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Abstract 

Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual 3 

information such as reward expectancy and the subject’s spatial position. Such location-specific 4 

representations need not be restricted to V1 but could participate in a coherent mapping throughout 5 

sensory cortices. Here we show that spiking activity in primary auditory cortex (A1) and lateral, secondary 6 

visual cortex (V2L) of freely moving rats coherently represents a location-specific mapping in a sensory 7 

detection task performed on a figure-8 maze. Single-unit activity of both areas showed extensive 8 

similarities in terms of spatial distribution, reliability and position coding. Importantly, reconstructions of 9 

subject position on the basis of spiking activity displayed decoding errors that were correlated between 10 

areas in magnitude and direction. In addition to position, we found that head direction, but not locomotor 11 

speed or head angular velocity, was an important determinant of activity in A1 and V2L. Finally, pairs of 12 

units within and across areas showed significant correlations in instantaneous variability of firing rates 13 

(noise correlations). These were dependent on the spatial tuning of cells as well as the spatial position of 14 

the animal. We conclude that sensory cortices participate in coherent, multimodal representations of the 15 

subject’s sensory-specific location. These may provide a common reference frame for distributed cortical 16 

sensory and motor processes and may support crossmodal predictive processing. 17 

  18 
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Introduction 19 

Early sensory cortical areas were long viewed to primarily function as collections of unisensory 20 

feature detectors (DiCarlo and Cox, 2007; Felleman and Van Essen, 1991; Hubel and Wiesel, 1962; Miller, 21 

2016). More recently, single unit recordings in awake, behaving animals have shown responses in primary 22 

auditory (A1) and visual cortex (V1) to a wide variety of perceptual and behavioral factors, suggesting 23 

these areas have functions beyond unimodal sensory processing. In rodent V1, these include responses 24 

to reward and reward timing (Shuler and Bear, 2006), reward predictive stimuli (Goltstein et al., 2013), 25 

running speed (Ayaz et al., 2013; Niell and Stryker, 2010), head orienting movements (Guitchounts et al., 26 

2020) and responses which are causal to visually cued action timing (Namboodiri et al., 2015). 27 

Additionally, a growing number of studies show that many V1 neurons display location-selective spiking 28 

activity (Ji and Wilson, 2007), coding the animal’s position along real (Haggerty and Ji, 2015) and virtual 29 

linear tracks (Fiser et al., 2016; Fournier et al., 2020; Pakan et al., 2018; Saleem et al., 2018). Various 30 

studies report spatial and temporal correlations in activity of V1 and hippocampal CA1, including 31 

correlated errors in position decoding (Fournier et al., 2020; Saleem et al., 2018), correlated trial-by-trial 32 

shifts in preferred spiking locations (Haggerty and Ji, 2015) and significant spike-phase coherence of V1 33 

spiking and hippocampal theta oscillations (Fournier et al., 2020). 34 

A similarly broad variety of single unit correlates is observed in A1, including activity selective for 35 

visual task-cues (Brosch et al., 2005), behavioral demands (Scheich et al., 2007), stimulus expectation 36 

(Jaramillo and Zador, 2011), reward (Scheich et al., 2007) and instrumental action (Niwa et al., 2012). 37 

Much remains currently unknown about the functional role and origins of such ‘extra-modal’ activity 38 

correlates, including whether they primarily contribute to local sensory processes or reflect crossmodal 39 

interactions in service of more general and modality-independent cortical functions. While spiking 40 

correlates to stimulus location are present in auditory cortex (Town et al., 2017), no activity selective for 41 

the spatial position of the subject has hitherto been reported for A1. This would be expected if the 42 

underlying mechanisms reflect general functions of cortical sensory processing, including the 43 

maintenance and updating of a coherent representation of space or of current and future sensory states 44 

across sensory domains (Fiser et al., 2016; Friston, 2005; Gavornik and Bear, 2014; Pennartz et al., 2019; 45 

Rao and Ballard, 1999).  46 

To determine whether location-selective spiking activity exists outside of the visual cortical 47 

system and whether such activity provides a coherent representation across sensory modalities, we 48 

analyzed single-unit data recorded simultaneously from two anatomically connected, sensory cortical 49 

areas of freely moving rats: primary auditory cortex (A1) and lateral, secondary visual cortex (V2L). We 50 
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show spatially localized firing patterns in large proportions of V2L and A1 single units that are reliable over 51 

time. Firing patterns in each area collectively tiled the entire behavioral track, so that every location was 52 

marked by activity of a subset of neurons. Reconstructions of the rat’s position afforded by the spiking 53 

activity of each area showed reconstruction errors that were correlated in magnitude and direction, 54 

thereby indicating that representations in A1 and V2L are coherent. Cross-areal coordination of location-55 

specific representations was further indicated by strong noise-correlations in spiking activity of the vast 56 

majority of single-unit pairs which showed a clear pattern of dependence on both the spatial tuning of the 57 

units as well as animal position. Our freely moving paradigm allowed us to establish the contributions of 58 

position, head direction and their temporal derivatives to location-selective spiking activity in early 59 

sensory cortices dedicated to different modalities. Our results uncover striking similarities as well as 60 

quantitative differences in location-selective neural activity of A1 and V2L, suggesting that such activity 61 

supports common functions in coordinated mapping of sensory and contextual representations across 62 

different sensory modalities. 63 

  64 
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Results 65 

We investigated the responsiveness of neurons in lateral, secondary visual cortex (V2L) and primary 66 

auditory cortex (A1) to spatial location when rats were running on a rectangular, figure-8 shaped track 67 

(Fig.1A). On the track, rats performed an audio-visual discrimination task in which they earned reward by 68 

responding to the most salient stimulus out of two by running from the stimulus presentation site to the 69 

reward well on the track side corresponding to the location of that stimulus (Fig. 1 A-B). Our analyses were 70 

primarily based on the spatial components of the rats’ behavior, regardless of task performance. We refer 71 

to “location-selective activity” or a “location correlate” if the neuron’s spiking activity was reliably 72 

modulated by the rat’s body location over the course of a recording session. We emphasize that this 73 

definition includes not only responses to allocentric position, but also to specific conjunctions of locally 74 

available sensory cues and task-related information. 75 

We made simultaneous recordings from both V2L and A1, with a total of 526 single units from 76 

V2L and 603 units from A1 across 17 recording sessions from 3 rats. Units in both A1 and V2L showed 77 

firing patterns with one or more peaks in firing rate on various locations of the track (Fig. 1C, 2A-B). For 78 

all further analyses, we selected the units with sufficient firing on the track, i.e. peak firing rate above 2 79 

Hz in the spatial map, which amounted to 400 units from V2L and 413 from A1. The locations of the tetrode 80 

endpoints were verified with histology (Supplementary Fig. 1). The endpoints of 20 tetrodes were located 81 

in A1, while an additional two endpoints targeted at A1 were located in the adjacent dorsal secondary 82 

auditory cortex. Endpoints for 19 tetrodes targeted at V2L were located in that area, while one was 83 

located in the adjacent dorsal posterior parietal cortex. 84 

 85 

The majority of A1 and V2L single units displays localized spiking activity 86 

First, we assessed whether neurons in A1 and V2L displayed spatially localized firing patterns. Visual 87 

inspection of rate maps of the spatial firing distribution of individual neurons indicated that some units in 88 

A1 and V2L showed increased spiking activity in a single, concentrated location on the track, whereas 89 

other units displayed modulations of spiking activity at multiple areas or across a larger area of the track 90 

(Fig. 2A-B top panels). An important constraint for a unit to reliably code location is that the firing activity 91 

at that location is consistently, rather than incidentally, present across individual traversals through that 92 

location. Therefore, we assessed the reliability of each unit by computing pairwise correlations between 93 

all single-trial rate maps of that unit and comparing the observed mean pairwise correlation with a 94 

shuffled distribution. A unit was considered spatially stable if its observed mean correlation was larger 95 

than 95% of the shuffled distribution. The proportions of spatially stable units were very similar for A1 96 
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and V2L and comprised on average about 70% of the total population (Fig. 2C; A1: 0.69 (CI: 0.49, 0.84), 97 

V2L: 0.72 (CI: 0.31, 0.94), F(1, 32) = 0.072, p = 0.79, ANOVA). The degree of spatial stability of a unit can 98 

be quantified using a spatial stability index (SSI), defined as the number of standard deviations which the 99 

observed mean correlation was removed from the shuffled distribution (Fig. 2D). The SSI of spatially stable 100 

units was similar between A1 and V2L (Fig. 2D; A1: 12.7 a.u. (CI: 8.39, 15.44), V2L: 14.3 a.u. (CI: 10.4, 24.4), 101 

F(1, 1194) = 0.44, p = 0.50, ANOVA). In summary, large fractions of A1 and V2L units display spatially stable 102 

activity patterns with high reliability. 103 

Individual firing fields were then identified for spatially stable units as localized increases in mean 104 

spiking activity of a unit on the linearized representation of the track (Fig. 1A, Fig. 2A-B). Whereas neurons 105 

in A1 and V2L exhibited a similar number of around 3 firing fields per unit (Fig. 2E; A1: 3.17 (CI: 2.97, 3.39), 106 

V2L: 3.40 (CI: 3.20, 3.61), F(1, 588) = 2.22, p = 0.14, ANOVA), the average length of firing fields was 107 

significantly smaller in V2L than in A1 (Fig. 2F; A1: 50.5 cm (CI: 47.2, 54.1), V2L; 46.3 cm (CI: 43.5, 49.4), 108 

F(1, 1939) = 9.0, p = 0.003, ANOVA), indicating that the spatial granularity of localized spiking activity is 109 

modestly finer in V2L than A1. 110 

The extent to which units show spatially localized firing can be expressed as the information about 111 

the rat’s position that is conveyed by a single spike, which is quantified as spatial information (Skaggs et 112 

al., 1992). In line with the smaller firing fields in V2L, the spatial information was significantly higher for 113 

V2L units (Fig. 2G; A1: 0.15 bits/spike (CI: 0.12, 0.17), V2L: 0.24 bits/spike (CI: 0.20, 0.28), F(1,556) = 16.5, 114 

p = 5⁎10-5, ANOVA). 115 

 116 

Both A1 and V2L neurons respond to discrete auditory and visual stimuli 117 

Besides showing location-selective firing, subsets of units in both A1 and V2L responded with significant 118 

firing-rate changes to the auditory and visual stimuli, presented as individual (unisensory) task cues (Fig. 119 

2H; stimulus conditions were pooled for each modality; see Methods). As expected, a larger proportion 120 

of A1 neurons responded to auditory than to visual stimuli in all rats (A1 auditory: 0.20 (CI: 0.15, 0.28), A1 121 

visual: 0.07 (CI: 0.04, 0.13), F(1, 30) = 10.34, p = 0.003, ANOVA). Additionally, responsiveness to visual 122 

stimuli was more common in V2L than A1 (V2L visual: 0.15 (CI: 0.09, 0.24), F(1,30) = 4.60, p = 0.0402, 123 

