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Abstract 41 
Sequence is at the basis of how the genome shapes chromatin organization, regulates gene 42 
expression, and impacts traits and diseases. Epigenomic profiling efforts have enabled large-43 
scale identification of regulatory elements, yet we still lack a sequence-based map to 44 
systematically identify regulatory activities from any sequence, which is necessary for predicting 45 
the effects of any variant on these activities. We address this challenge with Sei, a new 46 
framework for integrating human genetics data with sequence information to discover the 47 
regulatory basis of traits and diseases. Our framework systematically learns a vocabulary for the 48 
regulatory activities of sequences, which we call sequence classes, using a new deep learning 49 
model that predicts a compendium of 21,907 chromatin profiles across >1,300 cell lines and 50 
tissues, the most comprehensive to-date. Sequence classes allow for a global view of sequence 51 
and variant effects by quantifying diverse regulatory activities, such as loss or gain of cell-type-52 
specific enhancer function. We show that sequence class predictions are supported by 53 
experimental data, including tissue-specific gene expression, expression QTLs, and evolutionary 54 
constraints based on population allele frequencies. Finally, we applied our framework to human 55 
genetics data. Sequence classes uniquely provide a non-overlapping partitioning of GWAS 56 
heritability by tissue-specific regulatory activity categories, which we use to characterize the 57 
regulatory architecture of 47 traits and diseases from UK Biobank. Furthermore, the predicted 58 
loss or gain of sequence class activities suggest specific mechanistic hypotheses for individual 59 
regulatory pathogenic mutations. We provide this framework as a resource to further elucidate 60 
the sequence basis of human health and disease. 61 
 62 
Introduction 63 
Deciphering how regulatory functions are encoded in genomic sequences is a major challenge in 64 
understanding how genome variation links to phenotypic traits. Cell-type-specific regulatory 65 
activities encoded in elements such as promoters, enhancers, and chromatin insulators are critical 66 
to defining the complex expression programs essential for multicellular organisms, like those 67 
affecting cell lineage specificity and development. The majority of disease-associated variants 68 
from genome-wide association studies (GWAS) are located in noncoding regions1 and may 69 
perturb regulatory elements, yet without knowing how changes in sequence affect regulatory 70 
activities we cannot predict the impact of these variants and uncover the regulatory mechanisms 71 
contributing to complex diseases and traits. Different variants in the same region can have 72 
distinct regulatory consequences and resulting phenotypic effects, as shown by mutations in 73 
enhancer regions of SHH2: for instance, a variant may turn off the expression of a gene critical 74 
for early development in specific tissue and location, while other variants in the same region may 75 
increase enhancer activity or have no effect at all.  76 
 77 
Substantial progress has been made in the experimental profiling and integrative analysis of 78 
epigenomic marks, such as histone marks and DNA accessibility, across a wide range of tissues 79 
and cell types3–5. Histone marks are commonly used to identify regulatory elements; for 80 
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example, H3K4me3 can indicate active promoter regions and H3K27ac/H3K4me1 can indicate 81 
active enhancer regions. Moreover, histone marks and chromatin accessibility can be integrated 82 
with chromatin state models6–10. These works have been instrumental to annotating the genome 83 
with regulatory elements across many tissues.  84 
 85 
At the same time, deep learning sequence modeling techniques have been successfully applied to 86 
learn sequence features that are predictive of transcription factor binding and histone 87 
modifications11–17. These models are powerful tools for inferring the impact of sequence 88 
variation at the chromatin level. However, each chromatin-level prediction can only inform a 89 
very specific aspect of sequence--for example, whether a variant causes an increase or decrease 90 
of C/EBP-β binding. We continue to lack a global, integrative view of sequence regulatory 91 
activities, including all major aspects of cis-regulatory functions, such as tissue-specific or broad 92 
enhancer and promoter activities. This limits our ability to interpret the integrated effects of all 93 
chromatin-level perturbations caused by genomic variants and determine their impact on human 94 
health and diseases. 95 
 96 
We address this challenge by creating a global map for sequence regulatory activity based on a 97 
new deep-learning-based framework called Sei. This framework introduces a new sequence 98 
model that predicts a comprehensive compendium of 21,907 publicly available chromatin 99 
profiles--the broadest set to-date--and uses the model to quantitatively characterize regulatory 100 
activities for any sequence with a novel vocabulary of sequence classes. Sequence classes cover 101 
diverse types of regulatory activities, such as promoter or cell-type-specific enhancer activity, 102 
across the whole genome by integrating sequence-based predictions from histone marks, 103 
transcription factors, and chromatin accessibility across a wide range of cell types. For example, 104 
‘embryonic stem cell-specific enhancer’ sequence class activity may be estimated from the 105 
predicted binding of multiple transcription factors including Pou5F1, Sox2, and Nanog, as well 106 
as various histone marks, on a sequence. Importantly, sequence classes can be used to both 107 
classify and quantify the regulatory activities of any sequence based on predictions made by the 108 
deep learning sequence model. Therefore, sequence classes allow for the quantitative mapping of 109 
any mutation to its impact on cell-type-specific regulatory activities.  110 
 111 
The Sei framework thus provides an interpretable and systematic integration of sequence-based 112 
regulatory activity predictions (intrinsic information, based on sequence function) with human 113 
genetics data (extrinsic information, based on variant-phenotype association) for discovering the 114 
regulatory basis of human traits and disease. We applied our framework to characterize disease- 115 
and trait-associated regulatory disruptions by combining sequence class information and UK 116 
Biobank GWAS data. Sequence classes provide a non-overlapping partitioning of heritability in 117 
GWAS by regulatory activity, which we use to profile the regulatory architecture of 47 diseases 118 
and traits in UK Biobank GWAS18.  119 
 120 
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Moreover, variant effect prediction at the sequence-class-level newly enables the interpretation 121 
of regulatory mechanisms for individual disease mutations and can differentiate between gain-of-122 
function and loss-of-function regulatory mutations. The regulatory and tissue-specific view 123 
provided by sequence classes suggests potential new mechanisms for individual disease-124 
associated variants: for example, we used sequence classes to link mutations in blood-related 125 
diseases with previously unknown mechanisms to the malfunctioning of cell-type-specific 126 
enhancers. 127 
 128 
We provide the Sei framework as a resource for systematically classifying and scoring any 129 
sequence and variant with sequence classes, additionally providing the Sei model predictions for 130 
the 21,907 chromatin profiles underlying the sequence classes. The framework can be run using 131 
the code at https://github.com/FunctionLab/sei-framework, and a user-friendly web server is 132 
available at hb.flatironinstitute.org/sei.  133 
 134 
Results 135 
 136 
Developing a comprehensive sequence model for 21,907 chromatin profiles 137 
To capture the widest range of sequence features that are predictive of regulatory activities, we 138 
first developed a new deep learning sequence model, which we refer to as the Sei model, that 139 
enables the base-level interpretation of sequences by predicting 21,907 genome-wide cis-140 
regulatory targets--including peak calls from 9,471 transcription factor profiles, 10,064 histone 141 
mark profiles and 2,372 chromatin accessibility profiles--with single nucleotide sensitivity. The 142 
majority of this data (19,905 profiles) is from the Cistrome Project5, a resource that uniformly 143 
processes and annotates public ChIP-, DNase-, and ATAC-seq datasets, and the remaining 144 
chromatin profiles were processed by the ENCODE3 and Roadmap Epigenomics4 projects. The 145 
Sei model encompasses an estimated ~1000 non-histone DNA-binding proteins (which we refer 146 
to as transcription factors), 77 histone marks, and chromatin accessibility across >1300 cell lines 147 
and tissues (Supplementary Files 1, 2).  148 
 149 
To efficiently predict 21,907 chromatin profiles from sequence, we designed a novel model 150 
architecture (Supplementary Figure 1) and improved our training pipeline. The Sei model uses a 151 
new residual-block architecture with a dual linear and nonlinear path design: the linear path allows 152 
for fast and statistically efficient training, while the nonlinear path offers strong representation 153 
power and the capability to learn complex interactions. For scaling and performance, we 154 
introduced a layer of spatial basis functions, which integrates information across spatial locations 155 
with much higher memory efficiency than fully connected layers. The model takes as input a 4kb 156 
length sequence and predicts the probabilities of 21,907 targets at the center position. The model 157 
is trained on chromatin profile peak calls, which are binary (presence/absence), but the model 158 
output is continuous, representing probabilities of peaks. Our model training pipeline was updated 159 
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to improve training speed and performance by using on-the-fly sampling, which reduces 160 
overfitting by generating new training samples for every training step.  161 
  162 
The model achieved an average area under the receiver-operating characteristic (AUROC) of 0.972 163 
and average area under the precision-recall curve (AUPRC) of 0.409 across all 21,907 chromatin 164 
profiles (Supplementary Figure 2). In addition to accurately predicting individual profiles, the 165 
predictions also recapitulated the correlation structure of these profiles, which indicates that the 166 
Sei model is able to capture the co-localization patterns of chromatin profiles (Supplementary 167 
