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Abstract 
A major challenge to the characterization of intrinsically disordered regions (IDRs), which are 
widespread in the proteome, but relatively poorly understood, is the identification of molecular 
features that mediate functions of these regions, such as short motifs, amino acid repeats and 
physicochemical properties. Here, we introduce a proteome-scale feature discovery approach for 
IDRs. Our approach, which we call “reverse homology”, exploits the principle that important 
functional features are conserved over evolution. We use this as a contrastive learning signal for 
deep learning: given a set of homologous IDRs, the neural network has to correctly choose a 
held-out homologue from another set of IDRs sampled randomly from the proteome. We pair 
reverse homology with a simple architecture and standard interpretation techniques, and show 
that the network learns conserved features of IDRs that can be interpreted as motifs, repeats, or 
bulk features like charge or amino acid propensities. We also show that our model can be used to 
produce visualizations of what residues and regions are most important to IDR function, 
generating hypotheses for uncharacterized IDRs. Our results suggest that feature discovery using 
unsupervised neural networks is a promising avenue to gain systematic insight into poorly 
understood protein sequences. 
 
 
Introduction 
Despite their critical role in protein function, the systematic characterization of intrinsically 
disordered regions (IDRs) remains elusive [1]–[3]. IDRs comprise of about 40% of the residues 
in eukaryotic proteomes [4]. Unlike structured domains, IDRs do not fold into a stable secondary 
or tertiary structure, and this lack of structure helps facilitate many key functions. For example, 
some IDRs mediate protein-protein interactions, because their lack of structure allows them to 
adapt their conformation to different interaction partners [4], [5].   
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Databases of large-scale predicted [6] and experimentally confirmed [7] intrinsically disordered 
regions are available. Prediction of intrinsically disordered regions from primary amino acid 
sequences is a well-developed area of research in computational biology [8]. On the other hand, 
aside from defining a peptide region as intrinsically disordered, relatively little can be predicted 
about its function [2], [3], although there has been considerable effort to identify binding sites 
[9], [10], conditionally folded regions [11] and more recently, to predict disordered region 
functions [12], [13]. This is in contrast to the situation for folded protein regions, where highly 
specific predictions of function based on sequence using such universal resources as BLAST 
[14]and Pfam[15].  
 
Other approaches have been devised to classify intrinsically disordered regions into functional 
groups, initially into a small number of groups based on predicted biophysical properties [16], 
[17]. Using larger numbers of molecular features (including biophysical properties, matches to 
short motifs and repeats, and residue composition) and their patterns of evolution [18] we 
showed strong association between ~20 biological functions and the molecular features of 
intrinsically disordered regions. Indeed, conserved molecular features were used as input for 
general predictions of IDR functions [13]. 
 
The features important to function of disordered regions are highly diverse. The best understood 
features are “short linear motifs”, peptides of 4-12 residues [19]. In some cases, multiple copies 
or local clustering of motifs is necessary for function [20]. Other IDRs depend upon global 
“bulk” features that are distributed through the entire sequence. For example, mitochondrial 
import IDRs require the sequence to be positively charged and hydrophobic [21], certain phase-
separating proteins require IDRs with many R/G repeats that facilitate condensate-forming 
interactions [22], and alternating positive and negative charged regions in an IDR of the cell-
cycle regulating protein p27 mediates the strength of phosphorylation of key regulatory sites 
[23].  
 
Our knowledge of features important to IDRs is not likely to be comprehensive. Indeed, features 
are continuously being discovered as research on IDRs develops: recently characterized features 
include aromatic amino acid patterning for prion-like domains [24], [25] or hydrophobic residues 
for activation domains [26], [27]. We therefore set out to design a systematic computational 
method for discovering features in IDRs, that is unbiased by prior knowledge or interest. The 
problem of feature discovery runs closely parallel to the concept of motif discovery [28], [29]: 
given a set of functionally related sequences, motif discovery methods attempt to find 
overrepresented subsequences with the idea that these motifs may represent conserved binding, 
interaction, or regulatory sites informative of the function of proteins. Motif discovery 
approaches range from fully unsupervised to regression approaches where function is predicted 
from sequence. Among the most successful strategies for motif discovery are those that exploit 
the principle that important functional motifs are conserved over evolution [30]–[32]. Because 
comparative sequence data is available at genomic and proteomic scales, and is unbiased by a 
particular experimental condition or research question, comparative genomic and proteomic 
approaches have the potential to discover large numbers of functional motifs. However, 
alignment-based approaches to find conserved motifs in IDRs identify only a small minority 
(~5%) of the residues in IDRs [33]; short motifs of about 2-10 residues often occur as small 
islands of conservation in IDRs that have no detectable sequence similarity otherwise [34]. These 
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short conserved elements are not expected to describe the “bulk” molecular properties such as 
charge, hydrophobicity or motif density, that are expected to be important for IDR function and 
appear to be conserved during evolution [35]–[37].  
 
In order to develop a proteome-scale feature discovery approach capable of using evolution to 
learn more expressive features than motifs, we applied neural networks. To learn biologically 
relevant features, neural networks must be asked to solve a training task (i.e. a pre-specified loss 
function) [38]. Approaches to infer sequence function using neural networks employ regression 
tasks, where models learn to predict high-throughput measurements [39]–[43]. For example, 
training genomic sequence models on labels representing the presence or absence of transcription 
factor binding leads to the model learning features that directly correspond with the consensus 
motifs for these transcription factors [44]. Similarly, training neural networks to predict high-
throughput measurements [45], [46] of activation domain function highlighted clusters of 
hydrophobic residues within acidic regions [26], [27] as a key sequence feature. While these 
supervised approaches discover important features, we reasoned that they would only learn 
features relevant to the specific training task.  
 
Instead, we sought to use evolutionary conservation as a learning signal. Since orthologous 
sequences can be automatically obtained using sequence comparison and gene order [47], [48], 
labels about homology can be automatically obtained for IDRs. We therefore investigated self-
supervised learning. Self-supervised learning trains models on “proxy” tasks resembling play and 
exploration [49], for which the labels can be automatically generated from data. These tasks are 
not directly useful, but are intended to teach the model transferable skills and representations, 
and are designed so the models learn autonomously without expert labels. Several self-
supervised learning approaches have been applied to protein sequences, and have been effective 
in teaching the models features that are useful for downstream analyses [50]–[55]. However, the 
majority of these directly repurpose tasks from natural language processing [50]–[53], and it is 
unclear what kinds of features the tasks induce the models to learn in the context of protein 
sequences.  
 
We designed a new self-supervised method that purposes principles in comparative genomics as 
a learning signal for our models. While IDRs generally cannot be aligned over long evolutionary 
distances [56], they can still be considered homologous if they occur at similar positions in 
homologous proteins [18]. Given a subset of homologous IDRs, our model is asked to pick out a 
held-out homologue, from a large set of non-homologous sequences. This task, which we call 
reverse homology, requires our model to learn conserved features of IDRs, in order to distinguish 
them from non-homologous background sequences. Our method is a contrastive learning 
method, a strategy that is now frequently employed in self-supervised learning [54], [57]–[60]. 
We show that reverse homology can be applied on a proteome-wide scale to learn a large set of 
diverse features. While these “reverse homology features” are learned by the neural network to 
solve the reverse homology proxy task, we show that they can be visualized and interpreted, are 
enriched in functional terms, and can be purposed for bioinformatics analyses that yield 
hypotheses connecting specific features to function. Taken together, our work demonstrates that 
deep learning methods can be designed to identify sequence features that are preserved over 
evolution (without relying on sequence alignment), and that feature discovery for biological 
sequences is an unexplored application of self-supervised learning.  
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Results 
 
Reverse Homology 
 
To learn functional features of IDRs unbiased by prior knowledge, we propose a novel self-
supervised proxy task that uses evolutionary homology between protein sequences to pose a 
contrastive learning problem. Homologous proteins derive from a shared evolutionary ancestor, 
and will frequently share similar functions [61]. For full proteins and structured domains, 
homology can be reliably identified based on sequence similarity [61]. IDRs are usually flanked 
by structured regions that are easily identified as homologous [36]. Since these structured regions 
will usually align well, and since the order of domains is usually strongly conserved in proteins 
[62], IDRs that occur at the same position across homologous proteins in a multiple-sequence 
alignment can be considered to be homologous even when they share little sequence similarity 
(Figure 1A) [63]–[66]. As bioinformatics tools can accurately annotate what parts of a protein 
are IDRs [8], defining homologous groups of IDRs using multiple-sequence alignments across 
the entire proteome can be defined as a fully automated operation [18]. 
 