ANOVA). Surprisingly, however, a comparable proportion of V2L neurons responded to both visual and 124 

auditory (stimuli. (V2L auditory: 0.20, (CI: 0.15, 0.26), F(1, 30) = 0.93, p = 0.34, ANOVA) and auditory 125 

responses were equally common in both areas (F(1, 30) = 0.013, p = 0.91, ANOVA). Although A1 and V2L 126 

responsiveness to discrete stimuli is not the focus of our current analyses, these results not only indicate 127 

that responses to stimuli in more than one modality are common in both A1 and especially V2L, but also 128 
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underscore the existence of substantial heterogeneity in cortical sensory selectivity. Finally, it should be 129 

noted that stable, localized activity was much more abundant in both areas than responses to sensory 130 

stimuli (A1: p < 10-15; V2L: p < 10-13, binomial tests on pooled data).  131 

 132 

Spatial firing field distributions are highly correlated across A1 and V2L 133 

The reliable coding of specific locations by individual units is necessary, but not sufficient for building a 134 

representation of an environment or the sequence of sensory states an animal experiences when 135 

navigating across the track. Another prerequisite for either type of representation would be that the 136 

spatial distribution of firing fields in each area covers the entire series of locations traversed by the animal. 137 

Figure 3A and B show the linear rate maps for all spatially stable units ordered by peak location for A1 and 138 

V2L, and reveal that firing-field peaks occur at every location along the track. We further analyzed the 139 

density of firing fields tiling all locations by computing the proportion of firing fields which include a 140 

specific spatial bin on the linearized track. The distributions of firing field densities confirm that the entire 141 

track was covered by A1 and V2L firing fields (Fig. 3A-B, bottom). 142 

The joint rate maps and field density plots indicate similar firing-field distributions in A1 and V2L. 143 

Indeed, the field densities across spatial bins of the track were highly correlated between the areas (Fig. 144 

3C; regression slope: 0.83 (CI: 0.57, 1.09), F(1, 39.5) = 3.2p = 0.007, ANOVA). This strong correlation, 145 

however, may also be due to similar responses of A1 and V2L neurons to behavioral covariates such as 146 

locomotion speed, acceleration and head direction (θhead). To correct for the potential influence of these 147 

covariates on field densities, we performed linear regression of spiking activity on running speed, 148 

acceleration, head direction and the angular change in head direction (Δθhead) and repeated the detection 149 

of firing fields and the field density correlations on the residuals. Likewise, when using the model’s 150 

residuals, field densities between A1 and V2L were highly correlated (regression slope: 0.71 (CI:0.36, 1.06), 151 

F(1, 3.0) = 16.1, p = 0.028, ANOVA). It is therefore unlikely that locomotion and head direction can fully 152 

explain the firing-field densities of A1 and V2L neurons on the track or their shared spatial distribution. 153 

These analyses, however, did not take into account possible nonlinear relationships between location and 154 

behavioral covariates. 155 

 156 

Temporal firing rate fluctuations are correlated between A1 and V2L 157 

Neurons with similar functional properties, such as location-selective tuning in hippocampal and V1 158 

neurons, were shown to exhibit significant pairwise correlations of the instantaneous variability in spiking 159 

activity, often referred to as ‘noise correlations’ (Haggerty and Ji, 2015). As a first indication of a 160 
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correlative interaction between spatially stable neurons within and across A1 and V2L, we tested how 161 

closely the precise firing rate between two units of a pair varied each time the rat ran through the 162 

associated firing fields. For each pair of units (A1-A1, V2L-V2L, A1-V2L) the Pearson correlation was 163 

computed between their instantaneous variability in spiking activity after subtraction of the mean activity 164 

in the associated spatial bin (i.e. noise correlation), as well as the Pearson correlation between the rate 165 

maps. Noise correlations were significantly different from 0 for very large proportions of neuronal pairs 166 

of each composition (fraction of total: A1-A1: 0.98, V2L-V2L: 0.98, A1-V2L: 0.97; permutation test, p<0.05). 167 

Almost half of the significantly correlated pairs showed negative noise correlations (A1-A1: 0.46, V2L-V2L: 168 

0.47, A1-V2L: 0.45). Proceeding only with pairs showing significant noise correlations, we tested whether 169 

rate map similarity predicted noise correlations using a linear mixed model and correcting for sampling 170 

bias. Rate-map correlations had a significant, positive effect on noise correlations for all pair types (Fig. 171 

3D-E; regression slopes and 95% confidence bounds for A1-A1: 0.072 (0.060, 0.085), F(1, 4.8) = 123.9, p 172 

=3.9 ⁎ 10-4, V2L-V2L: 0.066 (0.051, 0.082), F(1, 4.17) = 110.4, p = 7.4 ⁎ 10-4, A1-V2L: 0.033 (0.018, 0.048), 173 

F(1, 3.67) = 29.3, p = 0.007, ANOVA). The effect of rate map similarity was smaller for A1-V2L pairs than 174 

for the other pair types (A1-V2L slope vs. A1-A1 slope: F(1, 9386) = 95.9, p < 10-15, A1-V2L slope vs. V2L-175 

V2L slope: F(1, 10174) = 83.2, p< 10-15, ANOVA), which is in line with previous observations on noise 176 

correlation strength decreasing with anatomical distance observed in visual cortex of anesthetized cats, 177 

mice and macaques (Goltstein et al., 2015; Rosenbaum et al., 2017; Schulz et al., 2015; Smith and Kohn, 178 

2008). Nonetheless, the V2L-A1 noise correlates and their predictability from rate-map correlations 179 

suggests cross-areal coordination of neural activity. 180 

 181 

Noise correlations within and between areas show location-dependent structure 182 

Correlated firing rate fluctuations can affect the coding of information in populations of neurons (Ecker et 183 

al., 2010; Hansen et al., 2012; Montijn et al., 2016; Zohary et al., 1994). The strength of correlated 184 

variability in the visual system was found to depend on both the tuning of neurons and the presented 185 

stimuli, with similarly tuned neurons displaying stronger correlated variability specifically for their 186 

preferred stimuli and reduced correlations for orthogonal stimuli, thereby ameliorating the potentially 187 

detrimental effect of correlated variability on population coding (Averbeck et al., 2006; Franke et al., 2016; 188 

Lin et al., 2015; Montijn et al., 2016). If the function of location-selective activity in A1 and V2L is to 189 

transmit information related to the animal’s position to downstream areas, correlated variability between 190 

neurons in both areas may show similar dependence on spatial tuning and location types. To study this, 191 

for each significantly correlated pair we divided all spatial bins of the track into three categories: bins that 192 
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occur inside firing fields of both units of the pair (‘shared field’), bins that exclusively occur in a firing field 193 

of one of the two units (‘one-field’), and bins that are outside of firing fields of both units (‘out of field’). 194 

The effect of firing-field overlap on noise correlations for each area was examined using a linear mixed 195 

model. Separate models were constructed for positive and negative noise correlations, since the mean 196 

noise correlations of individual groups tended to 0, while a model based on absolute noise correlations 197 

provided a poorer fit to the data. 198 

The magnitude of noise correlations followed a consistent pattern across cell pair types with 199 

respect to the type of bin, with shared field bins showing stronger correlations than one-field bins (figure 200 

3F, positive correlations, shared field bins mean = 0.061, one-field bins mean = 0.046, F(1, 3.2) = 139.5, p 201 

= 4.7 ⁎ 10-4, negative correlations, shared field bins mean = -0.049, one-field bins mean = -0.035, F(1, 8.9) 202 

=233.9, p = 3.5 ⁎ 10-8, ANOVA). Additionally, shared field bins showed stronger correlations than out of 203 

field bins (figure 3F, positive correlations: out of field bins mean = 0.052, F(1, 2.9) = 43.3, p = 0.008, 204 

negative correlations: out of field bins mean = -0.040, F(1, 2.7) = 41.9, p = 0.005, ANOVA). Finally, out of 205 

field bins showed stronger correlations than one-field bins (figure 3F, positive correlations: F(1, 29.3) = 206 

28.7, p = 3.0 ⁎ 10-6, negative correlations: F(1, 2.7) = 14.8, p = 0.04, ANOVA). These findings underscore 207 

the general result that noise correlations are highest in shared field bins and lowest in one-field bins, with 208 

noise correlations in out of field bins being intermediate. The only contrast not obeying this general effect 209 

is the comparison between negative correlations of one-field bins and out of field bins for A1-A1 pairs, 210 

which did not reach significance (p = 0.10).  211 

The strength of noise correlations was found to depend modestly on the area-based type of cell 212 

pair, with A1-A1 pairs showing stronger noise correlations than A1-V2L pairs (figure 3F, positive 213 

correlations: A1-A1 mean = 0.059, A1-V2L mean = 0.045, F(1, 3.1) = 22.6, p = 0.048, negative correlations: 214 

A1-A1 mean =-0.046, A1-V2L mean = -0.038, F(1, 5.2) = 55.78, p = 0.002, ANOVA). Mean noise correlations 215 

for V2L-V2L cell pairs were intermediate to A1-A1 pairs and A1-V2L pairs, for both positive (V2L-V2L mean 216 

= 0.055) and negative correlations (V2L-V2L mean = -0.040), and differences between V2L-V2L pairs and 217 

the other cell pairs were not significant (all p > 0.05). There was no significant interaction between the 218 

type of bin and the composition of the neuronal pairs (positive correlations: F(1,14587) = 1.53, p = 0.19, 219 

negative correlations: F(1, 8312) = 1.59, p = 0.18, ANOVA). We found qualitatively similar results when we 220 

defined location type not in terms of falling inside or outside of firing fields of the two units of a pair, but 221 

in terms of falling inside the 30% of bins with highest or lowest spiking activity of the two units of a pair. 222 

To summarize, A1 and V2L populations do not only display similar distributions of firing fields 223 

across the maze, but pairs of A1 and V2L neurons also show fine-grained firing rate co-fluctuations which 224 
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depend on both the similarity of location-selectivity of the units in a pair and the actual position occupied 225 

by the rat. Despite area-dependent differences in noise correlations, the similarity of A1-V2L noise 226 

correlation patterns to within-area co-fluctuations is rather striking. 227 

 228 

A1 activation precedes V2L activation in time 229 

The fine-grained co-fluctuations between A1 and V2L in the spatial domain raise the question how these 230 

interactions are more precisely organized in time. The temporal firing relation between A1-V2L neuronal 231 

pairs was determined by computing the cross-correlograms over periods in which the rat was running on 232 

the track (running speed > 0.06 m/s). To correct for the impact that the forced unidirectional running may 233 

induce in estimating the temporal firing relation, cross-correlations were computed on the z-scored 234 

spiking activity after subtracting the mean activity in the associated spatial bin. Figure 3G shows the 235 

proportions of cross-correlation peaks of all A1-V2L pairs at different time lags averaged over rats. The 236 

narrow peak centered at -10 ms indicates that activation of A1 neurons mostly precedes V2L neuronal 237 

activity closely in time. 238 

 239 

Spiking activity carries information about position and head direction 240 

We next used information-theoretic measures to quantify the influence of navigation parameters, i.e. 241 

position, running speed, head direction (θhead) and changes in head direction (Δθhead), on the spiking 242 

activity of recorded units. Mutual information (MI) quantifies the reduction in uncertainty obtained about 243 

spiking activity after observing these factors and captures both linear and nonlinear relationships (Lizier, 244 

2014; Olcese et al., 2016). Of these individual factors, position carried the most information about spiking 245 

activity of both A1 and V2L units, followed by head direction (Fig. 4A; MI of position versus θhead: A1: p = 246 