Figure 3). Furthermore, the Sei model also improved over our best previously published model, 168 
DeepSEA “Beluga”13, on the 2002 chromatin profiles predicted by both models by 19% on average 169 
(as measured by AUROC/1-AUROC, Supplementary Figure 4).  170 
 171 
Therefore, the Sei model is the most comprehensive chromatin-level sequence model to-date, and 172 
offers an expansive new resource for sequence and variant interpretation. 173 
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 174 
Figure 1.  Mapping the global regulatory landscape of genomic sequences. 175 
a, Overview of the Sei framework for systematic prediction of sequence regulatory activities. Sequence 176 
classes are extracted from the predicted chromatin profiles of 30 million sequences evenly tiling the 177 
genome. The predictions were made by Sei, a new deep convolutional network sequence model trained on 178 
21,907 chromatin profiles. Specifically, classes are identified by applying Louvain community detection 179 
to the nearest-neighbor graph of 180 principal components extracted from the predictions data. b, 180 
Visualizing the global regulatory landscape of human genome sequences discovered by this approach 181 
with UMAP. Major sequence classes include cell-type-specific enhancer classes, CTCF-cohesin, 182 
promoter, TF-specific, and heterochromatin/centromere classes. c, This framework is further applied to 183 
predict sequence-class-level genome variant effects, quantified by changes in sequence class scores.  184 
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 185 
 186 
Defining sequence classes using a sequence model from whole genome sequences 187 
Next, we applied the Sei model to develop a global, quantitative map from genomic sequences to 188 
specific classes of regulatory activities, which we term sequence classes, by integrating the wide 189 
range of chromatin profiles predicted by Sei. Sequence classes are therefore mapped directly from 190 
sequence, and each sequence class represents a distinct program of regulatory activities across 191 
tissues and cell types as covered by the Sei model. Furthermore, sequence classes allow for the 192 
mapping of any sequence to quantitative scores that represent a broad spectrum of regulatory 193 
activities.  194 
 195 
To cover the whole spectrum of sequence activities, we identified sequence classes from Sei 196 
predictions for 30 million sequences uniformly tiling the whole genome (4kb windows with 100bp 197 
step size). We visualized the global structure of sequence regulatory signals as represented by the 198 
model’s chromatin profile predictions with nonlinear dimensionality reduction techniques19,20 199 
(Figure 1) and applied Louvain community clustering21 to these predictions to categorize the 30 200 
million sequences into 40 sequence classes (Figure 1a).   201 
 202 
This visualization of human genome sequences demonstrates the global organization of sequence 203 
regulatory activities (Figure 1b). The center of the visualization contains sequences with weak or 204 
no regulatory activity based on histone mark and TF enrichment, and sequences with specific 205 
regulatory activities radiate outwards, establishing a continuum from no activity to strong specific 206 
activity. Different branches of sequences are enriched in distinct chromatin modifications and 207 
transcription factors, and sequences with similar regulatory activities are grouped together. For 208 
example, tissue-specific enhancer sequences were predominantly grouped by tissue in the 209 
visualization (Figure 1b). In addition, sequences with repressive Polycomb marks were spatially 210 
adjacent to H3K9me3-marked heterochromatin sequences (Figure 1b), reflecting their extensive 211 
crosstalk in epigenetic silencing22–24. Notably, promoter-proximal and CTCF-cohesin binding 212 
sequences form two well-defined clusters that are separated from other sequences, which may 213 
reflect the distinct nature of these activities (Figure 1b).  214 
 215 
The sequence classes identified from whole genome sequences recapitulate the sequence 216 
organization shown in the visualization and provide a basis for summarizing sequence activities 217 
globally and are robust to clustering parameter choices (Supplementary Figures 5, 6). To facilitate 218 
intuitive interpretation of sequence classes, we named them based on the corresponding 219 
enrichment of cis-regulatory profiles (Figure 2a, Supplementary Figures 7-12, Supplementary File 220 
3); specifically, we label each sequence class with a functional group acronym and index denoting 221 
the rank of the sequence class within the group (Supplementary Figure 13, e.g. E1 encompasses a 222 
larger proportion of the genome than E2). Because genomic sequences encode their regulatory 223 
activity programs across all cell types, sequence classes also show distinct activity patterns across 224 
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cell types and tissues. We label sequence classes primarily based on their active, cell-type-specific 225 
regulatory activities--in particular, promoter and enhancer activities. Therefore, sequence classes 226 
that are not labeled as enhancer (‘E’) or promoter (‘P’) generally lack enhancer or promoter activity 227 
in any cell type predicted by Sei.  228 
 229 
In summary, sequence classes contain 1 ‘P’ promoter class, which is most strongly enriched in the 230 
active promoter histone mark H3K4me3 across all cell types (Figure 2a, Supplementary Figure 7); 231 
12 ‘E’ enhancer classes, which are strongly enriched in enhancer histone marks, such as H3K4me1 232 
and H3K27ac, and transcription factors relevant to their activities in select cell types (e.g. 233 
PU.1/Spi1 in the E7 monocyte/macrophage enhancer class, HNF4-α in E9 liver/intestine, and 234 
Sox2/Nanog/Pou5f1 in E1 stem cell), and often display repressive H3K27me3 marks in inactive 235 
cell types (Figure 2a, Supplementary Figures 8-10, Supplementary File 3); 1 ‘CTCF’ sequence 236 
class, which is strongly enriched in CTCF and cohesin (Figure 2a, Supplementary File 3); 5 ‘TF’ 237 
sequence classes, which are enriched in a few specific transcription factors (e.g. CEBPB sequence 238 
class) but have weak or no enhancer mark enrichment (Figure 2a, Supplementary File 3); 4 ‘PC’ 239 
Polycomb classes, which are enriched in the Polycomb-repressed region mark H3K27me3 and 240 
generally not enriched in active promoter or enhancer marks (Figure 2a, Supplementary Figure 241 
10); 6 ‘HET’ heterochromatin classes, which are enriched in the heterochromatin mark H3K9me3 242 
(Figure 2a, Supplementary Figure 11); 4 ‘TN’ sequence classes, which are enriched in transcription 243 
elongation marks H3K36me3 or H3K79me2 (Figure 2a, Supplementary Figure 12); and finally, 7 244 
‘L’ (low signal) sequence classes, which are not strongly enriched in any of the above marks 245 
(Figure 2a). As a whole, the 40 sequence classes cover >97.4% of the genome (Supplementary 246 
Figure 13).   247 
 248 
Beyond classifying genomic sequences to sequence classes, we define sequence class scores to 249 
provide a global and quantitative representation of sequence regulatory activities. This for the 250 
first time allows us to (1) predict the regulatory activity for any sequence and (2) quantify the 251 
changes in regulatory activity caused by any sequence variant. Sequence class scores summarize 252 
predictions for all 21,907 chromatin profiles based on weights specific to each sequence class, 253 
which are computed by projecting Sei predictions onto unit-length vectors that point to the center 254 
of each sequence class. Sequences that score highly for a particular sequence class have high 255 
predictions for the chromatin profiles associated with that class. Sequence class scores thus allow 256 
for the quantification of the regulatory activity of any sequence, where the impact of a variant is 257 
represented by the difference between the sequence class scores for the reference and alternative 258 
alleles. Importantly, this capability is only allowed by modeling the sequence dependencies of 259 
sequence class activities and cannot be directly obtained from chromatin profiling data alone. 260 
 261 
Enhancer sequence classes predict tissue-specific gene expression 262 
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The group of sequences that are likely most impactful to tissue-specific gene expression 263 
regulation are the enhancer (‘E’) sequence classes, thus here we assessed the association of 264 
enhancer sequence class scores with tissue-specific gene expression.  265 
 266 
In the visualization of sequence regulatory activities, sequence classes with different cell type- 267 
and tissue-specific enhancer activities are localized to distinct subregions (Figure 1b).  ‘E’ 268 
sequence classes capture both specific and broad enhancer activities. Based on enhancer mark 269 
enrichment (Supplementary Figures 8, 9), E7 is specific for monocyte/macrophage, E11 is 270 
specific for T-cell, E5 is specific for lymphoblastoid/B-cell-like cell lines, E9 is specific for liver 271 
and intestine, E1 is specific for embryonic stem cells & induced pluripotent stem cells, and E10 272 
and E3 are specific for brain (Figure 1, 2; all enrichments stated are significant with p<2.2e-16, 273 
Fisher’s exact test, two-sided). In contrast, broad enhancer sequence classes can either 274 
encompass enhancer activity in similar cell types across different tissues, such as fibroblast (E2) 275 
and epithelial (E6) cell types (Supplementary Figures 8, 9), or encompass enhancer activity in 276 
many different cell types; for example, E4 is enriched in fibroblast, muscle, astrocytes, 277 
osteoblast, epithelial, and other cell types. Sequence class enhancer activities are also supported 278 
by the enrichment of relevant chromatin states3 and DNase I hypersensitive sites25 across tissues 279 
and cell types (Supplementary Figures 14, 15). Consistent with their predicted enhancer 280 
activities, the coverage of ‘E’ sequence class annotations within a 10kb window to transcription 281 
start sites (TSS) are correlated with the differential expression patterns of these genes in the 282 
corresponding cell types over the tissue-average (Figure 2b). 283 
 284 
Since sequence class scores allow us to systematically predict the effects of variants on higher-285 
level regulatory functions, we can estimate whether a given variant diminishes, maintains, or 286 
increases the enhancer activity of a sequence based on the difference between the sequence class 287 
scores for the reference and alternative alleles. Evaluated on GTEx eQTL data26, we found that 288 
variants predicted to increase ‘E’ sequence class activity were significantly positively correlated 289 