We will use these sets of homologous IDRs (Figure 1B) as the basis for our proxy task (Figure 
1C, see Methods for a more detailed definition.) Given a set of homologous IDRs, a neural 
network (Figure 1D) is asked to determine which sequence is a held-out homologue from a set of 
IDRs where the other sequences are randomly drawn non-homologous sequences (Figure 1E). 
We call this task "reverse homology", because it "reverses" the typical sequence homology 
search process, where we have a target sequence of unknown homology, and we search across 
many query sets or sequences to assign homology [61]. In our task, we give the model a query 
sequence of known homology, and ask it to determine if target sequences are homologous or not.  
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Figure 1.  A schematic description of the reverse homology method. A) We use standard intrinsically 
disordered region (IDR) prediction methods to obtain predicted IDRs for the whole proteome. We then 
extract homologous sets of disordered regions from whole protein multiple sequence alignments of 
orthologs, obtained from public databases B) Homologous sets of IDRs (gold) are combined with 
randomly chosen non-homologous IDRs to derive the proxy task for each region C) We sample a subset 
of IDRs (blue dotted box) from � and use this to construct the query set (Sq , blue box). We also sample a 
single IDR (purple dotted box) from �not used in the query set and add this to the target set (St, purple 
box). Finally, we populate the target set with non-homologous IDRs (green), sampled at random from 
other IDRs from other proteins in the proteome. D) The query set is encoded by the query set encoder ��. 
The target set is encoded by the target set encoder ��. In our implementation, we use a five-layer 
convolutional neural network architecture. Both encoders include both max and average pooling of the 
same features, which correspond to motif-like and repeat or bulk features, respectively. We label 
convolutional layers with the number of kernels x the number of filters in each layer. Fully connected 
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layers are labeled with the number of filters. E) The output of �� is a single representation for the entire 
query set. In our implementation, we pool the sequences in the query set using a simple average of their 
representations. The output of �� is a representation for each sequence in the target set. The training goal 
of reverse homology is to learn encoders �� and �� that produce a large score between the query set 
representation and the homologous target representation, but not non-homologous targets. In our 
implementation, this is the dot product: ������ ·  ������	 
 ������ ·  ������	. After training, we extract 
features using the target sequence encoder. For this work, we extract the pooled features of the final 
convolutional layer, as shown by the arrow in D. 
 
In previous work, we explained the theoretical principles behind using evolutionary homology as 
a basis for contrastive learning [57]: our method is expected to learn conserved features of 
protein sequences, which we argue are likely important for the conserved function of rapidly-
diverging IDRs (Supplementary Methods). 
 
We use both max and average pooling in our convolutional neural network architecture (Figure 
1D) to reflect different ways in which local features can contribute to functions of IDRs. We 
reasoned max pooling, which identifies a single window that maximally activates (i.e. creates the 
highest feature value for) the feature, would capture function determined by presence or absence; 
for example, a single SH3 binding motif [67] may be sufficient for recognition and function. On 
the other hand, other functions require multiple copies of a feature [20], a certain proportion of 
the sequence to have a feature [22], or scale as more of the feature is present [36]. We reasoned 
average pooling, which produces the average activation value across all windows, would allow 
for the capture of additive distributed properties within the receptive field of the convolutional 
layers. This architecture facilitates interpretation (see Methods): we pair our trained models with 
several neural network interpretation methods to understand the features learned. In principle, 
this architecture can be replaced with many others, but we leave exploration of possible 
architectures to future work (see Discussion.) 
 
Reverse homology learns a diverse range of features for yeast intrinsically disordered 
regions 
 
We trained a reverse homology model using 5,306 yeast IDR homology sets containing a total of 
94,106 sequences. We focused on the features from the final convolutional layer of the target 
encoder, as our goal is to identify interpretable features in individual intrinsically disordered 
regions. To obtain a global view of the molecular feature space learned by the neural networks, 
we produced a UMAP scatterplot [68], where each point represents a feature, using the 
correlation distance between activation values across IDR sequences for each feature (Figure 2). 
We generated sequence logos for each feature by adapting a recently proposed approach for 
DNA convolutional features [44]; see Methods). Note that the width of the average pool 
sequence logos are arbitrarily chosen to be the same width of the max pool sequence logo (which 
corresponds to the receptive field of the convolutional layers) even though these features pool 
information across the entire sequence. Examination of the of the most activating max-pool and 
average-pool IDR for each feature highlights the differences in the types of sequences these 
features are recognizing (Supplementary File 1) 
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Figure 2. UMAP scatterplot of reverse homology features for our yeast model. Reverse homology 
features are extracted using the final convolutional layer of the target encoder: max-pooled features are 
shown in red, while average-pooled features are shown in blue. We show the sequence logo 
corresponding to select features, named using the index at which they occur in our architecture (see 
Methods for how these are generated). Amino acids are colored according to their property, as shown by 
the legend at the bottom. All sequence logos range from 0 to 4.0 bits on the y-axis. 
 
Overall, we observed four major axes of features. To the left of the scatterplot, we observed 
features with negatively charged amino acids (e.g., Average F81 and Max F164). Features with 
positively charged amino acids were concentrated at the bottom right (e.g. Max F11 and Average 
F173). Features containing hydrophobic amino acids are at the top of the distribution (e.g., 
Average F238, Max F54, and Max F72). Finally, we observed features rich in uncharged polar 
amino acids (e.g., Average F136, Max F252 and Average F124) or alanine (e.g., Average F255 
and Max F42) scattered along the bottom of our UMAP. Features in between these poles often 
exhibited a mixture of properties. For example, Max F211, Max F174, and Max F163 all contain 
both negative and hydrophobic residues, Max F54 contains both positive and hydrophobic 
residues, and Max F49 contains both aromatic and polar amino acids.  
 
Specific features captured both motifs and bulk properties known to be important for IDR 
function. As examples of motifs, Max F252 is consistent with the TPP phosphorylation motif 
[69], while Max F87 is similar to the PKA phosphorylation motif RRxS [70]. As examples of 
bulk properties, Average F173 captures RG repeats important for phase separation [22], while 
other average features look for combinations of amino acids with similar biochemical properties 
(Average F136 measures S/T content, Average F124 measures N/Q content, and Average F81 
measures acidic amino acids D/E). Finally, other features captured patterns that we were not able 
to associate with previously known IDR properties: for example, Average F107 captures spaced 
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out arginine repeats (e.g. RxRx), and Max F244 captures a window of positive to negative charge 
transition. We hypothesize these features could represent charge patterning in IDRs [71], [72].   
 
Overall, we were able to identify 70 of 512 features as complete or partial matches to motifs or 
bulk features previously considered to be important to IDRs (Supplementary File 2). We 
consider this number a lower bound as there are features that we were uncertain about. Together, 
our global analysis demonstrates that reverse homology induces our model to learn a wide 
diversity of biochemically sensible features.  
 
