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Abstract23

Challenges in clinical data sharing and the need to protect data privacy have led to the24

development and popularization of methods that do not require directly transferring pa-25

tient data. In neuroimaging, integration of data across multiple institutions also introduces26

unwanted biases driven by scanner differences. These scanner effects have been shown by27

several research groups to severely affect downstream analyses. To facilitate the need of28

removing scanner effects in a distributed data setting, we introduce distributed ComBat, an29

adaptation of a popular harmonization method for multivariate data that borrows informa-30

tion across features. We present our fast and simple distributed algorithm and show that it31

yields equivalent results using data from the Alzheimer’s Disease Neuroimaging Initiative.32

Our method enables harmonization while ensuring maximal privacy protection, thus facili-33

tating a broad range of downstream analyses in functional and structural imaging studies.34
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1 Introduction37

Sharing data across medical institutions enables large-scale clinical research with more38

generalizable and impactful results. However, directly transferring data across organizations39

presents a number of issues including patient privacy concerns, incompatibility of data for-40

mats, and hardware limitations. In many cases, these concerns prevent data aggregation41

in their complete form. This distributed data setting has motivated several adaptations of42

common methods that operate without the need to share original data across sites. Re-43

cent developments have included distributed clustering (İnan et al., 2007), logistic regression44

(Duan et al., 2020a), Cox regression (Duan et al., 2020b), principal component analysis45

(Al-Rubaie et al., 2017), and deep learning (Shokri & Shmatikov, 2015).46

In neuroimaging, performing analyses across multiple institutions and scanners can in-47

troduce systematic measurement errors, which are often called scanner effects. These effects48

can be introduced by several scanner properties including scanner manufacturer, model,49

magnetic field strength, head coil, voxel size, acquisition parameters, and a wide range of50

other differences across scanners (Han et al., 2006; Kruggel et al., 2010; Reig et al., 2009;51

Wonderlick et al., 2009). Differences can even persist when scanners have the exact same52

model and manufacturer (Shinohara et al., 2017).53
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Distributed analysis methods generally do not account for potential scanner effects or54

other types of batch effects. However, these effects are important to address and can other-55

wise lead to spurious associations and scanner-specific data properties that are easily detected56

using a classifier (Fortin et al., 2018; Glocker et al., 2019).57

To mitigate scanner effects, a wide range of statistical harmonization techniques have58

been tested in neuroimaging data. Many of these methods address scanner effects in the59

mean and variance of voxel intensities or derived features (Fortin et al., 2016, 2018). Among60

these, ComBat (Johnson et al., 2007) has become a popular harmonization method and has61

been tested in both structural and functional imaging (Bartlett et al., 2018; Fortin et al.,62

2017; Marek et al., 2019; Yu et al., 2018). However, none of these methods can be directly63

applied to distributed data.64

To enable harmonization in distributed data, we introduce distributed ComBat (d-65

ComBat), a distributed algorithm for performing ComBat. We apply our algorithm to66

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and show that our method67

yields identical results to applying ComBat while having the full data at a single location.68

Our investigation enables additional downstream distributed methods to be applied on har-69

monized data and fulfills the needs for running a complete distributed analysis pipeline in70

multi-site neuroimaging studies.71

2 Methods72

2.1 Distributed ComBat73

ComBat (Fortin et al., 2017, 2018; Johnson et al., 2007) seeks to remove scanner effects74

in the mean and variance of neuroimaging data in an empirical Bayes framework. To handle75

the distributed data setting, we propose d-ComBat as an algorithm that yields adjusted data76

identical to the original ComBat method. Let yij = (yij1, yij2, . . . , yijv)
T , i = 1, 2, . . . , K,77

j = 1, 2, . . . , ni denote the v-dimensional vectors of observed data where i indexes scanner,78

j indexes subjects within scanners, ni is the number of subjects acquired on scanner i, and79

