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Abstract: Identifying chemical regulators of biological pathways is a time-consuming bottleneck 
in developing therapeutics and research compounds. Typically, thousands to millions of 
candidate small molecules are tested in target-based biochemical screens or phenotypic cell-
based screens, both expensive experiments customized to each disease. Here, our broad, virtual 
profile-based screening approach instead matches compounds to pathways based on phenotypic 5 
information in public cell image data, created using the Cell Painting assay. Our computational 
strategy efficiently uncovered the expected small molecule regulators for 19% of positive control 
genes. In discovery mode, we identified compounds related to three of seven tested genes, 
validated in subsequent gene-relevant assays. This image profile-based approach could replace 
many customized labor- and resource-intensive screens and accelerate the discovery of 10 
biologically and therapeutically useful compounds. 

One-Sentence Summary: If a genetic perturbation impacts cell morphology, a computational 
query can reveal compounds whose morphology “matches”. 
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Main Text:  
The pace of defining new diseases is rapidly accelerating (1), as is the cost and time required to 
develop novel therapeutics (2), creating huge unmet need. The dominant drug-discovery 
strategies in the pharmaceutical industry and academia are target-based (biochemical) and 
phenotypic (cell-based) drug discovery. Both require significant setup time, are tailored to a 5 
specific target, pathway, or phenotype, and involve physically screening thousands to millions of 
candidate compounds at great expense (3). Computational approaches that allow virtual 
screening of small molecule modulators of pathways using the published literature or existing 
experimental data are beginning to emerge to accelerate drug discovery (4, 5). 

Here we develop a distinct computational strategy. We measure the complex morphological 10 
responses of cells to a genetic perturbation, then identify small molecules (i.e., chemical 
compounds) that produce the same (or opposite) response in the microscopy assay, Cell Painting 
(6). Conceptually similar to transcriptional profiling (7), Cell Painting is cheaper and useful in 
many applications (8, 9), but its ability to identify compounds matching genes had not been 
explored. 15 

Recent decades have given rise to an appealing, reductive ideal in the pharmaceutical industry: 
one drug that targets one protein to target one disease (10). However, diseases often involve 
many interacting proteins and successful drugs often impact multiple targets (11–13). There is 
therefore a renewed appreciation for identifying small molecules that can modulate pathways or 
networks in living cell systems to yield a desired phenotypic effect (10). Because genes in a 20 
pathway often show similar morphology (14) and compounds often show similar morphology 
based on their mechanism of action (9), we examined image profile matching as a promising but 
untested route to capturing perturbations at the pathway level and accelerating the screening step 
prior to identifying useful therapeutics and research tool compounds. 
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Figure 1: Image profile-based drug discovery offers efficient, virtual screening for pathway 
modulators. a) If an overexpressed gene changes the morphology of cells, its image-based 
profile can be used as a query in a database of small molecule profiles, looking for those that 
match (positively correlate) or oppose (negatively correlate). b) Cell Painting images for two 5 
positive control gene-compound matches that yield observable morphological phenotypes (not 
all are expected to). EMPTY and DMSO are the negative controls in the gene overexpression 
and compound experiments, respectively; they differ in confluency and image acquisition 
conditions. The phenotype of p38� (MAPK14) overexpression matches (correlates to) that of 
SB-203580, a known p38 inhibitor; in both, elongated cells are over-represented. The phenotype 10 
of CDK2 overexpression (small cells) negatively correlates to that of purvalanol-a, a known 
CDK inhibitor, which induces an opposite phenotype (huge cells). Scale bars= 60 m. c) 
Enrichment plot of all gene-compound pairs sorted based on their absolute profile correlation. 
Starting from the left, the curve rises a unit if the gene-compound pair is a known/annotated 
connection, and goes down a unit otherwise. The units are normalized to the number of possible 15 
known connections, so the maximum height is one and ends in zero. The steep increase of the 

pe 
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curve indicates enrichment of correct connections towards the top of the rank-ordered list of 
pairs. 