with higher gene expression, whereas those predicted to increase ‘PC’ sequence class activity were 290 
significantly negatively correlated with gene expression--consistent with the expected repressive 291 
role of ‘PC’ sequence class activities (Figure 2c). Moreover, when only analyzing fine-mapped 292 
eQTLs27 with high posterior inclusion probability (>0.95), we observed higher correlations with 293 
overall comparable levels of significance (Supplementary Figure 16). Therefore, sequence classes 294 
can distinguish the effects of variants on gene expression based on their consequences in regulatory 295 
activities. 296 
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 297 
Figure 2.  Sequence classes predict cell-type-specific regulatory activities and directional, 298 
expression-altering variant effects. a, Sequence-class-specific enrichment of histone marks, 299 
transcription factors, and repeat annotations. Log fold change enrichment over genome-average 300 
background is shown in the heatmap. No overlap is indicated by the gray color in the heatmap. Top 1-2 301 
histone mark and TF annotation enrichments were selected for each sequence class. b, Enhancer sequence 302 
classes near transcription start sites are correlated with cell-type-specific gene expression in the applicable 303 
tissue or cell types (see Methods). The y-axis shows the Spearman correlation between the proportion of 304 
each sequence class annotation within 10kb of TSS and the tissue-specific differential gene expression 305 
(fold over tissue-average). c, Regulatory sequence-class-level variant effects are predictive of directional 306 
GTEx variant gene expression effects. The x-axis shows Spearman correlations between the predicted 307 
sequence-class-level variant effects and the signed GTEx variant effect sizes (slopes) for variants with 308 
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strong predicted effects near transcription start sites (Methods) and the y-axis shows the corresponding 309 
log10 p-values. All colored dots are above the Benjamini-Hochberg FDR < 0.05 threshold.  310 
 311 
 312 
Regulatory sequence classes are under evolutionary constraints  313 
Variants that alter regulatory activities of sequences often disrupt gene regulation and are 314 
therefore expected to impact human health and disease. We tested this expectation by comparing 315 
human population genome variant allele frequencies28 based on the sequence class in which each 316 
variant is located and the predicted variant effect on that sequence class. Indeed, we found that 317 
variants localized in regulatory sequence classes (E-, P-, and CTCF- ) have lower common 318 
variant frequency than variants in other sequence classes, and therefore showed higher overall 319 
negative selection constraint (Figure 3a, x-axis). More importantly, variants predicted to strongly 320 
perturb regulatory sequence classes had significantly lower common variant frequencies than 321 
variants that weakly perturb these classes (measured by bidirectional variant effect constraint, 322 
Figure 3a y-axis, see also Figure 3b, Methods). This is therefore consistent with the hypothesis 323 
that disruption of regulatory sequence class activities has a major negative impact on fitness, 324 
which we refer to as a negative selection signature.  325 
 326 
Specifically, we observed strong negative selection signatures for variants assigned to all E, 327 
CTCF and P sequence classes (Figure 3). Multi-tissue enhancer sequence classes E4 and E2 and 328 
the brain enhancer sequence class E10 show the strongest association of predicted sequence-329 
class-level variant effects and common variant frequencies. Notably, for the CTCF sequence 330 
class, only negative variant effects--decreasing sequence class activity--appear to be under very 331 
strong constraints, suggesting that CTCF sites are generally tolerant to positive effect mutations 332 
that further increase CTCF binding. This is in contrast to the generally deleterious impact of both 333 
increase and decrease of enhancer and promoter activities. As expected, TN sequence classes, 334 
which overlap with protein-coding regions, are among the sequence classes with the lowest allele 335 
frequency (Supplementary Figure 17).  336 
 337 
In contrast, those assigned to HET, PC, TF, and L sequence classes generally did not show 338 
strong negative selection signatures and had higher overall common variant frequencies 339 
(Supplementary Figure 17). Importantly, this does not suggest that Polycomb or transcription 340 
factors are inessential: the HET, PC, TF, and L classes generally do not show strong enhancer or 341 
promoter histone mark enrichment in any cell type (with the exception of bivalent marks in stem 342 
cells observed in PC4), and thus they are expected to play less major roles in gene expression 343 
regulation. However, Polycomb-related regulation is likely critical for ‘E’ and ‘P’ sequence 344 
classes, which are often Polycomb-repressed in some cell types but enhancers or promoters in 345 
other cell types (Supplementary Figures 7-10). Similarly, we expect that TF binding plays a 346 
central role in ‘E’ classes that are highly enriched in relevant TFs (Figure 2a, Supplementary File 347 
3).  348 
 349 
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Therefore, sequence classes show distinct evolutionary constraints, and ‘E’ enhancer sequence 350 
classes show the strongest bidirectional constraints. This suggests that both increases and 351 
decreases of enhancer activity are expected to lead to deleterious effects on fitness, highlighting 352 
the importance of precisely controlling gene expression. 353 
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Figure 3. Variants with strong regulatory sequence class effects show negative selection signatures. 355 
a, Scatter plot for allele-frequency-based analysis of each sequence class. The x-axis shows 1 - common 356 
variant frequency (allele frequency > 0.01) across all 1000 Genome variants per sequence class, and the 357 
y-axis shows the bidirectional variant effect constraint z-score, which is computed based on logistic 358 
regressions predicting common variant (allele frequency > 0.01) from sequence-class-level variant effect 359 
score for both positive and negative effects (Methods). Sequence classes with significant (Bonferroni-360 
Hochberg FDR<0.05) bidirectional variant effect constraint are indicated with larger dots. ‘L’ sequence 361 
classes are excluded due to lack of interpretation for their sequence-class-level variant effect scores. b, 362 
Comparison of common variant frequencies for 1000 Genomes variants assigned to different sequence 363 
classes and variant effect bins. The common variant threshold is >0.01 allele frequency across the 1000 364 
Genomes population. Error bars show +/-  1 standard error (SE). The sequence-class-level variant effects 365 
are assigned to 6 bins (+3: top 1% positive, +2: top 1%-10% positive, +1: top 10% -100% positive, -1: top 366 
10% -100% negative, -2: top 1%-10% negative, -3: top 1% negative). 367 
 368 
 369 
Sequence classes elucidate the tissue-specific regulatory architecture of GWAS traits  370 
The population allele frequency analysis on sequence classes suggest that variants perturbing 371 
regulatory sequence class activities are likely involved in human health and disease. Therefore, 372 
to explore this hypothesis, we used GWAS data to delineate the genetic contribution of each 373 
sequence class to diseases and traits.  374 
 375 
Partitioned heritability from LD score regression (LDSR) has been a powerful tool for 376 
understanding the genetic architecture of diseases and traits using GWAS summary statistics29, 377 
including identifying enrichment of disease heritability in regulatory elements 29,30. Previous 378 
applications of LDSR use overlapping annotations,29–31 which allows for the joint analysis of 379 
heritability contribution across a wide range of annotations and has generated significant insight 380 
into a wide range of GWAS studies; however, such analyses cannot unambiguously partition 381 
heritability across annotations. Because sequence classes are both non-overlapping and cover 382 
nearly the entire genome, they provide a clear and more easily interpretable picture of the 383 
regulatory architecture of diseases and traits. To show this, we estimated the proportion of 384 
heritability explained by each sequence class for 47 GWAS traits in UK Biobank (UKBB)18,32 385 
(Methods). Specifically, we applied LDSR and used a conservative estimate of the proportion of 386 
heritability, subtracting one standard error and lower-bounding by 0. Our analysis of UKBB 387 
GWAS revealed genetic signatures of sequence-class-specific regulatory functions (Figure 4, 388 
Supplementary File 4).  389 
 390 
Importantly, ‘E’ and ‘P’ sequence classes cover almost all classes that explain a high proportion 391 
of heritability for GWAS traits and diseases--the same sequence classes inferred to be under 392 
strong evolutionary constraints (Figure 3a, Supplementary File 4). We observed three main 393 
groups of traits that share similar heritability composition signatures across sequence classes. 394 
The first group is blood-related traits, which contains two subgroups of immune-related and non-395 
immune-related traits. The majority of heritability signals in blood-related traits are explained by 396 
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enhancer classes for the relevant cell type(s), such as monocyte/macrophage enhancer (E7) for 397 
Monocyte Count, B-cell-like enhancer (E5) for Auto Immune Traits, and erythroblast-like (red 398 
blood cell progenitor) enhancer (E12) for Red Blood Cell Distribution Width, which measures 399 
the range of variation in red blood cell volume. Furthermore, autoimmune-related traits are 400 
selectively associated with the immune cell type enhancer sequence classes E5 (B-cell like), E11 401 
(T-cell), and E7 (monocyte/macrophage), while erythroblast-like enhancer E12 is specifically 402 
linked to red-blood-cell-related traits. Therefore, sequence classes can dissect the cell-type-403 
specific regulatory architecture of traits and diseases with heritability decomposition, even 404 
without relying on gene-level information.  405 
  406 
Cognitive and mental traits (Morning Person, Neuroticism, Smoking Status, Years of Education, 407 
College Education) have similar sequence-class-level heritability decompositions as well; for 408 
this second group of traits, heritability was mostly explained by brain enhancer (E10 and E3) and 409 
stem cell enhancer (E1) sequence classes. The link to E1 is consistent with our observation that 410 
E1 was also moderately enriched for active enhancer mark H3K4me1 in brain cell types (Figure 411 
