- yXR8- yXk- yXk8- yXj) µ�f+K2X h?2 �KTHBim/2b Q7
�HH TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 aR" r2`2 yXyjRk8 µ�f+K2X h?2 �KTHBim/2b Q7 �HH TmHb2b mb2/ iQ ;2M2`�i2 6B;m`2 aR"
r2`2 yXyd8 µ�f+K2X

9 _272`2M+2b

_272`2M+2b
(R) >X a2#�biB�M a2mM;- .�MB2H .X G22- "2M uX _2Bb- �M/ .�pB/ qX h�MFX h?2 �mi�Tb2, � bBKTH2 BHHmbi`�iBQM Q7 b?Q`i@i2`K

�M�HQ; K2KQ`v biQ`�;2 #v imM2/ bvM�TiB+ 722/#�+FX CQm`M�H Q7 *QKTmi�iBQM�H L2m`Qb+B2M+2- NUkV,RdRĜR38- kyyyX

(k) P`2M a?`BFB- .�pB/ >�Mb2H- �M/ >�BK aQKTQHBMbFvX _�i2 JQ/2Hb 7Q` *QM/m+i�M+2@"�b2/ *Q`iB+�H L2m`QM�H L2irQ`FbX
L2m`�H *QKTmi�iBQM- R8U3V,R3yNĜR39R- �m;mbi kyyjX

(j) sB�Q@CBM; q�M; �M/ :vƺ`;v "mxb�FBX :�KK� Qb+BHH�iBQM #v bvM�TiB+ BM?B#BiBQM BM � ?BTTQ+�KT�H BMi2`M2m`QM�H
M2irQ`F KQ/2HX CQm`M�H Q7 L2m`Qb+B2M+2- ReUkyV,e9ykĜe9Rj- RNNeX

8 amTTH2K2Mi�`v };m`2b

d
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 Supplementary Figures 

 
 

 

Figure S1. Heterogeneity in the 
phases of oscillations in the 
network enables discretely 
graded persistent activity using 
synaptic time constants that are 
shorter than the oscillation cycle. 
(A) Failure of network with 
perfectly aligned phases and 
shorter synaptic time constants 
to maintain persistent activity. 
When all oscillatory phases are 
perfectly aligned (left), the 
currents provided by the shorter 
time constant synapses (τ = 30 
ms) cannot bridge the troughs of 
the oscillation cycles, and the 
network fails to maintain 
persistent firing (right). Times 
and sizes of external pulses of 
increasing magnitude are 
depicted along the x-axis with 
(n+) denoting a pulse of n times 
the magnitude of (+). (B) 
Distributed phases of oscillatory 
inputs enables the network to 
store discretely graded activity 
even with 30 ms synaptic time 
constants. When phases of the 
oscillatory inputs to the network 
are independently drawn from a 
uniform distribution (left), the 
relative spread of spiking 
responses in the network can 
bridge the oscillation cycles and 
enable discretely graded 
persistent activity. (C) Network 
response to a distribution of 
oscillatory inputs intermediate 
between the phase distributions 
illustrated in (A,B). Left, 
distributions were generated by 
sampling the phases from a Von 
Mises distribution (concentration 
parameter % = 1.0). Right, the 
network can maintain discretely 
graded persistent activity with 
synaptic time constants (τ = 80 
ms shown here) typically used in 
studies of persistent activity. 
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Figure S2. Robustness of persistent 
activity in a fully connected network of 
1000 WB neurons receiving noisy 
oscillatory input or oscillatory input with 
randomized phase across neurons. (A) 
Mean firing rate across the population 
(top) and rasters of individual neuron 
responses (bottom) for a network in 
which the phase of oscillatory input is 
randomly chosen from a uniform 
distribution for each neuron. Input to the 
network is a sequence of brief (100 ms) 
input pulses (gray bars). (B) Mean firing 
rate across the population (top) and 
rasters of individual neuron responses 
(middle) to a sequence of brief input 
pulses in a network in which the values 
of the oscillatory parameters omega and 
psi vary randomly in time (Supporting 
Information). Bottom, power spectrum of 
the oscillatory input. Noise is 
independent (uncorrelated) across 
neurons of the network. 
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