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Abstract 22 

Transcriptional profiling is a powerful tool to investigate and detect human diseases.  23 

In this study, we used bulk RNA-sequencing (RNA-Seq) to compare the 24 

transcriptomes in skin lesions of leprosy patients or controls affected by other dermal 25 

conditions such as granuloma annulare, a confounder for paucibacillary leprosy. We 26 

identified five genes capable of accurately distinguishing multibacillary and 27 

paucibacillary leprosy from other skin conditions. Indoleamine 2,3-dioxygenase 1 28 

(IDO1) expression alone was highly discriminatory, followed by TLR10, BLK, CD38, 29 

and SLAMF7, whereas the HS3ST2 and CD40LG mRNA separated multi- and 30 

paucibacillary leprosy. Finally, from the main differentially expressed genes (DEG) and 31 

enriched pathways, we conclude that paucibacillary disease is characterized by 32 

epithelioid transformation and granuloma formation, with an exacerbated cellular 33 

immune response, while multibacillary leprosy features epithelial-mesenchymal 34 

transition with phagocytic and lipid biogenesis patterns in the skin. These findings will 35 

help catalyze the development of better diagnostic tools and potential host-based 36 

therapeutic interventions. Finally, our data may help elucidate host-pathogen interplay 37 

driving disease clinical manifestations. 38 

Author Summary 39 

Despite effective treatment, leprosy is still a significant public health issue in 40 

more than 120 countries, with more than 200 000 new cases yearly. The disease is 41 

caused mainly by Mycobacterium leprae, a slow-growing bacillus still uncultivable in 42 

axenic media. This limitation has hampered basic research into host-pathogen 43 
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interaction and the development of new diagnostic assays. Currently, leprosy is 44 

diagnosed clinically, with no standalone diagnostic assay accurate enough for all 45 

clinical forms. Here, we use RNA-seq transcriptome profiling in leprosy lesions and 46 

granuloma annulare to identify mRNA biomarkers with potential diagnostic 47 

applications. Also, we explored new pathways that can be useful in further 48 

understanding the host-pathogen interaction and how the bacteria bypass host 49 

immune defenses. We found that IDO1, a gene involved with tryptophan catabolism, 50 

is an excellent candidate for distinguishing leprosy lesions from other dermatoses. 51 

Additionally, we observed that a previous signature of keratinocyte development and 52 

cornification negatively correlates with epithelial-mesenchymal transition genes in the 53 

skin, suggesting new ways in which the pathogen may subvert its host to survive and 54 

spread throughout the body. Our study identifies new mRNA biomarkers that can 55 

improve leprosy diagnostics and describe new insights about host-pathogen 56 

interactions in human skin.  57 
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Introduction 58 

 Leprosy is a chronic infectious disease caused mainly by the slow-growing 59 

intracellular pathogen Mycobacterium leprae that does not grow in axenic media. This 60 

bacterium resides preferentially in skin macrophages and Schwann cells in peripheral 61 

nerves, inducing dermatosis and/or neuritis. Patients can present several distinct 62 

clinical forms according to their immune response, histopathological characterization, 63 

and bacterial load. A localized tuberculoid form (TT) is characterized by low bacterial 64 

counts and a strong cellular immune response. Conversely, in the opposite 65 

lepromatous (LL) pole, a disseminated form, patients exhibit several lesions, a 66 

predominantly humoral response, and a high bacterial load in the tissues [1–3]. 67 

Borderline forms are classified according to their proximity to the poles. For operational 68 

and treatment purposes, leprosy is classified by the World Health Organization as 69 

paucibacillary (PB) or multibacillary (MB), based on the number of skin lesions, 70 

associated with nerve involvement or the bacilli detection in slit-skin smears [4]. 71 

Early and precise diagnosis is instrumental to leprosy control since delay in 72 

diagnosis leads to late multidrug therapy, higher disability risk, and continuing 73 

transmission, as highlighted by the 200,000 new cases consistently reported annually 74 

in the last 10 years [4,5]. However, bacteriological, immunological, genetics or 75 

molecular methods are not sufficient for specific diagnosis when used alone. 76 

Diagnosis most commonly relies on clinical evaluation, occasionally complemented 77 

with histopathological examination and bacterial counts, but these procedures are 78 

mostly performed in national reference centers [4,6]. 79 
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Efforts have been deployed to improve leprosy diagnostics using cutting-edge 80 

technologies, such as molecular identification of M. leprae, serological tests for 81 

specific bacterial antigens, and quantification of host biomarkers in plasma or in vitro 82 

whole blood assays (WBA) [7–9]. Overall, all methods outperform standard clinical 83 

diagnosis and can compensate for the low accuracy in detecting PB patients 84 

[4,7,8,10–14]. Yet, until now such investigations involved comparing confirmed leprosy 85 

cases against healthy endemic controls, who are not representative of individuals with 86 

suspected leprosy. Here, other skin conditions represent a better comparator. 87 

Identification of markers for early infection is hindered by our poor 88 

understanding of pathogenicity and the mechanism by which patients develop one or 89 

the other form of leprosy, and nerve injuries [15]. Gene expression signatures have 90 

been used as diagnostic tools for several illnesses, from infectious [10–12,14] and 91 

autoimmune diseases [16,17] to cancer [18–20]. Some signatures have already been 92 

approved for clinical use [12,21–23]. In leprosy, findings from past studies indicate the 93 

great potential of expression profiling for disease diagnosis [24–27]. Nonetheless, they 94 

were limited by the number of patients [28], or lacked proper epidemiological controls, 95 

such as differential diagnosis groups.  96 

Here, we applied a combination of bulk RNA sequencing and quantitative 97 

validation by RT-qPCR on RNA extracted from skin biopsies of various leprosy forms 98 

and from non-leprosy patients to define a specific leprosy host signature applicable to 99 

diagnosis. Then, we explored gene expression patterns to improve our understanding 100 

of the immunopathogenic mechanisms towards leprosy polarization. 101 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.07.30.454441doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454441
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Results 102 

Discrimination of leprosy vs. non-leprosy lesions based on 103 

mRNA expression 104 

RNA sequencing was used for pinpointing host candidate genes capable of 105 

differentiating leprosy lesions from one of the commonest differential diagnoses of 106 

leprosy, granuloma annulare (GA), and from healthy skin. RNA from skin lesions of all 107 

leprosy clinical forms (n=33), plus GA (n=4) and healthy skin (n=5) were sequenced 108 

(S1 Table). Differentially expressed genes (DEG) in leprosy vs. non-leprosy (GA + 109 

healthy skin) samples resulted in 1160 DEG with a |log2FC| ≥ 1 and FDR ≤ 0.01, with 110 

961 upregulated in leprosy forms compared to non-leprosy (Fig 1A-B and S2 Table). 111 

