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Abstract 17 

Habit formation is a process in which an action becomes involuntary. While goal-directed 18 

behavior is driven by its consequences, habits are elicited by a situation rather than its 19 

consequences. Existing theories have proposed that actions are controlled by 20 

corresponding two distinct systems. Although canonical theories based on such distinctions 21 

are starting to be challenged, a few theoretical frameworks that implement goal-directed 22 

behavior and habits within a single system. Here, we propose a novel theoretical framework 23 

by hypothesizing that behavior is a network composed of several responses. With this 24 

framework, we have shown that the transition of goal-directed actions to habits is caused by 25 

a change in a single network structure. Furthermore, we confirmed that the proposed 26 

network model behaves in a manner consistent with the existing experimental results 27 

reported in animal behavioral studies. Our results revealed that habit could be formed under 28 

the control of a single system rather than two distinct systems. By capturing the behavior as 29 

a single network change, this framework provides a new perspective on studying the 30 

structure of the behavior for experimental and theoretical research. 31 

 32 
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Author summary 34 

To obtain the desired consequences, organisms need to respond based on the knowledge 35 

of the consequences obtained by the response and the change in the environment caused 36 

by it. Such a process is called goal-directed behavior, which is flexible, but requires high 37 

computational cost. Once the same response is repeatedly performed under the same 38 

environment, the response becomes automatic, and transforms into a habit. In the canonical 39 

views, such a change from goal-directed response to habit was explained by the associative 40 

structures between the corresponding systems, goal-directed, and habit systems. However, 41 

the dichotomy in the mechanisms of behavior between goal-directed responses and habits 42 

has recently been challenged. Here, we show that, instead of assuming two explicitly 43 

distinguished mechanisms as in the canonical views, behavior is regarded as a network 44 

consisting of multiple responses, and that changes in the structure of the network cause two 45 

behavioral features, goal-directed behavior and habit. The transition from goal-directed 46 

behavior to habit has been operationally defined by sensitivity to the reward obtained by the 47 

response. We replicate such an experimental paradigm in the simulation and show that the 48 

behavioral network model can reproduce the empirical results on habit formation obtained 49 

from animal experiments. Our results demonstrate that habit formation can be explained in 50 

terms of changes in the network structure of behavior without assuming explicitly distinct 51 

systems and thus, provide a new theoretical framework to study the psychological, biological, 52 

and computational mechanisms of the behavior. 53 

  54 
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Introduction 55 

To behave flexibly in a given environment, organisms need to choose their actions based 56 

on the consequences of the actions. This type of behavior is called goal-directed behavior. 57 

As we keep repeating the same action under a certain situation, the action is elicited by the 58 

situation rather than its consequences. This type of behavior is called a habit. Goal-directed 59 

behavior requires high computational resources because organisms must process the 60 

information about their external environment and how their actions affect it. In contrast, habit 61 

shows a more stereotyped and less flexible behavior, requiring less computation. In this 62 

sense, habit formation can be viewed as the optimization process of energy consumption by 63 

the organism. 64 

 Existing theories about habit formation are based on evidence from experimental or 65 

theoretical research in psychology and neuroscience. In the canonical view, responses are 66 

controlled by two different systems: goal-directed and habit systems. Such theories 67 

proposed that goal-directed and habit systems control responses by assigning different 68 

weights, and the difference in the weights determines whether the response is goal-directed 69 

or habit1, 2. In this assumption, habit formation can be viewed as losing control by the 70 

consequence of the response or reward sensitivity. However, some models explain habits 71 

in a multistage Markov decision task and challenge the canonical dichotomy of goal-directed 72 

and habits systems3, 4. In addition, some researchers reviewed existing studies on habit 73 

formation and cast doubt on the canonical framework of habit formation by showing the 74 

possibilities that habits are also controlled by their consequences5, 6. 75 

In contrast to the canonical view, Dezfouli and Balleine7 proposed a new perspective 76 

that habit formation can be viewed as shaping or acquiring response sequences. In their 77 

model, an agent chooses their goal in a goal-directed manner and generates a response 78 

sequence to reach there. Although habits are viewed as a lack of reward sensitivity in the 79 

canonical view, their new model considers stereotyped behaviors as acquired response 80 

sequences. To what extent could this model change the way of viewing accumulating 81 

evidence of habit formation? Garr and Dalamater8 shows that rats acquired stereotyped 82 

response sequences did not lose reward sensitivity. In a series of studies reported by 83 

Dezfouli and Balleine7, 9, 10 dealt with only a few experiments on the reward sensitivity in free 84 

operant situations11-15. Another approach employs the planning process3, 4. Pezzulo et al.3 85 
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stressed the importance of planning in goal-directed behaviors and built a single mixed-86 

controller model consisting of goal-directed behaviors and habits. Keramati et al.4 proposed 87 

that the canonical goal-directed and habits systems can be viewed as edges of the spectrum 88 

by building an integrated model of goal-directed planning and habits. Although application 89 

of their models was limited to the multistage choice task, the model could serve as a basis 90 

for a novel model with common assumptions and additional applicability in experiments on 91 

reward sensitivity in free situations11-15. 92 

Here, instead of assuming two explicitly distinguished mechanisms as in the 93 

canonical views, we consider behavior as a network consisting of multiple responses and 94 

show that changes in the structure of the network cause two behavioral features, goal-95 

directed behavior and habit. By doing so, we could explain the lack of reward sensitivity in 96 

habit formation, which is a characteristic of the canonical view on habits. 97 

Behavioral network 98 

There are two methodological approaches for studying animal behavior. One stream is an 99 

in-laboratory psychological approach that studies the behavior of animals, including humans, 100 

under experimentally controlled environments. Here, investigators measure only 101 

experimentally defined responses of subjects (lever press, key peck, nose poke, freezing, 102 

salivation, licking, eye blink, etc.) or put them into rigidly controlled situations where they can 103 

only engage in the responses to the well-defined stimulus. Another stream is an ethological 104 

approach that studies animal behavior under more natural and ecologically valid 105 

environments17. In this case, behavior that the organism is engaged in the real world could 106 

be observed, but the stimulus is difficult to control in terms of the strength, frequency, timing, 107 

etc. Although these two approaches seem to conflict with each other, both are 108 

complementary for understanding behavior and its biological substrates. Recent advances 109 

in machine learning have allowed us to objectively measure the detailed structure of 110 

behaviors17-19. Animals are engaged in more than lever press, key peck, or nose poke, they 111 

approach and orient to the stimulus, and walk or sniff around and explore in the given 112 

environment. Although the importance of observation and measurement of the behavior 113 

during learning was attempted in classic behavioral studies20-23, current behavioral 114 

quantification methods are expected to reveal the relationship between behavior and its 115 

underlying mechanism in a way that integrates the different disciplines of psychology, 116 
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neuroscience, and ethology24, 25. However, conventional views on behavior in psychology and 117 

neuroscience are based on empirical results obtained from the approaches before the 118 

appearance of such a new quantification technique of the behavior. Here, we present a new 119 

theoretical novel framework that focuses on how behavior is organized and how its structure 120 

brings specific characteristics to behavior. 121 

 Existing studies measured only specific experimenter-defined responses of animals 122 

including humans, and ignored various responses that the animals actually engaged in. 123 

However, there is considerable evidence that animals engage in various responses which 124 

affect the learned responses. For example, animals engage in a specific response 125 

immediately after the reward presentation26-28, engage in responses irrelevant to an 126 

experiment21, show a specific response sequence between reward presentations22, or show 127 

a specific response that counteracts learned responses29. Theoretically, some characteristics 128 

of operant responses are explained by assuming the existence of other responses30-34. These 129 

experimental facts and theoretical assumptions indicate that animal responses do not exist 130 

in isolation but are associated with other responses. We assume such relationships between 131 

responses as a network in which responses and transitions between them are considered 132 

nodes and edges, respectively. 133 

 Network science emerged in the mid to late 1990s and has spread to a wide range 134 

of fields. One of the important aspects of network science is handling the structure of the 135 

network. For example, in a network in which individual nodes are randomly connected, the 136 

distance between each node is large and the information transmission is slow. However, if 137 

there is a node called a hub in the network, which has acquired a large number of edges 138 

from other nodes, information can be rapidly transmitted through that node. This is like an 139 

influencer sending out information on a social networking service, which attracts the 140 

attention of a larger number of users and rapidly spreads the information. In this way, the 141 

structure of the network is closely related to the behavior of the entire system. We introduce 142 

this perspective of network structure to behavioral science. In this view, each response is 143 

assumed as a node, and behavior could be captured as a network of interconnected nodes. 144 