 

Image-based gene-compound matching: validation 

We began with 69 unique genes whose overexpression yields a distinctive morphological 5 
phenotype by Cell Painting, from our prior study in U2OS cells (14). We matched their image-
based profiles to our public Cell Painting profiles of 30,616 small molecules (15) (Figure 1a). 
We restricted analysis to the 15,863 tested compounds (52%) whose profiles are distinguishable 
from negative controls, and confirmed that the profiles show variety rather than a single uniform 
toxic phenotype (Supplementary Figures S1 and S2). 10 

We first verified that image profiles allow compounds to be matched with other compounds that 
share the same mechanism of action, for the subset that is annotated. Consistent with past work 
(9), top-matching compound pairs share a common annotated mechanism-of-action four times 
more often than for the remainder of pairs (p-value < 2.2 × 10-16, one-sided Fisher’s exact test, 
Supplementary Table S1). 15 

We next attempted gene-compound matching. We did not expect a given compound to produce a 
profile that matches that of its annotated gene target in all cases, nor even the majority. 
Expecting simple gene-compound matching takes a reductionist view that may not reflect the 
complexity of drug action (see Introduction). We therefore included genes annotated as pathway 
members as a correct match, given our goal of identifying compounds with the same functional 20 
impact in the cell. In addition, existing annotations are imperfect, particularly given the 
prevalence of under-annotation, mis-annotation, off-target effects, and polypharmacology, where 
small molecules modulate protein functions beyond the intended primary target (11, 12). Finally, 
technical reasons can also confound matching. The genetic and compound experiments were 
conducted years apart and by different laboratory personnel, yielding batch effects. They were 25 
performed in U2OS cells which may not be relevant for observing the annotated gene-compound 
interaction. In addition, the negative controls in a gene overexpression experiment (untreated 
cells), and a small molecule experiment (treated with the solvent control DMSO), do not produce 
identical profiles (left column, Figure 1b), and must therefore be normalized to align the negative 
controls in the feature space (see “Feature set alignment” in Methods). Despite these concerns, 30 
we persisted because even if the strategy worked in only a small fraction of cases, hundreds of 
virtual screens and cherrypicked validations could be done for less than the cost of a single 
traditional screening campaign. 

In a rank-ordered list of gene-compound correlations, we found enrichment in the “correct” 
connections, using the 63 of the 69 genes that were annotated as targeted by a compound in the 35 
set as positive control pairs (Figure 1c). Although most correct gene-compound pairs did not 
correlate highly, as expected for the reasons described above, nevertheless we care most about 
the highest, left-most connections, where correct gene-compound pairings were 2.5-fold 
overrepresented among the strongest gene-compound pairings (correlation ≥0.35) (p-value = 
0.007; Supplementary Table S2). For some matches, we visually confirmed that gene 40 
overexpression phenocopies or pheno-opposes the matching/opposing compound (Figure 1b), 
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although we emphasize that computationally-discovered phenotypes are not always visible to the 
human eye, particularly given cell heterogeneity. 

We next examined the top positively or negatively correlated compounds for each gene (rather 
than examining all gene-compound matches at once). For 19% of genes, spanning diverse 
biological pathways (Supplementary Table S3), that list is significantly enriched with the correct 5 
compound (12 genes out of 63 genes that had a morphological phenotype and at least one 
relevant compound in the experiment; adjusted p-value 0.05; see “Enrichment p-value 
estimation” in Methods). For comparison, an alternative supervised machine learning approach 
provided strong predictive ability in 8% of assays tested (16). Framing our approach as a virtual 
pre-screen, success even in 19% of cases would eliminate the need to carry out many dozens of 10 
large-scale customized screens in the pharmaceutical setting (representing hundreds of millions 
of dollars), instead advancing a few hundred compounds immediately to disease-relevant assays. 

 

Image-based gene-compound matching: discovery 

We next searched virtually for novel small molecule regulators of pathways (defined loosely 15 
here as networks involving a given gene). Throughout this study, we looked for compounds that 
both match (positively correlate) and oppose (negatively correlate) each overexpressed gene 
profile for several reasons. First, inhibitors and activators of a given pathway may both be of 
interest. Second, it is known that negative correlations among profiles can be biologically 
meaningful (14). Third, overexpression may not increase activity of a given gene product in the 20 
cell; it could be neutral or even decrease it via a dominant-negative or feedback loop effect. 
Fourth, the impact of a gene or compound perturbation could be cell-type specific. Supporting 
these theoretical arguments, we found that, empirically, among the top 12 known gene-
compound matches in our validation set, six showed correlation of the opposite directionality 
than expected (where expected is that an inhibitor’s profile would have the opposite correlation 25 
to its overexpressed target gene). 