1.1 ⁎ 10-15; V2L: p =3.0 ⁎ 10-15, Wilcoxon signed-rank test). Running speed and changes in head direction 247 

carried relatively little information about spiking activity in both areas. For all individual factors mean MI 248 

was higher in V2L than in A1 (p = 2.0 ⁎ 10-6; running speed: p = 4.7 ⁎ 10-4, θhead: p =1.4 ⁎ 10-7, Δθhead: p = 249 

1.6 ⁎ 10-5, Mann-Whitney’s U test). 250 

When a particular θhead is predominantly encountered at a given position, mutual information 251 

cannot distinguish between the possibilities of a neuron encoding either that position, head direction or 252 

a combination of the two. To determine the amount of information carried by spikes about speed, θhead 253 

and Δθhead, that cannot be explained by (nonlinear) correlations with position, we computed the debiased 254 

conditional mutual information (cMI) between each of the three factors conditional on position (Fig. 4B; 255 

(Bos et al., 2019; Lizier, 2014)). Averaged across all spatially stable units, the amount of information that 256 
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spike trains carried about running speed and changes in head direction beyond position (i.e. mean 257 

cMI(spikes, speed | position) and mean cMI(spikes, Δθhead | position)) was negative for both A1 and V2L, 258 

confirming that running speed and changes in head direction contributed little information about spiking 259 

activity on top of position (fig. 4B). In contrast, the average cMI for head direction, cMI(spikes, θhead | 260 

position), was significantly larger than zero for both A1 and V2L (fig. 4B, A1: p < 10-15; V2L: p < 10-15; 261 

Wilcoxon’s signed-rank test), indicating that spiking activity of both A1 and V2L units coded information 262 

about head direction in addition to information about position.  263 

To study the prevalence of position coding in populations of single units, we calculated cMI 264 

between spikes and position conditional on θhead, thereby excluding any contributions from θhead (Fig. 4C).  265 

Significant cMI (spikes, position | θhead) was found in 140 out of 413 A1 units (33%) and 197 out of 400 V2L 266 

units (49%), indicating that spiking activity of large proportions of single units in both areas contains 267 

information on spatial position on top of any information on θhead, with V2L showing a significantly larger 268 

proportion (z = 4.64, p = 1.7 ⁎ 10-6 , binomial test; Fig. 4D). Smaller, but substantial subsets of neurons in 269 

each area showed significant cMI (spikes, θhead | position), indicating that the spike trains of these neurons 270 

carry information about head direction even after correcting for position (fig. 4D, A1: 16.5% and V2L: 271 

31.2%), with also here V2L showing a significantly larger proportion of neurons (z = 4.9, p = 4.2 ⁎ 10-7, 272 

binomial test). Among all units encoding position and/or head direction, V2L units were also significantly 273 

more likely to provide information on both factors (fig. 4D, A1: 35.1%, V2L: 47.2%, z = 2.33, p = 0.010, 274 

binomial test). In summary, this analysis confirmed that substantial fractions of A1 and particularly V2L 275 

neurons continued to show location- and head direction selectivity after correcting for the influence of 276 

the other behavioral covariate. 277 

 278 

Position is the strongest predictor of A1 and V2 single unit activity, followed by head direction. 279 

Next we used a random forest encoding algorithm (Benjamin et al., 2018) to determine how well spiking 280 

activity could be predicted by each of the behavioral factors. This provided the opportunity to extend the 281 

analysis of dependencies between behavioral factors and spiking activity beyond two behavioral factors. 282 

Encoding of firing rates of two units from A1 and V2L is exemplified in Figure 4E. For both areas, encoding 283 

quality was best for a model incorporating all predictors (Fig. 4F; all predictors vs. only position for A1 and 284 

V2L combined, p < 10-15 , Wilcoxon’s signed-rank test), whereas of the individual factors position provided 285 

the best performance (position vs. each other individual predictor for A1 and V2L, all p < 10-15 , Wilcoxon’s 286 

signed-rank tests). The large effect of position on encoding performance could not be explained by 287 

confounds arising from the other behavioral factors, since adding position to a model already utilizing all 288 
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other factors led to substantial improvements in encoding performance for both A1 and V2L (fig. 4G; 289 

position vs. each other individual factor, all p < 10-15, A1 and V2L combined, Wilcoxon’s signed-rank tests). 290 

Comparing the contributions of position and θhead separately for individual units confirmed that among 291 

the behavioral factors considered, position was dominant in explaining spiking activity in both areas, while 292 

θhead provided the second strongest contribution (fig. 4G). This is also illustrated in Figure 4H, which shows 293 

for each neuron the improvement in encoding when adding θhead or position to models containing all other 294 

behavioral factors. For the vast majority of units in both areas, adding either factor improved encoding 295 

quality, but this difference was larger for position than for θhead. When analyzing the mean improvement 296 

in decoding performance achieved beyond all other predictors, we found that this value was larger for 297 

position (0.048) than for θhead (0.019; all p < 10-15, Wilcoxon’s signed-rank tests) or the other two 298 

covariates. Furthermore, the improvement due to θhead was larger than for these other factors (speed: 299 

0.011; p < 10-15; Δθhead: 0.008; p < 10-15, Wilcoxon’s signed-rank tests). 300 

Both the conditional mutual information and encoding analysis show that neurons can carry 301 

significant information on both factors. However, other factors such as stimulus availability, choice and 302 

reward may have influenced these results, because during track running they are closely associated with 303 

both position and head direction in space and/or time (Zaidel et al., 2017). Re-analysis of conditional 304 

information, now on data in which the period of stimulus presentation ± 1 s was eliminated, showed a 305 

decrease in the amount of information on θhead conditional on position, which was nevertheless still 306 

significantly larger than 0 for both areas (cMI difference from 0, A1: p = 1.7 ⁎ 10-4, V2L: p < 10-15, Wilcoxon 307 

signed rank tests; Supplementary Figure 2A, cf. Fig. 4B). Similarly, re-analysis of encoding improvement 308 

with data from which the stimulus presentation period ± 1 s was eliminated yielded similar results 309 

compared with the original finding (Supplementary Fig. 2B, cf. Fig. 4G). Together, these results suggest 310 

that position and, to a lesser degree, head direction are important drivers of firing activity of neurons in 311 

A1 and V2L. However, we cannot rule out potential contributions to information related to position or 312 

head direction as a result of correlations with additional subject-induced sensations (e.g. eye movements), 313 

which we were unable to detect in the current dataset.  314 

 315 

Coherent mapping of location in A1 and V2L populations 316 

If the neuronal populations in A1 and V2L code the animal’s track position, it should be possible to infer 317 

the position of the rat from the collective neuronal activity. We used a Bayesian decoder to test whether 318 

spatial location can indeed be predicted from population activity (sessions with >16 neurons/area were 319 

included). Decoding of position was successful for both A1 and V2L, because the chance that a decoded 320 
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position matched the true position of the rat was larger than the chance that it matched any other location 321 

on the track (i.e. clear diagonal structure in Fig. 5A, B; A1: n = 15 sessions; V2L: n = 12 sessions). The 322 

distributions of decoding errors, which are the Euclidean distances between the true and decoded 323 

positions, clustered near 0 m for both areas (Fig. 5C). V2L showed, on average, higher proportions of 324 

smaller errors than A1, indicating that decoding spatial position from V2L was more accurate than from 325 

A1 (V2L error: 0.11, 0.10 - 0.42; A1 error: 0.29, 0.26 - 0.37; median and interquartile range, in meters). 326 

Increasing the number of neurons included in the decoding analysis decreased the mean decoding 327 

error for both areas. We considered several population sizes, which were similar for both areas (A1: 16-328 

38 neurons, V2L: 16-40 neurons), but bootstrap analysis showed no signs of plateau performance with 329 

progressive population sizes (Fig. 5D). Although decoding from both areas likely could be improved had 330 

more neurons been recorded, at identical population size decoding performance for V2L was better than 331 

for A1, both for the mean across sessions and for most individual sessions.  332 

To investigate whether locations are encoded coherently across both areas, we calculated the 333 

correlation in instantaneous decoding error between A1 and V2L. Instead of only taking the magnitude of 334 

the error into account, errors in the x and y dimensions of the maze were considered separately and their 335 

directionality was preserved. When decoding errors were computed for sessions which contained >16 336 

simultaneously recorded neurons in each area, we found significant correlations (p < 0.001 for all 11 337 

sessions). This was also the case when including all sessions where at least one of the two areas provided 338 

16 neurons, again indicating that A1 and V2L encode locations coherently. However, these correlations 339 

may be confounded if certain locations are represented more accurately than others in both areas, or if 340 

firing patterns are subjected to a common modulation by locomotion speed. To control for these 341 

possibilities, we shuffled the data across time points at which the animal was in the same spatial bin and 342 

running within the same range of speeds. The correlations between the shuffled decoding errors were 343 

significantly lower than the observed correlations (x-direction, p = 0.01, y-direction p = 0.02, Wilcoxon 344 

signed-rank test). This difference remained significant when we included all sessions where at least one 345 

area provided 16 neurons (x-direction, p = 0.001, y-direction, p = 0.01). The residual decoding errors, 346 

obtained by subtracting the shuffled distribution from the observed joint distributions, displayed a 347 

diagonal structure (Fig. 5G-H), indicating that representations of location in A1 and V2L remain coherent 348 

even when position cannot be decoded accurately from the population of either area. This coherency 349 

exceeds what would be expected from a common influence of speed. In addition to the mean across 350 

sessions (Fig. 5G-H), these results also held for individual rats (Supplementary Figure S3). It is unlikely that 351 

error correlations can be accounted for by decoding artifacts in sessions with poor decoding performance 352 
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because there was no evidence of a positive relationship between instantaneous decoding error 353 

correlations and average decoding error, rather their linear correlations were negative and not significant 354 

(Supplementary Fig. 4). 355 

 356 

Discussion 357 

We showed location- and head direction-selective firing patterns in large proportions of neurons in A1 358 

and V2L of freely moving rats navigating a figure-8 maze. This activity takes part in coherent 359 

representations across areas, as indicated by highly correlated firing-field densities (fig. 3A-C), correlated 360 

errors in reconstructed position (fig. 5) and cross-areal noise correlations which varied as a function of 361 

spatial tuning and immediate position (fig. 3D-F). 362 

A first implication is that neural representations bound to subject location exist in the sensory 363 

cortex outside the visual system. Such activity may be expected in V2L because of similar observations in 364 

V1 (Fiser et al., 2016; Fournier et al., 2019; Haggerty and Ji, 2015; Ji and Wilson, 2007; Saleem et al., 2018) 365 

and egocentric trajectory correlates in spiking activity of posterior parietal cortex (Krumin et al., 2018; 366 

McNaughton et al., 1994; Nitz, 2006; Whitlock et al., 2012). These areas share anatomical borders with 367 

V2L and bidirectional, monosynaptic connectivity (Haggerty and Ji, 2015; Krumin et al., 2018; McNaughton 368 

et al., 1994; Miller and Vogt, 1984). That A1 neurons also show location-tuning is more surprising, because 369 

A1 activity has hitherto not been associated with animal location. However, in many mammals this area 370 

is required for sound localization (Heffner, 1978; Jenkins and Merzenich, 1984; Kavanagh and Kelly, 1987; 371 