2a, Supplementary Figure 7) and is positively correlated with gene expression in brain tissues 412 
(Figure 2b).  413 
 414 
The third group of traits is intriguingly diverse, including Balding, Lung Forced Vital Capacity, 415 
Waist-hip Ratio, Height, and Heel T-score. The heritability of these traits are mostly explained 416 
by multi-tissue enhancer classes (E4, E2, and E8), which show activity in epithelial cells, 417 
fibroblast, muscle, and many other cell types. Enhancer activity across multiple tissues in the 418 
body may explain the diverse phenotypes that are associated with these traits. 419 
 420 
Beyond these three groups, there are a number of traits with unique heritability patterns that are 421 
also linked to highly relevant sequence classes. For example, the High Cholesterol trait was most 422 
associated with the liver and intestine enhancer sequence class (E9), which is consistent with the 423 
physiology of cholesterol metabolism and known etiology of this condition33. E9 was also linked 424 
to red-blood-cell-related traits, in line with the role of liver in erythropoiesis. 425 
 426 
Finally, the promoter sequence class P uniquely explained a sizable proportion of heritability in 427 
nearly all traits, suggesting a near-universal involvement of promoter sequence variations in all 428 
traits and diseases.  429 
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 430 
Figure 4. Sequence-class-based partitioning of GWAS heritability shows trait associations with 431 
tissue-specific regulation. Partitioned genome-wide heritability in UKBB GWAS with all 40 sequence 432 
classes. The size of the dot indicates the proportion of heritability estimated from LDSR, which is 433 
conservatively estimated as one standard error below the estimated heritability proportion (bounded by 0). 434 
The color of the dot indicates the significance z-score of the fold enrichment of heritability relative to the 435 
proportion of all SNPs assigned to the sequence class (bounded by 0). Colored boxes indicate traits 436 
associated with blood (red), brain (green), multiple tissues (blue) and promoters (orange). 437 
 438 
 439 
We next assessed whether our new sequence classes could explain GWAS heritability beyond 440 
that explained by annotations discovered in prior studies. To this end, we performed LDSR 441 
analysis with our whole genome annotations of sequence classes conditioned on an up-to-date set 442 
of previously identified baseline annotations (v2.2, 443 
https://alkesgroup.broadinstitute.org/LDSCORE/). We uncovered 83 significant sequence-class-444 
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trait associations with a corrected p-value cutoff of <0.05 (Supplementary File 5). 70% of all 445 
UKBB GWAS traits and 9/13 of the E and P sequence classes have at least one significant 446 
association after multiple hypothesis testing correction (Supplementary File 5). This finding 447 
suggests that sequence classes can identify extensive new regulatory signals that enrich GWAS 448 
interpretation. 449 
 450 
Disease mutations are predicted to disrupt the activities of sequence classes 451 
Sequence-class-level effects enable the prediction of specific regulatory mechanisms at the 452 
individual, pathogenic mutation level. To showcase our framework’s capability to predict the 453 
mechanisms of individual mutations, we used Sei to predict the direction and magnitude of 454 
sequence-class-level mutation effects for all 853 regulatory disease mutations from the Human 455 
Gene Mutation Database (HGMD)34. For systematic classification and quantification of these 456 
mutations, we assign each mutation to an affected sequence class based on its mutation effects 457 
(the sequence class with the strongest score change) and the sequence that it alters (Methods). 458 
 459 
Overall, the average variant effect score of disease mutations is 4.2x larger than the de novo 460 
mutations in healthy individuals (0.903 vs 0.217,  p<2.2e-16, Wilcoxon rank-sum test two-sided, 461 
max absolute effect across sequence classes) and 6.5x larger than the 1000 Genomes common 462 
variants with AF>0.01 (0.903 vs 0.139,  p<2.2e-16). Here we focus on analyzing the mutations 463 
with the strongest predicted effects (>1.1, n=138/853), where predicted effect refers to the 464 
variant effect of the assigned sequence class for each mutation (Figure 5, Supplementary Figure 465 
18). Because sequence-class-level variant effects are directional--that is, predicting whether the 466 
alternative allele increases or decreases sequence-class level activity--we are able to discover that 467 
while the majority (~80%) of pathogenic mutations with strong predicted effects are predicted to 468 
decrease sequence class activity, the remaining 20% of HGMD pathogenic mutations are 469 
predicted to increase sequence class activity. Moreover, perturbations to E-, P-, and CTCF- 470 
classes make up >99% of the mutations with strong predicted effects on sequence class activity 471 
(Supplementary File 6): 44.9% are predicted to affect tissue-specific E sequence classes, 38.4% 472 
are predicted to affect the P promoter sequence class, and interestingly, 15.9% are predicted to 473 
affect the CTCF-cohesin sequence class (Methods).  474 
 475 
We found that almost all mutations with strong predicted effects in cell-type-specific E sequence 476 
classes contributed to diseases relevant to that same cell type (Figure 5, Supplementary File 6)--477 
for most of these mutations, the nearby gene is known to be relevant to the disease but the 478 
molecular mechanisms of regulatory disruption is unknown. For example, mutations causing 479 
Protein C deficiency and Hemophilia B, two diseases characterized by the deficiency of specific 480 
plasma proteins produced in the liver (protein C and coagulation factor IX, respectively), are 481 
predicted to decrease E9 liver/intestine sequence class activities. Blood cell-type-specific 482 
enhancer sequence classes are disrupted in distinct blood-related diseases and deficiencies 483 
relevant to the corresponding cell type: the E12 erythroblast-like enhancer sequence class is 484 
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disrupted in red blood cell-specific diseases such as pyruvate kinase deficiency, erythropoietic 485 
porphyria, delta-thalassemia, and beta-thalassemia; the E7 monocyte/macrophage-like sequence 486 
class is disrupted in monocyte and macrophage-related chronic granulomatous disease; and the 487 
E5 B-cell-like enhancer sequence class is disrupted in X-linked agammaglobulinemia, a 488 
functional deficiency of B-cell. For developmental diseases, such as preaxial polydactyly 489 
triphalangeal thumb and radial ray deficiency and triphalangeal thumb-polysyndactyly 490 
syndrome, the E1 embryonic stem cell-specific enhancer sequence class is predicted to be 491 
disrupted by mutations in a known distal enhancer of Sonic Hedgehog (SHH) (chr7:156583951 492 
G>A35, chr7:156583949 G>C36), a gene that plays a crucial role in the positioning and growth of 493 
limbs, fingers, and toes during development. 494 
 495 
In addition, 38% of the regulatory mutations with strong predicted effects affect the activity of 496 
the promoter sequence class P, including a hypercholesterolemia mutation near the LDLR gene 497 
(chr19:11200089 C>T37), a microcephaly & developmental delay mutation near the PIGY gene 498 
(chr4:89444948 C>T38), and a retinoblastoma mutation near the RB1 gene (chr13:48877851 499 
G>T39). The high proportion of mutations perturbing the P sequence class likely reflects both the 500 
critical role of promoters in diseases and the emphasis on promoter-proximal mutations in past 501 
studies. 502 
 503 
While the mutations we’ve discussed thus far are negative effect mutations which decrease 504 
sequence class activity, 20% of HGMD pathogenic mutations are predicted to increase sequence 505 
class activity. Indeed, these mutations included many known gain-of-function mutations, which 506 
validated our predictions. The highest increase in sequence class activity was observed for a 507 
mutation (chrX:73072592 G>C) near the XIST gene that skews X-inactivation of the mutant 508 
chromosome in females40; this mutation was predicted to increase the activity of the CTCF 509 
sequence class and has been experimentally validated to increase CTCF binding41. Similarly, 510 
positive effect predictions for ‘E’ and ‘P’ sequence classes were also validated by previously 511 
studied mutations: an alpha-thalassemia mutation near the HBM gene (chr16:209709 T>C42) 512 
known to create a GATA1 binding site and increase intergenic transcription was predicted to 513 
increase the activity of the erythroblast-specific E12 sequence class, and a TERT gene mutation 514 
found in individuals with familial melanoma (chr5:1295161 T>G43) was predicted to increase the 515 
activity of P. Beyond this, many mutations predicted to have strong positive effects were not 516 
previously understood. For example, a mutation near the HBG1 gene (chr11:5271262 A>G44) 517 
that causes persistence of fetal hemoglobin is also predicted to increase the activity of the 518 
erythroblast-specific E12 sequence class. Previously, this mutation was known to create an 519 
ATGCAAAT octamer44  that matches the POU family transcription factor motif, but its 520 
functional consequences were unclear.  521 
 522 
Notably, even though pathogenic mutations from prior genetics studies are subjected to selection 523 
bias, the observation of pathogenic mutations with strong impacts on E-, P-, and CTCF- 524 
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sequence classes are consistent with our estimation that regulatory sequence classes are under 525 
strong evolutionary constraints, and strong disruptions to these classes are likely to cause health 526 
consequences. We also note that the pathogenic mutations with strong positive effects on the 527 
CTCF class do not contradict the population allele frequency analysis which inferred that further 528 
increase of activity on the CTCF sequence class is generally tolerated, because all these 529 
pathogenic mutations are located in sequences in other sequence classes, but their sequence class 530 
identities are altered to the CTCF class by these mutations. This is in contrast to the allele 531 
frequency analysis, which only focuses on variants located in sequences in the CTCF sequence 532 
class.  533 
 534 
Therefore, sequence-class-level effects both corroborate existing regulatory mechanisms and 535 
propose new mechanisms for individual pathogenic mutations. We expect our framework to be a 536 
valuable tool in accelerating genetic discoveries of disease-causal mutations and their 537 
mechanisms in the regulatory genome. 538 