By doing so, we try to explain existing behavioral phenomena from a new perspective of the 145 

overall structure of behavior. Introducing the concept of network science to experimental 146 

analysis of behavior and the theory of habit formation has not been focused on so far. 147 
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Here, we provide a computational formulation of the behavioral network and explain 148 

habit formation from the viewpoint of changes in the network structure. In simulation 1, we 149 

generated an arbitrary network and examined what kind of structure forms habit and showed 150 

that habit formation occurs when edges are concentrated on a specific response. In 151 

Simulation 2, we examined whether the factors reported to promote or inhibit habit formation 152 

from existing behavioral studies have similar effects on the proposed model. There are three 153 

important factors on habit formation: 1) the amount of training11, 12, 2) the schedule of rewards13, 154 

and 3) the presence or absence of choice14, 15. The effects of these factors on the proposed 155 

model were consistent with the existing experimental results. These results imply that habit 156 

formation can be explained not by the control of the two systems, but by a single system 157 

constituting the change in the structure of the behavioral network. Furthermore, the results 158 

demonstrate that all responses are goal-directed, rather than the conventional dichotomy of 159 

goal-directed and habitual behaviors. 160 

  161 
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Results 162 

We considered the behavior of an agent as a network consisting of different categories of 163 

responses (e.g., lever pressing, grooming, stretching, etc.). Each response was assumed to 164 

be a node, and the transition between responses was assumed to be an edge (Figure 1A). 165 

The purpose of our agent was the same as the normal reinforcement learning setting of 166 

reward maximization. To achieve it, the agent’s behavior was modeled by choices based on 167 

the values of rewards and the shortest path from the currently engaging response to the 168 

chosen response. Although this modeling differed from the ordinary setting, it accounted for 169 

the behavior of organisms in the natural environment. Our model reflected three facts 170 

(Figure 1B). (1) Most organisms, including humans, engage in various responses in their 171 

lives. For example, a rat in a free-operant experiment presses a lever in one moment and 172 

grooms its hair or explores the experimental apparatus the next moment. (2) The responses 173 

are associated with different types of rewards. Lever pressing is associated with food 174 

presentation. Hair grooming is associated with removing disconformity. Exploring within the 175 

apparatus is associated with escaping from the apparatus. (3) When an animal shifts from 176 

the currently engaging response to another response, it may choose to reach the response 177 

via relatively fewer responses. For example, if a rat engages in sniffing (Figure 1B left) and 178 

then chooses to press a lever (Figure 1B center), two paths or response sequences are 179 

available: walking to the front of the lever and pressing the lever or walking to the front of 180 

the lever followed by grooming and then pressing the lever (Figure 1B center). Grooming 181 

requires additional time and is redundant for pressing the lever. Thus, the rat may choose 182 

the shortest path, i.e., walk to the front of the lever and press it (Figure 1B right). In a large 183 

behavioral space, random search increases the time required to reach the desired response 184 

and does not warrant reaching the desired response. In summary, the agent chooses one 185 

available response associated with different rewards and reaches the chosen response by 186 

following the shortest path from the currently engaging response. The agent loops through 187 

this process in the behavioral network, which is composed of responses. 188 
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 189 

Figure 1. Scheme of the behavioral network 190 

A. The schematic representation of the behavioral network model represents how agents 191 

learn the Q-values by interacting with the environment and generate a behavioral network 192 

based on these values. The behavioral network consists of multiple responses. B. The 193 

schematic representation of the model’s behavior shows how the agents transit in the 194 

network. The left panel shows the initial state in which agents engage in a response. The 195 

center panel shows that agents choose a goal and search for the shortest path. The right 196 

panel shows that agents transit from the initial response to the goal via the shortest path. 197 
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We assumed that how nodes in a network and attachment of an edge between two 198 

nodes depended on the history of past rewards experienced by the agent. We employed Q-199 

learning35 to represent the history of rewards obtained when transitioning from one response 200 

to another. In ordinary Q-learning, an agent learns the action-value in a state. However, 201 

since our model dealt with transitions between responses, we treated the response of the 202 

agent as a state. Thus, Q-learning in our model was represented by the following equation, 203 

assigning the response a time point prior to the state: 204 

𝑄(𝑎𝑡−1, 𝑎𝑡) ← 𝑄(𝑎𝑡−1. 𝑎𝑡) + α ⋅ δ (1) 205 

In this equation,  denotes the learning rate, we set α =  0.1 for all simulations; and  is the 206 

reward prediction error (or temporal difference error). The reward prediction error was 207 

calculated as follows: 208 

δ = 𝑅(𝑎𝑡) + γ ⋅ 𝑚𝑎𝑥
𝑎𝑡+1

𝑄 (𝑎𝑡, 𝑎𝑡+1) − 𝑄(𝑎𝑡−1, 𝑎𝑡) (2) 209 

In this equation, γ denotes the discount rate of future rewards and we set γ =  0.5 for all 210 

simulations. 𝑅𝑡 denotes the reward obtained by a transition, and the reward functions are 211 

different between simulations, which have been explained in detail in the Materials and 212 

Methods section. 213 

 The probability that an edge is attached between any two nodes depends on the Q-214 

value and is calculated using the softmax function. The probability was calculated using the 215 

following equation: 216 

𝑝𝑖,𝑗 =
𝑒−β𝑛𝑄(𝑖,𝑗)

∑ 𝑒−β𝑛𝑄(𝑖,𝑗)𝑁
𝑗=1

(3) 217 

In this equation, 𝑁 denotes the number of nodes in the network and all the responses that 218 

the agent can engage in. βn  denotes the inverse temperature and we set βn = 50 in all 219 

simulations. We also sampled two edges according to Equation 3, such that every node had 220 

at least two edges. We used “networkx,” a Python library for network analysis, to generate 221 

the network. 222 

The algorithm for the agent to choose a response contains two steps: 1) choice of 223 

the response based on the value of the reward, and 2) searching the shortest path from the 224 

current engaging response to the chosen node. In the choice of the response based on the 225 

value of the reward, the probability of choosing a response is calculated by proportional 226 

allocation of the reward value. The shortest path search includes selecting the shortest path 227 
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between the current response to the chosen response and the agent engaging in the 228 

responses containing the path in sequence. 229 

The probability of response  was calculated according to the following equation: 230 

pi =
𝑟𝑖

∑ 𝑟𝑗
𝑁
𝑗=1

(4) 231 

In this equation,  denotes the value of the reward obtained from response . In our 232 

simulation, the value of the reward obtained from the operant response was 1.0, and the 233 

other response was 0.001.  234 

The shortest path search is used to find the shortest path between any two nodes in 235 

the network. We employed Dijkstra's algorithm36 in all our simulations. If there were multiple 236 

shortest paths between any two nodes, we randomly choose one of them. We implemented 237 

the path search by using NetworkX37. 238 

Simulation 1: Network structure and habit formation 239 

In the Simulation 1, we searched for the structure of the network where habits formation 240 

occurs. First, we generate a network based on the Q-matrix. We used an arbitrary Q-matrix 241 

to operate the degree of the edge concentration on the operant response. The Q-matrix is 242 

defined as the direct product of the Q-vector. The Q-vector contains scalars ranging from 0. 243 

- 1. and each element corresponds to each response. More specifically, the first element 244 

corresponds to the operant response and others correspond to the other responses. In 245 

simulation 1, we fixed the value for the other responses to 0.001 and varied the value for the 246 

operant response, Q-operant, from 0.0 - 1.0. To examine the degree of habit, we used the 247 

reward devaluation procedure used in free-operant experimental situations. The earliest 248 

demonstrations of habit formation11-13 used the reward devaluation procedure. In this 249 

procedure, the investigators train the animals to press the lever with a reward. After the 250 

animal learned lever pressings to obtain the reward, the value of reward was reduced by 251 

poisoning it with lithium chloride. In this procedure, animals learnt the reward value outside 252 

the experiment. Subsequently, investigators examined if the animal pressed the lever 253 

without reward deliveries, or an extinction test. Thus, the reward value for the animal was 254 

not updated in the test. When the animal pressed the lever, the reward was poisonous, and 255 

the responses were considered to be a habit. When the lever-presses decreased after 256 

devaluation, the responses were considered to be goal-directed behavior. To reproduce the 257 
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procedure in the simulation setting, we set up the baseline and devaluation phases where 258 

the value of reward obtained by the operant response is 1 and 0, respectively. As animals 259 

had experienced reward devaluation outside the experiments in the experimental setting, 260 

our agents did not update the reward value within the simulation but changed it from 1.0 to 261 