For each of the 69 genes, we created a rank-ordered list of compounds (from the 15,863 
impactful compounds of the 30,616 set) based on the absolute value of correlation to that gene 
(https://github.com/carpenterlab/2021_Rohban_submitted/blob/master/corr_mat.csv.zip). 
Because there is no systematic experiment to validate compounds impacting pathways, we took a 30 
customized expert-guided approach to ensure the results are biologically meaningful rather than 
just statistically significant. We found seven experts studying pathways with strong hits who 
were willing to conduct experiments; they chose the most relevant biological systems and 
readouts, rather than simply attempting to validate the original image-based finding. 

Two cases yielded no confirmation (data not shown): RAS and SMAD3. 236 compounds with 35 
positive or negative correlations to the wild-type RAS or oncogenic HRAS G12V differential 
profile (see Methods) failed to elicit a RAS-specific response in a 72-hour proliferation assay 
using isogenic mouse embryonic fibroblast (MEF) cell lines driven by human KRAS4b G12D, 
HRAS WT, or BRAF V600E alleles but otherwise devoid of RAS isoforms (17). Nine 
compounds matching or opposing the SMAD3 overexpression profile failed to yield activity in a 40 
transcription reporter assay in A549 lung carcinoma cells involving tandem Smad binding 
elements, with and without Transforming growth factor beta 1 (TGF-β1). We cannot distinguish 
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whether the compounds were inactive due to major differences in the cell types or readouts, or 
whether these represent a failure of morphological profiling to accurately identify modulators of 
the pathway of interest. 

A third case affirmed the approach but the novel compound identified was not very potent. We 
tested 17 compounds that negatively correlated with CSNK1E overexpression in a biochemical 5 
assay for the closely related kinase CSNK1A1. Three (SB 203580, SB 239063, and SKF-86002) 
had inhibitory IC50 concentrations in the nanomolar range at Km ATP. Inhibition of CSNK1 
family members by these compounds is supported by published kinase profiling studies (18–20). 
A fourth compound, BRD-K65952656, failed to bind any native kinases in a full KINOMEscan 
panel, suggesting it mimics CSNK1A1 inhibition via another molecular target. We chose not to 10 
pursue the expensive step of target deconvolution given its weak inhibition of CSNK1A1 (IC50 
12 uM). 

A fourth case affirmed the approach but the novel compound failed to replicate following 
compound resynthesis, suggesting the desired activity, although validated, was not due to the 
expected structure, perhaps due to breakdown. We tested 16 compounds that positively 15 
correlated and 17 compounds that negatively correlated to GSK3B for impact on GSK3α and 
GSK3β (which generally overlap in function) in a non-cell-based, biochemical assay. This 
yielded four hits with GSK3α IC50s ≤ 10 µM; the two most potent failed to show activity 
following resynthesis and hit expansion (testing of similarly-structured compounds) 
(Supplementary Table S4). 20 

We did not pursue these cases further in light of the success for the three other cases, described 
next. 
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Discovery of hits modulating the p38� (MAPK14) pathway 

p38� (MAPK14) inhibitors are sought for a variety of disorders, including cancers, dementia,
asthma, and COVID-19 (21, 22). We chose 20 compounds whose Cell Painting profile matched
(n=9) or opposed (n=11) that of p38α overexpression in U2OS cells. In a single-cell p38 activity
reporter assay in retinal pigment epithelial (RPE1) cells (23, 24), we identified many activating5 
compounds; these are less interesting given that the p38 pathway is activated by many stressors
but rarely inhibited. We also found several inhibiting compounds and confirmed their activity
(Figure 2, Supplementary Figure S3), including a known p38 MAPK inhibitor. Although the
novel compounds are relatively weak, they nevertheless prove the principle that p38 pathway
modulators can be found by image-profile matching, without a specific assay for the gene’s10 
function. 