Reverse homology features are predictive of yeast IDR function and correlated with 
previous literature-curated features 
 
Having qualitatively confirmed that our model learns diverse features, our next goal was to more 
quantitatively evaluate them. To do this, we first we compared reverse homology features to 
literature-curated features by Zarin et al. [18]. We reasoned that a good measure of consistency 
between features detected by our neural network and literature-curated features is having the 
neural network feature activated at the same positions in amino acid sequences as the literature-
curated feature. For each of these features that can be expressed as regular expressions (37 
motifs, 7 physicochemical properties, 8 amino acid frequencies and 14 repeats) we computed the 
correlation of the activation for each of the features of our trained reverse homology model, and 
selected the feature with the maximum correlation (see Methods). Because many of the 
literature-curated features are relatively simple and reflect only single amino acid repeats, or 
relationships between subsets of 2-3 amino acids, they may be easy to capture by chance given 
the large number of features (512). Therefore, to set the expectation for these maximum 
correlations, we compared the features in the trained model to a randomly initialized model, as 
random untrained models have shown to be a strong baseline for protein representation learning 
problems [73], [74]. (Figure 3A, please see Supplementary File 3 for a table of all features, their 
regular expressions, and the maximal correlations with our trained and random models.)  
 
In line with the idea that the reverse homology trained neural network encodes many features 
that are similar to previously known features (Supplementary File 2), we observe higher 
correlations with 55 of 66 literature-curated features with our reverse homology model than an 
untrained random model. Features corresponding to motifs are learned significantly better by our 
reverse homology model than the random model (n=37, paired t-test p-value 4.63E-06; mean 
0.042 and standard deviation 0.0475). Features corresponding to physicochemical properties 
(n=7; p-value 0.067; mean 0.1091 and standard deviation 0.1266) and repeats (n=14; p-value 
0.077; mean 0.042 and standard deviation 0.082) are more correlated, but with less confidence 
than motifs. In contrast, features learned by our model are not more correlated with features 
capturing single amino acid content compared to a randomly initialized model, and are in fact, 
slightly less correlated on average (n=8; p-value 0.4409; mean -0.02 and standard deviation 
0.067). These results are consistent with the intuition that shorter repeats of one or two amino 
acids are more likely to be present in features by random chance, but longer and more specific 
combinations like motifs must be learned.  
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We next compared the enrichments for GO terms (Supplementary Table 3 in Supplementary File 
4) of reverse homology features to literature-curated features (Figure 3B). To compute 
enrichment for each feature, we counted proteins that had a protein with the same GO term as 
their nearest neighbor in the reverse homology feature space, and compared the fraction to the 
background. Importantly, this analysis includes all GO Slim terms (curated by the SGD database 
[75]) with at least 50 proteins in our set of proteins with IDRs (for a total of 92 terms), so it is not 
biased towards functions previously known to be associated with IDRs.  
 
Overall, we find that while some GO Slim categories are highly enriched with both feature sets 
(e.g. “Cell wall organization”, “Translation” or “Ribosome biogenesis”, highlighted in Figure 
3A), other categories are much more enriched with our reverse homology features than literature-
curated features (e.g. “Oxidoreductase Activity”, “Intracellular Protein Transport”, or “Golgi 
Membrane”). Conversely, some categories are more enriched using literature-curated features 
(e.g. “Meiosis”, “Intracellular Signal Transduction”, or “DNA replication”). These results 
suggest that the neural network is learning features relevant to biological processes that are 
different from the ones associated with literature-curated features.  
 
Next, we benchmarked vector representations of IDRs extracted using our model compared to 
self-supervised protein representations based on language models trained on large unlabelled 
protein databases [50]–[52] and knowledge-based features curated from literature [18] 
(Supplementary Tables 1 and 2 in Supplementary File 4). We compared these representations on 
a series of classification problems predicting various aspects of IDR function (Supplementary 
Tables 1, 2, and 3 in Supplementary File 4; details on classification datasets, classifiers, and 
baselines are also in Supplementary File 4). Overall, we observe that the language models 
performed best. As expected for IDR sequences, sequence-similarity (measured using blastp E-
values[14]) is a poor predictor of function in these benchmarks. For our reverse homology 
representation, we observed a trade-off depending on layer between the performance of the 
representation on our benchmark tasks and interpretability. Representations from the final fully 
connected layer of our target encoder perform comparably to other self-supervised protein 
representation learning methods, suggesting that our model can represent IDRs at a similar level 
of performance as the language models, but with a lower-parameter architecture and 
substantially less training data. However, the features in this layer are less interpretable than the 
convolutional layers. Representations from our final convolutional layer still outperform the 
literature-curated features at most problems, suggesting that these features may still encode more 
functional information than expert-curated features. 
 
For example, we compared the predictive power (Figure 3C) of these representations to predict 
two highly-specific IDR functions in yeast, mitochondrial targeting signals and direct Cdc28 
phosphorylation [13]. On both tasks we find that Unirep [52] performs best (Supplementary 
Table 2 in Supplementary File 4) achieving 5-fold cross-validation AUC of 0.9 on both tasks. On 
the other hand, we also used a sparse regression model (trained on the entire dataset) to select the 
most predictive reverse homology features and found that they are readily interpretable (Figure 
3D). The top features for mitochondrial targeting signals are average pool features rich in 
hydrophobic and positively charged residues, as expected based on the known residue 
composition biases of these signals [21]. In contrast, the features for Cdc28 targets are mostly 
motifs, with the top ranked feature matching the specificity of a proline-directed kinase (such as 
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Cdc28) and the average pool feature is rich in serines and prolines, consistent with known multi-
site phosphorylation in these substrates [20]. Thus, predictive models based on reverse homology 
features appear as interpretable as those based on knowledge based features [13], in contrast to 
features obtained from language models [50], [52]. 
 

 
 
Figure 3.  A) The maximum correlation between features in the final convolutional layer and each of the 
66 literature-curated features from the trained reverse homology model vs. a randomly initialized model. 
Features are coloured by their category (top legend). Black trace indicates y=x, while grey traces indicate 
features more than 2.0x correlated, and less than 0.5x times correlated than the untrained random features. 
B) Fold enrichment for the set of nearest neighbors using feature representations from the final 
convolutional layer of the target encoder of our reverse homology model, versus literature-curated feature 
representations, for 92 GO Slim terms. We show the names of some GO terms in text boxes. C) Area 
under the receiver operating curve (AUC) for regularized logistic regression classification of 
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mitochondrial targeting signals and Cdc28 targets obtained through 5-fold cross validation. A deep 
language model (Unirep, gold) performs better than reverse homology (blue) and literature-curated 
features (green). D) Features with largest coefficients (indicated below each logo) selected by the sparse 
classifier are consistent with the known amino acid composition biases in mitochondrial targeting signals 
(left) and short linear motifs in Cdc28 substrates (right) 
 
 
Features that recognize bulk properties associated with cell wall maintenance and phase 
separation 
 
Having confirmed that the features learned through reverse homology are diverse and associated 
with known features and functions of IDRs, we next sought analyze individual reverse homology 
features. First, we considered average pool features recognizing S/T repeats (Average F136 – 
Figure 4A) and RG repeats (Average F65 – Figure 4C). These exemplify “bulk properties” of 
IDRs that, to our knowledge, no computational method has previously been designed to identify. 
 

 
Figure 4. Sequence logos, feature distributions, and examples of mutation maps for each average feature. 
(A,C) Sequence logos and a histogram of the value of the feature across all IDRs is shown for Average 
F136 (A) and Average F65 (C). We annotate the histograms with the top activating sequences. (B,D) 
Mutation maps for F136 for an IDR in Uth1 in B and for F65 for an IDR in Lge1 (D), which are the 4th 
and 6th most activating sequences for their respective features. Mutation maps are visualized as letter 
maps, where positions above the axis are positions where retaining the original amino acid is preferable, 
while positions below the axis are positions where the activation could be improved by mutating to 
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another amino acid. The height of the combined letters corresponds to the total magnitude of the change 
in the feature for all possible mutations (which we define as the favourability). For positions above the 
axis, we show amino acids that result in the highest value for the feature (i.e. the most favored amino 
acids at that position.) For positions below the axis, we show amino acids that result in the lowest value 
for the feature (i.e. the most disfavored amino acids at that position.)  
 