Exploratory hierarchical clustering of the DEG with |log2FC| ≥ 1 and FDR < 0.01 112 

grouped all patients’ samples into roughly two clusters, except for two: one BL leprosy 113 

and one GA that clustered apart from samples with the same diagnosis (Fig 1C). Gene 114 

Ontology enrichment analysis of up-regulated genes in leprosy compared to non-115 

leprosy showed enrichment for biological processes associated with leukocyte 116 

activation, T-cell activation, immune response, response to the bacterium, neutrophil 117 

degranulation, cell killing, cytokine secretion, purinergic receptor signaling pathway, 118 

and regulation of defense response to viruses by the host (Fig 1D and S3 Table). 119 

 120 

 121 

 122 
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Fig 1. Differentially expressed genes from RNA-seq in leprosy vs. GA and 123 
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leprosy vs. non-leprosy. (A) Volcano plot depicting DEG from leprosy vs. non-124 

leprosy, where violet dashed line marks |log2FC| = 1. For clarity, gene symbols are 125 

shown only for the largest log2FC. (B) Heatmap with hierarchical clustering of samples 126 

based on expression of the DEG from leprosy vs. non-leprosy comparison. Color scale 127 

ranges from lower expression (blue) to higher expression (red). Library size is given 128 

in millions. LIB, logarithmic index of bacilli. (C) Biological processes from GO enriched 129 

for up-regulated DEG from leprosy vs. non-leprosy comparison. FDR, false discovery 130 

rate; NL, non-leprosy; GA, granuloma annulare; non-leprosy: GA + healthy individuals. 131 

 132 

A total of 15 genes with the largest effect size (|log2FC| ≥ 1.5, FDR < 0.001), 133 

highest area under the curve (AUC), and plausible involvement with leprosy 134 

pathogenesis (S4 Table) were then validated using a two-step RT-qPCR with a new, 135 

larger, and more heterogeneous dataset including skin lesion samples from leprosy 136 

patients (n=25), and other common dermatoses (n=23) (S1 Table). Other 137 

dermatological diseases (ODD) included dermatitis (n=7), eczema (n=1), erythema 138 

(n=4), GA (n=6), lichen planus (n=2), psoriasis (n=2) and pityriasis alba (n=1) (S1 139 

Table). A total of 12 samples per group was estimated to be sufficient to attain a power 140 

of 85% based on the Welch t-test (PB vs. ODD, MB vs. ODD) with alpha set at 0.03 141 

to replicate the standardized effect size (log2FC/SD) estimated from RNA sequencing. 142 

Relative expression using the new sample set by RT-qPCR is shown in Fig 2A. Indeed, 143 

the validation data are in agreement with RNA sequencing, because 11 tested genes 144 

were replicated by RT-qPCR in terms of difference between mean expression (effect 145 

size in log2FC), except for STAP1, GBP3, APOL3 and CCR7 in PB vs. ODD 146 

comparison and CCR7 in MB vs. ODD (Fig 2B-C, S5 Table). As for differentiating 147 
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leprosy per se vs. ODD, genes IDO1, BLK (exon 11), CD38, CXCL11, and SLAMF7, 148 

all had an area under the curve (AUC) of at least 96% with their lower bound 97% 149 

confidence intervals above 90% (Fig 2A, Fig 3C, S6 Table). 150 
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Fig 2. Technical and biological validation for selected DEG discovered from RNA 151 

sequencing. (A) Tukey boxplots with RT-qPCR normalized (2-3 reference genes) log2 152 

expression values (A.U) according to clinical and histopathological diagnosis. ODD 153 

samples are colored according to M. leprae 16S rRNA qPCR status as positive (blue) 154 

or negative (green). (B) log2FC from MB-ODD and PB-ODD comparisons estimated 155 

from Bayesian linear mixed models and their 95% credible intervals. (C) Tukey boxplot 156 

highlighting IDO1 RT-qPCR normalized log2 expression values by final diagnosis 157 

grouped into ODD category. Missing values are omitted. 158 

 159 

 Next, hierarchical clustering with RT-qPCR data including missing values for 160 

some genes (no target gene amplification by RT-qPCR) was performed to examine all 161 

samples simultaneously. The analysis roughly revealed three major clusters (Fig 3A). 162 

At the highest tree subdivision, one small cluster (n=6) with the dendrogram grouped 163 

in light brown was composed of ODD samples with lower expression levels (Fig 3A). 164 

Due to several ODD having missing values, we confirmed that these samples had 165 

similar gene expression for the reference genes, thereby eliminating the possibility of 166 

insufficient cDNA input. Another cluster, grouped in the light purple dendrogram, 167 

included all MB and most PB samples (except four in light yellow dendrogram). GA 168 

samples displayed two patterns, the first with two samples showing undetectable IDO1 169 

expression (Fig 3A, bottom star symbols). The second set (n=4) is scattered among 170 

other ODD samples (Fig 3A). It can be seen that GA and PB samples show highly 171 

similar expression profiles for some genes (Fig 3A bottom diamond symbols), 172 

reinforcing the difficulty in clinically discriminating between these two conditions, and 173 

underlining the relevance of their inclusion in our comparisons [29–31].  174 
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Then, by applying principal component analysis (PCA) to the 15 gene signature 175 

obtained with the expanded sample panel tested by RT-qPCR, we uncovered two 176 

major patterns separating leprosy lesions from ODD (Fig 3B). As expected, MB 177 

samples appeared more homogeneous than PB and ODD samples, while the latter 178 

were more dispersed revealing heterogeneous expression patterns (Fig 3B). 179 

Next, we quantified the individual classification potential of these genes in 180 

distinguishing leprosy from ODD using ROC analysis on RT-qPCR data. IDO1 181 

expression alone was found to be 98% accurate using an arbitrary threshold, followed 182 

by BLK (exon 11), CD38, CXCL11, and SLAMF7 (Fig 3C and S6 Table). Finally, to 183 

confirm the causal link between mycobacteria and our gene-set, we evaluated the 184 

mRNA profiles induced by other live-mycobacteria using a public RNA-seq dataset 185 

[32]. We observed that most gene expression signatures, including IDO1, could be 186 

successfully replicated as induced by either M. leprae and/or other mycobacteria (Fig 187 

1 in Appendix S1 and S7 Table). By contrast, some of the tested genes such as BLK, 188 

CXCL9, MS4A1, and TLR10 were not differentially expressed in any of the in vitro 189 

assays with mycobacteria  (Fig 1 in Appendix S1 and S7 Table).  190 

 191 

 192 
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Fig 3. Hierarchical clustering of RT-qPCR replicated DEG and ROC analysis. (A) 193 

Hierarchical clustering with scaled and centered normalized log2 RT-qPCR expression 194 

values (arbitrary units) and annotated according to group and specific diagnosis. 195 

Dendrogram tree was cut arbitrarily and cluster analysis is for hypothesis generating 196 

purposes only. Two samples had more than 13 missing expression values and were 197 

removed from A. (B) Principal component analysis (PCA) with 15 genes measured by 198 