 

 

Figure 2: Cell Painting profiles identify compounds impacting the p38 pathway. Compounds 
predicted to perturb p38 activity (triangles) and a set of 14 neutral compounds (Cell Painting 15 
profile correlations to p38α between -0.2 to 0.2; circles) were tested for their influence on p38 
activity at 1 μM using a two-sided t-test on the single cell distributions of a p38 activity reporter 
(25) (FDR-adjusted -log10 p-values shown). Two potential inhibitors were found (BRD-
K38197229 <K381> and BRD-A64933752 <A649>); an additional one (BRD-K52394958 
<K523>) was identified via an alternative statistical test (Supplementary Figure S3a, h-i). K543 20 
(BRD-K54330070) denotes SB-202190, a known p38 inhibitor found as a match (other known 
inhibitors such as SB-203580 from Figure 1 were strong matches but excluded from this 
experiment because they were already known). 
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Discovery of hits impacting PPARGC1A (PGC-1α) overexpression phenotypes 

We next identified compounds with strong morphological correlation to overexpression of 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α, encoded by the 
PPARGC1A gene). We found that these compounds tend to be hits in a published, targeted 
screen for PGC1α activity (p=7.7e-06, Fisher's exact test) (26), validating our image profile-5 
based matching approach. The dominant matching phenotype is mitochondrial blobbiness, which 
can be quantified as the high standard deviation of the MitoTracker staining at the edge of the 
cell (Figure 3a,b) without major changes to cell proliferation, size, or overall protein content. 
Cell subpopulations that are large, multi-nucleate, and contain fragmented mitochondria are 
over-represented when PGC-1α is overexpressed while subpopulations whose organelles are 10 
asymmetric are under-represented (Supplementary Figure S4). More symmetric organelle 
morphology has been associated with reduced motility and PGC-1α overexpression (27). The 
role of PGC-1α in mitochondrial biogenesis is well-appreciated (28). The phenotype uncovered 
here using image profile matching is consistent with other recently discovered mitochondrial 
phenotypes associated with this gene (29). 15 

We chose 24 compounds whose Cell Painting profiles correlated positively or negatively with 
PGC-1α overexpression in U2OS cells (Supplementary Table S5); one is a known direct ligand 
for PPAR gamma, GW-9662 (BRD-K9325869). PGC-1α is a transcriptional coactivator of 
several nuclear receptors including PPAR gamma and ERR alpha (30). We therefore tested 
compounds in a reporter assay representing FABP4, a prototypical target gene of the nuclear 20 
receptor, PPARG (31), in a bladder cancer cell line (Figure 3c). Three of the five most active 
compounds leading to reporter activation were structurally related and included two annotated 
SRC inhibitors, PP1 and PP2, which have a known link to PGC1� (32), as well as a novel 
analog thereof. Inhibitors uncovered were CCT018159 (BRD-K65503129) and Phorbol 12-
myristate 13-acetate (BRD-K68552125). Many of the same compounds also showed activity in a 25 
ERRalpha reporter assay in 293T cells, albeit with differing effects (Supplementary Figure S5). 

Encouraged by these results, we tested the impact of the compounds on mitochondrial motility, 
given the mitochondrial phenotype we observed and the role of PGC1� in mitochondrial 
phenotypes and neurodegenerative disorders (33). In an automated imaging assay of rat cortical 
neurons (34), we found several compounds decreased mitochondrial motility; none increased 30 
motility (Supplementary Figure S6). Although the latter is preferred due to therapeutic potential, 
this result suggests that the virtual screening strategy, applied to a larger set of compounds, 
might identify novel motility-promoting compounds. We found 3 of the 23 compounds suppress 
motility but do not decrease mitochondrial membrane potential; this is a much higher hit rate 
(13.0%) than in our prior screen of 3,280 bioactive compounds, which yielded two such 35 
compounds (0.06%)(34). 

ch 

 a 

l, 
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Figure 3: Cell Painting profiles identify compounds impacting PPARGC1A (PGC-1α) 
overexpression phenotypes. a) Cell Painting images for PPARGC1A (PGC-1α) overexpression 
compared to negative control (EMPTY, same field as in Figure 1a). Scale bar = 60 �m. b) 
Compounds with high or low correlations of their Cell Painting profiles to PGC-1α 
overexpression were chosen for further study (hence all samples are below ~ -0.35 or above 5 
~0.35 on the X axis). Correlation to PGC-1α overexpression is dominated by one feature, the 
standard deviation of the MitoTracker staining intensity at the edge of the cell, which we term 
blobbiness (displayed on the Y axis as number of standard deviations, normalized to the negative 
controls). c) PPARG reporter gene assay dose-response curves in the absence (left) or presence 
(right) of added PPARG agonist, Rosiglitazone. Representative data of the ten most active 10 
compounds is shown and reported as normalized light units. Compounds highlighted in 
blue/purple are structurally related pyrazolo-pyrimidines. 