Thompson and Cortez, 1983) and contains neurons tuned to the location of sound sources (Middlebrooks 372 

and Pettigrew, 1981; Town et al., 2017; Wang et al., 2019). 373 

 374 

Nature and function of location-selective firing in sensory cortices 375 

In addition to single or multiple peaks in single-cell firing rates tessellating the entire maze, we found that 376 

A1 and V2L spike patterns were spatially stable across trials and coded significant amounts of information 377 

on animal position (fig. 2 and 3). Our maze harbored repetitive elements requiring the same local 378 

behavior, such as directional body turns or running along straight maze stretches, whereas many cells 379 

showed single firing-rate peaks and thus did not reflect these repetitions (fig. 2). Furthermore, the 380 

encoding analysis revealed animal position as the strongest predictor of A1 and V2L activity, even after 381 

correcting for head direction (fig. 4). Moreover, subject position could be inferred from A1 and V2L 382 

ensemble activity using Bayesian decoding (fig. 5). Despite these indications, we argue that neither our 383 

current findings, nor previous results on V1 (Fiser et al., 2016; Haggerty and Ji, 2015; Ji and Wilson, 2007; 384 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.30.452931doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.452931
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Saleem et al., 2018), necessarily imply coding of (allocentric) position per se, because proving this would 385 

require additional experimental manipulations to establish that location-selective activity is independent 386 

of the locomotion direction through a location and tolerates manipulation of local sensory cues (Knierim, 387 

2002; Lansink et al., 2012; Leutgeb et al., 2005; Speakman and O'Keefe, 1990; Wilber et al., 2014). 388 

We propose the more general alternative that sensory cortical areas integrate modality-specific 389 

evidence with information from other sensory, motor and association areas to generate sequential 390 

representations, which are not merely sensitive to local sensorimotor cues, but also to contextual 391 

elements (which may comprise spatial but also other task-relevant elements such as reward proximity, 392 

task rule execution, etc.). For instance, activation of visual cortex neurons depends on the subject’s field 393 

of view, which in turn depends on animal position and head-direction (cf. Haggerty and Ji, 2015). This 394 

combination of view, position and head direction may give rise to a predictive visual representation in the 395 

cortex, which will be compared to further visual input to compute error signals, as posited by predictive 396 

processing models (Fiser et al., 2016; Friston, 2005; Keller and Mrsic-Flogel, 2018; Pennartz et al., 2019; 397 

Rao and Ballard, 1999). Although this proposal needs further testing, it is generally supported by the 398 

literature documenting extensive corticocortical connections (Bizley et al., 2007; Budinger and Scheich, 399 

2009; D'Souza et al., 2016; Felleman and Van Essen, 1991; Gămănuţ et al., 2018; Harris et al., 2019; 400 

Laramée et al., 2011; Leinweber et al., 2017), contributions to neural coding in sensory cortices by non-401 

sensory parameters (Goltstein et al., 2013; Namboodiri et al., 2015; Pakan et al., 2018; Shuler and Bear, 402 

2006) and auditory-visual cortical interactions (Ibrahim et al., 2016; Iurilli et al., 2012; Knöpfel et al., 2019; 403 

Meijer et al., 2020; Meijer et al., 2017; Morrill and Hasenstaub, 2018). 404 

This view does not conflict with a potential role for sensory cortices in updating spatial (e.g. 405 

hippocampal) representations in a bottom-up fashion, or with the navigational system contributing to 406 

top-down sensory predictions (Fournier et al., 2020). However, the hypothesis of the hippocampus 407 

causally driving spatial coding in V1 (Saleem et al., 2018) faces the issue that the hippocampus proper 408 

does not directly project to the sensory cortices, and its output is transformed by the synaptic matrices of 409 

intermediate parahippocampal regions on which also non-hippocampal structures converge (Furtak et al., 410 

2007; Rusu and Pennartz, 2020; Witter et al., 2000). Instead of guiding spatial navigation, the bidirectional, 411 

cortico-hippocampal circuitry may subserve declarative memory consolidation (Eichenbaum, 2000; 412 

McGaugh, 2000; O'Keefe and Nadel, 1978; Rusu and Pennartz, 2020; Squire, 1986). In this process,  413 

distributed neocortical activity selective for parts of a behavioral sequence may form a common ‘pointer’ 414 

or marker for binding together cross-modal information (Teyler and DiScenna, 1985). 415 

 416 
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Sensitivity to head direction in A1 and V2L 417 

For 33% of neurons in A1 and 49% in V2L, the information conveyed on head direction was significant 418 

after correcting for position (fig. 4B, 4D). As for subject location, this finding relates to how sensory-419 

specific states coded by A1 and V2L depend on head direction, or how these sensory cortices may use this 420 

sensitivity to emit head direction signals to target areas. Head direction signaling is regulated by the 421 

vestibular nuclei carrying information about the head’s motion relative to external space (Cullen, 2014) 422 

and, in rodents, about static neck position (Barresi et al., 2013; Medrea and Cullen, 2013). Vestibular input 423 

is a key contributor to the brain’s head-direction system (Taube, 2007), including anterior thalamus 424 

(Taube, 1995), post-subiculum (Taube et al., 1990) and medial entorhinal cortex (Sargolini et al., 2006). 425 

Vestibular information was shown to reach the visual system directly and indirectly, viz. via the 426 

retrosplenial cortex (Vélez-Fort et al., 2018), which was proposed to mediate between the sensory 427 

cortices and the head direction system of the temporal lobe (Page and Jeffery, 2018). Whether head-428 

direction signaling in A1 and V2L has a causal role in distributing head-direction information to target 429 

areas is up for further research. The collective evidence supports the hypothesis that areas along the 430 

cortical hierarchy may use both allocentric and egocentric representations, with a gradient of egocentric-431 

to-allocentric processing from sensory to temporal cortices, as also proposed for parietal-retrosplenial 432 

circuitry, where V2L is sometimes included as part of parietal cortex (Chen et al., 2018; Clark et al., 2018; 433 

Wilber et al., 2014). 434 

 435 

Comparison between primary auditory cortex and secondary visual cortex 436 

We were particularly struck by the broad, qualitative similarities between A1 and V2L spiking patterns. 437 

Both areas showed comparable levels of spatial stability, amounts of firing fields per unit (fig. 2), spatial 438 

distributions of firing fields and noise correlations (fig. 3). Moreover, the contributions to predictions of 439 

firing-rate patterns from position, head direction and other factors were highly similar for A1 and V2L (fig. 440 

4). These observations lend support to the hypothesis that coordinated representations are a general 441 

feature of sensory cortical areas. 442 

Neural coding in A1 and V2L also showed interesting quantitative differences, which consistently 443 

point to a higher spatial information content (fig. 2), stronger correlations with location and head direction 444 

(fig. 4) and better position reconstruction in V2L than A1. How this greater accuracy arises in V2L is 445 

unknown, but it may relate to a larger amount of spatially informative visual cues in our maze compared 446 

to auditory cues, and to more consistent changes in visual inputs due to self motion than to (self-induced) 447 

auditory inputs. In view of this greater accuracy, it is interesting to observe the slightly earlier firing in A1 448 
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than V2L units (fig. 3G). This might reflect the exploitation of potentially faster, subcortical processing of 449 

auditory compared to visual information (Picton et al., 1974). 450 

 451 

Significance of cross-areal coordination in cortical mapping of location and head direction 452 

Arguably our most novel result is that location-selective representations are highly coherent across 453 

sensory domains of the cortex (fig. 3, 5), suggesting that location- and head direction-sensitive mappings 454 

in auditory and visual cortical systems are not computed independently but are coordinated. Such 455 

coordination of context-dependent sensory mappings offers the computational advantage that evidence 456 

from multiple sensory modalities can be combined to improve estimates of the subject’s task-relevant 457 

state, although this comes at the expense of error sharing. 458 

Previous studies on auditory-visual interactions were predominantly guided by the theoretical 459 

framework of multisensory cue integration, whereby evidence for the detection of a stimulus in one 460 

modality is augmented by another modality (Fetsch et al., 2013; Meijer et al., 2019; Stein et al., 2014). 461 

Our findings go beyond integration of discrete sensory cues and instantaneous sensory states as they 462 

indicate a cross-modal coordination of context-sensitive representations. In our proposal this common 463 

mapping subserves the construction of a multimodal survey of the subject’s current situation, thereby 464 

enabling efficient goal-directed action planning and execution (Pennartz, 2018). As argued by Hawkins et 465 

al. (2017), self-parameters including head direction and position within a task sequence are key priors in 466 

determining how and when to undertake goal-directed actions. In line with predictive processing, 467 

knowledge of these self-parameters is required to interpret novel sensory inputs and anticipate sensory 468 

outcomes of actions (cf. Schürmann et al., 2019). 469 

  470 
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Materials and Methods 471 

Experimental design 472 

Subjects 473 

Experiments were performed on Lister Hooded rats (n=3, Envigo, the Netherlands) at an age between 9 474 

and 40 weeks. All rats were socially housed during behavioral training, but individually housed during 475 

periods of recordings when rats had an implanted tetrode-array, under a normal day/night cycle (lights 476 

on: 8:00am, lights off: 8:00pm). The rat’s food intake was restricted such that its weight was at least 85% 477 

relative to the standard growth curve provided by the breeder (Envigo, the Netherlands), corrected for 478 

the deviance in weight between the rat and the curve in the week before the start of food restriction. 479 

Weights were maintained at a stable level after rats reached healthy, adult body weight (Clemens et al., 480 

2014; Newby et al., 1990). Rats had ad libitum access to water throughout the experiment. All experiments 481 

were performed in accordance with the National Guidelines on Animal Experiments and were approved 482 

by the Animal Experimentation Committee of the University of Amsterdam. 483 

 484 

Behavioral setup 485 

Rats were trained to discriminate between auditory and/or visual stimuli on an automated, rectangular 486 

figure-8 shaped track (92 cm x 73 cm) which was raised 55 cm off the ground (fig. 1A). The track’s alleys 487 

were made of black painted aluminum (width = 8.7 cm) and contained raised edges (1.0 cm). At the front 488 

of the track, two LCD monitors (Iiyama ProLite B2776HDS) and two audio speakers (Audaphon Neo CD 489 

3.0) were available for stimulus presentation. The monitors were positioned symmetrically from the 490 

center of the track and the speakers were located above the top-left and top-right corners of the left and 491 

right monitors, respectively. During early training stages, transparent polycarbonate walls lined the 492 

central alley to prevent the rat from prematurely exiting this alley. Additionally, two transparent 493 

polycarbonate sliding doors were positioned at the front and back of the central alley. The walls and door 494 

at the front of the central alley contained small holes to allow for perception of the auditory stimuli. Two 495 

reward wells were positioned at the left and right edges of the track’s front alley. An additional reward 496 

well was positioned in the central alley, towards the front-end T-junction. Fluid sucrose solution (15% in 497 

tap water) was delivered to the wells by syringe pumps (Razel, VT, USA). All reward wells contained 498 

infrared photodetectors to detect nose pokes and licks. The motor activity of the rat on the track was 499 

registered with additional photodetectors, located near the T-junctions at the front and back ends.   500 