RT-qPCR and using log2 normalized scaled data. For PCA only, missing values were 199 
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imputed by the gene arithmetic mean. NA, not amplified, i.e., Cp > 40. In this regard, 200 

there were two outliers (psoriasis and erythema), which are samples with high 201 

numbers of NA values and that were imputed using the gene arithmetic mean. (C) 202 

Receiver operating characteristic analysis for genes with largest AUC (97% 203 

confidence intervals) from RT-qPCR replication samples (complete data are shown in 204 

S6 Table). See also S1 Appendix and S1 Fig. 205 

MB and PB gene expression profiling and mRNA-based 206 

classifier  207 

 To define a small subset of genes with high classificatory potential (i.e. with 208 

non-overlapping expression values) to distinguish MB from PB lesions, we performed 209 

a penalized logistic regression (LASSO) model with k-fold cross-validation trained on 210 

the public microarray dataset [24]. This dataset was chosen because of the higher 211 

number of PB/MB samples compared to our RNA-seq dataset. As a result, three genes 212 

with non-zero coefficients were selected by the cross-validated LASSO model: 213 

HS3ST2, CD40LG, and CCR6, but only the first two genes were most frequently 214 

(~80%) selected across 10,000 bootstrapped samples within the training dataset (Fig 215 

4A-B). The median misclassification error estimated by the resampling was about 4% 216 

(±5.4% median absolute deviation), ranging from 0% to 32% (Fig 4C). Instability 217 

assessment in the number of selected genes by LASSO (Fig 4D) showed that most 218 

iterations resulted in four non-zero genes (range, 1-20). The final model containing the 219 

three genes (HS3ST2, CD40LG, and CCR6) was evaluated on two test RNA-seq 220 

datasets: our dataset and the one from Montoya et al. including MB (n=9) and PB 221 

(n=6) groups [28]. Penalized logistic regression demonstrated an accuracy of 100% 222 
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(lower 95% CIs: 86.8% and 78.2%, respectively) in classifying MB from PB samples 223 

in both test RNA-seq datasets; yet, the Brier score indicated a better performance in 224 

Montoya’s et al. dataset, probably due to a more homogenous sampling (Fig 4E-F). 225 

The HS3ST2 gene was consistently more expressed in MB leprosy lesions compared 226 

to PB, whereas the opposite was observed for CD40LG (Fig 4E-H) and CCR6 (S2 227 

Fig). In both datasets, the combined expression levels of HS3ST2 and CD40LG 228 

showed good discrimination between the two groups (Fig 4E-H). However, given the 229 

sample size and the bootstrapped estimates, it is not currently possible to exclude 230 

CCR6 from the model without additional replication. 231 
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Fig 4. Gene candidates identified with the penalized logistic regression (LASSO) 233 

model as the most important to distinguish PB and MB leprosy lesions. (A) 234 

Coefficients (log odds) from the top 10 most selected genes (i.e., non-zero) across 235 

10,000 bootstrap samples using the microarray from Belone et al. as training dataset. 236 

(B) Frequency of non-zero coefficients across all bootstrap samples. (C) 237 

Misclassification error distribution estimated from 4-fold cross-validation (k-) across 238 

10,000 bootstrap samples, with median error of 3.70% (±5.4% median absolute 239 

deviation). (D) Number of genes kept across all resamples. Predicted probability from 240 

the final model performance on this study test RNA-seq (E) and Montoya et al. RNA-241 

seq (F). Normalized log2 gene expression (z-score) of the two most frequently selected 242 

variables for distinguishing MB from PB samples in the (G) microarray training dataset 243 

and (H) this study test RNA-seq. PB, paucibacillary leprosy; MB, multibacillary leprosy. 244 

Tukey box plots with 1st, 2nd and 3rd quartiles ± 1.5 × inter quartile range (IQR) 245 

whiskers. See also S2 Fig. 246 

 247 

Next, to assess the dichotomy beyond cellular vs. humoral response in leprosy 248 

lesions [33,34], a comparison of gene expression in MB leprosy (LL+BL+BB) vs. PB 249 

(TT+BT) skin lesions was performed. Differential expression analysis with |log2FC| ≥ 250 

1 and FDR ≤ 0.01 resulted in 112 DEGs; 69 up-regulated and 43 down-regulated (Fig 251 

5A and S8 Table). In addition, we compared DEG to the public microarray data 252 

available in Gene Expression Omnibus (GEO) from Belone et al. [24,35] using only 253 

the FDR cutoff. With an FDR < 0.01, 161 DEGs were common to both studies, all 254 

except one showed concordant modulation characterized by an overall high 255 

correlation coefficient and concordance index, irrespective of the technology used, the 256 
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sample processing, and the data analysis methods (Fig 5B). Functional enrichment 257 

analysis of the RNA-seq up-regulated genes (i.e., more expressed in MB than PB) 258 

revealed processes involved with regulation of immune response, humoral immunity, 259 

phagocytosis, cholesterol metabolism, complement activation among others (Fig 5C 260 

and S9 Table). On the contrary, enrichment analysis of genes more expressed in PB 261 

revealed biological processes such as leukocyte differentiation, lymphocyte 262 

differentiation, lymphocyte-mediated immunity, B cell activation, STAT cascade 263 

activation/regulation, and JAK-STAT cascade activation (Fig 5D and S10 Table), 264 

which are consistent with exacerbated responses in granulomatous diseases. 265 

Localized clinical forms, i.e., BT and TT, show a gene expression pattern indicative of 266 

differentiation towards epithelioid transformation and granuloma assembly, which is 267 

also observed in cutaneous or pulmonary sarcoidosis [36,37]. 268 

 269 
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Fig 5. Differentially expressed genes from multibacillary (MB) vs. paucibacillary 270 

(PB) leprosy lesions. (A) Volcano plot showing DEG from the MB vs. PB comparison, 271 

where blue points are DE with |log2FC| ≥1 and FDR < 0.1. (B) Scatter plots with the 272 

161 DEG common between this study and Belone et al. (24) microarray for the same 273 

comparison. Red and green dashed lines indicate log2FC of -1 and 1, respectively. 274 

Blue points are genes with the same modulation signal and red indicates discordancy. 275 

Rho, Spearman's rank correlation coefficient. CCC, Lin's concordance correlation 276 
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coefficient. Venn diagram on the right displays the number of DEG in each study 277 

according to FDR < 0.01. (C) Biological processes from GO enriched from up-278 

regulated and (D) down-regulated DEG. FDR, false discovery rate. 279 

 280 

Epithelial-mesenchymal transition (EMT) in the skin of 281 

multibacillary leprosy patients  282 

To make the most of our dataset, we sought to test a previous hypothesis 283 

generated from our group’s microarray meta-analysis results, in which we have 284 

identified a consistent down-regulation of cornification, keratinocyte differentiation, 285 

and epidermal development-related genes in leprosy lesions, predominantly in MB 286 