0.0 before starting when moving from baseline to test phases. In both baseline and test 262 

phases, the first response that the agent engaged was randomly determined. Then, the 263 

agent chooses a response based on the reward value and searches for the shortest path to 264 

the response from the current engaging response. They engage in responses contained in 265 

the path and the agent reaches the chosen response. After the agent reaches the response, 266 

it repeats this process again. After several loops, we calculated the proportion of the operant 267 

response to the total number of responses to assess whether the operant response is habit 268 

or not. 269 

Simulation result 270 

Figure 2A shows examples of generated networks under the Q-operant. Other responses 271 

(black nodes) connected to the operant response (red node) as the Q-operant increased. 272 

Figure 2B shows the resistance to devaluation (left panel), number of edges that the operant 273 

response acquired (center panel), and betweenness centrality (right panel). The resistance 274 

to devaluation was larger when the operant response did not decrease with reward 275 

devaluation and higher Q-operant the resistance to devaluation were larger (Figure 2B left). 276 

The number of edges that the operant response acquired increased as the Q-operant 277 

increased (Figure 2A and Figure 2B center), implying that edges from other responses were 278 

concentrated to the operant response. The betweenness centrality, i.e., the probability that 279 

the operant response is included in the shortest path between two nodes in the network, 280 

increased as the Q-operant increased (Figure 2B right). With edge concentration in the 281 

operant response, distances between two nodes in the network decreased (Figure 3 left). 282 

Furthermore, transitions made by agents in the simulations became efficient, and time 283 

required for simulations shortened (Figure 3 right). These results were replicated in a wide 284 

range of Q-operant and Q-others, in different numbers of nodes (Supplementary figure 2), 285 

and with a different path search algorithm (Supplementary figure 3). 286 
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 287 

Figure 2. Results of simulation 1 288 

(A) Change in network with an increased Q-operant. Each point denotes a response, with 289 

black and red indicating other responses and the operant response, respectively. (B) 290 

Change in resistance to devaluation and features of the network with an increased Q-291 

operant. The left panel shows resistance to devaluation, which indicates the decrease in the 292 

operant response caused by reward devaluation and implies that the operant response 293 

becomes a habit at higher values. The center panel shows the change in the number of 294 

edges that the operant response acquired. The right panel shows the betweenness centrality, 295 

i.e., the probability that the operant response is included in the shortest path connecting two 296 

nodes in the generated network. 297 
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 298 

Figure 3. Reduced computation costs with habit formation 299 

The left panel shows the average path length, i.e., the average of the shortest path between 300 

two nodes in the network. When the path length is shorter, the transition from one response 301 

to another becomes faster. The right panel shows the required time to simulate the baseline 302 

phase. The required time is the real time, i.e., the duration from the start to the end of the 303 

simulation. Since the number of loops is the same for all simulations, the decrease in 304 

required time implies efficiency in shortest path search and transitions between responses.  305 

Interim Discussion 306 

In simulation 1, we examined the structure of the network and habit formation under arbitrary 307 

Q-matrix and showed that habit formation occurred when edges from other responses were 308 

concentrated in the operant response. By manipulating Qoperant systematically, the operant 309 

response acquired most edges in the network (Figure 2A and Figure 2B center) and it 310 

caused that increase in the resistance to devaluation (Figure 2B left). These results suggest 311 

that habit formation can be viewed as the structural change in the behavioral network. In 312 

particular, habits are considered as concentration of edges from other responses to the 313 

operant response. This is because when agents move one response to another, the operant 314 

response is included in the path between the two nodes (Figure 2B right). These results 315 
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were replicated in different settings of algorithms or parameters (Supplementary figure 1, 2, 316 

and 3), suggesting these results were not limited to the specific setting. 317 

Habits are efficient in the computational cost and transition7, 38. In our model, these 318 

features of habits were also found. Animal responses are constrained by some factors, such 319 

as space and the animal’s body. For example, an animal cannot eat food if the food is not 320 

in front of it and if it cannot walk when it is sleeping. These examples imply that not all 321 

responses are connected to each other and that the number of edges in the network is 322 

limited. When the number of edges was constrained, the structure of the network promoted 323 

that agent to engage in the desired response. When edges from other responses were 324 

concentrated in the operant response, the average distance between two nodes was 325 

shortened39, , and transitions made by agents became efficient (Figure 3). These results also 326 

imply that agents can find the path between two nodes faster. Thus, habit formation, i.e., 327 

edge concentration to the response, reduces the computational cost and hastens the 328 

transition under constraints. 329 

Simulation 2: Devaluation and its effect on behavior under free-operant 330 

situation 331 

We examined if our model could reproduce the effects of factors that promote or disrupt 332 

habit formation in free-operant situations11-15. In simulation 2, we let an agent learn Q-values 333 

under arbitrary experimental environments and examine whether habit formation occurs. 334 

Under free-operant situations, there are three factors that lead to an operant response to 335 

habit. The first is the amount of training, where one response is rewarded repeatedly under 336 

one situation, and the response becomes habit11, 12. The second factor is the rule, called 337 

schedule of reinforcement, which determines the criteria for presentation of a reward for a 338 

response13. Habit formation does not occur when reward presentation is determined by the 339 

number of responses by the animal. In this environment, the presence/absence of a reward 340 

is determined with a certain probability each time the animal presses a lever, e.g., in the 341 

bandit task or slot machine use. Habit formation occurs when rewards are determined 342 

according to the time elapsed since the previous reward. In this environment, the availability 343 

of a reward is determined potentially at arbitrary time steps with a certain probability, and 344 

the reward is presented at the first response after reward presentation becomes possible, 345 
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such as checking a mailbox. The former response-based rule is called the variable ratio (VR) 346 

schedule, and the latter time-based rule is called the variable interval (VI) schedule. The 347 

third factor is the presence of alternatives. If two alternatives are available under a situation 348 

and different rewards are obtained from them (e.g., left lever → food, right lever → water), 349 

the operant response does not become a habit14, 15. Here, we reproduce the above 350 

experimental settings and examine whether our model becomes a habit under these 351 

environments. 352 

 The only difference between simulations 1 and 2 is whether the agent learns the Q-353 

values. Here, the agent experienced the training phase preceding the baseline phase, where 354 

the agent learned Q-values through interaction with a given environment and constructed a 355 

network based on them (more detail in Materials and Methods). After the training phase, the 356 

agent experienced the baseline and devaluation phases in the same way as in Simulation 357 

1. 358 

Simulation result 359 

Figure 4A shows the growth of resistance to devaluation (left), number of edges (center), 360 

and betweenness centrality (right) with increased amounts of training in VI (time-based rule; 361 

red line) and VR (response-based rule; blue line) schedules. All measures were larger in the 362 

VI schedule than in the VR schedule. Figure 4B shows the resistance to devaluation (left) 363 

and examples of networks learned in the choice (center) and no-choice situations (right). 364 

The resistance to devaluation was larger in the no-choice situation than in the choice 365 

situation (Figure 4B left). Two operant responses acquired almost the same number of 366 

edges in the choice situation (Figure 4B center), while only one operant response acquired 367 

the greatest number of edges in the network in the no-choice situation (Figure 4B right). 368 

Figure 5 shows the Q-value for self-transition of the operant response. The Q-value 369 

increased with an increased amount of training and was larger in the VR schedule than in 370 

the VI schedule. These results were replicated in different experimental settings. 371 

Supplementary Figure 2B shows the replicated results in different numbers of nodes (25, 50, 372 

75, and 100). In simulation 2, agents received rewards every time they engaged in other 373 

responses. In other words, we assigned fixed ratio (FR) 1 for other responses. 374 

Supplementary Figure 4 shows the results when a different schedule was assigned to other 375 

responses instead of FR 1. The results were almost the same. We examined if the results 376 
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remained similar when a different learning algorithm, SARSA, was employed and 377 

Supplementary Figure 5 shows that similar results were obtained. 378 

 379 

Figure 4. Results of simulations in VI and VR schedules and presence and absence of 380 

choice 381 

(A) Results of simulations manipulating the amount of training in the VI and VR schedules. 382 