 

Discovery of small molecules impacting YAP1-related phenotypes  

The Hippo pathway affects development, organ size regulation, and tissue regeneration. Small 15 
molecule regulators are highly sought for research and as potential therapeutics for cancer and 
other diseases; the pathway has been deemed relatively undruggable (35, 36). We tested 30 
compounds (Supplementary Table S6) whose Cell Painting profile matched (25 compounds) or 
opposed (5 compounds) the overexpression of the Hippo pathway effector Yes-associated 
protein 1 (YAP1), which we previously explored (14) (Supplementary Table S7, Supplementary 20 
Figure S7). One hit, fipronil, has a known tie to the Hippo pathway: its impact on mRNA profiles 
matches that of another calcium channel blocker, ivermectin, a potential YAP1 inhibitor (37) 
(99.9 connectivity score in the Connectivity Map(7)). After identifying 5 promising compounds 
in a cell proliferation assay in KP230 cells (described later), we focused on the three strongest in 
various assays and cell contexts, as follows. 25 

N-Benzylquinazolin-4-amine (NB4A, BRD-K43796186) is annotated as an EGFR inhibitor and 
shares structural similarity with kinase inhibitors. NB4A showed activity in 30 of 606 assays 
recorded in PubChem, one of which detected inhibitors of TEAD-YAP interaction in HEK-TIYL 
cells. Its morphological profile positively correlated with that of YAP1 overexpression (0.46) 
and, consistently, negatively correlated with overexpression of STK3/MST2 (-0.49), a known 30 
negative regulator of YAP1. 

Because the Hippo pathway can regulate the pluripotency and differentiation of human 
pluripotent stem cells (hPSCs) (38, 39), we investigated the effect of NB4A in H9 hPSCs. NB4A 
did not affect YAP1 expression but increased the expression of YAP1 target genes (CTGF and 
CYR61) in a dose-dependent manner (Figure 4a), confirming it impacts YAP1 phenotypes. 35 
Accordingly, NB4A increased YAP1 nuclear localization (Figure 4b). While decreasing total 
YAP1 levels, NB4A also reduced YAP1 S127 phosphorylation (Figure 4c and Supplementary 
Figure S8a), which promotes YAP1 cytoplasmic sequestration (40). 

Effects of NB4A on YAP1 mRNA expression were not universal across cell types, consistent 
with the Hippo pathway’s known context-specific functions. In most cell types represented in the 40 
Connectivity Map, YAP1 mRNA is unaffected, but in HT29 cells, YAP1 mRNA is up-regulated 
after six hours of NB4A treatment (z-score = 3.16; also z-score = 2.04 for TAZ) and in A375 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.07.29.454377doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454377
http://creativecommons.org/licenses/by/4.0/


 

11 
 

cells, YAP1 mRNA is slightly down-regulated (at 6 and 24 hours; z-score ~ -0.7) (7). NB4A had 
no effect in a YAP1-responsive reporter assay following 48h of YAP overexpression in HEK-
293 cells (Supplementary Figure S8b). 