[35]. We first hypothesized that such regulation could result from M. leprae inducing 287 

dedifferentiation of keratinocytes, similar to the phenomenon described previously in 288 

infected Schwann cells [38], and also seen in skin cancer by a process known as 289 

epithelial-mesenchymal transition (EMT) [39,40]. To test the hypothesis that such 290 

modulation was involved with EMT, we correlated the expression of the previously 291 

identified down-regulated genes in leprosy [35] with a collection of genes involved with 292 

previously Schwann cell dedifferentiation by M. leprae (Masaki et al. [38] signatures 293 

for EMT and non-EMT genes), positive markers of EMT (from literature), as well as 294 

annotated EMT and mesenchymal-related genes from Reactome (R.HSA.452723, 295 

R.HSA.5619507.3, R.HSA.2173791) and Gene Ontology (GO0001837) databases. 296 

Briefly, the normalized log2 expression matrices were filtered to retain only genes of 297 

interest. Then, the pairwise expression correlation for all genes was calculated using 298 

the Spearman’s rank correlation procedure. Finally, after adjusting the P-values for 299 
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multiple testing, the genes with any pairwise correlation passing FDR ≤ 1 × 10-4 and 300 

rho ≤ -0.8 were visualized using a heat plot. As result, with this study’s RNA-seq, we 301 

found a consistent moderate negative correlation between keratinization, cornification, 302 

and epidermal development genes (Fig 6A, blue stars, AQP3, DMKN, DSG1, DSP, 303 

EFNB2, JAG1, JAG2, KRT5, KRT10, KRT15, KRT19, OVOL2, PKP1, TACSTD2) with 304 

those involved with canonical/alternative EMT and mesenchymal phenotypes (Fig 6A, 305 

green stars, CTSZ, MMP9, PSAP, RHOA, TGFBR1, TGIF2, ZEB2, TGFB1). 306 

Interestingly, the strongest correlations with epidermal/keratinocyte genes was with 307 

TGFβ-EMT-related genes (Fig. 6A blue block), as opposed to Masaki et al. non-EMT 308 

and other mesenchymal/pluripotency pathways. Next, we replicated these 309 

observations with Belone et al. microarray [24] and Montoya et al. RNA-seq datasets 310 

[28], respectively. In Fig 6BC the strongest and representative correlations from 311 

TGFꞵ-EMT-related pathway and a keratinocyte/epidermal gene signature are shown 312 

in detail, while  the remaining are available in Fig. S3-4.  313 

Overall, these results showed a decreased expression pattern of EMT-related 314 

genes in healthy skin samples, and a linear expression increase in PB and MB 315 

patients, especially with the microarray dataset, except for MMP9 (Fig 6C). This was 316 

accompanied by the previously reduced expression of cytokeratins and epidermal 317 

development genes observed in leprosy. From these results, we hypothesize that in 318 

addition to TGFꞵ-dependent immunosuppression in MB patients, activation of this 319 

pathway could be slowing or arresting keratinocyte cornification processes in leprosy 320 

lesions thereby both facilitating survival and/or spread of M. leprae. If not involved with 321 

dedifferentiation of keratinocytes or other epithelial cells, an alternative explanation 322 

would be loss of epithelial barrier in MB patients, possibly enlightening a new M. leprae 323 
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transmission route. Further mechanistic experiments ought to determine the causality 324 

of our observations and test these findings in light of our hypothetical explanations of 325 

the phenomenon. 326 

 327 
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Fig 6. Strongest correlations between keratinocyte and EMT-related genes in 328 
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leprosy lesions. (A) Heat plot with Spearman’s rho correlation coefficient of the 329 

strongest correlations after multiple testing adjustment with at least one gene-pair 330 

passing FDR ≤ 0.0001 and rho ≤ -0.8. Correlations with FDR > 0.1 are filled with white. 331 

Row colored squares identify gene annotations. Scatter plots of average log2 332 

expression calculated with keratinocyte/epidermal development-related genes 333 

previously documented as down-regulated in leprosy skin against dedifferentiation-334 

related genes using either (B) this study RNA-seq dataset or (C) Belone et al. 335 

microarray (GSE74481). Lines were drawn based on intercept and beta parameters 336 

estimated from robust linear regression for all samples (black line) or separately for 337 

PB (blue line), and MB (red line). Spearman's rho coefficient along with 95% nominal 338 

confidence intervals are shown inside scatter plots calculated from all samples. See 339 

also S3 Fig and S4 Fig. 340 

Discussion  341 

One of the priorities in leprosy research is the development of reliable and 342 

accurate laboratory diagnosis tools for all leprosy forms to provide efficient treatment 343 

and prevent disability [41]. This goal includes diagnosing patients with early forms of 344 

the disease, those with low or mild apparent symptoms, thus assisting with ambiguous 345 

differential diagnoses, and even classifying the disease for treatment (MB vs. PB) [4].  346 

Host response to infection as measured by gene expression in skin biopsies 347 

offers diagnostic, prognostic and predictive potential. By applying host transcriptomics 348 

to skin lesions from leprosy patients and other common confounding dermatoses that 349 

challenge clinicians and pathologists [9,30], we identified a small set of genes that 350 

provide a promising expression signature capable of distinguishing PB leprosy cases 351 
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from other confounding dermatological diseases. The top candidate, IDO1, is a gene 352 

involved in nutritional immunity and metabolism [42–45]. Alone, the expression of this 353 

gene was able to differentiate leprosy from non-leprosy lesions with high accuracy in 354 

our dataset and in others. According to the latest data from single-cell analysis [46], 355 

IDO1 has been shown to be differentially expressed in Langerhans cells from leprosy 356 

lesions compared to healthy skin, corroborating our findings. However, IDO1 357 

expression is also increased in other mycobacterial diseases such as tuberculosis 358 

[47,48], which might decrease its specificity. The accuracy of classification could be 359 

improved by combining measurement of IDO1 expression with that of four other 360 

biomarker genes BLK, CXCL11, CD38, TLR10 and SLAMF7, which also showed high 361 

classification accuracy in the replication dataset. In parallel, the penalized logistic 362 

regression model, evaluated on two independent datasets, demonstrated that 363 

HS3ST2 and CD40LG hold potential to differentiate between MB and PB lesions. In 364 

parallel, the penalized logistic regression model, evaluated on two independent 365 

datasets, demonstrated that HS3ST2 and CD40LG hold potential to differentiate 366 

between MB and PB lesions. We recognize that there is no clinical utility in classifying 367 