Long regions of S/T-rich segments are often sites of O-glycosylation in yeast proteins [76]. A 
previous computational analysis revealed that fungal proteins with an extremely high proportion 
of S/T-rich regions in their sequence are often cell wall proteins involved in maintenance of the 
cell wall [76]. Consistent with this, we find an enrichment (using the GOrilla tool [77]) for cell 
wall proteins (15/31, q-value 3.16E-16), cell wall organization or biogenesis proteins (20/31, q-
value 1.69E-15), and extracellular region proteins (17/31, q-value 4.15E-20) in the proteins with 
IDRs that highly activate Average Feature 136 an S/T repeat feature (Figure 4A, left). We 
observed that the top 3 IDRs are all cell wall proteins: Cwp1 [78] and Tir3 [79] are cell wall 
mannoproteins, while Wsc2 is involved in maintenance of the cell wall under heat shock [80]. 
Our 4th ranked IDR is in Uth1, which is predominantly known as a mitochondrial inner 
membrane protein [81]. However, deletion of Uth1 alters the polysaccharide composition of the 
cell wall, with mutants being more robust to lysis conditions, leading to the argument that Uth1’s 
role at the cell wall, not the mitochondria, better explains its functions in cell death [82]. 
 
To visualize the activation of Average Feature 136 IDR in Uth1 in closer detail, we produce 
mutation maps (adapted from [39], also referred to as in silico or computational mutagenesis, 
e.g., [44]) (Figure 4B). We substituted each amino acid position in the IDR to every other amino 
acid, and measured the change the mutation induces in the value of Average Feature 136. We 
visualize these mutation maps as “letter maps” (not to be confused with sequence logos, which 
represent the variability of columns in multiple sequence alignments [83]) shown in Figure 3 (see 
Methods for details).  In these letter maps, residues that the feature favors (i.e., would generally 
result in a drop in the feature if mutated) are shown above the axis, while residues the feature 
disfavors are shown below the axis. For favored positions, we show the amino acids that are 
most favored, and these may not always be the wild-type amino acid, as the feature can favor the 
wild-type, but favor other amino acids more. For disfavored positions, we show the amino acids 
that are more disfavored (see Methods). Overall, analyzing the IDR at 52-104 in Uth1 reveals 
long tracts of S, T, and A-rich regions that are favored by Average Feature 136 (Figure 4B).  
 
Similarly, RG repeats are found in phase-separating RNA-binding proteins that form 
membraneless organelles [22]. Consistent with this, we found an enrichment for RNA-binding 
(13/20, FDR q-value 6.37E-5) proteins and for proteins localizing to the ribonucleoprotein 
complex (9/20, q-value 1.47E-1) in the IDRs that most strongly activate Average Feature 65.  
 
Indeed, for our RG-repeat, Average Feature 65, 4 out of 6 of the top IDRs are proteins with 
known stretches of RG-repeats (Dbp2 [84]), and 3 are phase-separating proteins mediated by 
interactions between RG-rich regions (Sbp1 [85], Npl3 and Nop1 [22]). Interestingly, while 
Lge1 is also known to phase-separate through its N-terminal IDR, also identified in our analysis, 
this IDR is not canonically considered an RG-rich IDR and instead has been described as an 
R/Y-rich region [86]. Closer analysis of Average Feature 65 applied on the Lge1 N-terminal IDR 
(Figure 4D) indicates that the feature also prefers Ys and other aromatic acids in addition to R; 
although replacing G with most other amino acids reduces the value of the feature, replacing G 
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with R, Y, or W improves the value of the feature in most spots. The preference for aromatic 
amino acids in addition to RG-repeats is consistent with aromatic amino acids mediating similar 
pi interactions and acting as "stickers" to drive phase separation  [24], [87]. We hypothesize that 
our feature may reflect this relationship and may be recognizing the synergy between the two 
types of features previously thought of as distinct (RG-repeats and R/Y-rich regions).  
 
Reverse homology trained on human IDRs also yields diverse features correlated with 
literature-curated features 
 
Having confirmed that our reverse homology task was effective at learning features that could be 
interpreted to drive hypotheses about yeast biology, our next goal was to train a model for human 
IDRs. We trained a reverse homology model using 15,996 human IDR homolog sets for a total 
of 634,406 sequences (see Methods).  
 
We qualitatively confirmed that this model was learning a similar diversity of features as our 
yeast model (Supplementary File 5). We were able to identify features for both short linear 
motifs, such as consensus motifs for phosphorylation sites or metal ion binding motifs, and bulk 
features like repeats or charge. As with our yeast model, we found that our features were 
significantly more correlated with literature-curated features than a random model (paired t-test 
p-value 1.589E-10, average 0.084, standard deviation 0.090). Supplementary File 6 contains the 
maximum correlations with the 66 features we previously tested for the yeast reverse homology 
model (for human IDRs, no comprehensive set of features has yet been published.)  
 
Feature discovery using reverse homology 
 
We next sought to test whether our approach could identify novel interpretable features. First, we 
compared the “motifs” discovered in our global feature discovery approach to a state-of-the-art 
motif finder, DALEL[88]. DALEL searches for the most strongly enriched motifs among sets of 
protein sequences that are hypothesized to share function. We therefore used a simple t-test to 
identify the reverse homology feature most enriched in two datasets where the individual 
functional residues have been defined: characterized human Grb2 targets [88]and characterized 
yeast PKA targets (the Biogrid database [89]). We find that in both cases the most enriched 
feature among the reverse homology feature corresponded to the known motif (Figure 5A). To 
compare quantitatively the residue level accuracy of the predictions from the reverse homology 
features to the motifs identified by DALEL, we smoothed the activation of the top feature (see 
Methods) and compared the overlap of the most activated positions to the annotated functional 
residues. For Grb2 we found comparable performance to DALEL, while for PKA we find lower 
performance. Nevertheless, we found that our motif is predictive of PKA targets at the proteome 
level: 8 of 24 bona fide targets are among the top activating IDRs (defined as more than 70% of 
the value of the maximally activating IDR), reflecting an enrichment of 18.7 times compared to 
lesser-activating IDRs (8/139; Fisher exact test p-value 8.8E-08). Taken together, we find this 
performance in motif-finding impressive, considering that our approach learns motifs for the 
whole proteome, and they are not fit to any particular subset of proteins. 
 
In visual exploration of the features learned by reverse homology models, we identified 
previously unknown features as well. We were interested Max Feature 231 (Figure 5B) that 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2021.07.29.454330doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454330
http://creativecommons.org/licenses/by/4.0/


14 
 

appears to recognize an RRRSS motif that we speculated might represent a basophilic 
phosphorylation site consensus, perhaps related to two overlapping PKA phosphorylation 
consensus motifs RRxS [70] [90]. To test this, we analyzed the frequency of two adjacent 
phosphorylated serines[89] in the 8-amino acid window around the maximally activated position 
of the top activating sequences and found 2.31 times more doubly phosphorylated regions (13 of 
52 IDRs for RRRSSS vs. 15 of 139 IDRs for the feature matching the PKA consensus. Fisher 
exact test p=0.020). Our results suggest that the doubly phosphorylated PKA consensus is a more 
widespread mechanism than currently appreciated, and illustrate the power of our unsupervised 
approach to discover unexpected and subtle biological patterns.  
 