Compounds influencing the Hippo pathway might be therapeutic for undifferentiated 
pleomorphic sarcoma (UPS), an aggressive mesenchymal tumor that lacks targeted treatments 5 
(41). In UPS, YAP1 promotes tumorigenesis and is inversely correlated with patient survival 
(41). In KP230 cells, derived from a mouse model of UPS (41), Yap1 protein levels were 
reduced after 72 hours of NB4A treatment (Figure 4e-f, h). NB4A also significantly attenuated 
Yap1 nuclear localization (Figure 4g-h), which is known to reduce its ability to impact 
transcription. Interestingly, NB4A did not directly alter transcription of Yap1, its sarcoma target 10 
genes (Foxm1, Ccl2, Hbegf, Birc5, and Rela), nor Yap1’s negative regulator, angiomotin (Amot) 
(data not shown). Instead, pathways such as interferon alpha and gamma responses were up-
regulated, whereas pathways such as the epithelial-mesenchymal transition, angiogenesis, and 
glycolysis were down-regulated, according to RNA sequencing and gene set enrichment analysis 
(Figure 4d; Supplementary Table S8). This indicates a potentially useful mechanism distinct 15 
from transcriptional regulation of YAP1. 

Genetic and pharmacologic inhibition of Yap1 is known to suppress UPS cell proliferation in 
vitro and tumor initiation and progression in vivo (41). Consistent with being a Hippo pathway 
regulator, NB4A inhibited the proliferation of two YAP1-dependent cell lines: KP230 cells and 
TC32 human Ewing’s family sarcoma cells (42) (Figure 4i). NB4A did not affect the 20 
proliferation of two other YAP1-dependent lines, STS-109 human UPS cells (Supplementary 
Figure S9a) and HT-1080 fibrosarcoma cells (Supplementary Figure S9b) (41, 43), nor YAP1-
independent HCT-116 colon cancer cells (Supplementary Figure S9c-e). Interestingly, NB4A 
treatment did not exhibit overt toxicity by trypan blue staining in any of these (not shown), 
suggesting it inhibits cell proliferation by a mechanism other than eliciting cell death. 25 

Finally, we investigated two structurally similar compounds (BRD-K28862419 and BRD-
K34692511, distinct from NB4A’s structure) whose Cell Painting profiles negatively correlated 
with YAP1’s overexpression profile (-0.43 for BRD-K28862419 and -0.45 for BRD-
K34692511) and positively correlated with TRAF2 overexpression (0.41 for BRD-K28862419 
and 0.29 for BRD-K34692511) (Supplementary Figure S7). These compounds are not 30 
commercially available, limiting our experiments and past literature. 

We assessed the compounds’ impact on mesenchymal lineage periosteal cells isolated from 4-
day old femoral fracture callus from mice with DOX-inducible YAP-S127A. BRD-K34692511 
substantially upregulated mRNA levels of relevant Hippo components including Yap1 and Cyr61 
after 48 hours of treatment, but not at 1 and 4 hours (Supplementary Figure S8c-f). By contrast, 35 
the compounds had no effect on YAP1 or its target genes in H9 hPSCs (Supplementary Figure 
S8g), nor in a 48 h YAP-responsive reporter assay following YAP overexpression in HEK-293 
cells (Supplementary Figure S8b). 

Like NB4A, the effects of these compounds on proliferation varied across cell types. In the 
U2OS Cell Painting images, BRD-K28862419 reduced proliferation (-2.0 st dev). Per PubChem, 40 
it inhibits cell proliferation in HEK293, HepG2, A549 cells (AC50 5-18 µM) and it inhibits 
PAX8, which is known to influence TEAD/YAP signaling(44). BRD-K34692511 had none of 
these impacts. 
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Both compounds had the desired effect of inhibiting KP230 cell proliferation (Supplementary 
Figure S9f). Also noteworthy, BRD-K28862419 modestly yet significantly reduced KP230 cell 
viability (Supplementary Figure S9g), indicating its mechanism of action and/or therapeutic 
index may differ from that of NB4A and BRD-K34692511. 

In summary, although deconvoluting the targets and behaviors of these compounds in various 5 
cell contexts remains to be further ascertained, we conclude that the strategy identified 
compounds that modulate YAP1-related phenotypes, in particular an unusual ability to reduce 
growth of certain aggressive sarcoma lines. This demonstrates that, although the directionality 
and cell specificity will typically require further study, image-based pathway profiling can 
identify modulators of a given pathway. 10 

 

 

