Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Antibody Evolution after SARS-CoV-2 mRNA Vaccination

Alice Cho, Frauke Muecksch, Dennis Schaefer-Babajew, Zijun Wang, Shlomo Finkin, Christian Gaebler, Victor Ramos, Melissa Cipolla, Marianna Agudelo, Eva Bednarski, Justin DaSilva, Irina Shimeliovich, Juan Dizon, Mridushi Daga, Katrina Millard, Martina Turroja, Fabian Schmidt, Fengwen Zhang, Tarek Ben Tanfous, Mila Jankovic, Thiago Y. Oliveria, Anna Gazumyan, Marina Caskey, Paul D. Bieniasz, Theodora Hatziioannou, Michel C. Nussenzweig
doi: https://doi.org/10.1101/2021.07.29.454333
Alice Cho
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frauke Muecksch
2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dennis Schaefer-Babajew
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zijun Wang
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shlomo Finkin
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Gaebler
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victor Ramos
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Melissa Cipolla
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marianna Agudelo
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eva Bednarski
2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Justin DaSilva
2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irina Shimeliovich
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Juan Dizon
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mridushi Daga
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katrina Millard
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martina Turroja
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fabian Schmidt
2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fengwen Zhang
2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tarek Ben Tanfous
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mila Jankovic
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thiago Y. Oliveria
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anna Gazumyan
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marina Caskey
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pbieniasz@rockefeller.edu mcaskey@rockefeller.edu thatziio@rockefeller.edu nussen@rockefeller.edu
Paul D. Bieniasz
2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
3Howard Hughes Medical Institute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pbieniasz@rockefeller.edu mcaskey@rockefeller.edu thatziio@rockefeller.edu nussen@rockefeller.edu
Theodora Hatziioannou
2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pbieniasz@rockefeller.edu mcaskey@rockefeller.edu thatziio@rockefeller.edu nussen@rockefeller.edu
Michel C. Nussenzweig
1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
3Howard Hughes Medical Institute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pbieniasz@rockefeller.edu mcaskey@rockefeller.edu thatziio@rockefeller.edu nussen@rockefeller.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Summary

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B-cell responses that continue to evolve for at least one year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern1. As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested1, 2. Here, we examine memory B cell evolution 5 months after vaccination with either Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccines in a cohort of SARS-CoV-2 naïve individuals. Between prime and boost, memory B cells produce antibodies that evolve increased neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge 5 months after vaccination of naïve individuals express antibodies that are equivalent to those that dominate the initial response. We conclude that memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination. These results suggest that boosting vaccinated individuals with currently available mRNA vaccines would produce a quantitative increase in plasma neutralizing activity but not the qualitative advantage against variants obtained by vaccinating convalescent individuals.

Competing Interest Statement

The Rockefeller University has filed a provisional patent application in connection with this work on which M.C.N.is an inventor (US patent 63/021,387). The patent has been licensed by Rockefeller University to Bristol Meyers Squib.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted July 29, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Antibody Evolution after SARS-CoV-2 mRNA Vaccination
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Antibody Evolution after SARS-CoV-2 mRNA Vaccination
Alice Cho, Frauke Muecksch, Dennis Schaefer-Babajew, Zijun Wang, Shlomo Finkin, Christian Gaebler, Victor Ramos, Melissa Cipolla, Marianna Agudelo, Eva Bednarski, Justin DaSilva, Irina Shimeliovich, Juan Dizon, Mridushi Daga, Katrina Millard, Martina Turroja, Fabian Schmidt, Fengwen Zhang, Tarek Ben Tanfous, Mila Jankovic, Thiago Y. Oliveria, Anna Gazumyan, Marina Caskey, Paul D. Bieniasz, Theodora Hatziioannou, Michel C. Nussenzweig
bioRxiv 2021.07.29.454333; doi: https://doi.org/10.1101/2021.07.29.454333
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Antibody Evolution after SARS-CoV-2 mRNA Vaccination
Alice Cho, Frauke Muecksch, Dennis Schaefer-Babajew, Zijun Wang, Shlomo Finkin, Christian Gaebler, Victor Ramos, Melissa Cipolla, Marianna Agudelo, Eva Bednarski, Justin DaSilva, Irina Shimeliovich, Juan Dizon, Mridushi Daga, Katrina Millard, Martina Turroja, Fabian Schmidt, Fengwen Zhang, Tarek Ben Tanfous, Mila Jankovic, Thiago Y. Oliveria, Anna Gazumyan, Marina Caskey, Paul D. Bieniasz, Theodora Hatziioannou, Michel C. Nussenzweig
bioRxiv 2021.07.29.454333; doi: https://doi.org/10.1101/2021.07.29.454333

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Immunology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4246)
  • Biochemistry (9176)
  • Bioengineering (6807)
  • Bioinformatics (24066)
  • Biophysics (12160)
  • Cancer Biology (9567)
  • Cell Biology (13847)
  • Clinical Trials (138)
  • Developmental Biology (7661)
  • Ecology (11739)
  • Epidemiology (2066)
  • Evolutionary Biology (15547)
  • Genetics (10673)
  • Genomics (14366)
  • Immunology (9515)
  • Microbiology (22916)
  • Molecular Biology (9135)
  • Neuroscience (49170)
  • Paleontology (358)
  • Pathology (1487)
  • Pharmacology and Toxicology (2584)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2302)
  • Systems Biology (6207)
  • Zoology (1304)