MB from PB lesions with laboratory assays because this can be done during 368 

anamnesis alone. Hence, we aimed at identifying molecular features differing not only 369 

in the measure of effect (log2FC) but also having little overlap between the lesion 370 

types, as this may point to previously unexplored genes and pathways relevant to 371 

future investigation. Considering the functional evidence for HS3ST2 [49], it is possible 372 

that this gene may be involved with granuloma disassembly, tissue permeability, and 373 

cellular migration in leprosy, which would explain its overexpression in MB lesions. On 374 

the contrary, CD40LG (also known as CD154) is more expressed in PB patients when 375 

compared to MB with a predominant role in the activation of the microbicidal Th1 376 
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response associated with PB lesions [50]. After mechanistic validation of our findings, 377 

quantifying expression levels of HS3ST2 and CD40LG from leprosy lesions could be 378 

useful to assess immune responsiveness against M. leprae, help patient stratification 379 

and/or provide a basis for host-based adjuvant treatment for leprosy lesions.  380 

One of the challenges in translating gene expression signatures into medical 381 

diagnosis is the cost of measuring a large number of genes and transforming these 382 

values into a unique continuous or binary classifier. So far, we were able to reproduce 383 

the findings using both bulk RNA-sequencing and relative RT-qPCR, with the latter 384 

being more accessible to clinicians at least in reference centers or central hospitals. 385 

Although there are successful approved RT-qPCR relative gene expression-based 386 

diagnostic tests for diagnosing sepsis [12], clinical support for prostate [22], and breast 387 

cancer [18], there is a need for alternatives to reduce the cost and complexity of such 388 

assays. Quantification of mRNA based on isothermal amplification either with NASBA 389 

[51,52], RT-LAMP [53,54] or CRISPR-Cas12 [55] is conceivable for less specialized 390 

settings without high-end equipment. Besides, combining a multi-target expression-391 

based diagnostic test with qPCR detection of M. leprae DNA could increase the 392 

specificity and sensitivity of leprosy diagnosis [56]. Alternatively, an ELISA assay 393 

measuring the levels of IDO1 protein from skin interstitial fluid, for example, could be 394 

proven useful [57]. Further studies ought to be done selecting tangible diagnostic 395 

thresholds and devising a proper classification system to allow the biomarker to 396 

function unsupervised. 397 

In parallel with poor diagnosis, lack of fundamental understanding of leprosy 398 

pathogenesis has misled scientists for centuries [5,6]. Herein, we also compared the 399 

two leprosy poles, MB and PB, and identified several pathways already known to be 400 
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associated with leprosy, such as the humoral immune response, phagocytosis, and 401 

complement activation. Genes involved with cholesterol and fatty acids were more 402 

expressed in MB lesions, as already reported [58–60]. Interestingly, B-cell-related 403 

genes were more expressed in PB than MB. In fact, it seems that both poles modulate 404 

this pathway by a distinct set of genes. Involvement of B lymphocytes in PB leprosy 405 

pathogenesis has been described by a few groups, which may indicate differential 406 

involvement of such cells depending on the disease pole [61,62]. 407 

  M. leprae subverts host cell metabolism [63] by inducing lipid biosynthesis, 408 

while avoiding type II (IFN-gamma) responses through a type I IFNs mechanism, 409 

following the phagolysosomal breach that releases DNA into the cytosol [64]. 410 

However, exactly how the bacilli spread throughout the body and bypass the 411 

microbicidal immune response remains unknown. Here, we provide robust evidence 412 

indicating that M. leprae may induce EMT in the skin within keratinocytes and 413 

macrophages, as described in Schwann cells [38]. Indeed, M. leprae induced 414 

dedifferentiation of infected Schwann cells into an immature stage resembling 415 

progenitor/stem-like phenotype [38]. These reprogramming events induced by long-416 

term infection with M. leprae resulted in mesenchymal cells capable of migratory and 417 

immune-permissive behavior, which in turn facilitated M. leprae spread to skeletal and 418 

smooth muscles and furthered macrophage recruitment [38,65]. In our previous work, 419 

we identified a down-regulated signature of keratinocyte differentiation and 420 

cornification gene markers in MB skin lesions [35]. Here, we showed that such genes 421 

are inversely correlated with genes involved with EMT, especially the members of the 422 

TGFβ-EMT pathway, such as TGFB1, TGFBR1, TGIF2, PSAP, ZEB2 [66,67]. Some 423 

of these genes are directly or indirectly associated with EMT, such as a PSAP [68], 424 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.07.30.454441doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454441
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

WAS [69], RHOA [70–73], CTSZ [74], MMP9 [75], LOXL3 [76], HIF1A [77,78] among 425 

others.  426 

Our hypothesis that M. leprae is inducing dedifferentiation or slowing the 427 

cornification process in keratinocytes is plausible, given the evidence in Schwann cells 428 

and a few reports of infection in this cell type (Fig 7) [79,80]. Nevertheless, other 429 

phenomena could explain EMT's role in leprosy pathogenesis, such as wound healing 430 

or loss of the epithelial barrier. Although, given its obligatory intracellular lifestyle, M. 431 

leprae induces dedifferentiation in other cell types, either directly as in Schwann cells 432 

or indirectly via chemokine and cytokine production in lesions. Besides inducing 433 

keratinocyte dedifferentiation to mesenchymal cells, M. leprae might benefit from a 434 

decreased or alternative immune activation of these cells [81,82]. Further functional 435 

confirmatory experiments should elucidate the causality of this correlation and provide 436 

definitive evidence of the relationship between the bacilli and other cell types, such as 437 

keratinocytes, fibroblasts, and epithelial cells. 438 

Our preliminary data also showed that the enriched pathways among PB skin 439 

lesions were consistent with profiles observed in other granulomatous diseases, such 440 

as noninfectious sarcoidosis and granuloma annulare, or chronic infectious diseases 441 

like tuberculosis [37,83–85]. Our findings revealed that PB (TT/BT) lesions have, 442 

among others, JAK-STAT cascade activation, which has been implicated in 443 

sarcoidosis and GA. Remarkably, the JAK-STAT specific biological inhibitor, 444 

tofacitinib, has a potent effect promoting rebalance of exacerbated immunity among 445 

sarcoidosis and granuloma annulare patients reestablishing homeostasis [83]. 446 

Another compound, everolimus, has been shown in experimental models to achieve 447 
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the same response [37] suggesting that these drugs could be useful to treat PB, but 448 

not MB, leprosy. 449 

 To conclude, our combined findings provide highly discriminatory mRNA 450 

signatures from skin lesions that could distinguish leprosy from other dermatological 451 

diseases and allow disease classification by monitoring only a handful of genes. In 452 

addition, we report new genes and pathways that are likely informative regarding how 453 

M. leprae interacts with and subverts host cells to promote its spread within the body 454 

and subsequent transmission. 455 

 456 

 457 
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Fig 7. Hypothetical hourglass model contextualizing the observed findings for 458 

leprosy clinical outcomes. The host-pathogen interaction in the skin leads to 459 

opposing leprosy clinical forms. Upon infection, M. leprae induces baseline metabolic 460 

alterations such as an increase in glucose uptake, modulation of lipid biosynthesis, 461 

reduction of mitochondrial metabolism, and upregulation of IDO-1 and type I IFN. 462 