Figure 4: Cell Painting profiles identify compounds impacting YAP1 phenotypes. a) Relative 
transcript levels of YAP1, CTGF, and CYR61 in H9 human pluripotent stem cells treated with 
NB4A or DMSO control for 24 hrs. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 (one-way 15 
ANOVA with Dunnett’s multiple comparisons test). Mean + SEM. n = 3 biologically independent 
experiments . b) Representative images of YAP1 immunofluorescence (left) and quantification of 
nuclear/cytoplasmic YAP1 mean intensity (right) in H9 cells after treatment with 10 µM NB4A 
or DMSO control for 24 hours. Two-tailed student’s t-test; note the split y axis. n = 3 
biologically independent experiments; an average of mean intensities from 3 fields of each 20 
biological replicate is calculated. c) Representative blot of n = 3 biologically independent 
experiments for phospho-YAP1 (S127) and total YAP1 from H9 cells treated with DMSO or 10 
µM NB4A for 24 hrs, with GAPDH as loading control (quantified in Supplementary Figure S8a). 
d) Normalized enrichment scores of GSEA show up to 10 of the most significant Hallmark 
pathways up- and down-regulated in NB4A-treated vs. control KP230 cells (FDR-adjusted 25 
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P<0.25). n = 3. e) Representative western blot for Yap1 in NB4A-treated and control KP230 
cells. f) Immunofluorescence-based analysis of total Yap1 in NB4A-treated and control KP230 
cells. Two-tailed student’s t-test. Mean + SEM. n = 3. g) Immunofluorescence-based analysis of 
nuclear Yap1 in NB4A-treated and control KP230 cells (normalized to total Yap1). Two-tailed 
student’s t-test. Mean + SEM. n = 3. For f and g, the Y axis is integrated density normalized to 5 
cell number and representative images are shown in (h), out of 5 fields acquired per condition. 
Scale bar (top left panel) = 100 µM. i) Growth curves of NB4A-treated and control KP230 and 
TC32 sarcoma cells. **P<0.01; ****P<0.0001 DMSO vs. NB4A (72 hrs.; 2-way ANOVA with 
Sidak’s multiple comparisons test). Mean + SEM. n = 3. For panels d-i, cells were treated with 
10 µM NB4A daily for 72 hours. 10 

Discussion 

We found that hit-stage small molecule regulators of pathways of interest can be efficiently 
discovered by virtual matching of genes and compounds using Cell Painting profiles, which we 
term image profile-based drug screening. We do not claim the particular compounds we 
uncovered are sufficiently potent, specific, and non-toxic for human therapeutics. As with all 15 
screening approaches, significant further work is necessary to develop hits into useful 
therapeutics; this includes confirming activity and directionality of hits in a relevant cell type or 
model system, improving potency and specificity, and identifying the molecular target(s) 
(including so-called off-target effects that may or may not be useful to achieve the desired 
phenotypic effect). Further, like all drug discovery, the eventual clinical success relies on the 20 
therapeutic hypothesis for the gene, pathway, and/or phenotype being correct, which is never 
guaranteed.  

Even so, virtualizing a first-pass large-scale screen by computationally matching the phenotypic 
effect of compounds to that of gene manipulation will in many cases enable rapid and 
inexpensive identification of compounds with desired phenotypic impacts. Gene-compound 25 
matching might also be useful to identify which genes/pathways are targeted by novel small 
molecules of unknown mechanism of action, another significant bottleneck in the drug discovery 
process (45). 

We expect future iterations of this strategy to be more successful. First, we would expect better-
quality chemical matter from larger libraries; only 30,000 were screened in this work whereas a 30 
pharmaceutical screening campaign can test millions (46). Large-scale data production efforts 
are underway that will increase the potential for matching profiles against public data: the 
JUMP-Cell Painting Consortium is producing a public dataset of 140,000 chemical and genetic 
perturbations. Expansion to other staining sets or more complex biological models, such as co-
cultures, primary cells, or organoids could further increase the probability of success, as could 35 
assessing whether gene knockdown profiles yield better results in practice than gene 
overexpression, or whether pathways where overexpression and knockdown give opposite 
profiles are even better starting points for virtual screening. More advanced computational 
methods are also on the horizon, from feature extraction (47) to machine learning on new 
benchmark datasets of gene-compound pairs (48); we would expect supervised machine learning 40 
to work better than our unsupervised correlation-based approach (9). We anticipate that image 
profile-based virtual screening provides a new, broad, and unbiased accelerant toward meeting 
the pressing need for novel therapeutics. 
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