In all panels, the red and blue lines denote the VI and VR schedules, respectively. The left, 383 

center, and right panels show the resistance to devaluation, number of edges, and 384 

betweenness centrality, respectively. (B) Results of simulations in the choice and no-choice 385 

simulations. The left panel shows the resistance to devaluation. The center and right panels 386 

show the learned network in the choice and no-choice situations, respectively. In the network, 387 
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the red and blue nodes denote the operant response, and black nodes denote other 388 

responses. 389 

 390 

Figure 5. Q-value for self-transition of the operant response 391 

Q-value of self-transition of the operant response. The red and blue lines denote the VI and 392 

VR schedules, respectively. 393 

Interim Discussion 394 

In simulation 2, we examined whether our model shows similar behavior to real animals in 395 

environments that affect habit formation, and our model reproduced the similar results 396 

reported from the empirical studies. The resistance to devaluation increased with an 397 

increased amount of training and was larger in the VI schedule than in the VR schedule 398 

(Figure 4A left). As we have seen in simulation 1, the operant response acquired most of 399 

the edges in the network under VI schedule, but not under VR schedule (Figure 4A center), 400 

and it turned out that the betweenness centrality grew up under VI schedule (Figure 4A right). 401 

These results imply that the VI schedule and a large amount of training promote habit 402 

formation. The resistance to devaluation was lower in the choice situation than in the no-403 
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choice situation (Figure 4B left), suggesting that the presence of explicit alternatives 404 

disturbed habit formation. 405 

 The amount of training affects the structure of the network (Figure 4A), and as the 406 

amount of training increases, the cohesion of edges in the operant response increases. The 407 

smaller the amount of training, the smaller the Q-values of the transition from other 408 

responses to the operant response. Consequently, the probability that an edge is attached 409 

to the operant response is smaller. As shown in simulation 1, habit formation occurs when 410 

the operant response acquires most of the edges in the network. Thus, the amount of 411 

training affects habit formation. 412 

The resistance to devaluation was larger in the VI schedule than in the VR schedule, 413 

suggesting that habit formation was promoted in the VI schedule. The VR schedule is a 414 

response-based rule of reward presentation. Therefore, all operant responses, independent 415 

of the agent’s engagement immediately before, were rewarded with constant probability. In 416 

contrast, the VI schedule is a time-based rule and it causes that an operant response, longer 417 

elapsed time from last operant response, is selectively rewarded. In other words, an operant 418 

response emitted after a few periods was selectively rewarded and implied a transition from 419 

the other responses to the operant response in our model. In summary, transitioning from 420 

other responses to the operant response was selectively rewarded in the VI schedule and 421 

resulted in edge concentration in the operant response and habit formation. 422 

One might suspect that, contrary to the experimental facts that the response rate is 423 

larger in VR schedule than VI schedule, if operant responses acquire more edge in the VI 424 

schedule, then the response rate would be higher in the VI schedule as well. However, 425 

Figure 5 shows the Q value of the self-transition of the operant response is larger in VR 426 

schedule than VI schedule. It implies that once an agent starts to engage in an operant 427 

response, it will repeat the same response over and over again. In fact, it has been 428 

experimentally shown that the difference in response rate between VI and VR schedules is 429 

caused by such a mechanism40-42. 430 

 Although the operant response acquired most of the edges on the network under the 431 

choice environment, the operant response did not become a habit. There are two reasons 432 

for this. First, the agent chooses its response based on the value of the reward obtained 433 

from the response. In the test phase, the value of the reward obtained from the operant 434 

response was reduced, and that of the alternative response remained the same value as 435 
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the baseline. Thus, the agent chose the alternative response more in the test phase than in 436 

the baseline phase. Second, if only the operant response acquired most edges, any shortest 437 

path may contain the operant response. However, the alternative response acquired most 438 

of the edges, so that any shortest path contained the alternative response. Thus, the operant 439 

response no longer has a greater chance of being engaged, and habit formation does not 440 

occur. 441 

 In the no-choice situation, the operant response acquired the most edges in the 442 

network, but several other responses also acquired multiple edges (Figure 4B right), 443 

resembling the scale-free network, which should be assessed by the distribution of degree. 444 

However, habit formation occurred in the network. Therefore, although scale-free networks 445 

were not compared with random or hub-and-spoke networks, habit formation might be 446 

present in the scale-free-like network. 447 

Simulation 3: Correlation-based account vs contiguity-based account of 448 

habit formation 449 

Here, we propose an experiment to directly test the response-reinforcer correlation, which 450 

has been considered as a factor leading to habit formation in the past, and our model's 451 

explanation: selective reinforcement of transitions from other behaviors to the operant 452 

response and the resulting structural changes in the network. This is a new experiment 453 

predicted by our model, which has not yet been examined in real animals, and will encourage 454 

future theoretical tests. 455 

From canonical view, response-reward correlation, the operant responses remain 456 

goal-directed when animals experience a correlation between the operant responses and 457 

rewards but become habits when they do not experience the correlation1, 43. Under VR 458 

schedule, the more they engage the operant response, the more rewards they can obtain. 459 

It leads that they experience positive correlation between the operant response and rewards, 460 

and the operant response remains goal-directed. In contrast, under VI schedule, since 461 

rewards availability is governed by time, such correlation is collapsed, and they do not 462 

experience it. It results that the operant response becomes habit. 463 

In recent years, results have been reported that contradict the response-reward 464 

correlation44-46. For example, De Russo, et al.45 trained mice under VI and FI scehdules. FI 465 
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and VI have a common molar relationship between response rate and rewards: in both 466 

schedules, animals cannot obtain more than the determined number of rewards within a 467 

certain duration, no matter how much they engage in the operant response. Under such a 468 

condition, the response-reward correlation view predicts that both schedules guide the same 469 

level of habit formation. However, the operant response of mice trained under FI schedule 470 

remains goal-directed but under VI schedules, the operant response becomes habit. 471 

DeRusso, et al.45 conclude that the contiguity, which is defined by average temporal distance 472 

between responses and successive rewards, disrupts habit formation. In the FI schedule, 473 

animals tend to emit more response as they approach the time when rewards are presented. 474 

In contrast, animals do not know when the reward becomes available, they emit responses 475 

uniformly during inter-reward intervals in VI schedule. Thus, under the FI schedule, animals 476 

emit many responses just before rewards and the contiguity of responses and rewards 477 

becomes higher but, under the VI schedule, operant responses are distributed uniformly, 478 

and the contiguity becomes lower. 479 

A similar discussion has been made for VI-VR response rate difference and there 480 

are two kinds of accounts. One explains the difference by the difference in interresponse 481 

time that is likely to be rewarded47, 48. In VI schedule, probability of reward availability 482 

increases as the elapsed time from last response increases and it results that longer IRTs 483 

are more likely to be rewarded than shorter ones. In contrast, such characteristics are not 484 

found in the VR schedule or shorter IRTs are more likely to be reinforced. (Figure 6 right). 485 

Thus, response rate is lower in VI schedule than VR schedule. Especially, the copyist model47 486 

explains the difference by average of inter-response times between successive rewards and 487 

this is similar to contiguity-based account of habit formation45, 46. Second account is based on 488 

the molar relationship between response rate and reward rate49, 50. The more animals emit 489 

responses under VR schedule, the more rewards they can obtain (blue line in Figure 6 left). 490 

In contrast, under VI schedule, animals cannot obtain more rewards than experimentally 491 

defined, no matter how they emit responses under the schedule (red line in Figure 6 left). 492 

This account underlies the response-reward correlation account of habit formation1, 43. 493 
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 494 

Figure 6. Response rate and reward rate correlation (left) and reward probability as function 495 

of elapsed time last response (right) in VR and VI schedules. In VR schedule (black line), 496 

reward rate is proportional to response rate, in contrast, reward rates reach a plateau as 497 

response rate increases in VI schedule (red line). Reward probability is constant 498 

independent from elapsed time from last response in VR schedule, in contrast, it increases 499 

exponentially as the time increases.  500 

Our model is positioned similarly to the contiguity-based account in these 501 

discussions. As we show in simulation 2, the VI-VR response rate difference can be 502 

explained by which transitions are likely to be rewarded: In VI schedule, the transitions from 503 

other responses to the operant response are more likely to be rewarded but not in VR 504 

schedule (Figure 5). Viewing the cause of long IRTs as engagement in other responses33, 51, 505 

differential reinforcement of long IRTs can be interpreted as differential reinforcement of the 506 

transition from other response to the operant response. Considering these discussions, our 507 

model suggests that the same discussions for VI-VR response rate difference can be applied 508 

to habit formation. 509 
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Here, we mimic an experiment which is conducted to reveal that the VI-VR response 510 

rate difference is caused by IRTs immediately followed by rewards52. In the experiment, 511 

pigeons are trained under tandem VI VR and tandem VR VI schedules. The former schedule, 512 

tandem VI VR, shares a molar relationship between response rate and reward rate with VI 513 

schedule. However, VI schedule is immediately followed by short VR schedule and longer 514 