Eventually, progression towards an unspecified inflammatory state can be observed 463 

where three ways could be anticipated: I) self-healing; II) progression towards the 464 

tuberculoid pole; or III) progression to lepromatous pole. These outcomes are driven 465 
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by specific environmental and host genetic factors. It is expected that lower (or shorter) 466 

M. leprae exposure, food shortage, BCG vaccination, and polymorphisms in genes 467 

controlling autophagy/granuloma formation (NOD2, LRRK2, PRKN) all contribute to 468 

developing leprosy per se. Excessive inflammation is one phenotype observed, that is 469 

also seen in other granulomatous diseases (e.g., cutaneous sarcoidosis, granuloma 470 

annulare), especially in paucibacillary lesions. On the other pole, epithelial-471 

mesenchymal transition and local immunosuppression are present due to a probably 472 

higher (and/or longer) M. leprae exposure, combined with host single-nucleotide 473 

polymorphisms (SNPs) at key genes, like lipid biogenesis (APOE) and central 474 

metabolism (HIF1A, LACC1/FAMIN), culminating in disease progression. 475 

Materials and Methods 476 

Patient cohort 477 

All patients were enrolled after informed written consent was obtained with 478 

approval from the Ethics Committee of the Oswaldo Cruz Foundation, number 151/01. 479 

Leprosy clinical forms were classified according to the criteria of Ridley and Jopling 480 

[2]. Leprosy patients were treated according to the operational criteria established by 481 

the World Health Organization [4]. Leprosy and patients with other dermatological 482 

diseases were eligible if their diagnosis was confirmed by clinical and histopathological 483 

findings. Additionally,  detection of M. leprae DNA by qPCR routinely performed in our 484 

laboratory could be employed to support diagnosis [56,86]. HIV and hepatitis B 485 

positive patients were not included in this study, in addition, we excluded individuals 486 

with a current or previous history of tuberculosis. No other comorbidities were used to 487 
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exclude patients and further individual information is available in S1 Table. Skin biopsy 488 

specimens containing both epidermis and dermis were obtained with 3 mm (diameter) 489 

sterile punches following local anesthesia from the lesion site. Skin biopsies were 490 

immediately stored in one milliliter of RNALater (Ambion, Thermo Fisher Scientific Inc., 491 

MA, USA) according to the manufacturer’s instructions and stored in liquid nitrogen 492 

until RNA isolation. Healthy skin biopsies were from lesion-free sites of patients 493 

diagnosed with indeterminate or pure neural leprosy.   494 

Study Design 495 

The main objective of this research was to identify host gene expression 496 

patterns capable of distinguishing leprosy (including the PB forms) from other 497 

differential diagnosis of skin lesions. Our working hypothesis was that leprosy lesions, 498 

despite their morphological and histopathological similarity to other skin diseases, may 499 

induce distinct patterns of gene expression in at a small subset. We predefined the 500 

comparison of leprosy (PB+MB) from non-leprosy including GA in addition to healthy 501 

patients for RNA sequencing experiment. In addition, we predetermined comparisons 502 

between leprosy poles: MB vs. PB. Our samples are representative of a population of 503 

individuals attending the Sousa Araujo Outpatient Clinic based in Rio de Janeiro, 504 

Brazil, which also receives patients from surrounding municipalities.  505 

RNA isolation 506 

Snap frozen skin biopsies were thawed in wet ice and processed using TRIzol 507 

Reagent (Ambion, Thermo Fisher Scientific Inc., MA, USA) according to the 508 

manufacturer's instructions with the help of Polytron Homogenizer PT3100 509 
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(Kinematica AG, Switzerland). RNA was treated with DNAse using the DNAfree kit 510 

(Thermo Fisher Scientific Inc., MA, USA) according to the standard manufacturer’s 511 

protocol, prior to use for library preparation and RT-qPCR. RNA integrity was 512 

assessed in 1% agarose gel electrophoresis or TapeStation RNA ScreenTape (Agilent 513 

Technology, CA, USA). During RNA isolation, samples were randomly assigned to 514 

extraction batches and freeze-thaw cycles to minimize batch effects and the 515 

introduction of technical artifacts. All procedures applied to samples were carried out 516 

using reagents from the same lot. The first author conducted the experiments aware 517 

of each sample group during the entire process, therefore, no blinding scheme was 518 

used, although we do not rely on perceptual/abstract measurements or analyses nor 519 

did we purposefully exclude samples. 520 

Library preparation and Illumina RNA sequencing  521 

RNA-seq libraries were prepared with 1 µg of total RNA for each sample using 522 

the Illumina TruSeq mRNA kit (Illumina, USA) as recommended by the manufacturer 523 

using the Illumina CD RNA indexes (Illumina, USA). Libraries were quantified and 524 

qualified using a qPCR quantification protocol guide (KAPA Library Quantification Kits 525 

for Illumina Sequencing platforms) and TapeStation D1000 ScreenTape (Agilent 526 

Technologies, USA), respectively. The resulting libraries (fragment size 200-350bp) 527 

were multiplexed (17, 17, and 19 libraries, respectively) and sequenced using the 528 

NextSeq 500 platform (Illumina, USA), generating approximately 520 million single-529 

end reads of 75 nucleotides in length. 530 
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RNA-sequencing analysis 531 

RAW bcl files were converted into .fastq using Illumina’s bcl2fastq script. Then, 532 

read quality was assessed using FastQC version 0.11.8 [87]. Next, transcript counts 533 

were estimated using Salmon (v.1.13.0) quasi-mapping (human transcriptome 534 

GRCh38_cdna sourced from Ensembl/RefGenie plus pre-computed salmon index, 535 

http://refgenomes.databio.org/#hg38_cdna) with default settings and --seqBias flag 536 

set [88]. Transcript counts were summarized into ENSEMBL gene counts using the R 537 

v.3.6.1 package tximport v.1.12.0 [89,90] and biomaRt v.2.40.5 [91]. The expression 538 

of sex-chromosome-specific genes, such as UTY and XIST, was used to rule out 539 

sample mislabeling. Differential expression was estimated using DESEq2 v.1.24.0, 540 

after filtering out weakly expressed genes with less than 10 counts per million and less 541 

than 15 total counts in 70% of samples  [92–94]. In addition to the patient’s biological 542 

sex, extraction batch and sequencing run, three surrogate variables estimated with 543 

RUVseq v.1.18.0 were included in DESeq2’s generalized linear model [95,96]. 544 

Nominal P-values were inspected with histograms and adjusted for multiple testing 545 

according to the method [97] proposed for controlling the false discovery rate (FDR). 546 