The track was entirely computer controlled, obviating the need for human interventions during 501 

the experiment, and was interfaced with the recording system to ensure synchronized time stamping of 502 
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behavioral events and neuronal activity patterns. It was positioned in an enclosure of black curtains (2.8 503 

x 2.2 m) within a sound-attenuated room of 3 x 3 m. The room was dimly lit by a small LED light pointed 504 

towards the ceiling. The experimenter observed training and experiments from an adjacent room to 505 

minimize interference with the rats' behavior. 506 

 507 

Stimuli 508 

On each trial of the behavioral task, rats had to discriminate between a target stimulus, displayed on one 509 

of the screens and/or the adjacent speaker, and a distractor stimulus, appearing on the other screen 510 

and/or speaker (Fig. 1B). Target and distractor were either unisensory (visual or auditory) or multisensory 511 

(audiovisual) and differed in stimulus amplitude. Three types of target/distractor combinations were in 512 

equal proportions presented to the rat; large-difference unisensory trials (1/3), small difference 513 

unisensory trials (1/3) and small difference cross-modal trials (1/3). In a separate session for each rat, the 514 

threshold amplitude differences (i.e. the amplitude differences at which the rat shows a correct response 515 

in 50% of the stimulus presentations) were determined using a staircase procedure. On the basis of this 516 

data, stimulus parameters were set for each rat such that the discrimination performance for the large-517 

difference unisensory trials was >70% correct and for the small-difference unisensory trials was >50% 518 

correct. The stimulus settings remained the same for all recording sessions of a rat. The amplitude 519 

differences for the stimulus components in the audiovisual trials were identical to the differences for the 520 

small-difference unimodal stimuli of the same session. The specific screens (left or right) at which target 521 

and distractor were displayed were pseudorandomly selected for each trial, such that the target stimulus 522 

was never displayed more than four successive trials at the same side and the difference in left and right 523 

target-presentations across the session was not more than 4. 524 

Visual stimuli were full-screen, upward-moving, black-and-white checkerboards (0.1 525 

cycles/degree, 4 cycles/second; fig. 1B). When no visual stimuli were displayed, a grey background was 526 

visible. All visual stimuli and the background were gamma corrected and had the same overall luminance 527 

as measured with a photometer. Contrast values between light and dark checkers varied between 0 and 528 

1, in which 0 indicates no contrast and 1 indicates the maximum contrast possible with the monitor at its 529 

lowest brightness setting. 530 

Auditory stimuli were composed of white noise, which was band-passed between 10 and 25 KHz. 531 

When auditory stimuli were absent, background noise was played. Background noise was white noise 532 

band-passed between 8 and 12 KHz. For auditory stimuli, the difference between target and distractor 533 

was in the relative volume between the speakers. Relative auditory volume ranges between values of 0 534 
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and 1, with 0 and 1 indicating that the volume is fully accounted for by one or the other speaker. 535 

Background noise was played with a contrast of 0.5, i.e. identical volume through both speakers. 536 

Therefore, at every moment during the session, sound was playing at the same volume, which was set to 537 

76 dB at the central reward well. 538 

 539 

Behavioral training 540 

After rats had learned to complete unidirectional laps on the track and to nose-poke for a duration of 1 541 

second to earn reward, they were trained to discriminate between target and distractor stimuli and to 542 

respond by choosing the side at which the target stimulus was present. When the front door opened at 543 

the start of the trial, the target visual stimulus was presented on one screen (i.e. on one side of the track) 544 

while the other screen maintained the grey background. The rat earned a reward if it poked in the well at 545 

the side of the track corresponding to where the stimulus was displayed. The stimulus presentation lasted 546 

until 3 seconds following reward delivery, with the aim of strengthening the stimulus-response-outcome 547 

association. When the rat made a nose poke at the incorrect side, stimulus presentation stopped 548 

immediately. From this stage onwards, the length of the nose pokes to start stimulus presentation was 549 

increased incrementally from 0 to 0.5-1.5 seconds (randomized across trials). If the rat performed at least 550 

60 trials within 60 minutes with 70% correct trials on three out of five consecutive days, stimuli switched 551 

from visual to auditory. If this criterion was met also for auditory stimuli, subsequent sessions included 552 

audio, visual stimuli and audio-visual stimuli in equal proportions and presented according to the 553 

pseudorandom schedule (see Stimuli). In multisensory trials, the auditory and visual stimulus components 554 

were always presented on the same side of the track; i.e. no sensory conflicts were created. Once the rat 555 

reached the same criterion with these three trials types included in the session, the discrimination 556 

problem was made progressively more difficult, by introducing distractor stimuli and lowering the 557 

contrast of visual target stimuli in subsequent sessions. The difference in amplitude between target and 558 

distractor stimuli was gradually decreased over training sessions but never below the level described 559 

above for 'low-difference stimuli'. In parallel with the increase in difficulty, the display time of the stimuli 560 

was progressively shortened until the stimulus duration was 2-3 s. To prevent rats from developing 561 

habitual or stereotyped response preferences, extra sessions were occasionally included in the training. 562 

In these sessions, rats were allowed to collect reward from the correct well after sampling the incorrect 563 

well. After an incorrect nose poke, trials continued until the correct well was sampled. These sessions did 564 

not count towards criterion performance.  565 
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In the final task, the trial procedure was similar to training stage 4 and now the small and large 566 

difference unimodal stimuli were presented alongside with the crossmodal stimuli (see Stimuli).  To 567 

ensure enough trials were performed in all conditions to allow statistical comparison, each session 568 

contained either visual or auditory unimodal trials, in addition to multisensory trials. Recordings 569 

commenced when rats consistently performed at criterion level: >60 trials in 60 minutes with >70% 570 

correct on large-difference unimodal stimuli and above chance level for small difference unimodal stimuli 571 

and multisensory stimuli. 572 

 573 

Tetrode array and surgical procedure 574 

A custom-made, 128 channel tetrode-array was implanted over the right hemisphere of three rats (Bos et 575 

al., 2017; Lansink et al., 2007). Four bundles of 8 individually moveable tetrodes each were targeted to 576 

primary auditory cortex (A1, -4.4 mm AP, 6.8 mm ML, -4.4 mm DV), lateral secondary visual cortex (V2L, -577 

5.8 mm AP, 6.0 mm ML, -2.6 mm DV), hippocampal area CA1 (CA1, -3.6 mm AP, 2.4 mm ML, -2.6 mm DV) 578 

and perirhinal cortex area 36 (PRH, -4.4 mm AP, 6.8 mm ML, -7.0 mm DV). Hippocampal and perirhinal 579 

data were not used in the current study. Thirty minutes before surgery, rats received the analgesics 580 

meloxicam (Metacam, 2mg/kg) and buprenorphine (Buprecare, 0.04 mg/kg) subcutaneously, as well as 581 

the antibiotic enrofloxacin (Baytril, 5mg/kg). Anesthesia was induced using 3% isoflurane in oxygen and 582 

maintained with 1-2% isoflurane. Animals were mounted in a stereotaxic device (Kopf; Tujunga, CA, USA) 583 

and placed on a heating pad to maintain their body temperature. A single craniotomy was made such that 584 

the  points at which the bundles entered the brain were positioned relative to bregma at -5.4 mm AP and 585 

2.8 mm ML (A1), -5.9 mm AP and 4.0 mm ML (V2L), -3.6 mm AP and 1.7 mm ML (CA1) and -3.5 mm AP 586 

and 3.8 mm ML (PRH). Six screws were placed into the skull, with the screw positioned over the frontal 587 

bone serving as electrical ground for the tetrode array. The hyperdrive was positioned such that the 588 

bottom of the bundles touched the cortical surface. The craniotomy was then sealed using silicone 589 

adhesive (Kwik-Sil) and dental cement was used to fix the hyperdrive and screws to the skull. Post-590 

operative care consisted of subcutaneous injections of the analgesic meloxicam (2 days) and Baytril 591 

antibiotic (1 day) and application of wound healing ointment (Acederm, Ecuphar, Breda, Netherlands). On 592 

post-operative days 1-3, rats received 10 g of extra food softened in water to facilitate consumption. 593 

Tetrodes were gradually lowered to their target regions across the first week after surgery. During 594 

recordings their depth was estimated from the number of turns to the guiding screws and from the online 595 

Local Field Potential (LFP) profiles. 596 

 597 
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Data acquisition and preprocessing 598 

Spikes and LFPs were recorded using tetrodes (Gray et al., 1995)(nichrome, California Fine Wire, 16 µ per 599 

lead, gold-plated to an impedance of 500-800 KOhm) using a Neuralynx Digitalynx SX recording system 600 

(Neuralynx, Bozeman MT). Raw signals were buffered using four 32-channel unity-gain head stage 601 

amplifiers before being passed through an automated commutator (Neuralynx, MN). Each of the four 602 

tetrode bundles contained an additional electrode that served as a reference channel and which was 603 

positioned in the white matter near the tetrode bundle. The recorded signals were the raw signals with 604 

the reference signal subtracted. For spike recordings, signals were band pass filtered between 600 and 605 

6000 Hz. Putative spikes were recorded for 1 ms (16 bit, 32KHz) from all leads of a tetrode whenever the 606 

signal on any lead of that tetrode crossed a predefined threshold. LFPs were low-pass filtered below 300 607 

Hz and recorded continuously (16 bit, 3.2 KHz). The behavior of the rat was tracked by a ceiling-mounted 608 

camera (at 720 by 576 pixels, 25 fps) and timestamped by the Digitalynx SX. 609 

Spikes were attributed off-line to putative single units (clusters) using the KlustaKwik automatic 610 

clustering algorithm (Kadir et al., 2014) followed by manual refinement (MClust 3.5). Waveform features 611 

used for clustering were energy, the first derivative of the energy, the overall peak height and the peak 612 

height during samples 6-11 where the action potential peak is expected. Clusters were included for further 613 

analysis based on a combination of quality metrics (Schmitzer-Torbert et al., 2005): L-ratio (< 0.2 – 0.8), 614 

isolation distance (> 15 – 24) and interspike interval (1.2ms) violations (< 0.1% – 0.5%).  615 

 616 

Histology 617 

Following the last recording session animals were anesthetized using Isoflurane and electrolytic lesions 618 

were made at each tetrode tip by passing current (18 uA for 2s) through two leads of each tetrode. At 619 

least twenty-four hours later, the animal was deeply anesthetized with an intraperitoneal injection of 620 

Nembutal (1.0 ml, sodium pentobarbital, 60 mg/ml, Ceva Sante Animale, Maassluis, Netherlands) and 621 

transcardially perfused with 0.9% NaCl solution, followed by perfusion of a 4% paraformaldehyde solution 622 

(pH 7.4 phosphate buffered). The brain was extracted and placed in 4% paraformaldehyde solution for at 623 

least 24 hours post-fixation, after which 40 um transverse sections were made using a vibratome. These 624 

were stained with Cresyl Violet which allowed reconstruction of tetrode tracks and their endpoints 625 

marked by electrolytic lesions (Paxinos and Watson, 2007)(Supplementary fig. 1). Because it was not 626 

possible to determine with absolute certainty how each endpoint corresponded to the identity of 627 

individual tetrodes, the considered neuronal pools likely contain a small subset of units recorded in the 628 

vicinity of the target locations. Based on the average number of neurons included from the respective 629 
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recording sessions for A1 and V2L, the estimated number of neurons recorded outside their target areas 630 

was 16 for V2L and 32 for A1. 631 

 632 

Statistical Analysis 633 

Statistical procedures 634 

Unless specified otherwise all statistics were performed using linear mixed models (LMMs) or generalized 635 

linear mixed models (GLMMs) in MatLab (MathWorks, Natick, MA), depending on the distribution of the 636 

data. All reported statistical quantities (group means, regression slopes, confidence intervals etc.) were 637 

derived from the (G)LMMs. All reported confidence intervals are 95% prediction intervals. To estimate the 638 

denominator degrees of freedom (DF2) for F-tests, the Satterthwaite approximation was used for LMMs 639 

and the residual degrees of freedom for GLMMs. To correct for multiple comparisons, p-values are 640 

adjusted using the Holm-Bonferroni method where applicable {Holm, 1979 #172}(fig. 2H, 3E-F). 641 