 539 
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Figure 5. Disease regulatory mutations are predicted to disrupt promoter, CTCF, and tissue-540 
specific enhancer sequence classes. Sequence-class-level mutation effects of pathogenic noncoding 541 
HGMD mutations are plotted. A polar coordinate system is used, where the radial coordinate indicates the 542 
sequence-class-level effects. Each dot represents a mutation, and mutations inside the circle are predicted 543 
to have positive effects (increased activity of sequence class), while mutations outside of the circle are 544 
predicted to have negative effects (decreased activity of sequence class). Dot size indicates the absolute 545 
value of the effect. Mutations are assigned to sequence classes based on their sequences and predicted 546 
effects (Methods). Within each sequence class, mutations are ordered by chromosomal coordinates. The 547 
associated disease and gene name are annotated for each mutation, and only the strongest mutation is 548 
annotated if there are multiple mutations associated with the same disease, gene, and sequence class. 549 
 550 
 551 
Discussion 552 
We developed a genome-wide sequence-based map of regulatory activities using sequence 553 
classes, a vocabulary for genomic sequence activities discovered using a data-driven, systematic 554 
method. Our deep-learning-based framework uses a compendium covering 21,907 publicly 555 
available cis-regulatory profiles and the whole genome sequence to create a mapping from any 556 
sequence to a comprehensive set of sequence classes. This provides a global sequence-based 557 
view of sequence regulatory activities and allows for the quantitative prediction of variant effects 558 
on sequence class activities. Sequence classes are a concise vocabulary of regulatory activities 559 
that is interpretable, quantifiable, and easily analyzed globally (across all sequence classes) and 560 
individually. To our knowledge, it is the first such attempt to systematically map regulatory 561 
activities from any sequence.  562 
 563 
We demonstrated that E- and P- sequence classes are strongly enriched in trait and disease 564 
GWAS heritability and under evolutionary constraints.  Importantly, sequence classes provide 565 
insights into the mechanisms of individual pathogenic mutations by predicting effects on the 566 
function of tissue-specific enhancers, promoter activity, and long-range genome interactions (e.g. 567 
CTCF-cohesin sequence class). Using sequence-class-level variant effect predictions, we linked 568 
many pathogenic mutations to tissue-specific regulatory changes in the relevant tissues. These 569 
predictions point to potential mechanisms that can be experimentally tested in the future.  570 
 571 
Sequence classes leverage a sequence model trained on most publicly available cis-regulatory 572 
profile data; however, there remains substantial space for improvement as more data becomes 573 
available.  For example, we are still lacking data for many cell types, developmental stages, 574 
transcription factors, and combinations of chromatin targets measured in new cell types or 575 
conditions. More data that covers currently undercharacterized cell types and developmental 576 
stages will likely enable the identification of still more cell-type-specific and developmental 577 
stage-specific sequence classes, defining sequence classes with increasingly fine-grained 578 
regulatory resolution. Furthermore, development of new computational methods to define, for 579 
example, hierarchical or combinatorial representations of sequence classes may be needed to 580 
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make such fine-grained classes easy to interpret and use. Because  interpretability and robustness 581 
were our major goals in designing sequence classes, we chose to use clustering to generate the 582 
sequence classes and a linear projection step to compute corresponding scores. It is conceivable 583 
that a more expressive model such as an end-to-end neural network can further improve 584 
sequence class predictions, and we expect that increasing the expressiveness of the model while 585 
maintaining interpretability and robustness will be an interesting future challenge. 586 
 587 
This work demonstrates the potential of sequence classes to discover regulatory disruptions in 588 
human diseases, through both the aggregation of genome-wide variant association signals and 589 
prediction of the impact of individual mutations. We provide sequence classes and the Sei model 590 
as a resource for further research into understanding the regulatory genetic landscape of human 591 
health and diseases. Our framework is applicable to any variant, regardless of whether it is 592 
common, rare, or never previously observed, and we expect it to be a powerful tool for 593 
understanding the mechanistic effects of noncoding mutations in human health. 594 
 595 
Methods 596 
 597 
Training data 598 
21,907 cis-regulatory profiles in peak format were compiled from the processed files of the 599 
Cistrome5, ENCODE3, and Roadmap Epigenomics projects4. The Cistrome Project, which 600 
systematically processed publicly available cis-regulatory profiles, contributed the majority of 601 
the profiles predicted in Sei (19,905). We excluded profiles from Cistrome with less than 1000 602 
peaks. Genome sequences are from the GRCh38/hg38 human reference genome. The full list of 603 
cis-regulatory profiles is available in Supplementary File 1. 604 
 605 
Deep learning sequence model training 606 
The Sei model is trained to predict 21,907 transcription factor binding, histone marks, and DNA 607 
accessibility from cis-regulatory profile peaks at the center of 4kb sequences.  608 
 609 
The model architecture is composed of three sequential sections: 1) a convolutional network with 610 
dual linear and nonlinear paths, 2) residual dilated convolution layers, 3) spatial basis function 611 
transformation and output layers. A detailed specification of the model is available in 612 
Supplementary File 7 and in the code repository (https://github.com/FunctionLab/sei-framework, 613 
downloadable from https://doi.org/10.5281/zenodo.4906996). In the convolutional architecture, 614 
we introduced a new design composed of both linear and nonlinear convolution blocks. The 615 
nonlinear blocks are composed of convolution layers and rectified linear activation functions 616 
(ReLU),  similar to regular convolutional networks. The linear blocks have the same structure as 617 
the nonlinear blocks but do not include activation functions to facilitate learning of linear 618 
dependencies. Each nonlinear block is stacked on top of a linear block with a residual connection 619 
adding the input of the nonlinear block to the output, allowing the computation to go through 620 
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either the linear or nonlinear path. Dilated convolutional layers with residual connections further 621 
expands the receptive fields without reducing spatial resolution. Finally, spatial basis functions 622 
are used to reduce dimensionality of the spatial dimension while preserving the capability to 623 
discriminate spatial patterns of sequence representations. Specifically, in the Sei model, a B-624 
spline basis matrix (256x16) with 16 degrees-of-freedom across 256 uniformly-spaced spatial 625 
bins is generated and multiplied with the convolutional layers output to reduce the 256 spatial 626 
dimensions to 16 spline basis function dimensions. After the spline basis function 627 
transformation, a fully-connected layer and an output layer are used for integrating information 628 
across the whole sequence and generating the final 21,907-dimensional predictions. 629 
 630 
Training, validation, and testing datasets are specified by different sets of chromosomes in the 631 
hg38 genome (holding out chromosome 8 and 9 for the test set and chromosome 10 for the 632 
validation set), and samples drawn uniformly across the hg38 genome for these partitions, 633 
excluding regions specified in the ENCODE blacklist45. For training, we sampled training 634 
sequences and their labels on-the-fly from the training set of chromosomes using Selene46. As a 635 
result, almost all training samples are drawn from unique genomic intervals with distinct start 636 
and end positions to reduce overfitting during the training process. For each 4kb region, a 637 
21,907-dimensional binary label vector is created for the 21,907 cis-regulatory profiles based on 638 
whether the center basepair overlaps with a peak in each of the profiles. The model is 639 
implemented in PyTorch and trained with Selene. A detailed training configuration file is 640 
available at https://github.com/FunctionLab/sei-framework/blob/main/train/train.yml. 641 
 642 
Model performance  643 
We computed the AUROC and AUPRC for all cis-regulatory profiles predicted by Sei on the test 644 
holdout dataset, excluding profiles that had fewer than 25 positive samples in the test set. 645 
Additionally, to assess the correlation structure of the predictions, we compared the rank-646 
transformed pairwise Spearman’s rank correlations for the predicted cis-regulatory profiles to the 647 
pairwise correlations for the true labels (peak calls provided in Cistrome DB).  648 
 649 
The model performance comparison between DeepSEA and Sei is computed on the 2,002 cis-650 
regulatory profiles from Roadmap and ENCODE that both DeepSEA and Sei predict. Because 651 
both models have the same chromosomal test holdout (chr8 and chr9), we use the regions 652 
specified in the DeepSEA test holdout set to create a common test dataset of sequences and 653 
labels on which to evaluate the models.  654 
 655 
Sequence classes 656 
We selected 30 million genomic positions that uniformly tile the genome with 100bp step size 657 
and then computed Sei predictions for 4kb sequences centered at each position. Sequences 658 
overlapping with ENCODE blacklist regions45 or assembly gaps (“N”s) are removed. To process 659 
the 30 million x 21,907 predictions matrix, the dimensionality is first reduced with principal 660 
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component analysis (PCA). The PCA transformations were fitted with incremental PCA using a 661 
batch size of 1,000,000 for one pass of the whole dataset, and genomic positions were randomly 662 
assigned to batches. The top 180 principal components, scaled to unit variance, were used for 663 
constructing a nearest neighbor graph where each node is connected to its k-nearest neighbors by 664 
Euclidean distance (k=14).  Louvain community clustering with default parameters was applied 665 
to the nearest neighbor graph with the python-louvain package, which resulted in 61 clusters. We 666 
refer to the largest 40 clusters as sequence classes and exclude the remaining (smallest) 21 667 
clusters, which constitute <2.6% of the genome, from our analyses due to their size. These 21 668 
clusters mainly display Low signal or Heterochromatin like enrichment (Supplementary Figure 669 
19). We refer to this cluster assignment to sequence classes at 100bp resolution as sequence class 670 
annotations. We visualized the genome-wide predictions by computing UMAP embedding with a 671 
subsample of PCA-transformed Sei predictions of 30 million sequences, and then fine-tuned the 672 
visualization with OpenTSNE. The detailed procedures are available in our code repository 673 
(https://github.com/FunctionLab/sei-manuscript). 674 
 675 
Sequence class scores  676 
Each sequence class is represented as a unit vector in the 21,907-dimensional cis-regulatory 677 
profile space, in the direction of the average prediction of all sequences assigned to this sequence 678 
class among the 30 million. In more formal notation, the vector for sequence class 𝑖 is 𝑣! =679 
"!	∈	$%&'%()%	)*+!!	,###########################	