IRTs are less likely to be rewarded than simple VI schedule. The later one is tandem VR VI, 515 

it’s molar relationship between response rate and reward rate is similar to the simple VR 516 

schedule. However, since VR schedule is followed by VI schedule, longer IRTs are more 517 

likely to be rewarded. In this schedule, pigeons showed higher response rate in tandem VI 518 

VR schedule and lower in tandem VR VI schedule52. These findings contradict the account 519 

based on response rate and reward rate correlation but well explained by differential 520 

reinforcement of IRTs47. Will habit formation occur under these schedules? From the view of 521 

response-reward correlation, tandem VI VR schedule leads habit but not in tandem VR VI 522 

schedule because there is lower response-reward correlation under the former schedule but 523 

higher than the later one. In contrast, our model makes the opposite prediction that habit 524 

formation will be guided under tandem VR VI schedule but not under tandem VI VR schedule. 525 

This is because, in the former schedule, transitions from other responses to the operant 526 

response are more likely to be rewarded, and the operant response acquired more edges. 527 

In the later schedule, transitions from other response to the operant response and the self-528 

transition of the operant response are rewarded in the same probability so the operant 529 

response acquired not so many edges. 530 

Simulation result 531 

 Figure 7 shows the resistance to devaluation, number of edges, and betweenness 532 

centrality simulated under VI, tandem VI VR, VR, and tandem VR VI schedules. They were 533 

higher under VI and tandem VR VI schedules than VR and tandem VI VR schedules. 534 

Although the response-reward correlation account suggests that habit formation is disrupted 535 

under tandem VR VI schedule and is promoted tandem VI VR schedule, the results were 536 

the opposite, habit formation was promoted under tandem VR VI and but not under tandem 537 

VI VR. The center of Figure 7 shows the number of edges that the operant response 538 

acquired to the overall number of edges in the network and the operant response acquired 539 

more edges under VI and tandem VR VI schedules. Figure 7 (right panel) shows the 540 
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betweenness centrality of the operant response. The betweenness centrality was larger in 541 

the VI and tandem VR VI schedules than in the VR and tandem VI VR schedules. Figure 8 542 

shows the Q-value of the operant response. It was larger in the VR and tandem VI VR 543 

schedules than in the VI and tandem VR VI schedules. 544 

 545 

Figure 7. The simulation results in tandem VI VR and tandem VR VI schedules. 546 

The left panel shows the resistance to devaluation in VI, Tandem VI VR, VR, and Tandem 547 

VR VI schedules. The center panel shows the number of edges that the operant response 548 

acquired in each schedule. The right panel shows the centrality of the operant response. 549 
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 550 

FIgure 8. Q-value for self-transition of the operant response. 551 

Interim Discussion 552 

In simulation 3, we mimicked the schedules employed by Peele et al.52 to reveal what 553 

characteristics of schedules, response-reward correlation, or response reward contiguity, 554 

promote habit formation. Traditional accounts suggest that lack of the response-reward 555 

correlation promotes habit formation1, 43. In contrast, other researchers suggest that the 556 

response-reward contiguity is crucial for habit formation but not the correlation45, 46. These two 557 

accounts make different predictions in the schedules we employed here. Tandem VR VI 558 

schedule has a common molar relationship between response rate and reward rate with 559 

simple VR schedule (blue line in Figure 6 left) but it also has a time-dependent property, 560 

which is found in VI schedule (red line in Figure 6 right), that the probability of obtaining 561 

rewards increases as time elapses. In summary, the Tandem VR VI schedule has higher 562 

response-reward correlation but lower response-reward contiguity, and the response-563 

reward correlation account predicts that habit formation is disrupted in the schedule. In 564 

contrast, the tandem VI VR schedule lacks both a molar relationship between response rate 565 
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and reward rates and time-dependency (red line in Figure 6 left and blue line in Figure 6 566 

right). In such schedule, animals cannot obtain more than the determined number of rewards 567 

within a certain duration, no matter how much they engage in the operant response but the 568 

transition from other responses to the operant response is less likely rewarded. In summary, 569 

the tandem VR VI schedule had a higher response–reward correlation but a lower response-570 

reward contiguity, and the response-reward correlation account predicted that habit 571 

formation was disrupted in the schedule. However, in contrast to the traditional view, our 572 

model predicts that habit formation is more likely promoted in tandem VR VI schedule 573 

(Figure 7 left). Because of time-dependency tandem VR VI schedule have, transition from 574 

others response to the operant response is more likely to be rewarded in the schedule and 575 

acquired more edges that simple VR schedule and tandem VI VR schedule (Figure 7 center). 576 

Thus, as we showed in simulation 1 and 2, the probability that the operant response is 577 

included in the shortest paths increased and habit formation occurred (Figure 7 right). 578 

 Our model supports the account that the contiguity between responses and rewards 579 

promotes habit formation45, 46. In tandem VI VR and simple VR schedule, the self-transition of 580 

the operant response is more likely rewarded than transition from other responses to the 581 

operant response. This is because, the operant response occurred as a bout, a burst of 582 

responses is followed by long pauses, and this implies that animals emit more responses 583 

just before reward presentation. In tandem VR VI and simple VI schedule, the self-transition 584 

of the operant response is less likely rewarded because of the time-dependent property 585 

between response and reward (red line in Figure 6 right). This result implies that animals 586 

emit less response just before the reward presentation. Thus, response reward contiguity is 587 

higher in the tandem VI VR and simple VR schedule than tandem VR VI and simple VI 588 

schedule. 589 

  590 
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Discussion 591 

In this research, we explain habit formation as changes in network structure by assuming 592 

the behavior of organisms viewed as a network of responses. In simulation 1, we generated 593 

arbitrary networks and examined the underlying structure of goal-directed behavior and 594 

habits. We revealed that habit formation occurs when a particular response acquires most 595 

of the edges from other responses. In Simulation 2, we simulated the environments that 596 

were reported to promote or inhibit habit formation from existing studies and examined 597 

whether the proposed model showed habit formation. These results were consistent with 598 

experimental results reported by many laboratories, suggesting that our results demonstrate 599 

habit formation as a structural change in the behavioral network. In simulation 3, we 600 

analyzed the behavior of the proposed model in an experimental situation where the 601 

canonical theory1, 43 and the proposed model make different predictions. The results suggest 602 

that our model supports the view of reward-responses contiguity promoting habit formation45, 603 

46 but not the canonical view of reward-response correlation. 604 

Relationship to other theoretical models of habit formation 605 

Although there are many models of habit formation, most of them are viewed as goal-606 

directed behavior and habits as interactions between two distinctive associative structures. 607 

Here, we succeeded in providing a novel explanation by taking a more molar view of 608 

behavior. Specifically, the proposed model substantially differs from existing models in three 609 

ways. First, the proposed model does not consider behavior as a single element, but as a 610 

network of interconnected responses. Conventional views focus only on responses under 611 

highly constrained experimental situations, such as lever pressings or button pushings, and 612 

ignore the molar structure of behavior that the real organisms may have. Responses of 613 

organisms, including humans, are not independent of each other, but they are 614 

probabilistically conditioned by the preceding and succeeding responses. In the proposed 615 

model, the structures of such responses are represented as a network, and habit formation 616 

is explained as a change in the structure. Second, our model seems to have no state variable, 617 

unlike previous models3, 4, 7, 53. We treated the immediately prior response of the agent as a 618 

state; thus, so there is no lack of state variables. This treatment of past responses as states 619 

has often been employed in modeling animal behavior32, 33, 51, 54. However, our model differs from 620 
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past models of habits. Many models of habits were built in consideration of the multistage 621 