All log2 fold-changes were shrunken prior to DE filtering with the apeglm [94] or normal 547 

algorithms. For visualization, counts per million (CPM) were computed with edgeR’s 548 

cpm function v.3.26.1 and variance stabilized with the parametric method [92]. Then, 549 

surrogate variables and covariates were regressed out from the expression matrix 550 

using limma’s removeBatchEffect [98–100] before being visualized with ggplot2 551 

v.3.3.0 [101]. Hierarchical clustering, heatmaps, and ROC analysis were all performed 552 

with the previously processed expression matrix. Heatmap with hierarchical clustering 553 

was drawn with ComplexHeatmap v.2.0.0 [102] or pheatmap v.1.0.12 [103] using 554 
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gene-wise scaled and centered matrix with Euclidean distance and average 555 

agglomeration method. Overrepresentation analysis (ORA) was used to test for Gene 556 

Ontology Biological Process (GO BP) enrichment with clusterProfiler v.3.12.0 [104] 557 

and org.Hs.eg.db v.3.8.2 annotations [105]. Up and down-regulated lists were used as 558 

inputs and the background list was composed of all genes subjected to differential 559 

expression. P-values were adjusted for multiple testing using the Benjamini-Hochberg 560 

method [97]. Raw and normalized RNA sequencing data are available in EMBL-EBI’s 561 

ENA and ArrayExpress under accessions ERP128243 and E-MTAB-10318, 562 

respectively. 563 

RT-qPCR 564 

A total of 2.5 µg of RNA was reversed transcribed into cDNA using 4 µL of Vilo 565 

Master Mix (Thermo Fisher Scientific Inc., USA) according to the manufacturer's 566 

instructions. Then, cDNA was diluted to a final concentration of 5 ng/µL using TE buffer 567 

(10 mM Tris-HCL and 0.1 mM EDTA in RNAse-free water). RT-qPCR was performed 568 

using Fast Sybr Master Mix (Thermo Fisher Scientific Inc., USA) in a final reaction 569 

volume of 10 µL. For each reaction, performed in duplicate, 5 µL of Fast Sybr Green 570 

were combined with 200 nM of each primer, 10 ng of cDNA, and q.s.p of injection-571 

grade water. Thermal cycling and data acquisition were performed on Viia7 with 384 572 

well block (Applied Biosystems, Thermo Fisher Scientific Inc., USA) following the 573 

master mix manufacturer cycling preset with a final melting curve analysis (65 °C to 574 

95 °C, captured at every 0.5 °C). All primers were designed with NCBI Primer-Blast 575 

[106–109] to either flank intron(s) or span exon-exon junction(s) to avoid gDNA 576 

amplification (S11 Table). Further, primers were quality checked for specificity, dimers 577 
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and hairpin with MFEPrimer v.3.0  [110,111] and IDT’s oligoAnalyzer 578 

(https://www.idtdna.com/calc/analyzer). Data were exported from QuantStudio 579 

software v.1.3 in RDML format, which was imported to LinRegPCR v.2020.0 for RT-580 

qPCR efficiency determination and calculation of the N0 value [112,113]. Finally, N0 581 

values were imported to R and normalized using as the denominator the normalization 582 

factor (NF) calculated from the geometric mean of at least three reference genes 583 

(RPS16, RPL35 and QRICH1), which were previously tested for stability [114]. These 584 

N0 normalized values were used for visualization in Fig 2A. For mean difference 585 

estimation between groups, RT-qPCR data were analyzed in a Bayesian framework 586 

(Markov Chain Monte Carlo sampling, MCMC) using generalized linear mixed effect 587 

models under lognormal-Poisson error with MCMC.qpcr v.1.2.4 [115,116]. Per-gene 588 

efficiency estimates from LinRegPCR were used in conjunction with Cp (crossing 589 

point) calculated in QuantStudio software v.1.3 to generate the counts table. Then, the 590 

generalized linear mixed-effect model was fitted using three reference genes (allowing 591 

up to 20% between-group variation) with 550,000 iterations, thin = 100, and burn-in of 592 

50,000. The model specification included the sample (factor with 51 levels) as a 593 

random effect and the diagnosis group (factor with 3 levels) as a fixed effect. MCMC 594 

diagnostics were done by inspecting chain mixing plots and linear mixed model 595 

diagnostic plots. Ninety-five percent credible intervals were drawn around the posterior 596 

means and MCMC equivalent P-values were also computed. 597 

Reanalysis of public gene expression datasets 598 

Belone and collaborators GSE74481 [24] and de Toledo-Pinto and cols. 599 

GSE35423 [64] microarray datasets were reanalyzed as described elsewhere [35]. 600 

Blischak and cols. [32] RNA-seq dataset (GSE67427) was reanalyzed from counts per 601 
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sample file from the author’s Bitbucket repository (https://bitbucket.org/jdblischak/tb-602 

data/src/master/). Briefly, a normalized log2 expression matrix was regressed out for 603 

RNA integrity number and extraction batch variables. Then, differences in gene 604 

expression (48h post-infection) for specific genes and treatments were tested using a 605 

gene-wise linear mixed model with a random intercept per sample (replicate) followed 606 

by Dunnet comparison against a “mock” group using emmeans v.1.5.3. Montoya and 607 

collaborators’ dataset was retrieved from GEO (GSE125943) already normalized 608 

(DESeq2 median ratio method) and transformed with base 2 logarithm with no further 609 

processing [28].  610 

Correlation analyses 611 

For RNA-seq datasets, normalized log2 counts-per-million values were used 612 

and log2 normalized intensities for microarray. Spearman’s rank correlation method 613 

was chosen because it is robust against outliers, does not rely on normality 614 

assumption, and also identifies monotonic but non-linear relationships. Initially, a list 615 

of keratinocyte/cornification/epidermal development genes that were DE in the meta-616 

analysis was assembled [35]. Then, lists of target genes were compiled from results 617 

of Masaki et al. [38]: EMT and non-EMT; from Reactome: R-HSA-452723 618 

(Transcriptional regulation of pluripotent stem cells), R-HAS-5619507.3 (Activation of 619 

HOX genes during differentiation), R-HAS-2173791 (TGFβ receptor signaling in EMT); 620 

Gene Ontology GO:0001837 (EMT), and literature for EMT canonical markers. Next 621 

pairwise Spearman correlation was calculated using the Hmisc’s rcorr function v.4.2-622 