||"!	∈	$%&'%()%	)*+!!	,	||2#################################, where 𝑝& represents the 21,907-dimensional Sei prediction for sequence 𝑠. 680 

Each Sei prediction can then be projected onto any sequence class vector to obtain a sequence 681 
class-level representation of the prediction, which we call sequence class score or 𝑠𝑐𝑜𝑟𝑒&,! = 𝑝& ⋅682 
𝑣!(. In addition, predicted sequence-class-level variant effects are represented by the difference 683 
between the sequence class scores of the sequences carrying the reference allele and the 684 
alternative allele, or 𝑠𝑐𝑜𝑟𝑒),! = 𝑠𝑐𝑜𝑟𝑒*+,,! − 𝑠𝑐𝑜𝑟𝑒-./,!. To better represent predicted variant 685 
effects on histone marks, it is necessary to normalize for the nucleosome occupancy (e.g. loss-of-686 
function mutation near TSS can decrease H3K4me3 modification level while increasing 687 
nucleosome occupancy, resulting in an overall increase in observed H3K4me3 quantity). 688 
Therefore, for variant effect computation, we use the sum of all histone profile predictions as an 689 
approximation to nucleosome occupancy and adjust all histone mark predictions to remove the 690 
impact of nucleosome occupancy change (non-histone mark predictions are unchanged): 691 