Markov decision task2-4, 7. In the multistage Markov decision task, experimentally explicit 622 

states, each choice point, exist. In contrast, we studied habits in free-operant situations in 623 

which animals could engage in responses freely and repeatedly, and experimentally explicit 624 

states were lacking. Previous models were applied to the free-operant situation in two 625 

different ways. One way was to not assume the state (1), and the other way was to introduce 626 

a hypothetical state7, 53. We treated the immediately prior response as a state, similar to the 627 

later one. Although our model seems to have no state variable, our approach was similar to 628 

the previous one7, 53. Third, some models of habits assumed two distinct systems 629 

corresponding to goal-directed behavior and habits1, 2, 53. Particularly, only the model that could 630 

explain habits in free-operant situations assumed them explicitly (1). Although all responses 631 

were assumed to be under goal-directed control, choices were based on reward values and 632 

shortest path search, and results reported in free-operant situations were reproduced11-15. 633 

Recently, in the context of the multistage Markov decision task, several models showed no 634 

distinct systems between goal-directed behavior and habits3, 4. Our model also showed no 635 

explicit distinction but that the idea could be applied to habits in free-operant situations. 636 

 Although the proposed model deals with experiments on habit formation in rodents’ 637 

operant situations11-15, most of the experiments discussed here are also dealt in Perez and 638 

Dickinson1. Both models reproduce results that are consistent with the experimental results. 639 

Perez and Dickison1 provide an explanation based on reward-response correlations. In their 640 

model, the lower the correlation between response and reward, the more habit formation is 641 

promoted. On the other hand, the proposed model provides an explanation based on 642 

contiguity between response and reward45, 46. Contiguity is defined by the temporal distance 643 

between the reward and the emitted response to obtain it. The lower the contiguity, the 644 

longer the temporal distance between the response and the reward, the more habit 645 

formation is promoted. Although the proposed model does not explicitly incorporate 646 

contiguity as a variable in the model, it allows for a similar representation by dividing the 647 

agent's behavior into the operant responses and other responses, and separating transitions 648 

to the operant responses into self-transitions and transitions from other responses. For 649 

example, in a schedule with low reward-response contiguity, such as the VI schedule, 650 

transitions from other behaviors to the operant are more likely to be reinforced, while in a 651 

VR schedule with high contiguity, transitions from other behaviors are less likely to be 652 
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reinforced. As a result, the operant response obtains more edges and promotes habit 653 

formation in schedules with low contiguity. As an experiment in which these two factors can 654 

be more clearly separated, we employed the procedure of Peele et al.52. Under this 655 

procedure, correlation-based and contiguity-based explanations provide opposite 656 

predictions. The proposed model reproduced the same results as predicted by the 657 

contiguity-based explanation. Whether habit formation occurs under this experimental 658 

procedure has yet to be examined, but it does provide useful insights for updating the theory 659 

of habit formation. 660 

 The proposed model may seem similar to the model of Dezfouli and Balleine7, 9, 10. In 661 

fact, their model and our proposed model have two common assumptions. First, instead of 662 

treating the agent's behavior as a single response, the two models explicitly assume other 663 

responses. They explain habit formation in terms of the acquisition of those sequences or 664 

the structure of the network. The second point is that the agent generates sequences or 665 

searches for the shortest path based on the value of the reward. However, the models have 666 

two differences. First, the targeting experimental situations differed. Their model was built 667 

with the multistage Markov decision task, while our model was built to explain habit formation 668 

in free-operant situations. The existing comprehensive theory in free-operant situations 669 

assumed parallel control by two systems (1). A kind of response-chaining/action-chunking 670 

models have limited applicability in free-operant situations. Second, the view of behavior 671 

differed. Our model tried to overcome the limitation. In free-operant situations, animals could 672 

engage in responses freely without explicit states defined experimentally. In the case of free-673 

operant situations, direct application of the idea of response-chaining or action-chunking 674 

was difficult because no points corresponded to the start and end of trials. Instead of the 675 

chunk or chain, we considered behavior as a network and the agent’s behavior as a 676 

transition within the network. In other words, by viewing behavior as a loop without a clear 677 

start or end, we successfully modeled the behavior of free-operant situations. 678 

 Dezfouli and Balline7 applied their model to the free operant situation and reproduced 679 

the effect of amount of training on habit formation. However, they did not treat how other 680 

factors, schedule types and presence of alternatives, affect habit formation. The proposed 681 

model, which shares common assumptions with their model, can reproduce the results 682 

reported in empirical study11-15, suggesting that the idea of response-chaining or action-683 

chunking could be applied in free-operant situations. Moreover, the model clarifies the 684 
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difference between the canonical correlation-based account and common points with the 685 

contiguity-based account. We also found common features with the recently proposed 686 

models3, 4. In those models, goal-directed planning was employed, and the behavior of human 687 

and rodents’ multistage decision-making tasks, such as multistage Markov decision tasks 688 

and tree-shaped maze, were explained. Pezzulo et al.3 built a mixed-controller model 689 

consisting of goal-directed and habit behaviors in a single system. Keramati et al.4 proposed 690 

that these two systems were not separated but placed in one spectrum. Our model also 691 

considered these two systems to be not separated but coexisting in a single system and 692 

placed in one spectrum, with only a difference in the structure of the network. However, 693 

similar to many other models, their models targeted multistage decision-making tasks but 694 

not free-operant situations. Our model shared common features, i.e., planning and 695 

singularity of the system, with their models3, 4 and successfully applied those features in free-696 

operant situations. From the canonical view, two distinct systems control a response in the 697 

flat manner1, 2. This view has been challenged recently, and new models have been proposed 698 

in the context of the multistage decision-making tasks. Although their applications are limited 699 

to free-operant situations, our model adopted those ideas, i.e., response-chaining/action-700 

chunking, planning, and mono-systematicity, and explained habit formation in free-operant 701 

situations, suggesting a link between the different experimental procedures and providing a 702 

comprehensive understanding of habit formation. 703 

Neural substrates of behavioral network 704 

The corticostriatal network is involved in habit formation, and generates response patterns55, 705 

56. Especially, dorsolateral striatum (DLS) is known to be important in transition from goal-706 

directed behavior to habits57. DLS activity changes as proceedings of training and responses 707 

become habits58, 59, and lesion of DLS turns habits into goal-directed behavior after extended 708 

training57. DLS also carries forming response sequences60 and motor routines61. In addition to 709 

its importance in the learned behavior, DLS also encodes innate response sequences62. 710 

These facts imply that habit formation and the formation of response sequences have 711 

common neural substrates. 712 

A recent study reported that DLS encodes not only information about response 713 

sequences but also more divergent information about behavior, which are topographically 714 

categorized responses and transitions between them18. They recorded the DLS activities of 715 
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mice with fiber-photometry under an open-field situation and reported neural activities that 716 

correlated with the behavior. The activities differed depending on the preceding and 717 

succeeding responses, and DLS encoded a transition between the responses. Moreover, 718 

the behavior of the mice with DLS lesions showed random transitions of the responses 719 

compared to the sham-lesion group. These results imply that the information encoded in 720 

DLS is the transition of the structure of behavior. Thus, the function of the DLS might be well 721 

understood by considering the habit and goal-directed behavior from the viewpoint of the 722 

behavioral network. 723 

Corticostriatal circuits, the associative network, which consists of the prefrontal 724 

cortex, dorsomedial, or ventral striatum, plays a role in goal-directed behavior63. The 725 

dorsomedial striatum (DMS) is known to be involved in the acquisition of goal-directed 726 

behavior, maintaining sensitivity to outcomes, and expressing goal-directed behavior64, 65. The 727 

DMS receives excitatory inputs from the prefrontal cortex, whereas the DLS receives inputs 728 

from the sensorimotor and premotor cortices65. In the canonical dichotomous view of habit 729 

formation, goal-directed behavior is replaced by habit after extensive training. After habit 730 

formation, the contribution of DLS becomes more important than that of DMS57, 65. However, 731 

even after extensive training, many brain areas such as the prefrontal cortex, anterior 732 

cingulate cortex, and ventral and dorsal striatum are modulated by anticipated rewards66-70. In 733 

our model, any response emitted by an agent is considered goal-directed. Regardless of the 734 

training stage, our agents choose their responses based on the value of the rewards. 735 

Therefore, the fact that regions involving goal-directed behavior are modulated by 736 

anticipated rewards even after extensive training, our assumptions do not contradict each 737 

other. Combined with the fact that DLS is more responsible for sequential responding than 738 