We were also interested in features in both the yeast and human models that appear to recognize 
transitions from regions of positive to negative charge. To our knowledge, these have not been 
reported, although they do resemble features that measure the patterning of positive and negative 
charged residues [71], [72], which is generally known to be important to IDRs; our feature 
identifies a single local window instead of measuring these charge transitions as a property 
across the entire sequence. In both species these features identified IDRs from nucleolar and 
other RNA-binding proteins and showed statistical association with the GO annotation 
“ribonucleoprotein complex.” In Nop56, the C-terminal segment succeeding the activating 
region is characterized by lysine repeats (with some acidic amino acids interspersed.) In Nop56, 
the C-terminal lysine-rich region from E464 to D504 has previously been described as the “K-
tail” [91] and is important for interaction with fibrillarin [92]; our mutation map indicates that 
K454 to D460 is the most important region for Max F244 in the C-terminal IDR of Nop56 
(Supplementary Figure 1). 
 
To illustrate the power of the global IDR feature space, we explored bulk properties of IDRs 
associated with subcellular structures/localizations. To do so, we visualized the global 
enrichment of features in IDRs from clusters of proteins obtained from unsupervised analysis 
[93] of systematic microscope images of human cells [94]. We first compared IDRs from 
mitochondrial localized proteins to those from clusters enriched in Golgi and Membrane 
proteins. As expected, and as found for yeast mitochondrial targeting signals (Figure 3D) the 
IDRs in human mitochondrial proteins also appear to be rich in hydrophobic and positively 
charged amino acids (Figure 5E) presumably related to their N-terminal targeting signals. We 
next explored the IDRs in clusters of proteins enriched for Golgi and membrane localization. 
Interestingly, we see enrichment of distinct hydrophobic bulk properties (Figure 5E, membrane 
IDRs are more aromatic) as well as acidic-leucine repeats specific to Golgi and 
alanine/serine/threonine repeats specific to membrane. We speculate that the later may be the 
sites of posttranslational modification (as with glycosylation sites in yeast, Figure 4A) 
 
Finally, we compared the features enriched in IDRs from clusters of proteins enriched in the sub-
compartments of the nucleus (Figure 5E). We find that the IDRs in each sub-compartment are 
enriched for specific molecular features not enriched in the cluster associated with proteins 
localized to the nucleoplasm. For example, consistent with the preponderance of RNA binding 
proteins in splicing and the presence of RG repeats in these proteins[22], we found a max-pool 
RG feature enriched in the cluster associated with the spliceosome. Interestingly, we also find a 
proline-arginine repeat, which to our knowledge is not known to be associated with splicing or 
RNA binding. Similarly, while we find (as expected) highly charged IDRs in the proteins 
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associated with nucleolar localization, we also find a novel glutamine/charged feature enriched 
in this group. These new molecular features derived from our global analysis illustrate the 
potential of unsupervised feature discovery from analysis of proteome-scale subcellular 
localization data. 

 
Figure 5. (A) Statistical enrichment of reverse homology features points to known motifs for Grb2 and 
PKA (top left and right, respectively). Bottom: benchmarking reverse homology features against DALEL, 
a state-of-the-art motif-finder. Recall of residues within characterized binding sites (blue and green bars) 
at a fixed total number of predictions (purple) is compared. (B) A novel motif (top logo) is more likely to 
match a peptide with double phosphorylation in vivo (gold bar) than random expectation (dashed line) or 
the feature identified as the cannonical PKA consensus (green bar). (C) Novel “positive to negative 
charge transition” features (top logos) are more likely to be found in proteins annotated as 
ribonucleocomplex in both yeast and human models than random expectation (dashed line). In A-C error 
bars represent standard errors of the proportion using the normal approximation to the binomial. (D and 
E) Global representations of features enriched in clusters of human proteins obtained through 
unsupervised analysis of microscopy images (HPA-X). UMAP scatter plots of the feature space are 
generated as in Figure 2. T-statistics from enrichment of features in the image clusters are indicated by 
colour and logos show representative examples of enriched features. (D) differences in the bulk properties 
of IDRs in proteins with different membrane localizations. The enrichments for the mitochondrial IDRs 
(likely targeting signals) are shown for reference on the left. (E) shows differences between bulk 
properties of IDRs in various nuclear subcompartments. The enrichments for the nucleus are shown for 
reference on the left. 
 
 
Visualization of diverse human IDRs reveals consistency between reverse homology 
features and known features 
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Thus far, we focused on discovery and exploration of molecular features in IDRs, which was our 
primary goal. However, we wondered whether we could visualize the results of the reverse 
homology approach for individual IDRs. To do so, we obtained the top five most activated 
features in our reverse homology model (ranked by Z-scores and indicated in the left of Figure 6) 
for individual IDRs. We first focused on p27 (also known as CDKN1B), because it has a well-
studied C-terminal IDR spanning positions 83 to 198 in the sequence, known as the kinase 
inhibitory domain (p27-KID). This region mediates promiscuous interactions with cyclin-
dependent kinase (Cdk)/cyclin complexes through a disorder-to-order transition [95]. We show a 
summary of known post-transcriptional modification sites and localization signals [96], [97] in 
purple in Figure 6A. We found that the top features for reverse homology (blue trace for average 
feature, red bars for location of max pool match) appear to overlap with many of these. 
Furthermore, mutation maps show that important residues for our reverse homology features are 
consistent with these known sites. For example, Max Feature 71 (Figure 6A.1) overlaps Y88 and 
Y89, which are modification sites for Src family tyrosine kinases [96]; the letter map indicates 
that Y89 is the most important residue for this feature. Similarly, Max Feature 241(Figure 6A.3) 
appears to identify another key phosphorylation site at T157[98]. For comparison, visualizations 
obtained through ELM [19] reveal a much larger number of residue level predictions, while 
ANCHOR2[10] (Supplementary Figure 2) suggests a large region of predicted binding. 
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Figure 6.  Summaries of known features (purple) compared to the top ranked reverse homology features 
(red and blue) for three individual IDRs, plus letter maps for selected features. We show the position of 
max pooled features in red (boundaries set using a cut-off of -10 or lower in magnitude), and the values of 
average features in blue. Average features are sorted in descending order (i.e. the top ranked feature is at 
the top.) Mutation maps are visualized as in Figure 4. 
 

 

 of 
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We next considered a C-terminal IDR in hnRNPA1 from positions 183 to 372 as an example of 
an IDR whose function is thought to be determined by bulk properties as opposed to motifs. This 
IDR is known as a prion-like domain that facilitates liquid-liquid phase separation [99]. A recent 
study showed that the uniform patterning of aromatic residues in this IDR is critical to phase-
separation, while also inhibiting aggregation [24]. Consistent with these findings, we find that 
the top three features for our reverse homology model (all average features, two are shown in 
blue in Figure 6B) are all sensitive to the aromatic amino acids in the sequence of hnRNPA1 
(purple bars in Figure 6B). Consistent with this, multiple-sclerosis causing mutations F325L and 
F333L [100] modify aromatic residues that are highly activating for the top feature, Average 
Feature 198 (blue trace in figure 6B). We show the mutation map for Average Feature 32 in 
Figure 6B.1, which shows that the feature is sensitive to YG or YS repeats in an R/N-rich 
context, and disfavours negatively charged residues D and E. A recent study analyzed the 
importance of the context around the aromatic amino acids [101], and found that R can act in a 
similar way to aromatic residues in stabilizing the interactions in this IDR, while D and E are 
strongly destabilizing, remarkably consistent with the features we identify. The same study 
suggests that the gylcines and seriness are important “spacers” giving flexibility to the amino 
acid chain between the aromatic residues. Intriguingly, ALS-causing missense variants in 
hnRNPa1 D314N and N319S[100] are adjacent to F315 and Y318, consistent with the idea that 
the immediate context of the aromatic residues might be important. However, both of these 
mutations appear to increase the favourability in this region, perhaps related to enhanced 
“stickiness” [24] and consistent with increased stress-granule localization observed for disease 
causing mutants of hnRNPA1[102].   
 