𝑝ℎ0∗ = 𝑝ℎ0-./
∑ "ℎ-.

/%0. 	3	∑ "ℎ-.
+*1.

∑ "ℎ-.
/%0.

; 𝑝ℎ0∗ = 𝑝ℎ0*+,
∑ "ℎ-.

/%0. 	3	∑ "ℎ-.
+*1.

∑ "ℎ-.
+*1.

 692 

where ∑ 𝑝ℎ0.

-./4  represents the sum over all histone mark predictions (among 21907-693 

dimensions of a prediction) for the reference allele. We generally exclude Low Signal sequence 694 
classes in sequence-class-level variant effect analyses because they lack an intuitive biological 695 
interpretation.  696 
 697 
Sequence class enrichment of chromatin profiles and genome annotations 698 
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We computed the log fold change enrichment of various chromatin profiles and genome 699 
annotations for each sequence class based on sequence class annotations (described above, see 700 
‘Sequence classes’). Log fold change enrichment is computed by taking the log ratio of the 701 
proportion of a sequence class intersecting with the annotation versus the background proportion 702 
of the annotation, where we consider all regions assigned to any sequence class. We computed 703 
enrichment for all 21,907 profiles predicted by Sei, filtered the chromatin profiles for each 704 
sequence class to only those having Benjamini-Hochberg corrected p-values (Fisher’s exact test, 705 
two-sided) below 2.2e-16, and selected the top 25 profiles based on log fold change enrichment. 706 
Cistrome Project profile enrichment is computed over 2 million random genomic positions.  707 
 708 
The annotation of centromere repeats is obtained from the UCSC RepeatMasker track, and 709 
annotations of histone marks over multiple cell types are obtained from the Roadmap 710 
Epigenomics project--enrichments for both of these sets of annotations are computed over the 711 
entire genome. In addition, we obtained ChromHMM chromatin states from ENCODE 3 and 712 
tissue and cell-type-specific DHS vocabulary from 25.  713 
 714 
Enhancer sequence class correlations with cell-type-specific gene expression  715 
Tissue expression profiles are from GTEx26, Roadmap Epigenomics4, and ENCODE3 and 716 
transformed to log-scale RPKM (reads per kilobase per million reads mapped) scores as 717 
previously described13 and normalized by tissue-average. Specifically, a pseudocount was added 718 
before log transformation (0.0001 for GTEx tissues, which are averaged across individuals, and 719 
0.01 for Roadmap and ENCODE tissues). After log transformation, the average scores across 720 
tissues were subtracted for each gene; as a result, the processed scores represent log fold change 721 
relative to tissue-average. 722 
 723 
Gene-wide expression prediction is evaluated on sequence class annotations (from Louvain 724 
community clustering) for positions within +/-10kb of the TSSs for these genes. For each 725 
enhancer sequence class and tissue, we compute the Spearman correlation between the sequence 726 
class annotation coverage and gene expression.      727 
 728 
Correlation between regulatory sequence class variant effects and directional eQTL 729 
variant effect sizes 730 
We collected the eQTLs within +/-5kb of gene TSSs from GTEx v8, combined across all GTEx 731 
tissues, and computed the Spearman correlation between the top 15k variant effect predictions 732 
for each sequence class and the eQTL variant effect sizes (averaged across multiple tissues if the 733 
variant is an eQTL in multiple tissues). The p-values are derived from the Spearman’s rank 734 
correlation test (two-sided) and BH correction is applied. Low Signal and Heterochromatin 735 
sequence classes are excluded from this analysis due to lack of interpretation for their variant 736 
effect scores in this context.  737 
 738 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2021.07.29.454384doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454384
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

Additionally, we collected fine-mapped GTEx eQTLs from eQTL Catalogue27 and obtained 739 
sequence class scores for eQTLs with posterior inclusion probability > 0.95. Variants are 740 
assigned to sequence classes based on the sequence class annotation for the reference genome 741 
(i.e. variants are not further selected based on variant effect predictions). For each sequence 742 
class, we computed the Spearman correlation between the sequence class scores and the eQTL 743 
variant effect sizes in the same way we describe above.   744 
 745 
Evolutionary constraints on variant effects 746 
We computed sequence-class-level variant effects for all 1000 Genomes project phase 3 747 
variants28. Variants are assigned to sequence classes based on the 100bp resolution genome-wide 748 
assignment derived from Louvain community clustering as described above. For each sequence 749 
class we divide variants into 6 bins based on their effects in the same sequence class as 750 
illustrated in Figure 3, and summarize common variant (AF>0.01) frequencies in each bin by 751 
mean and standard error of the mean. We also estimated statistical significance of allele 752 
frequency dependency on sequence-class-level variant effects. For each sequence class, we 753 
applied logistic regression separately for positive effect and negative effect variants, to predict 754 
common variants (AF>0.01) from the absolute value of sequence-class-level variant effect score, 755 
and obtained the significance z-score of the regression coefficient of variant effect. The 756 
bidirectional evolutionary constraint z-score is defined as the negative value of the combined z-757 
scores from positive and negative effect variants with Stouffer's method. 758 
 759 
Partitioning GWAS heritability by sequence classes 760 
UKBB GWAS summary statistics were obtained from 18. To study the association of sequence 761 
class genome annotation and sequence class variant effects and trait heritability, we performed 762 
partitioned heritability LD score regression (LDSR) as described in 29. To partition the 763 
heritability as sums of heritability explained by each sequence class, we run LDSR with only 764 
sequence class annotations and a baseline all-ones annotation. We obtained the estimated 765 
proportion of ℎ2explained by each sequence class and its standard error with LDSR as 766 
implemented in https://github.com/bulik/ldsc. As the estimated proportions can have high 767 
variance or even be negative (the true value of heritability explained can only be non-negative), 768 
we use a robust and conservative estimator which is the estimated proportion of ℎ2subtracted by 769 
one standard error, then lower-bounded by zero (the standard error of the estimated proportion of 770 
ℎ2explained is given by LDSR and estimated with the block jackknife procedure as described in 771 
29).  772 
 773 
To assess the contribution of sequence classes to explaining additional heritability when 774 
conditioned on known baseline annotations, we also run LDSR with the baseline annotations 775 
(v2.2, https://alkesgroup.broadinstitute.org/LDSCORE/). The p-values are derived from the 776 
coefficient z-score, and BH correction is applied. 777 
 778 
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Sequence class-level variant effect analysis of noncoding pathogenic mutations 779 
We obtained all mutations assigned “DM” and “regulatory” annotation in the Human Gene 780 
Mutation Database (HGMD) database (2019.1 release). RMRP gene mutations are excluded 781 
because they are likely pathogenic due to impacting RNA function instead of regulatory 782 
perturbations, despite being annotated to the regulatory category in HGMD. For every mutation, 783 
we predicted the sequence class scores for both the reference and the alternative allele and 784 
computed the sequence-class-level variant effect as the predicted scores for the alternative allele 785 
subtracting the scores for the reference allele. To provide an overview of sequence-class level 786 
effects of human noncoding pathogenic mutations, mutations are first assigned to sequence 787 
classes based on the sequence class annotations of the mutation position.  For mutations with a 788 
strong effect in a different sequence class than the originally assigned sequence class (absolute 789 
value higher than the original sequence class by >1 absolute difference and >2.5 fold relative 790 
difference), we reassign the mutation to the sequence class with the strongest effects.  791 
 792 
Code and data availability 793 
The Sei framework code is provided in https://github.com/FunctionLab/sei-framework, and the 794 
model and associated data files downloadable by following the instructions in the GitHub 795 
repository. Code and data for the manuscript results are available at 796 
https://github.com/FunctionLab/sei-manuscript.   797 
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Supplementary Figures  819 