DMS71, the transition from DMS to DLS during habit formation might reflect the corresponding 739 

behavioral sequence induced by changes in the behavioral network.  740 

Neuronal circuits involving ventral striatum and hippocampus play key roles in spatial 741 

navigation and are considered to be related to the planning72, 73. Both spatial navigation and 742 

planning are related to habits, and they share common neurobiological substrates3, 74-78. 743 

Although roles of hippocampus and planning in habits and goal-directed behavior in free-744 

operant situations remains unknown, our model sheds light on the role of planning  and 745 

related brain regions in habits in the free-operant situations. 746 

 747 
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Relationship to other behavioral phenomena 748 

Animals engage in specific responses, such as orienting, approaching, and consummatory 749 

behavior, just after the presentation of the reward. Specific action sequences are observed 750 

during experiments, and learning is sometimes disrupted by innate responses. These 751 

experimental and observational facts lead us to assume that behavior is a network 752 

constructed from responses. 753 

  In our model, the structure of a network depends only on past experiences under a 754 

given situation. In other words, our model does not consider the connections between 755 

specific responses that real organisms may have. Thus, we could not reproduce this 756 

phenomenon. However, our model can be further extended and modified to include this 757 

phenomenon. 758 

 Schedule-induced behavior, observed under intermittent schedules of reinforcement, 759 

is a behavioral phenomenon in which animals show aggression or water intake just after the 760 

reward presentation26-28. This phenomenon can be attributed to the innate connections 761 

between reward consumption and schedule-induced behavior. Because of these 762 

connections, animals tend to engage in aggression or water intake immediately after reward 763 

presentation. Similarly, terminal behavior, which occurs as approaches reward 764 

presentations, can be explained by assuming an innate connection, which may explain the 765 

fact that animals show a specific sequence of responses during the experiment. 766 

 To deal with such phenomena, we assume that it is possible to express the innate 767 

susceptibility of edges as a prior distribution and impose constraints on the probabilities of 768 

edges attached by learning. Furthermore, we can systematically treat phenomena such as 769 

misbehavior and biological constraints on learning by examining differences in prior 770 

distributions among species and environments. Thus, we can extend our model to a 771 

comprehensive framework of behavior that incorporates the innate behavior of organisms 772 

under natural settings. 773 

 Goal-directed behavior and habits are related to spatial navigation3, 74-78. Pezzulo et 774 

al.3 target an experiment with tree type maze and the task is similar in the abstract structures 775 

to the multistage Markov decision task. Our model employed a planning process as the 776 

model proposed in Pezzullo et al3. However, planning is made in the real space in their model, 777 

but planning is made in behavioral space in ours. Thus, the application of our model for 778 
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spatial navigation is limited. However, the idea of learning response sequence can be 779 

applied to spatial navigation, such as learning a series of responses of turning to left and 780 

then turning to the right. As we discussed in the above, the limitation is also related to the 781 

experimental situations, multistage Markov decision tasks and free-operant situations. We 782 

expect a more comprehensive view or model that targets both experimental situations in the 783 

future. 784 

Limitations and future directions 785 

Our model has three major limitations. First, as we discussed in the previous section, our 786 

model does not consider innate constraints that real organisms have, and we believe that 787 

we can solve the problem by expressing the innate constraints as a prior distribution. Second, 788 

our model could not treat the self-transition of each response. Third, it can only deal with 789 

experiments on habit formation under free-operant situations. 790 

 Our model cannot treat the self-transition of responses because we employed the 791 

shortest path search algorithm to generate response sequences. Any self-transition makes 792 

paths between any two responses longer, and paths containing self-transitions must not be 793 

the shortest paths. However, animals show a particular response pattern, which is called 794 

bout-and-pause and characterized by phasic bursts of one response and pauses following 795 

them. Such response patterns imply that the responses have self-transitions. To solve this 796 

problem, it is necessary to employ a different algorithm to generate response sequences 797 

that allow self-transition. 798 

 All our simulations deal with experiments in free-operant situations, and not with 799 

recent experiments with the two-stage Markov decision task. This is not a specific problem 800 

for our model; other existing models treat either of them. Although many experiments have 801 

been conducted in both experimental tasks, the differences and identities of the procedures 802 

and results among them have not been systematically examined. To obtain a more unified 803 

understanding of habit formation, we need to conduct a systematic analysis of the 804 

procedures and results employed and obtained from existing studies. Therefore, the 805 

validation of our model is limited to habit formation in free-operant situations. 806 

 Recent advances in machine learning allow us to measure animal behavior more 807 

objectively and precisely than ever before. However, behavior estimation technologies are 808 

not well established at present, preventing us from validating some assumptions in our 809 
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model. In this field, no consensus has been reached on what timescale should be employed 810 

to classify behavior and how finely behavior should be classified. For example, we assumed 811 

that the behavioral network consisted of 50 nodes but did not know how many nodes 812 

constitute the behavioral network of real animals. However, as shown in Supplementary 813 

Figure 2, habit formation occurred in networks of a slightly smaller size, suggesting that our 814 

explanation for habits could be applicable to the real behavioral network even if the size is 815 

smaller than we assumed. In the future, such technologies and  by utilizing these techniques, 816 

it is possible to understand behavior on a macroscale rather than capture the behavior in 817 

highly constrained experimental settings. Our model provided a novel perspective on how 818 

behavior could be viewed on macroscale behavioral phenomena and raised questions that 819 

could be answered by such techniques, which would further help us understand the function 820 

of the brain in behavioral changes. 821 

Conclusion 822 

In this paper, we provide a novel perspective on habit formation by assuming behavior as a 823 

network. In existing models, goal-directed behavior and habits are controlled by two distinct 824 

systems. On the other hand, our model shows that although all responses are goal-directed, 825 

both goal-directed and habits result from the structure of the network. It proposes that habit 826 

formation is not caused by a change in the control of the two systems, but rather by a 827 

continuous change in a single system. Furthermore, the most important feature of our model, 828 

which differentiates it from other models, is that behavior is a network constructed from 829 

responses. With this view, we have succeeded in providing a novel explanation for habit 830 

formation. This implies that the possible algorithms can be changed depending on how one 831 

views the behavior of organisms. Our study also suggests that changing the method of 832 

capturing behavior could be a fundamental step in understanding the biological structure of 833 

the behavior. 834 

  835 
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Materials and Methods 836 

Overview 837 

We conducted three simulations in this article, and they contain four steps (Figure 9). In the 838 

first step, our agents are given a hypothetical Q matrix in the simulation 1 or learn the Q 839 

matrix in the given environments in the simulation 2 and 3. In the second step, the agents 840 

generate a network based on the Q matrix. The way to generate the network is the same in 841 

all simulations. In the third step, baseline, the agents travel in the network and engage 842 

responses. Here, the agents choose their responses based on reward values and the reward 843 

value obtained by the operant response is set to 1.0. The agents no longer update the Q 844 

matrix nor reconstruct the network. In the final step, devaluation, the agents behave in the 845 

same way as the baseline. However, the reward value of operant response is reduced to 846 

0.0. The only difference between baseline and devaluation is the reward value of operant 847 

response. We explain the procedures conducted in the four steps in detail after sections. 848 

Our simulation codes are available at: https://github.com/7cm-diameter/hbtnet. 849 
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 850 

Figure 9. Overview of simulations. 851 

Generate hypothetical Q matrix 852 

Here, the agents are given a hypothetical Q-matrix instead of learning it through interactions 853 

between an environment. First, we determine the number of nodes contained in a network. 854 

We assign a scalar value for each node and it is represented by a vector. The first element 855 

of the vector denotes the operant response and other elements denote other responses. 856 

The values of the other responses are fixed to 0.01. The value of the operant response is 857 

ranged from 0.01 to 1.0. The Q matrix is then defined as the direct product of the Q-vector. 858 
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Learn Q matrix in the given Environment 859 

In simulation 2 and 3, agents learn the Q-matrix in an experimental environment. In the 860 

simulation 2, we conducted simulations with variable interval (VI), variable ratio (VR), 861 

concurrent VI VI, and VI with non-contingent rewards. Moreover, we changed the number 862 

of rewards in the learning phase to examine the effect of training on habit formation. In 863 

simulation 3, we conducted simulations with tandem VI VR and tandem VR VI. 864 

In all these simulations, the agent chooses a response and the environment provides 865 

a reward based on the response. The agent chooses a response according to the softmax 866 

function; pi =
𝑒𝛽𝑐𝑄𝑖

∑ eβcQiN
j=1

, where βc  denotes the inverse temperature, and 𝑁 denotes the 867 

number of responses in the given environment. We set βc = 3.0 in all simulations. Then, the 868 

agent updates the Q-matrix according to the response and the reward. In all simulations, we 869 

employ fixed ratio (FR) 1 for other responses, where the agent can obtain rewards every 870 

time it engages in the responses and the reward values are 0.001 for all other responses. 871 