 642 

Inclusion criteria 643 

Behavioral performance was measured as the percentage of correct responses to stimulus presentation 644 

in a session. Sessions were included for analysis only if the performance was above 95% of a distribution 645 

of performance expected from sessions with an equal number of trials and chance performance (50% 646 

correct trials). Additionally, to exclude sessions where animals had a preference for a particular response 647 

direction, sessions were included only when responses to both left and right stimuli were performed 648 

above chance using the same procedure. 649 

 650 

Z-scored spiking activity and firing rates 651 

Spike trains of individual units were binned into 1 ms temporal bins and smoothed with an exponential 652 

window with a time constant of 150 ms. Z-scored spiking activity was calculated by subtracting the mean 653 

from the smoothed spike train and dividing the result by the standard deviation.  654 

 655 

Position tracking and 2D rate maps 656 

The location of the rat’s body and head were determined separately for each frame of recorded video 657 

using custom scripts made with Bonsai Editor (Lopes et al., 2015). Frames with erroneously assigned 658 

positions were manually corrected. The raw tracking data was smoothed using the smooth() function in 659 

Matlab using the 'rlowess' method and a span of 5 pixels. Head direction was determined for each video 660 

frame as the angle of the body-head axis of the rat with respect to the left-to-right axis of the setup. 661 
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 662 

Rate maps were constructed in 2D by spatially binning (bin size = 10 by 10 pixels or 4.2cm2) the smoothed 663 

spike trains of single units into the spatial bin occupied by the rat in each videoframe, summing the firing 664 

rates per bin and then averaging over the time spent in each bin (occupancy). Binned spike trains and 665 

occupancy maps were independently smoothed by convolution with a 2D Gaussian (std = 1 bin) before 666 

averaging. Time segments in which the running velocity of the rat was < 6 cm/s were excluded. 667 

 668 

Linearization of position data and 1D rate maps 669 

The goal of linearizing position data is to allow more powerful analyses relating localized spiking activity 670 

to behavior. The lateral range of body motion on the track was limited, and the firing fields observed on 671 

the 2D rate maps generally spanned the full width of the track. Linearization therefore allows to focus on 672 

the spatial dimension containing the majority of the rate map structure. Linearization of the rat’s position 673 

was achieved by first determining the average path of the rat across the setup for each recording session. 674 

This was achieved by manually tracing the locations with highest occupancy of each session’s occupancy 675 

map. The starting point of the linearized track was chosen as the starting point of the right alley segment 676 

at the three-way junction at the front of the setup (FC; fig. 1A). The linearized track then consisted, in this 677 

order, of the right side of the track, central alley, left side of the track. The end position was the center of 678 

the back-alley segment at the three-way junction. The linear position was then determined as the point 679 

along this linearized track closest to each observed 2D position. Raw linearized position was smoothed by 680 

convolution with a Gaussian with standard deviation of 2 pixels (0.4 cm). Linear speed was then calculated 681 

from the linear location using the gradient() function in MatLab, and linear acceleration was calculated 682 

similarly from linear speed. Finally, because the linearized track length varied slightly between rats, linear 683 

location was normalized to the mean length across animals (334 cm). Linear rate maps were made 684 

similarly to the 2D rate maps but using the linear position data, using the same inclusion criteria and 685 

smoothing parameters and with a bin size of 16 pixels (3.3 cm). Joint rate maps (fig. 3A-B) were 686 

constructed from the linear rate maps of each neuron by normalizing each rate map between 0 and 1, 687 

and then sorting all rate maps of all sessions and rats by the location of the peak firing rate (dark red in 688 

fig. 3A). 689 

 690 

Firing fields 691 

The procedure for determining the location of firing fields was similar to the method described by 692 

(Haggerty and Ji, 2015), using the unit’s linear rate map as a basis. First the rate map was smoothed using 693 
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the smooth() function in Matlab (MathWorks, Natick, MA) with the 'rlowess' method and a span of 5 bins. 694 

The baseline firing rate was determined as the 40th percentile of this smoothed rate map. The baseline 695 

was subtracted from the rate map and local maxima were determined for the baseline-corrected rate 696 

map. Local maxima were kept for further processing if the rate was > 1Hz and > 0.2x the baseline rate. 697 

Field boundaries were determined as the bins nearest to a peak where the firing rate was < 10% of the 698 

peak firing rate. This procedure sometimes produced very small fields near or on the slope of larger fields 699 

(‘shoulders’). Such shoulders were discarded if the border of the field was two or fewer bins apart 700 

(<=6.6cm) from the border of a taller field, unless it was two or more bins (>=6.6cm) away from its own 701 

border and the peak was > 1.5 times the value at this border. After the removal of spurious small fields, 702 

the borders of remaining fields were extended to the bins where the activity fell below the peak cut-off 703 

of 1 Hz and 0.2 times the baseline rate, or until they reached the border of another peak. This procedure 704 

was followed for each single unit from the tallest to the lowest peak. Single fields that spanned the T-705 

junctions at the front and back of the experimental track were prevented from being detected as two 706 

separate fields by considering the bins of the linear rate maps that border the T-junctions as adjacent. 707 

 708 

Spatial Stability 709 

The spatial stability of the localized firing of individual units was determined using a permutation analysis. 710 

First, separate linear rate maps of each individual trial were constructed, similarly to the procedure 711 

described above, except that the data was split into leftward and rightward trials. The correlation between 712 

a single-trial rate map and the rate maps of all other trials on the same side of the track was computed 713 

(Pearson correlation), for each trial and then the average correlation coefficient was computed. These 714 

steps were repeated for 1000 shuffled versions of the spiking data. For each shuffled iteration, the spiking 715 

data was temporally rotated within a single trial by a random number of samples (Louie and Wilson, 2001). 716 

This method of shuffling leaves the temporal structure of spiking patterns largely intact. Positions and 717 

spikes emitted during periods of immobility (<0.06 cm/s) were excluded from analysis. A unit was 718 

considered spatially stable if its average single-trial rate map correlation, for both left- and rightward laps, 719 

was higher than 95% of the distribution of average, shuffled single-trial rate map correlations of the 720 

corresponding side. To calculate the spatial stability index, the mean of the distribution of average, 721 

shuffled single-trial rate map correlations was subtracted from the average observed single-trial rate map 722 

correlation; the result was divided by the standard deviation of the shuffled distribution. This procedure 723 

was done for each unit for both left- and rightward trials and the reported spatial stability index was the 724 

mean of those two. 725 
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The probability of the spatial stability of a unit was modeled using a GLMM with link function 726 

𝑔𝑔(𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = ln (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and the equation: 727 

 728 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + (1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆) 729 

 730 

Where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a categorical variable indicating the cortical area where the unit was recorded and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆 731 

is a categorical variable indicating from which experimental subject the data originated. 732 

 733 

Spatial information 734 

Spatial information (SI) for each unit was calculated from the linearized location data and firing rate 735 

following Skaggs et al. (1992): 736 

𝑆𝑆𝑆𝑆 =  �𝑃𝑃𝑖𝑖
𝑋𝑋𝑖𝑖
𝐴𝐴
𝑙𝑙𝑙𝑙𝑔𝑔2

𝑋𝑋𝑖𝑖
𝐴𝐴

𝑁𝑁

𝑖𝑖 = 1

 737 

Where 𝑃𝑃𝑖𝑖  is the probability of finding the animal in bin 𝑖𝑖, 𝑋𝑋𝑖𝑖 is the sum of the firing rates observed when 738 

the animal was found in bin 𝑖𝑖, r is the mean spiking activity of the neuron and 𝑁𝑁 is the number of bins of 739 

the linearized trajectory (104). The SI for each unit was modeled with a GLMM using a gamma distribution 740 

with link function 𝑔𝑔(𝑆𝑆𝑆𝑆) = 𝑆𝑆𝑆𝑆−0.01 and the equation: 741 

 742 

𝑆𝑆𝑆𝑆 ~ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + (1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆) 743 

 744 

Correlating firing field densities 745 

Firing field densities were calculated per rat by first determining for each linear spatial bin the number of 746 

firing fields, across all units, in which this bin took part. Then this number was divided by the subject’s 747 

total number of fields. The average firing field density is reported as the mean of the field densities for 748 

the individual rats. Firing field densities of A1 and V2L were correlated with an LMM using the equation: 749 

 750 

𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑖𝑖𝑆𝑆𝐷𝐷𝐴𝐴1 ~ 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑖𝑖𝑆𝑆𝐷𝐷𝑉𝑉2𝐿𝐿 + (1 + 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑖𝑖𝑆𝑆𝐷𝐷𝑉𝑉2𝐿𝐿|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆) 752 

 751 

Linear regression of spiking activity on behavioral covariates 753 

Linear regression was used to determine whether firing field correlations between A1 and V2L could be 754 

explained by similar linear dependencies between single unit firing rates and behavioral covariates. The 755 
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instantaneous, z-scored spiking activity of each unit was regressed on linear running speed, acceleration, 756 

head direction and change in head direction (angular velocity) using the general linear model: 757 

 758 

𝑍𝑍 ~ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐴𝐴𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑖𝑖𝐷𝐷𝐻𝐻𝐻𝐻 +  𝐶𝐶𝑙𝑙𝐷𝐷𝐻𝐻𝐻𝐻 +  𝜔𝜔𝐻𝐻𝐻𝐻  759 

 760 

Where 𝑍𝑍 is the instantaneous, z-scored spiking activity, 𝑆𝑆𝑆𝑆𝑆𝑆 is linear speed, 𝐴𝐴𝑆𝑆𝑆𝑆 is linear acceleration, 761 

𝑆𝑆𝑖𝑖𝐷𝐷𝐻𝐻𝐻𝐻 and 𝐶𝐶𝑙𝑙𝐷𝐷𝐻𝐻𝐻𝐻 are the sine and cosine of head direction and 𝜔𝜔𝐻𝐻𝐻𝐻 is the angular velocity in head 762 

direction. The model residuals of each unit were used to produce linear rate maps and subsequently 763 

determine firing fields without linear dependencies on the behavioral covariates. 764 

 765 

Stimulus responsiveness 766 

The responsiveness of a unit to the sensory stimuli was assessed by statistically comparing the mean, z-767 

scored firing rates of the time intervals of [350 – 50] ms pre-stimulus onset and [0 – 300] ms post-stimulus 768 

onset using Wilcoxon’s signed-rank test (alpha = 0.05). A subset of units gradually increased or decreased 769 

firing rates before stimulus onset (“ramping activity”), without showing a change in spiking activity at 770 

stimulus onset. To preclude that such activity would erroneously be considered as significantly stimulus 771 

responsive, only units with a stable pre-stimulus onset firing rate were considered; i.e. the unit’s firing 772 

rates between [1000-700 ms] and [350-50] ms pre-stimulus onset were required to be similar (Wilcoxon 773 

signed rank test, P > 0.05). The probability of a unit’s responsiveness to stimuli was modelled using a 774 