 820 
Supplementary Figure 1. Schematic overview of Sei model architecture. 4096bp sequences, one-hot 821 
encoded, are the input to the model (bottom) and the predicted 21,907 cis-regulatory profiles are the 822 
output (top). 823 
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 824 
Supplementary Figure 2. Sei model performance on predicting 21907 cis-regulatory profiles on 825 
holdout chromosomes. 826 
 827 
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 828 
Supplementary Figure 3. Visualizing the rank-transform of pairwise Spearman correlations for the 829 
21,907 cis-regulatory profiles in Sei. Sei model predictions share a highly similar correlation structure 830 
with the experimental observations.  831 
 832 

 833 
Supplementary Figure 4. Sei model performance comparison with DeepSEA. Performance on the 834 
shared 2002 DeepSEA “Beluga” (2018) cis-regulatory profiles are compared. 835 
 836 
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 837 
Supplementary Figure 5. Comparison of sequence classes and Louvain community clustering with 838 
resolution = 0.5. For each sequence class, the proportion overlap was computed between sequence 839 
classes and a lower resolution clustering for Louvain community clustering. The lower resolution 840 
clustering is largely consistent with the original sequence classes, with some clusters combining several 841 
related enhancer sequence classes into one.  842 
 843 
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 844 
Supplementary Figure 6. Comparison of sequence classes and Louvain community clustering with 845 
resolution = 1.5. For each sequence class, the proportion overlap was computed between sequence 846 
classes and a higher resolution clustering for Louvain community clustering. The higher resolution 847 
clustering closely resembles the current sequence class clusters. 848 
 849 
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 850 
Supplementary Figure 7. Enrichment of tissue/cell type-specific H3K4me3 (promoter mark) 851 
profiles in sequence classes. Log fold change enrichment over genome-average background is shown in 852 
the heatmap. No overlap is indicated by the gray color in the heatmap. 853 
 854 
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 855 
Supplementary Figure 8. Enrichment of tissue/cell type-specific H3K4me1 (enhancer mark) profiles 856 
in sequence classes. Log fold change enrichment over genome-average background is shown in the 857 
heatmap. No overlap is indicated by the gray color in the heatmap. 858 
 859 
 860 
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 861 
Supplementary Figure 9. Enrichment of tissue/cell type-specific H3K27ac (enhancer mark) profiles 862 
in sequence classes. Log fold change enrichment over genome-average background is shown in the 863 
heatmap. No overlap is indicated by the gray color in the heatmap. 864 
 865 
 866 
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 867 
Supplementary Figure 10. Enrichment of tissue/cell type-specific H3K27me3 (Polycomb mark) 868 
profiles in sequence classes. Log fold change enrichment over genome-average background is shown in 869 
the heatmap. No overlap is indicated by the gray color in the heatmap. 870 
 871 
 872 
 873 
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874 
Supplementary Figure 11. Enrichment of tissue/cell type-specific H3K9me3 (heterochromatin 875 
mark) profiles in sequence classes. Log fold change enrichment over genome-average background is 876 
shown in the heatmap. No overlap is indicated by the gray color in the heatmap. 877 
 878 
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 879 
Supplementary Figure 12. Enrichment of tissue/cell type-specific H3K36me3 (transcription mark) 880 
profiles in sequence classes. Log fold change enrichment over genome-average background is shown in 881 
the heatmap. No overlap is indicated by the gray color in the heatmap. 882 
 883 
 884 
 885 
 886 
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 887 

 888 
Supplementary Figure 13. Genome sequence proportion covered by each sequence class. The 889 
proportion of each sequence class is shown in the pie chart. Genome-wide sequence class assignments 890 
were based on Louvain clustering of Sei predictions of sequence tiling the genome with 100bp step size. 891 
The clusters unassigned to sequence classes due to the small size (below top 40 clusters) were categorized 892 
as “Unassigned”. 893 
 894 
 895 
 896 
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 897 
Supplementary Figure 14. Sequence-class-specific enrichment of ENCODE chromatin states. Log 898 
fold change enrichment over genome-average background is shown in the heatmap. Top 2 chromatin 899 
states enriched were selected for each sequence class.  900 
 901 
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 902 
Supplementary Figure 15. Sequence-class-specific enrichment of tissue-specific DHS vocabulary 25. 903 
Log fold change enrichment over genome-average background is shown in the heatmap. 904 

 905 
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Supplementary Figure 16. Regulatory sequence-class-level variant effects for SNPs with PIP > 0.95 906 
are predictive of directional GTEx variant gene expression effects. Variants assigned to sequence 907 
classes based on the sequence class annotation for the reference genome. The x-axis shows Spearman 908 
correlations between the predicted sequence-class-level variant effects and the signed GTEx variant effect 909 
sizes (slopes) and the y-axis shows the corresponding log10 p-values. The dotted gray line denotes the 910 
Benjamini-Hochberg FDR < 0.05 threshold. 911 

 912 
Supplementary Figure 17.  Population allele frequency profiles for variants in heterochromatin, 913 
low signal, polycomb, and transcription sequence classes. Comparison of common variant frequencies 914 
of 1000 Genomes variants assigned to different sequence classes and variant effect bins. The common 915 
variant threshold is >0.01 allele frequency across the 1000 Genomes population. Error bars show +/-  1 916 
standard error(SE). The sequence-class-level variant effects are assigned to 6 bins (+3: top 1% positive, 917 
+2: top 1%-10% positive, +1, top 10% -100% positive, -3: top 1% negative, -2: top 1%-10% negative, -1, 918 
top 10% -100% negative). 919 
 920 
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Supplementary Figure 18. Predicted sequence class-level variant effects for HGMD regulatory 922 
disease mutations.  HGMD regulatory disease mutations with sequence-class level variant effect 923 
score >1.1 are included.  924 
 925 

 926 
Supplementary Figure 19. Enrichment of histone marks, transcription factors, and repeat 927 
annotations for the full set of 61 clusters output by Louvain community clustering. Log fold change 928 
enrichment over genome-average background is shown in the heatmap. No overlap is indicated by the 929 
gray color in the heatmap. Top 1-2 histone mark and TF annotation enrichments were selected for each 930 
sequence class. 931 
 932 
Supplementary File 1. The list of 21907 cis-regulatory profiles and Sei prediction performance. 933 
 934 
Supplementary File 2. Summary of tissues and cell types covered by the Sei model.  935 
 936 
Supplementary File 3. Top 25 enriched Cistrome Project chromatin profiles for each sequence 937 
class. Log fold change enrichment over genome-average background is shown in the heatmap. No overlap 938 
is indicated by the gray color in the heatmap. We computed the enrichment for all 21,907 profiles 939 
predicted by Sei over 2 million random genomic positions. For each sequence class, the chromatin 940 
profiles are filtered to those having Benjamini-Hochberg corrected p-values (Fisher’s exact test, two-941 
sided) < 2.2e-16 selecting the top 25 profiles based on log fold change enrichment.  942 
 943 
Supplementary File 4.  Partitioned UKBB GWAS heritability by sequence classes using LDSR. The 944 
proportions of heritability are represented by the LDSR estimate - 1 standard error, lower bounded by 0. 945 
The LDSR enrichment z-scores are also lower bounded by 0. 946 
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 947 
Supplementary File 5.  Significant UKBB GWAS trait - sequence class associations identified with 948 
LDSR conditioned on the baseline annotations. 949 
 950 
Supplementary File 6.  Predicted sequence class-level variant effects for HGMD regulatory disease 951 
mutations. HGMD regulatory disease mutations with sequence-class level variant effect score >1.1 are 952 
included.  953 
 954 
Supplementary File 7. Detailed Sei model architecture specification. 955 
 956 
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