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Discussion  349 

In this study, we examined the magnetic susceptibility and microstructural 350 

compartmentalisation effect on MRI phase data on a formalin-fixed, post-mortem human brain 351 

specimen. The bulk magnetic susceptibility of the whole-brain specimen shows comparable 352 

contrast to those in the previous ex vivo studies (6,24), as well as to in vivo imaging: WM is 353 

slightly diamagnetic, whereas cortical and deep GM are paramagnetic. Further investigation 354 

reveals the residual fields of COSMOS have a gradient-like appearance varying from the 355 

surface toward the centre of the specimen (Figure 2E), which is similar to the expected way 356 

of how the solutions (fixative or water) diffused into the specimen. Since these residual fields 357 

are relatively constant across different rotations, it is likely to be caused by the exchange effect 358 

(17–19). These fields were captured as the non-susceptibility contributions by QUASAR and 359 

they did not have a significant impact on the bulk magnetic susceptibility measurement (Figure 360 

2C, 2G). This result is distinct from in vivo imaging results (Figure S1), where the susceptibility 361 

differences in WM are more noticeable, suggesting that the effect of (sub)cellular structure of 362 

WM is considerably reduced and the sphere of Lorentz inclusion utilised in COSMOS is 363 

already a good approximation on formalin-fixed tissue.   364 

 365 

While the bulk susceptibility of the WM samples in this study is similar to in vivo imaging, the 366 

residual field analysis inside the excised homogenous tissue confirmed that the microstructure 367 

compartmental frequency (parameter A in Eq. 4) is notably weaker in our samples than in vivo 368 

and reported by others. In a similar experiment (26), the amplitude of the microstructure 369 

frequency of a fresh bovine optic nerve at 7T was -18.75 ppb, significantly larger in magnitude 370 

and with an opposite sign to what we have obtained in our CC samples, 1.46 ppb. Additional 371 

analysis was performed to consolidate this result (see supplementary Figure S2). A reduction 372 

of the microstructural compartmentalisation effect had already been reported in the literature 373 

when studying fresh vs fixed rat optic nerves (25). One possible explanation is the structural 374 

alteration of the myelin sheath in fixed tissues. In our 3D EM images, we observed myelin 375 

sheath spitting and swelling in some of the myelinated axons, similar to the observation 376 

reported in the previous study (41), and such phenomena appeared more frequently in larger 377 

axons than small axons. Based on the general Lorentzian tensor approach (43), the increase 378 

of the aqueous space of the myelin sheath can result in the amplitude reduction of the induced 379 

frequency shifts inside the myelin sheath and the intra-axonal space. Microstructural 380 

differences related to structures (bovine optic nerve vs human CC) and age-associated 381 

demyelination (45,46), together with the tissue preparation methods can also contribute to the 382 
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differences observed in this study, as all these factors modulate the relative water 383 

concentration in the three WM compartments. 384 

 385 

All six specimens obtained from the body of the CC have similar magnetic susceptibility 386 

anisotropy, suggesting that they have similar MVF based on the HCM approximation (Eq. S25 387 

in (17)), and this is supported by the EM analysis (0.278 & 0.257 between the two samples). 388 

The amplitude of the residual field inside the specimens is, on the other hand, subject to 389 

various properties including MVF, AVF and the aggregate g-ratio of the sample (Eq. A14 in 390 

(16)). Interestingly, the realistic geometry of the WM fibre also plays an important role in the 391 

compartmental frequency shifts (27,44). This effect is clearly illustrated in the frequency 392 

perturbation simulations in Figure 5: not only the centres but also the FWHM of the extra-393 

cellular frequency distribution of the two samples are different, despite the two specimens 394 

having virtually identical MVF and AVF. The broader frequency spectrum of CC4 induces a 395 

faster R2* decay in the extra-axonal space and the specimen also has a more disperse fibre 396 

arrangement. These two factors together reduce the amplitude discrepancy between the slow 397 

R2* (intra- and extra-axonal water) and the fast R2* (myelin water) compartments throughout 398 

the echo time as well as the frequency difference between those compartments that could 399 

result in a reduced compartmentalization effect.  400 

 401 

The experimental setup, particularly the 3D-printed holder, is an effective tool also for other 402 

ex vivo studies that involve histology. The grid on the 3D-printed plates not only facilitates 403 

tissue excision with high precision but also provides landmarks in MRI images for experiment 404 

planning and sample matching. The close to unity linear relations of the susceptibility 405 

measurements between the two sessions (Figure 4A and 4B) support that the ROIs drawn on 406 

the whole-brain images and the excised specimens are corresponding to each other. 407 

 408 

One limitation of this study is the relatively long fixation time of the specimen. The first imaging 409 

session happened after 5 months of fixation instead of the scheduled 2 months because of 410 

the coronavirus measures that took place in the Netherlands. The prolonged fixation time 411 

results in a substantial change of specimen R1 between the pre-scan and the first session 412 

(Figure 2A, 2B; average R1 across the brain increased from 1.95±0.47 s-1 to 2.67±0.74 s-1). 413 

The enhanced R1 in deep GM suggests the contribution of iron to the R1 was more pronounced. 414 

An alternative and more likely explanation would be that the myelin contribution to R1 could 415 

be reduced by the fixation process, which would also explain the diminished cortical GM and 416 

WM contrast observed at 5 months. Experiments conducted with a shorter fixation time can 417 

potentially reduce the fixation effects on the signal phase. However, progressive changes in 418 
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relaxation parameters begin in the early stage of fixation (23) and it is likely that fixation 419 

induced phase differences could also happen simultaneously. Lastly, the EM analysis can be 420 

subject to sampling bias due to the limited field-of-view. Preliminary results of a recent study 421 

suggest that large axons in the WM tissue can be under-represented in EM compared to light 422 

microscopy when larger field of view is available (45). Such under-representation may have 423 

an impact on the realistic geometry of the myelinated axons on the phase data. 424 

  425 
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Conclusion 426 

The contributions of MR phase contrast observed in the formalin-foxed brain specimen are 427 

substantially different from fresh tissue, despite the QSM maps derived from in vivo and ex 428 

vivo imaging sharing similar contrasts and values. Particularly, the reductions of magnetic 429 

susceptibility anisotropy and compartmentalisation are observed in the fixed WM tissue. An 430 

increase of non-susceptibility contributions to phase contrast can also be found in fixed tissue, 431 

which is potentially introduced by formalin fixation. Therefore, WM magnetic susceptibility and 432 

microstructural quantification findings in studies using formalin-fixed tissue should be 433 

interpreted with care. Our study suggests that the microstructural effects observed in our 434 

samples encode information regarding WM arrangements such as dispersion and packing 435 

while susceptibility anisotropy encodes myelin volume as was predicted from theory.  436 

  437 
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