GLMM with link function 𝑔𝑔(𝑃𝑃𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟) = ln�𝑃𝑃𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟� and equation: 775 

 776 

𝑃𝑃𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 ~ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑀𝑀𝑙𝑙𝑆𝑆𝐴𝐴𝑙𝑙𝑖𝑖𝑆𝑆𝐷𝐷 + (1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑀𝑀𝑙𝑙𝑆𝑆𝐴𝐴𝑙𝑙𝑖𝑖𝑆𝑆𝐷𝐷 | 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆) 777 

 778 

Where 𝑀𝑀𝑙𝑙𝑆𝑆𝐴𝐴𝑙𝑙𝑖𝑖𝑆𝑆𝐷𝐷 is a categorical variable indicating the modality (auditory or visual) of the stimulus being 779 

considered. 780 

 781 

Noise correlations 782 

Rate map similarity between neurons was first determined for each pair of units as the Pearson correlation 783 

coefficient of their linear rate maps. To determine noise correlations, we first temporally binned the 784 

instantaneous, z-scored spiking activity into 10 ms bins and then subtracted from that the mean spiking 785 

activity at the linear spatial bin occupied by the rat at each instant. This difference constitutes 786 

instantaneous variability in spiking activity not predicted by spatial position. Additionally, for each pair of 787 
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units we categorized locations along the track as i) occurring in a firing field of both units (“shared field 788 

bin”), ii) occurring in a firing field of only one of the units (“one-field bin”) or iii) occurring outside of firing 789 

fields of both units (“out of field bin”). For each pair of units we calculated noise correlations as the 790 

Pearson correlation coefficient of the instantaneous variability of the activity of two units, and we did so 791 

separately for each of the three bin types.  792 

Analysis proceeded with pairs showing significant noise correlations, determined via comparison 793 

to shuffled distributions of these correlations. These distributions were made by computing noise 794 

correlations after shuffling samples of spiking activity within the same linear spatial bin and repeating this 795 

procedure 5000 times. A pair was considered significantly correlated if its actual correlation exceeded 796 

99% of the shuffled distribution for at least one of the three location types. 797 

For significantly correlated pairs, mean noise correlations across location types, were regressed 798 

on their rate map correlations with an LMM using the equation: 799 

 800 

𝑅𝑅𝑀𝑀𝑁𝑁 ~ 𝑅𝑅𝑅𝑅𝑀𝑀 ∗ 𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝑃𝑃𝑠𝑠𝑖𝑖𝑟𝑟 + �1 +  𝑅𝑅𝑅𝑅𝑀𝑀 + 𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟  � 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆)   801 

 802 

Where 𝑅𝑅𝑀𝑀𝑁𝑁 is the mean noise correlation of a pair across location types, 𝑅𝑅𝑅𝑅𝑀𝑀 is the rate map correlation 803 

and 𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝑃𝑃𝑠𝑠𝑖𝑖𝑟𝑟  is the type of pair (A1-A1, V2L-V2L or A1-V2L). Here we used the mean noise correlation 804 

across location types rather than the overall noise correlation since the latter suffers from sampling bias 805 

if noise correlations for different location types are not equal, because pairs with high rate map 806 

correlations contribute more samples from shared field bins and out of field bins than from one-field bins. 807 

To compare noise correlations between cell-pair types and location types we used an LMM with 808 

the equation: 809 

𝑅𝑅𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑠𝑠 ~ 𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟 ∗ 𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝐵𝐵𝑖𝑖𝐵𝐵 + (1 +  𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝑃𝑃𝑠𝑠𝑖𝑖𝑟𝑟 +  𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝐵𝐵𝑖𝑖𝐵𝐵 | 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆)  810 

 811 

Where 𝑅𝑅𝐵𝐵𝑁𝑁𝑖𝑖𝑠𝑠𝑠𝑠  is the average noise correlation for a unit pair at one of the three location types and 𝑇𝑇𝐷𝐷𝑆𝑆𝐴𝐴𝑠𝑠𝑖𝑖𝐵𝐵 812 

is a categorical variable indicating the location type.  813 

 814 

Cross-correlogram 815 

Cross-correlations of A1 – V2L unit pairs were computed from the z-scored spiking activity of all spatially 816 

stable units, during periods with running speed > 0.06 m/s. Spiking activity was first binned in 10 ms bins. 817 

The mean spiking activity observed in the spatial bin occupied by the rat at each instant was then 818 

subtracted from the spiking activity in order to prevent the relative spatial positions of firing fields of two 819 
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units from biasing the shape of the cross-correlogram. In doing so, the cross-correlation only considered 820 

activity fluctuations with respect to the mean activity observed at each location. Histograms were made 821 

of the distribution of cross-correlogram peak lags for each animal individually, which were then averaged 822 

to produce the histogram shown in fig. 3G. 823 

 824 

Information theoretic analysis 825 

For the information theory-based analyses, linear spatial bins of ~16.4 cm were used, such that the 826 

linearized track was divided into 21 bins. As predictors we used running speed, head direction (θhead) and 827 

head direction change (Δθhead). Running speed and θhead were calculated as described above, and Δθhead 828 

was calculated as the degrees per second change in θhead. The predictors were binned in 21 equipopulated 829 

bins to match the number of location bins. Spike counts were binned in 300 ms time bins, and instances 830 

with running speed < 0.1 m/s were excluded. Discrete mutual information (MI) and discrete conditional 831 

mutual information (cMI) were computed using the Java Information Dynamics Toolkit (JIDT)(Lizier, 2014). 832 

Bias due to finite sample sizes was corrected by generating for every computation of MI and cMI a 833 

population of 500 surrogates. When creating the surrogates, only spike count vectors were shuffled, such 834 

that the relationship between the target and conditional predictor (in the case of cMI) was preserved. The 835 

MI and cMI values reported are the differences between the observed values and the average of the 836 

surrogate populations. Differences in MI between A1 and V2L were statistically assessed using Mann-837 

Whitney’s U test. The p-value of cMI values of individual units was computed as the fraction of the 838 

surrogate dataset which had information values higher than the observed one. To correct for multiple 839 

comparisons, a Bonferroni correction was applied across all neurons and tested at the 0.05 significance 840 

level. Reported confidence bounds correspond to 95% bootstrap confidence intervals, computed with the 841 

Seaborn Python library (v0.9.0, 2018). 842 

 843 

Encoding: predicting spike trains from behavioral variables 844 

First, the position of the rat was taken as the two-dimensional variable with x- and y-coordinates with a 845 

resolution of 0.205 cm/pixel recorded by the system without further binning. Encoding was performed 846 

with a random forest encoder using 100 trees and 5-fold cross-validation with randomized folds (Benjamin 847 

et al., 2018). Encoding over time was performed using continuous folds to preserve the order in time. 848 

Encoding quality was measured with the Poisson pseudo-R2 score and averaged over folds. Statistical 849 

comparisons of encoding quality for individual predictors, and comparisons of improvement in encoding 850 

quality above all other predictors, were made using Wilcoxon’s signed-rank test and used the average of 851 
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the A1 and V2L (improvement in) encoding quality for each predictor. Reported confidence bounds 852 

correspond to 95% bootstrap confidence intervals, computed with the Seaborn Python library (v0.9.0, 853 

2018). 854 

 855 

Decoding of animal position 856 

The position of the rat was decoded from the neuronal data recorded from A1 or V2L if a session included 857 

at least 16 neurons from that area showing a rate map peak > 2Hz; only those neurons were included for 858 

each session. This number was determined to provide a balance between decoding quality and number 859 

of included sessions. Spikes were binned in 400 ms bins, and the true position (i.e. the actual position of 860 

the rat on the track) at every timeframe was assigned to a spatial bin on the linearized track (total of 35 861 

bins, bin size ~9.8 cm). When the linear position changed spatial bins within a temporal bin, the position 862 

was assigned to the spatial bin which occurred most often within the temporal bin. Running speed was 863 

linearly interpolated at the centers of the temporal bins. Samples with speed < 0.1 m/s and with spike 864 

count < 5 were excluded. A Bayesian classifier was employed to predict the spatial bin occupied by the rat 865 

on the basis of  the temporally binned neural data (Davidson et al., 2009). A 5-fold cross-validation routine 866 

with shuffling was used, with identical shuffling (i.e. similar sized training set for each fold) across the two 867 

areas for a given session.  868 

Decoding errors were used as a main metric for decoding performance and computed as the 869 

Euclidian distance between the centers of the true and the decoded spatial bin in 2D space. Pearson 870 

correlations of instantaneous decoding errors between the two cortical areas in time were calculated to 871 

assess whether A1 and V2L encoded the same position. This was performed separately for the error in the 872 

x-direction and that in the y-direction in 2D space, to preserve the directionality of the error in addition 873 

to its magnitude. 874 

Instantaneous error correlations resulting from these computations were compared with error 875 

correlations computed following shuffling of the errors within the same spatial bin and running speed 876 

range (Saleem et al., 2018). Running speed bins were defined per session by taking the full range of speeds 877 

and subdividing it into 5 equipopulated bins. Significance of differences in error correlations before and 878 

after shuffling were tested using Wilcoxon’s signed-rank tests. Joint error density maps for A1 and V2L 879 

were computed for the error correlations of recorded and shuffled data and for the x- and y-direction 880 

separately. Joint error density maps were averaged across all included sessions and smoothed with a 881 

Gaussian filter with a standard deviation of 4 spatial bins. The relative probability of observing an error of 882 
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a particular size and direction in the recorded versus shuffled data was calculated by taking the difference 883 

between the actual and shuffled joint density maps and dividing by the shuffled map. 884 

A bootstrapping procedure was performed for testing how the decoding performance depended 885 

on the size of the population. First, for each included session, 50 unique, random groups of units were 886 

selected for each ensemble size (ranging from 5 to the maximum number of units in each session minus 887 

one). Then, the decoding analysis was performed for each group before averaging decoding performance 888 

across the groups. For the largest ensembles, with one fewer unit than the session total, it was not 889 

possible to create 50 unique groups. For these ensembles some groups were included twice. Cross-890 

validation was performed for every group by splitting the data into a training set (80%) and test set (20%), 891 

with identical shuffling across all groups of a session. 892 

To exclude the possibility that the observed correlations in instantaneous decoding errors are a 893 

result of decoding artifacts in sessions with poor decoding, Pearson’s correlation was computed for the 894 

average decoding errors and the correlation in instantaneous decoding errors across sessions, for A1 and 895 

V2L average errors separately and for instantaneous errors in the X- and Y-directions separately. 896 

 897 

Seaborn Python reference (no journal article associated) 898 
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 913 