Lastly, we visualized the top features for a more poorly understood, > 400 residue IDR2 from 
Ataxin-2 [103], between the folded Lsm domains and the conserved PAM2 motif. The most 
activated feature is a basic max-pool feature following an in vivo phosphorylation site at 
T624[104]. This also falls within a region that highly activates the second most activated feature, 
a TP-rich average pool feature. It has been recently suggested that this IDR binds microtubules, 
and the basic max-pool feature is consistent with the microtubule binding motifs 
discovered[103]. On the other hand the importance of threonines and prolines is a new 
hypothesis, but may be consistent with the abundance of proline-directed phosphorylation in this 
region[104]. 
 
Overall, these cases demonstrate that our reverse homology model learns versatile features and 
that letter map visualizations of the top features for individual IDRs can yield new hypotheses 
for both well-characterized IDRs (such as local context around aromatic residues in hnRNPA1), 
and less characterized IDRs (like prolines in IDR2 from ATXN2. ) 
 
 
Discussion 
We present, to our knowledge, the first proteome-wide, evolutionary approach for feature 
discovery using neural networks. Compared to other systematic homology-based approaches for 
intrinsically disordered regions [33], [34], our method discovers more flexible and expressive 
features than motifs: we show that our models learn features such as repeats or distributed 
properties. This expressiveness is important in the context of IDRs, where previous studies have 
shown that function is often mediated by global “bulk” properties [18]. Like previous 
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comparative genomics methods, our method is systematic, in that it discovers a large set of 
features informative of many different functions in the proteome, and unbiased by prior 
knowledge, in that it relies only on automatically-assigned homology to discover features. The 
latter property sets our method apart from deep learning approaches on protein sequences that 
use regression problems to train models, such as a recent study that discovered features of 
disordered activation domains by training deep learning models to predict the results of a 
transcriptional activation assay [45]. We argue that optimizing models to predict prior 
knowledge of function or assay measurements that reflect specific aspects of function, will lead 
to the model learning features for these functions exclusively. In contrast, training a model to 
predict homology yields a potentially more general set of features that are conserved over 
evolution.  
 
In many cases, our method learns features that are highly consistent with consensus motifs or 
bulk features previously known; this congruence is exciting because the model learns 
independent of prior knowledge, so “re-discovering” this biology supports the claim that our 
models are learning biological signals. At the same time, even when the model learns features 
that are consistent with prior expert-defined features, there is often additional subtlety or depth. 
For example, for our yeast RG-repeat feature Average F65, we showed that the feature has an 
additional preference for aromatic amino acids, consistent with the recent knowledge that these 
amino acids mediate phase separation, similar to RG-repeats in these sequences [24], [25], [87]. 
Similarly, we showed that our model develops two subclasses of PKA-like consensus motifs, and 
one is more sensitive to double phosphorylation sites. These examples demonstrate the power of 
unsupervised analysis to refine previous knowledge.   
 
From a computational biology perspective, we note that many of the individual feature analyses 
we presented in this study resemble bioinformatics studies that make functional predictions 
based on conserved motifs or other features [105]. For example, our analysis of PKA 
phosphorylation sites parallels a previous evolutionary proteomics study that systematically 
identified PKA substrates [32]: of the 25 of 92 conserved PKA motifs identified that are present 
in IDRs, our automatically learned yeast PKA feature Max F231 overlaps 10 in the 139 most 
activated IDRs, suggesting that our feature is in good agreement with this previous study and can 
also be used to identify putative modification sites. Unlike these studies that start with a known 
feature and search for new predictions, our approach learns many features in parallel, without 
having to pre-specify motifs/features of interest. In principle, these bioinformatics analyses can 
be applied to all of the 512 features learned by our model, enabling hypothesis discovery at an 
unprecedented scale. (We note that many of the features learned by our model appear to be 
redundant with each other (see our annotations in Supplementary File 2), so this is an upper 
bound.) However, like all studies that rely on evolutionary conservation to identify function, we 
can only identify features that are conserved between homologs: species-specific or lineage-
specific functions or features are not expected to be identified through this approach. 
Development of analysis methods to identify more complex patterns of IDR evolution is an area 
of increasing research interest [106]–[108].  
 
Our analysis of individual regions (such as in p27 and hnRNPA1 shown above) indicate that 
unsupervised deep learning approaches like reverse homology, paired with appropriate 
interpretation methods, may lead to predictions of functional residues and regions within IDRs. 
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This would be especially useful for IDRs that are mutated in disease, for which we have few 
mechanistic hypotheses about function [3], [109]–[111]. However, we caution that at this stage, 
our mutation maps should be thought of as a visualization tool for exploration, as we have not 
demonstrated their predictive power for individual mutations. 
 
From a technical perspective, reverse homology employs a self-supervised approach, as many 
emerging representation learning approaches for protein sequences do [50]–[54]. Unlike these 
methods, which are mostly based on methods adapted from natural language processing, we 
proposed a novel proxy task that purposes principles of evolutionary proteomics as a learning 
signal instead [57]. Another distinction in our study is that previous approaches primarily focus 
on representation learning, with the aim of optimizing the performance of the representation on 
downstream regression tasks reflecting protein design or classification problems. In contrast, we 
focus on feature discovery. We argue that representation learning and feature discovery are 
distinct aims that require different design philosophies. For example, in this study, we employed 
a lightweight convolutional architecture, because the interpretation of features is a necessary 
property. Moreover, we preprocessed the data to remove global information like sequence length 
or whether the sequence was at the N-terminus: while this information is often useful for 
downstream tasks, we observed that our models learn fewer “interesting” local features without 
this preprocessing. In other words, while representation learning does not care about what 
features are learned as long as they contribute signal to downstream classification or regression 
problems, we designed our feature discovery approach to learn general, interpretable features 
that reflect the biology of IDRs.   
 
However, as deep learning architectures are developed for protein sequences, and as new 
interpretation methods are designed to complement these architectures, updated implementations 
of our approach with these architectures are also possible. Currently, a major limitation of our 
convolutional neural network architecture is that it does not capture distal interactions; to some 
extent, our average pooled features allow for the representation of features distributed across the 
entire sequence, but these features cannot capture any non-additive interactions. However, 
transformer architectures are capable of modeling distal interactions, and there has been progress 
in making these models tailored to multiple sequence alignments, and interpreting the self-
attention modules [112], [113]. A second limitation is that our convolutional model requires 
sequences to be standardized in length as input. This preprocessing requirement means that we 
may lose key elements of longer sequences. Shorter sequences require padding; we used “repeat” 
padding, since we found with a special padding token the neural network can use cues about 
length to trivially eliminate many possible proteins from the contrastive task, but this runs the 
risk of creating new spurious repeats. Recurrent architectures address this limitation and allow 
for arbitrary-sized inputs [50], [52]. Overall, integrating these kinds of advances with our method 
in future work is expected to make the model more expressive, increasing the scope of the 
features we can discover. A more general limitation to feature discovery using neural networks is 
that retraining models from random initializations often lead to different features being 
identified. For example, for some initializations and/or data filtering heuristics we found features 
that were highly activated by the phosphorylation site at T198 in p27, while in the model 
presented above we have a feature activated by T157; for some models Y88 was most activating, 
while others Y89. We believe this is because the neural network will only learn the minimum 
feature set needed to solve the reverse homology task; it does not need to learn all the features 
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needed for biological function. Further research is needed to address how to encourage the neural 
network to consistently learn more of the important features, perhaps by adaptively increasing 
the difficulty of the contrastive task, or by including multiple training tasks as in pre-training for 
natural language models, e.g., adding masked-token prediction[114], [115]. Finally, further work 
on interpretation methods would also improve our ability to extract insights from these models: 
currently, a limitation of our sequence logos for average features is that features that favor 
specific combinations of repeats (e.g., RG-repeats) are difficult to distinguish between features 
that favor amino acid content (e.g., R and G content). Though there is clearly more work to be 
done, we believe the expressive capacity of neural networks combined with biologically 
motivated training paradigms will enable global unsupervised discovery of functional features in 
poorly understood biological sequences. 
  