These flows are the same in all simulations. The only difference between the simulations is 872 

the schedule in which the environment gives rewards to the agents. Algorithm 1 describes 873 

general flow of all simulations. In the following sections, we explain the differences in the 874 

schedules for each simulation. 875 

 876 

VR VI comparison and amount of training 877 
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The VR schedule presents rewards depending on the response of the agent. At each 878 

response, the reward is presented at a given probability, which is the same as in the 879 

simulations. This means that reward presentation follows the Bernoulli process, and the 880 

number of responses required to obtain rewards follows the geometric distribution. We 881 

generate pseudo-random numbers following the distribution in order for the numbers to 882 

converge to the distribution in all simulations. More specifically, we divided the interval 883 

ranging from 0 to 1 into equal divisions according to the number of rewards, and the 884 

percentile points of the distribution were calculated for each point. Algorithm 2 shows how 885 

to generate the required number of responses that follow the geometric distribution. We 886 

employ VR 15 in simulation 2. 887 

 888 

 The VI schedule presents rewards depending on the time lapse. However, the agent 889 

must emit responses to obtain rewards. Reward availability is determined at each time step 890 

according to a probability, and once the reward becomes available, it remains available until 891 

the agent takes the response. Reward availability follows the Poisson process, and the 892 

intervals between each reward follow an exponential distribution. Pseudo-random numbers 893 

are generated following the distribution in the same manner as the VR schedule. Algorithm 894 

3 shows how to generate inter-reward intervals that follow an exponential distribution. 895 

Moreover, we examined the effect of the amount of training on habit formation by 896 

manipulating the number of rewards in both schedules. We calculated the average of  inter-897 

reward intervals in the VR schedule and used them as the parameter of VI schedule. 898 
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 899 

Comparison between choice and single schedule 900 

To examine the degree of habit formation when an explicit alternative is given, we used an 901 

environment that mimics the experiment conducted by Kosaki and Dickinson15, where the 902 

effect of the presence or absence of the alternative on habit formation. Here, the agent can 903 

engage in two operant responses, and different rewards are assigned to each response. For 904 

example, two levers were inserted into the apparatus and pressing the left lever produced 905 

food, and the right levers produced a sucrose solution. In addition, as a control condition, 906 

we used an environment in which the agent can engage only one operant response, but the 907 

reward unavailable from the operant response is presented independent of the agent 908 

responses.  909 

We mimicked these experiments. In the choice condition, two of the responses were 910 

treated as operant responses, and assigned two VI schedules with the same value and the 911 

reward values obtained from both were set to 1.0. In the no-choice condition, the operant 912 

response was assumed to be one, but the reward was presented independently of the 913 

response in order to control the reward amount. We assigned a variable time schedule to 914 

the rewards that are presented independent from the agent responses. We employ 915 

concurrent VI 60 VI 60 in the choice condition, and concurrent VI 60 VT 60 in the no choice 916 

condition. 917 
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918 
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 919 

Tandem VI VR and tandem VR VI 920 

The tandem schedule is a schedule that presents multiple schedules in temporal succession. 921 

For example, tandem FR 5 VI 30 means that VI 30 will start after the agent has responded 922 

5 times, and the reward will be presented at the end of VI 30. In addition, since tandem does 923 

not provide any explicit cues about the components it consists of, the agent cannot know 924 

which schedule it is under. In tandem VI VR, the agent is first placed under a VI schedule, 925 

and after it is finished, it is moved to a VR schedule. In tandem VR VI the order of 926 

components is reversed, starting with the VI schedule, and followed by the VR schedule. 927 

We employ tandem VI 15 VR 3 and VR 10 VI 5. 928 
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 929 

 930 

Baseline and Devaluation 931 
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The reward devaluation is a procedure to examine whether an operant response is goal-932 

directed or habit under free-operant situations. First, an animal learns that he or she can 933 

obtain a reward, food, or sucrose solution by pressing the lever. Learning lever pressings, 934 

the animal was placed in an experimental environment and trained to the operant response. 935 

After the training, reward devaluation was done by poisoning it with lithium chloride and a 936 

brief period was added where the animal can access the reward freely. Then, the animal 937 

was put into the experimental environment again and examined whether the number of 938 

operant responses decreased. If the number of responses does not change, it implies that 939 

the response is no longer controlled by its consequence, and the response becomes a habit. 940 

In contrast, if the number of responses decreases, the response is controlled by its 941 

consequences, such as goal-directed behavior. In our simulation, to reproduce the 942 

procedure, we reduced the value of the reward obtained from the operant response after the 943 

baseline phase. 944 

Baseline 945 

In the baseline phase, an agent travels on a network by choosing a response following Eq. 946 

4 and searching for the shortest path between a currently engaging response and the goal. 947 

The simulation contains three steps: 1) choice of response based on reward values, 2) 948 

searching for the shortest path between the current response and the goal, and 3) engaging 949 

responses successively contained in the path. We calculated the proportion of an operant 950 

response to the total number of responses after some loops of the above 3 three steps. 951 

Algorithm 1 shows the pseudocode of the simulation in the baseline phase. 952 

Devaluation 953 

In the devaluation phase, the agent behaved in the same way as in the baseline phase. The 954 

difference between the devaluation and baseline phases is only the value of the reward 955 

obtained from the operant response. In the baseline phase, we set the value to 1, and in the 956 

test phase, we set it to 0. At the baseline phase, we calculated the proportion of the number 957 

of operant responses to the total number of responses. Algorithm 8 describes the procedure 958 

of the baseline and devaluation phase. 959 
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Data availability 961 

All relevant data are within the paper (Figure 2 - 8 and all Supplementary Figures) and the 962 

data and figures were generated using author’s scripts (See Code availability). 963 

Code availability 964 

All Python scripts written for the simulations and analysis are available at 965 

https://github.com/7cm-diameter/hbtnet. 966 
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Supplementary materials 1174 

 1175 

Supplementary figure 1. Effects of systematic manipulation of Qoperant and Qothers on habit 1176 

formation. 1177 

The dependencies of the resistance to devaluation (left) and number of edges that the 1178 

operant response acquired (right) on the Qoperant and Qothers. As the Qoperant increased, resistance 1179 

to devaluation and number of edges increased, suggesting we confirmed the same result in 1180 

the Simulation 1. 1181 

 1182 
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Supplementary figure 2. Simulation results replicating Figure 2 (simulation 1), with the 1184 

different numbers of nodes (25–100). 1185 

We manipulate the number of nodes, 25, 50, 75, and 100, to confirm the results of our 1186 

simulation are replicated in different numbers of nodes and all results are replicated. 1187 

 1188 

Supplementary figure 3. Reproducibility of the results of Simulation 1 with a different 1189 

response sequence generation algorithm. 1190 

In the Simulation 1, response sequences were generated by a shortest path search, 1191 

Dijkstra’s algorithm. We employed another algorithm that is more weakly constrained and 1192 

not the shortest path searching algorithm. In the new algorithm, an agent chooses a 1193 

response randomly if a response chosen as a goal is not connected to the current engaging 1194 

response. If the goal response is connected to the current engaging response, the agent 1195 

chooses the response. In other words, the agent searches the goal response locally in the 1196 

new algorithm. Resistance to devaluation, Edge concentration and betweenness centrality, 1197 

all of features are replicated with the new algorithm, suggesting habit formation does not 1198 

depend on the shortest path search as long as the response sequences are generated goal-1199 

directed. 1200 
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 1201 

Supplementary figure 4. Simulation results replicating Figure 3 (simulation 2), with a different 1202 

schedule for other responses from the original simulation. We employed the VI 360 s 1203 

schedule instead of FR 1 for other responses. We set their reward values as 1 / 50. 1204 
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 1205 

Supplementary figure 5. Simulation results replicating Figure 3 (simulation 3), with the 1206 

different algorithm SARSA from the original algorithm Q-learning. 1207 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2022. ; https://doi.org/10.1101/2021.07.29.454400doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454400
http://creativecommons.org/licenses/by-nc-nd/4.0/