0 for every pair of genes from keratinocyte/epidermal development and EMT gene 623 

lists. P-values were adjusted for multiple testing using the BH method for FDR control 624 
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for all tests [97]. Additionally, 95% nominal confidence intervals were calculated using 625 

the Fieller method implemented by correlation R package v.0.5.0 [117,118]. To 626 

visualize the results, only genes with at least one pairwise correlation with Spearman’s 627 

rho coefficient ≤ -0.8 and FDR ≤ 0.0001 were selected. Additionally, the average log2 628 

expression from genes involved with keratinocyte/epidermal development was 629 

calculated and used in scatter plots against the expression of the EMT genes. Scatter 630 

plots were drawn with ggplot2 v.3.3.3 showing lines from coefficients estimated using 631 

default robust regression (MASS::rlm v.7.3-51.4) either for all samples or stratified by 632 

group. No outliers were omitted. 633 

Regularized (LASSO) logistic regression classification 634 

Normalized log2 expression matrices regressed out for covariates and batches 635 

were used as input predictors. The model was trained using the microarray dataset 636 

from Belone et al. [24] with penalized regression (L1-norm, LASSO) and 4-fold cross-637 

validation (k-fold CV) with the negative binomial log-likelihood link function, glmnet 638 

v.4.1 [119–121]. Predictors were standardized to have mean zero and unit variance 639 

inside the cv.glmnet function. We opted for L1-norm because it results in a smaller 640 

number of genes (#features ≤ n) with non-zero coefficients, as compared to elastic-641 

net or ridge regression counterparts. In addition, this model is suitable for high-642 

dimensional data as it combines feature selection during model tuning and training, 643 

mitigating the effects of predictors’ collinearity and reducing overfitting. To assess the 644 

coefficients’ error, misclassification error rate, feature stability and model size we used 645 

non-parametric bootstrap (boot v.1.3.25) with 10,000 samples, with 4-fold cross-646 

validation inside each loop [122,123]. The final LASSO model selected by 4-fold cross-647 
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validation contained three non-zero genes. Finally, independent RNA-seq test 648 

datasets were used to compute the accuracy of the final model. Alternatively, the 649 

whole process was repeated with leave-one-out cross-validation instead of k-fold. The 650 

results were practically indistinguishable, especially regarding the feature stability 651 

(data not shown).  652 

Sample sizes 653 

The sample size for RNA sequencing was selected based on previous leprosy 654 

work with microarrays, aiming at detecting genes with at least a differential fold-change 655 

of two. For RT-qPCR validation, sample size calculation was performed using the per-656 

gene standardized effect size estimated from the RNA-seq data, aiming at a power of 657 

85% and alpha = 0.03. No samples were discarded after successful data collection 658 

(i.e. outliers). In the end, the sample sizes per group for RT-qPCR were: MB = 14, 659 

PB=11, ODD = 23. All RT-qPCR reactions were conducted in duplicate for each 660 

biological unit (here, a fragment of a skin biopsy derived from an individual).  661 

RT-qPCR and ROC statistical analyses 662 

Normalized RT-qPCR gene expression data were log2 transformed before use 663 

in data visualization. Additionally, we checked if the Bayesian results remained 664 

consistent using a more common procedure (data not shown). For this, the mean 665 

normalized expression (from N0) was compared pairwise for the prior stipulated groups 666 

using Welch’s t-test implemented in R language, using the predetermined alpha of 667 

0.03. Normality assumption was verified with normal quantile-quantile plots (qqplots, 668 
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car v. 3.0-2). In cases where quantile-quantile plots showed huge deviation from 669 

theoretical normal distribution, the Wilcoxon Rank Sum was used to verify results. 670 

Receiver Operating Curve (ROC) analysis was used to determine the accuracy 671 

(measured by the area under the curve, AUC) and its respective best classification 672 

threshold, aiming at maximizing AUC with equal importance for sensitivity and 673 

specificity. Confidence intervals (95%) for AUC were calculated using the Delong non-674 

parametric method as implemented in pROC v.1.15.3 [124–126].  675 

Data and code reporting 676 

Raw .fastq data are available in EMBL-EBI European Nucleotide Archive (ENA) 677 

database (ERP128243). Raw Salmon counts and normalized batch cleaned 678 

expression matrices are available in EMBL-EBI ArrayExpress, under E-MTAB-10318, 679 

along with experimental and phenotypic metadata. R source code and accompanying 680 

intermediate data used in all analyses in this manuscript are also readily available 681 

through Zenodo, doi.org/10.5281/zenodo.4682010. 682 
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Supporting Information 1080 

S1 Appendix. Linking expression profiles to mycobacteria species. 1081 

S1 Fig. Gene expression in MB and PB groups from test and training datasets. 1082 

Normalized log2 expression values per group from (A) this study RNA-seq dataset or 1083 

(B) Belone et al. (GSE74481) [24]. The genes shown were selected in 25%–50% of 1084 

the LASSO models (Fig 4B) according to the bootstrap. MB, multibacillary leprosy; PB, 1085 

paucibacillary leprosy; TT, tuberculoid leprosy; BT, borderline-tuberculoid; BB, 1086 

borderline-borderline; BL, borderline-lepromatous; LL, lepromatous. Each point 1087 

represents an independent skin biopsy from a patient. Y-axis values are not 1088 

comparable between panels A and B. 1089 

S2 Fig. Strongest correlations between the average expression of genes 1090 

associated with keratinocyte/cornification against dedifferentiation-related 1091 

genes using Montoya et al. RNA-seq dataset [28]. Scatter plots of scores (average 1092 
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normalized log2 expression) calculated from genes with previously documented down-1093 

regulation in leprosy skin lesions against dedifferentiation-related genes with Montoya 1094 

et al. RNA-seq dataset (GSE125943) [28]. Lines were drawn based on intercept and 1095 

beta estimates from robust linear regression for all samples (black) or separately for 1096 

TL (tuberculoid leprosy, blue), and LL (lepromatous leprosy, red). X-axis shows log2 1097 

normalized expression values. Spearman’s rho are shown along with nominal 95% 1098 

confidence intervals inside the plots. Most genes shown have FDR < 0.1 and rho ≤ -1099 

0.6. Related to figure 6. 1100 

S3 Fig. Strongest correlations between modulated genes from 1101 

keratinocyte/cornification and dedifferentiation-related genes using Belone et 1102 

al. microarray dataset (GSE74481) [24]. Heat plot with Spearman’s rho correlation 1103 

coefficient of the strongest correlations from all ontologies screened after multiple 1104 

testing adjustment (BH-FDR). Most genes shown have FDR ≤ 0.0001 and rho ≤ -0.7. 1105 

Bottom colored rectangles indicate which category the gene was present (some genes 1106 

co-occur). Related to figure 6. 1107 

S1 Table. Demographic and clinical metadata from human participants. 1108 

S2 Table. Genes differentially expressed from leprosy vs. non-leprosy with 1109 

|log2FC| ≥ 1 and FDR ≤ 0.01. 1110 

S3 Table. Over-representation analysis (ORA) for leprosy vs. non-leprosy (up-1111 

regulated) differentially expressed genes.  1112 

S4 Table. ROC analysis from RNA-seq dataset using leprosy vs. non-leprosy 1113 

samples. 1114 
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S5 Table. Posterior log2FC estimates, 95% credible intervals and MCMC P-1115 

values from PB-OD and MB-OD comparisons. 1116 

S6 Table. ROC analysis results using RT-qPCR with the validation dataset 1117 

(Related to Fig 3). 95% confidence intervals are shown, except for AUCs of 1.0. The 1118 

table is sorted from highest to lowest AUC. 1119 

S7 Table. Log2FC estimates, confidence intervals, and Dunnet P-values from 1120 

distinct mycobacterial stimuli in human macrophages in vitro.  1121 
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