 
Methods 
 
Details of Reverse Homology 
 
In this paper, we studied sets of automatically obtained homologous IDRs. We concentrate on 
IDRs in this work, but our contrastive learning task can easily be extended to other definitions of 
homologous sequences including full protein sequences or structured domains. We will use these 
sets of homologous sequences as the basis of our self-supervised task. 
 
Let ��  �  ���,�, . . . , ��,�� be a set of homologous sequences. We define a set of query sequences, , 	�  such that all sequences in the query set are homologous to each other, so 	� 
 ��. Then, we 
define a set of target sequences associated with the query set, 	� � ����,�, . . . , ���,���� ���	� where ��	 is a held-out homologue ��	 � �� , ��	 �  	�  and ��� are not homologous to the 
query set, ��	 � �
 , � � �. 
 
Let �� be a function that embeds 	�  into a latent feature representation, so ���	�� � ��, and �� 
be a function that embeds members of 	� into a latent feature representation, so ������ � �� (in 
this work, �� and �� are convolutional neural network encoders.) Our task is to optimize the 
categorical cross-entropy loss, also commonly called the InfoNCE loss in contrastive learning 

literature [59], where � ����	��, ������� is a score function (in this work, we use the dot 

product): 
 
 

��� � ����,���,���
� !� exp �� ����	��, �����	��� exp %� ����	��, �����	��& ' ∑ exp �� ����	��, ������,
������


��

) 

 
 
Implementation of reverse homology 
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In principle, the sequence encoders �� and �� are flexibly defined, and state-of-the-art neural 
network architectures are possible, e.g., transformer or LSTMs [50]–[52]. However, since a 
priority of this work is interpreting the features learned by our model (see below for details on 
interpretation approaches), not necessarily to learn the most useful or complete representation 
possible, we decided to implement our encoders as low-parameter convolutional neural networks 
(CNNs), a relatively simple architecture that was relatively fast to compute.  
 
Both encoders �� and �� begin with three convolutional layers; to capture motifs and residue 
composition effects, the first layer contains neurons with kernel sizes 1, 3, and 5 [116]. After the 
convolutional layers, we max and average pool convolutional features over the length of the 
entire sequence, to capture motif-like and bulk features as discussed above. The max and 
average-pooled features are concatenated and fed into two fully-connected layers with output 
dimension 256, to allow arbitrary combinations of them before prediction. To ensure the model 
can use both feature types, we scale the average-pooled features by a factor of the post-processed 
input sequence length divided by the receptive field of the final convolutional layer (17.06 times 
in this specific architecture) to put the average and max pooled features on the same numerical 
scale. The output of the final fully connected layer is considered the feature representation. We 
average the feature representation for all homologues in the query set 	� , and calculate the dot 
product between this average and the representation for each sequence in the target set ��. This 

dot product is considered our score function � ����	��, ������� in the InfoNCE loss (i.e. the 

largest dot product is considered the model's prediction of which sequence in the target set is 
homologous to the sequences in the query set.) The total number of parameters is 1,479,384. 
  
For our implementation, we use a query set size of 8, and a target set size of 400. Using 8 
sequences, we expect that features specific to any one homologue and not shared across all 
homologues will be averaged out. In theory, increasing the size of the target set tightens the 
lower bound on maximizing mutual information [59].  
 
Training datasets 
 
To train our model, we used sets of homologous yeast IDRs previously defined by Zarin et al. 
[18]. Briefly, this dataset was produced by aligning orthologues (one-to-one homologues from 
different species) of yeast proteins previously calculated by the Yeast Gene Order Browser 
[117]. DISOPRED3 was used to annotate IDRs in Saccharomyces cerevisiae sequences, and 
alignments are used to identify the boundaries of the IDRs across species, (but not supplied to 
the models during training, i.e. the input to the neural network is the ungapped IDR sequence). 
Residues in other species that fell within these regions were considered homologous after some 
quality control steps (see [18] for details.) We filtered this dataset by removing sequences under 
5 amino acids, with undetermined amino acids (“X”) and/or non-standard amino acids, and only 
kept homolog sets with more than 9 sequences represented. Overall, this dataset consists of a 
total of 94,106 IDR sequences distributed across 5,306 sets of homologues. 
 
In addition to our yeast model, we trained another reverse homology model on UniProt reference 
human protein sequences (downloaded on September 2019 [104]) using SPOT-Disorder v1 [118] 
for disorder prediction. To ensure that the sequences did not contain any structured domains, we 
filtered the sequences based on matches in Prosite [119]. We removed human IDR that had a 
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match in Prosite longer than 10 amino acids. We performed an all by all blastp [14]search to 
confirm that the human IDRs were not dominated by recent gene duplicates or highly conserved 
portions of IDRs which would make the reverse homology proxy task trivial. As expected, we 
found only 18% (2925/15996) of these sequences showed detectible homology (E-value <10-5) to 
another IDR within the set. Homologous proteins were obtained from the OMA homology 
database [48]. These sequences were aligned using MAFFT [120], and the disorder boundaries 
of the human sequence were used as a reference to annotate putative disordered regions in the set 
of homologs by clipping out the region of the sequence that aligned to the human IDR. Because 
the number of homolgs for each human protein varies greatly in the OMA, we used the 
alignment of each IDR to the human reference IDR to apply a series of heuristic filtering steps to 
improve the uniformity of the dataset to make it more similar to our previously published yeast 
data. First, we removed any IDR homologs with ‘X’ characters or that were 3x longer or shorter 
than the human reference. For the remaining homologs, we computed pairwise evolutionary 
distances to the human reference IDR using a method of moments estimator[121] for 
Felsenstein’s 1981 distance[122], adapted to amino acids with frequency parameters set to the 
amino acid frequencies of human IDRs. We then use the following heuristic to select sequences. 
Starting with the closest homolog, we add homologs iteratively according to their distance to the 
reference, excluding any homologs where the distance from the closest homolog included so far 
is less than 5x the distance from the human reference IDR. This removes “redundant” sequences 
that are close to each other, but does so in a way that scales with the distance to the reference. 
We stop adding homologs when the total (pairwise) evolutionary distance reaches at least 30 
substitutions per site, or we run out of homologs. This total evolutionary distance was chosen to 
be similar to the previously published yeast dataset described above. This dataset consists of 
634,406 sequences distributed across the 15996 sets of homologues, and has been made available 
on the zenodo site supporting this work.  
 
Preprocessing and training 
 
We one-hot encoded sequences as input into our models. To standardize the lengths of the 
sequences, if the sequence was longer than 256 amino acids, we used the first and last 128 amino 
acids from the sequence. If the sequence was shorter, we “repeat padded” the sequence until it 
was over 256 amino acids (e.g. in this operation “ACD” becomes “ACDACD” after the first 
repetition), and clipped off excess length at the end of the padded sequence. To test the effects of 
using only the first and last 128 residues, we also trained a model using the central 256 amino 
acids and found that the majority of the features were strongly correlated between the two 
models (Supplementary Figure 3). IDRs >256 residues comprise a small fraction of the dataset 
(6.2% for yeast and 13% for human). 
 