 914 

Figure 1: Behavioral apparatus and task. (A) Rats performed a discrimination task on an automatized 915 

figure-8 track, which was located in a dark, sound-attenuated laboratory room without other salient visual 916 

cues. At the front center T-junction (FC), rats responded to audio-visual stimuli presented from 2 screens 917 

and 2 speakers located in front of the track (green) by running to the track’s side corresponding to where 918 

the most salient stimulus was presented. Rats were rewarded for a correct response with sucrose solution 919 

at the ports to the sides of the front alley (pink squares). The dotted line indicates how the track was 920 

linearized for analysis. FL: front left, FR: front right, BC: back center. (B) Example of a set of stimuli. Stimuli 921 

were visual (moving checkerboard), auditory (filtered white noise) or audiovisual. In multisensory trials, 922 

target auditory and visual stimuli were always presented at the same side of the track. The rat had to 923 

respond to the most salient stimulus (highest contrast and/or volume) and discard the distractor stimulus 924 

(which was less salient). (C) Trial layout and example A1 and V2L spike trains during seven seconds of a 925 

leftward trial with a correct response. NP center: blue line indicates the timing of the nose poke (NP) in 926 
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the central well to initiate stimulus onset. Stimulus: the time interval during which the stimulus was 927 

presented (2s; green line). NP/Lick: the time of the rat’s nose poke into the left reward well is indicated 928 

by the red shaded area and the individual licks by the vertical tick marks. A1 / V2L Units: Single unit spikes 929 

are indicated by the black vertical tick marks, whereas solid lines indicate Gaussian-smoothed spike trains. 930 

Firing rates are observed to fluctuate in relation to stimuli and locations across the maze.  Movement: 931 

speed of the rat along the linear trajectory. 932 

  933 
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 934 

 935 

Figure 2: Spatially localized firing patterns of A1 and V2L units. (A) Top panels. Rate maps indicating the 936 

spatial firing-rate distribution of four example A1 units. The firing rate of the units is color-coded and the 937 

peak rates are indicated in the left wing of the map. Bottom panels. Firing rate distributions along the 938 

linearized version of the track corresponding to the rate maps shown in the top panels. Red arrow heads 939 

indicate individual firing field peaks. Black arrow heads indicate a single firing field peak that spans across 940 

an edge of the linearized track. Abbreviations below linear rate maps refer to landmark locations (fig. 1A). 941 

(B) as (A) but for four example V2L units. (C) Estimate of the proportion of spatially stable units in the A1 942 

and V2L populations. Black vertical lines throughout (C-H) indicate 95% confidence intervals (N.S.: p > 943 

0.05, F-test). (D) Spatial stability index of spatially stable units. (E) Number of firing fields per spatially 944 

stable unit (F) Field length per unit (**, p < 0.01). (G) Spatial information of spatially stable units (***, p < 945 
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0.001). (H) Proportions of stimulus responsive neurons in A1 (blue bars) and V2L (red) to auditory and 946 

visual stimuli (*, p < 0.05). 947 

 948 

 949 

 950 

Figure 3: Spatial and temporal firing relations between A1 and V2L neurons. (A) Top panel. Joint linear 951 

rate map including all individual, spatially stable units recorded from A1. Firing rate is color-coded and the 952 

individual rate maps are sorted by peak location. Bottom panel. The firing field density across the spatial 953 

bins on the track are shown for the individual rats (thin, colored lines) and the mean across rats (thick, 954 

grey lines). The firing field density expresses for each spatial bin the proportion of individual firing fields 955 

that include that bin. (B) as (A) but for V2L. (C) Correlation between firing field densities of A1 and V2L 956 

across spatial bins. Dots correspond to individual spatial bins; different shades of grey correspond to 957 

individual rats. The dashed line indicates the linear regression of mean field densities across rats according 958 

to the linear mixed effects model. The value of p indicates the significance of the regression line.  (D) Heat 959 

maps show the proportions of cell pairs averaged across rats as a function of observed rate map 960 

correlations and noise correlations for A1-A1 pairs (top), V2L-V2L pairs (middle) and A1-V2L pairs 961 

(bottom). White, dashed lines indicate regression lines from a linear mixed effects model, indicating the 962 

significant, positive relationship between rate map correlations and noise correlations. (E) Bars indicate 963 
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the slope of the regression of noise correlations on rate map correlations (white, dashed lines in D) for 964 

the different single-unit pair types, with error bars indicating 95% confidence bounds versus 0. Asterisks 965 

indicate a significant difference between groups (***: p < 0.001). (F) Mean pairwise noise correlations for 966 

the within and between-area pairs and field configuration presented for significantly positively correlated 967 

pairs and significantly negatively correlated pairs separately. Sha: locations shared between firing fields 968 

of both units; One: locations exclusively appearing in the firing field of one of the two units, but not the 969 

other; Out: locations outside of the firing fields of either unit. Error bars are 95% confidence bounds versus 970 

0. Asterisks indicate a significant difference between groups (***: p < 0.001, **: p < 0.01, *: p<0.05). (G) 971 

Proportions of A1-V2L unit pairs with observed temporal cross-correlation peak lags, averaged across rats. 972 

Black arrow indicates the lag with the highest average proportion of pairs. Negative lags indicate that 973 

activity of the A1 unit precedes that of the V2L unit.  974 

  975 
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 976 

Figure 4: Encoding: predicting single-unit spiking activity from behavioral factors. (A) Average mutual 977 

information (MI) between spiking activity of A1 (blue) and V2L (red) single neurons and the behavioral 978 

factors position, running speed, head direction (θhead), and head direction change (Δθhead). Error bars 979 

represent 95% bootstrapped confidence bounds. (B) Debiased, conditional mutual information (cMI) 980 

between spiking activity and behavioral factors speed, head direction and changes in head direction, 981 

conditional on position. Error bars as in A.  (C) Relationship between the MI of spikes and position and the 982 

cMI between spikes and position conditional on head direction for all spatially stable single units for A1 983 

(left) and V2L (right). Blue/red points mark units with significant cMI about position conditional on θhead, 984 

indicating that these units carry significant information on position that cannot be explained by θhead. Inset 985 

shows in color the number of units per area showing significant cMI about position conditional on θhead as 986 
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fraction of the total number of units (grey). (D) Venn diagrams showing for each area the number of 987 

neurons transmitting significant cMI(spikes, position | θhead) (dark color) and cMI(spikes, θhead | position) 988 

(light color). Overlapping region indicates neurons which transmit significant information on both position 989 

and θhead, neither of which can be explained entirely by the other factor.  (E) A random forest encoder was 990 

used to predict spiking behavior on the basis of position, running speed, θhead and Δθhead. Figure shows 60 991 

s of firing rate of an example A1 unit (black line; left panel) and V2L unit (black line; right panel) and the 992 

predicted firing rate based on the models including the different behavioral parameters (colored lines). 993 

(F) Mean encoding quality across all A1 (blue) and V2L (red) units using single behavioral factors as 994 

predictor and using all predictors. Error bars as in A. (G) Mean improvement in encoding quality across all 995 

single units following the addition of the indicated behavioral factor to a model already containing all 996 

other factors. Error bars are 95% confidence bounds. (H) The relationship between encoding quality of 997 

individual single units when all predictors are considered and the encoding quality when all predictors 998 

except head direction (left) or linear position (right) are considered. Points above the diagonal belong to 999 

units with improved encoding due to the inclusion of linear position/ head direction which cannot be 1000 

attributed to any other included factor. Blue: A1 units, red: V2L units. Diagrams to the right and top of the 1001 

main scatterplot show the empirical distributions of the data depicted in the scatterplots projected onto 1002 

a single dimension. 1003 

  1004 
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 1005 

 1006 

 1007 

 1008 

Figure 5: Spatial position can be reconstructed from A1 and V2L populations using a Bayesian decoder. 1009 

(A) Confusion matrices indicating the performance of Bayesian decoding of linearized position from A1 1010 

neuronal populations averaged across sessions. The probability that a sample of spiking activity is assigned 1011 

by the decoder to the true location of the rat is coded in blue shades. (B) as (A) but for V2L populations. 1012 

(C) Distribution of decoding errors (i.e. distances between the true and decoded position) across A1 (blue) 1013 

and V2L (red) sessions. (D) Decoding error as a function of population size, obtained by randomly selecting 1014 

units from the neuronal populations. Thin lines indicate means for individual sessions for A1 (blue) and 1015 

V2L (red). Thick lines indicate means over sessions. (E) Correlations of measured (abscissa) and shuffled 1016 

(ordinate) instantaneous decoding errors in the X-dimension of the maze. Shuffling was performed inside 1017 

the same spatial bin and within the same running speed range. (F) Same as (E) but for the Y-dimension. 1018 

(G) The size and direction of instantaneous errors were correlated between A1 and V2L. Color coded is 1019 

the frequency of observing an instantaneous decoding error of a particular size and direction in the X-1020 

dimension after subtracting the frequency of instantaneous errors of a particular size and direction 1021 

following shuffling of the errors within the same spatial bin and speed range. E.g. a value of +0.3 indicates 1022 

that an error of that particular size and direction is 30% more likely to be observed in actual data than in 1023 

shuffled data. (H) Same as (G) but for the Y-dimension. 1024 
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 1025 

 1026 

 1027 

Supplementary figure S1: Histology 1028 

Dots indicate locations of tetrode endpoints. Red dots represent endpoints of tetrodes targeted at V2L, 1029 

blue dots endpoints of tetrodes targeted at A1. Three different shades were used to represent data from 1030 

the three subjects. Light blue and light red correspond to the first subject, medium blue and medium red 1031 

to the second subject and dark red and dark blue to the third subject. Numbers indicate distance from 1032 

Bregma. Plates adapted from Paxinos & Watson (2007). 1033 
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 1035 
 1036 
Supplementary figure S2: Encoding without stimulus presentation period 1037 

(A) Debiased, conditional mutual information (cMI) between spiking activity and behavioral factors speed, 1038 

head direction and changes in head direction, conditional on position (red bars: V2L; blue bars: A1). For 1039 

this analysis, data from the period around stimulus presentation ± 1 s were ignored. Error bars represent 1040 

95% bootstrapped confidence bounds. (B) Mean improvement in encoding quality of the random forest 1041 

encoder across all single units following the addition of the indicated behavioral factor to a model already 1042 

containing all other factors. For this analysis, data from the period around stimulus presentation ± 1 s 1043 

were ignored. Error bars are 95% confidence bounds. 1044 

 1045 
 1046 
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 1048 
 1049 
 1050 
 1051 
Supplementary figure S3: Correlations in instantaneous decoding error per subject 1052 
The size and direction of instantaneous decoding errors were correlated between A1 and V2L for 1053 

individual subjects. (A) Color coded is the frequency of observing an instantaneous decoding error of a 1054 

particular size and direction in the X-dimension (in A1, abscissa, vs. V2L, ordinate) relative to the frequency 1055 

of instantaneous errors of a particular size and direction following shuffling of the errors within the same 1056 

spatial bin and speed range. Data from the first subject. (B) as (A) but for the Y-dimension. (C) and (D), as 1057 

(A) and (B) but for the second subject. (E) and (F) as (A) and (B) but for the third subject. 1058 
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 1060 
Supplementary figure S4: Average decoding error and instantaneous error correlations between areas 1061 
are uncorrelated 1062 
(A) Using Pearson’s correlation, we found no linear relationship between the average decoding error in 1063 
the X-dimension in A1 and the average correlation in instantaneous decoding error in the X-dimension 1064 
between A1 and V2L. Each dot represents a session included in the decoding analysis for both sessions. 1065 
(B) As (A) but for the Y-dimension. (C) As (A) but for the average decoding error in V2L. (D) as (C) but for 1066 
the Y-dimension. 1067 
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