In our preprocessing operations, we sought to reduce the impact of certain global properties, 
which while potentially biologically informative, would allow the model to rule out the majority 
of non-homologous sequences in the target set on the basis of relatively trivial features for most 
query sets, reducing the effectiveness of our contrastive task. One is the length of the sequence, 
motivating our use of the repeat padding operation, which reduces cues about length compared to 
the use of a special padding token. The other global feature we identified was whether the IDR 
occurs at the start of a protein or not, as indicated by a methionine (from the start codon) at the 
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beginning of the IDR. We clipped this methionine from the sequence if the IDR was at the N-
terminus of a protein.  
 
We trained models for 1,000 epochs using the Adam optimizer [123], where each epoch iterates 
over all sets of homologues in the training dataset. For each set of homologues, we randomly 
drew 8 unique sequences at each epoch to form the query set and 1 non-overlapping sequence for 
the target set. To save memory and speed up training, we used a shared target set for each batch 
of query sets: homologous sequences for one query set in the batch would be considered as non-
homologous sequences for the other query sets. If the target set size is larger than the batch size 
(as it was in our experiments), the remainder of non-homologous sequences are sampled at 
random from homologue sets not used in the batch. We trained models with a batch size of 64, 
and a learning rate of 1e-4. 
 
Classification of homologs is a proxy-task in our setting and predictive power in this task is not 
necessarily correlated with the biological relevance of the features derived. Nevertheless, we 
performed a simple “held out” validation benchmark to confirm that the model was learning 
generalizable features (Supplementary Figure 4). We did a 90/10 split for training/validation and 
then, to ensure that the estimates of power in these analysis was not biased by sequence 
similarity, we removed from the validation set any homolog sets where the reference (yeast or 
human) IDR showed detectible homology with any reference IDR sequence in the training set. 
We found that for both human and yeast models, the classification on held out homologous IDR 
sets was relatively high (50% and 70% for yeast and human models respectively; note that the 
expectation for a random classifier is 1/400 on this task).  
 
Correlation with literature-curated features 
 
To compare our features against literature-curated features, we binarized all amino acid positions 
in all of the IDR sequences in our yeast data using each of these regular expressions. Amino 
acids that are contained in a match to the regular expression are assigned a value of 1, while all 
other amino acids are assigned a value of 0. We calculated the global correlation between these 
binarized positions and the activation value of neurons in our convolutional neural network at 
each position. A higher correlation indicates that a neuron outputs high feature values at 
positions that match the regular expression of a literature-correlated feature and low values at 
positions that do not match.  
 
Interpretation  
 
To interpret the features learned by our model, we adapted two previous interpretation methods. 
First, we use the approach proposed by Koo and Eddy for generating motif-like visualizations by 
collecting the parts of sequences that maximally activate neurons to calculate position frequency 
matrices [44]. We collect sequences that reach at least 70% of the maximum activation for that 
neuron. If there are less than 20 sequences meeting this threshold, we instead collect the 20 
highest activating sequences. For max-pooled features, we collect the maximally activating 
subsequence, and add all amino acids in this window to the PFM with equal weight. For average-
pooled features, we add all windows to the PFM, but weigh all windows in the sequence by the 
activation for that window divided by the activation of the maximally activating window in that 
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sequence. These PFMs are converted to a position probability matrix and visualized as sequence 
logos using the Biopython package, modified with a custom color scheme [124]. Unlike Koo and 
Eddy [44], we do not discard windows that overlap with the start or end of a sequence, to avoid 
too few inputs due to our larger receptive field and smaller sequence sizes; we simply do not let 
parts of the sequence overlapping the start and end of the sequence contribute any frequency to 
their corresponding position in the position frequency matrix. Overall, this method produces a 
sequence logo for each neuron, summarizing the kinds of subsequences that activate the neuron. 
This method can only be applied to convolutional layers before pooling, because it requires us to 
measure the activation at specific positions in a sequence; in our experiments, we apply it to the 
final convolutional layer in our models (Conv3 in Figure 3). 
 
 
We also adapted mutation maps, were we computationally introduce every possible point 
mutation in a sequence [39]. For a given feature and IDR, we substitute each amino acid in the 
IDR sequence to each other amino acid and measure the change in the value of the feature. The 
runtime to create a mutation map for ATXN2 is 209 seconds on an Nvidia Quadro P6000. We 
visualize the mutation map as a sequence logo, which we term a “letter map” to distinguish them 
from the standard sequence logos that show information content in multiple sequence alignments 
[83]. In this letter map, any amino acids that would generally reduce the value of the feature if 
mutated is shown above the axis, while any amino acids that would generally increase the value 
of the feature if mutated are shown below the axis. The combined height of the letters 
corresponds to the overall magnitude of the increase or decrease mutating the position would 
induce on the feature. For positions above the axis, we show the amino acids that are most 
permissible in that position. For positions below the axis, we show the amino acids that are least 
permissible in that position. In summary, letters above the axis are favored residues in favored 
positions, while letters below the axis are disfavored residues in disfavored positions. We used 
the Logomaker package, modified with a custom color scheme, to visualize these letter maps 
[125]. More details and formulas for these letter maps are available in Supplementary Methods. 
 
We also reported the enrichment of features for GO enrichments[77] and we note that these are 
done using a background of all proteins with IDRs (not all proteins), to avoid spurious 
enrichments.  
 
Comparison with a state-of-the-art motif-finder 
 
Following the benchmarking experiments on Grb2 binding sites [88] we use the number of 
residues identified within characterized sites as the “recall” at a fixed “coverage” or total number 
of residues predicted. We used the web implementation of DALEL [88] to identify motifs in the 
IDRs only. To identify the “top” reverse homology feature, we simply performed a t-test for the 
activation of each feature comparing the IDR set (either Grb2 or PKA targets) to the proteome. 
To obtain residue-level predictions, we smoothed the activations of the top feature using a 
Gaussian Kernel with width 15 residues, and ranked the residues by this smoothed activation. As 
with DALEL, we took the number of residues within characterized sites as the “recall” when we 
used a fixed “coverage”, chosen to match DALEL. 
 
Code and Data Availability 
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Code for training our models and visualizing/extracting features is available under a CC-BY 
license at github.com/alexxijielu/reverse_homology/. Pretrained weights for our models, fasta 
files of IDR sequences used to train both models, and labels for IDRs used in our classification 
benchmarks are available at zenodo.org/record/5146063. 
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Supplementary Figure 1. The C-terminus of yeast Nop56 contains alternating regions of positive and 
negative charge that activate yeast Max-pool Feature 244 A) The sequence logo for Max Feature 244 
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(Max F244)  B) The mutation map (as in Figure 4) showing the importance of residues for activation of 
this feature in a section of the Nop56 C-terminal IDR. 
 

Supplementary Figure 2. Predictions for p27 for ANCHOR2 (A) and ELM (B). For both predictions, we 
inputted the full protein, so we highlight the C-terminal IDR in gold. A) The blue line shows the 
ANCHOR2 score predicting disordered binding regions. B) The blue boxes show matches to short linear 
motifs within the sequence, as labeled on the left. The darker the blue, the more conserved the motif is 
across orthologues. The red circles indicate known instances annotated from literature.  
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Supplementary Figure 3. Effects of IDR sequence cropping on features learned by reverse homology. 
The distribution of the maximum correlation of features learned using the cropping heuristic used in the 
main text (128 residues at the start/end of sequence) and features learned in a model using an alternative 
cropping heuristic (256 in the center of sequence). Y-axis shows the number of features with that 
maximum correlation. Most features have a feature with at least correlation of 0.7. See Methods for more 
details 
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Supplementary Figure 4. Training and validation accuracy for the reverse homology proxy task. A) 
Model trained on yeast IDR homolog sets. B) Model trained on human homolog sets. See Methods for 
more details 
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