V is the number of features. For simplicity, we assume each site uses a different scanner80

and the data are collected from K sites. However, our algorithm could be easily extended81

to allow varying number of scanners per site. Our goal is to harmonize the data from these82

N =
∑K

i=1 ni subjects across the K scanners without pooling data at a single processing83

site. ComBat assumes that the V features v = 1, 2, . . . , V follow84

yijv = αv + xT
ijβv + γiv + δiveijv (1)
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where αv is the intercept, xij is the vector of covariates, βv is the vector of regression85

coefficients, γiv is the mean scanner effect, and δiv is the variance scanner effect. The errors86

eijv are assumed to follow eijv ∼ N(0, σ2
v).87

The original ComBat contains two steps. The first is to standardize the original features88

by removing the covariate effects and scaling each residuals by its total variance. The second89

step involves estimating the scanner effects γ and δ using an empirical Bayes framework and90

removing them from the original data. We propose a distributed algorithm for each of the91

two steps in the next two sections.92

93

Standardization94

95

The original implementation of ComBat first standardizes the mean and variance of96

data across scanners via feature-wise least-squares estimation. The standardized data are97

calculated as98

zijv =
yijv − α̂v −Xijβ̂v

σ̂v
However, in the distributed setting we do not have direct access to the entire dataset and99

cannot directly compute estimates for the intercepts αv, regression coefficients βv, scanner-100

specific mean shifts γiv or population standard deviations σv for each feature. To address101

this problem, we propose an estimation procedure that only requires computation and102

transmission of deidentified summary statistics between distributed sites and a central loca-103

tion. As in the original ComBat methodology, estimation is performed under the constraint104 ∑K
i=1 niγ̂iv = 0 to ensure identifiability.105

For each feature, define θv = (αv,β
T
v , γ1v, γ2v, . . . , γK−1,g)

T . Then we can rewrite the

data across all N subjects yv = (y11v, . . . , y1n1v, y21v, . . . , y2n2v, . . . , yMnMv)
T as yv = Wθ+ev

where

W =


W1

...

WK

 =


1n1 X1 1n1 · · · 0n1 0n1

...
...

...
...

...

1nM−1
XK−1 0nK−1

· · · 1nK−1
0nK−1

1nK
XK −n1/nK1nK

· · · −nK−2/nK1nK
−nK−1/nK1nK


The ordinary least squares estimate can be obtained via θ̂v = (W TW )−1(W TYv) =106 (∑K
i=1W

T
i Wi

)−1 (∑K
i=1Wiyv

)
. By decomposing the estimation into site-specific summary107

statistics W T
i Wi and Wiyv, θ̂v can be obtained by computing these summary statistics and108

sending them to a central location. Construction of Wi and calculation of these summary109

statistics are simple for i = 1, 2, . . . , K−1 since they are just the usual design matricesXi con-110

catenated with an intercept column and scanner-specific columns of ones. To standardize the111
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variance of the data, the marginal variance is estimated as σ̂2
v = 1

N

∑
ij(yijv−α̂v−Xijβ̂v− γ̂2iv,112

v = 1, 2, . . . , p, which is decomposable by site.113

114

Empirical Bayes adjustment115

116

The key step in ComBat involves use of empirical Bayes estimates of site-specific location117

and scale parameters to remove site effects while pooling information across features. Com-118

Bat assumes that the prior distributions γiv ∼ N(γi, τ
2
i ) and δ2iv ∼ Inverse Gamma(λi, νi)119

where hyperparameter estimates γ̄i, τ̄i, λ̄i, and ν̄i are obtained via method of moments. Com-120

Bat then finds the conditional posterior means γ∗iv and δ∗iv, computed iteratively through121

γ∗iv =
niτ̄

2
i γ̂iv + δ2ivγ̄iv
niτ̄ 2i + δ2∗iv

δ2∗iv =
ν̄i + 1

2

∑
j(Zijv − γ∗iv)

2

ni

2
+ λ̄i − 1

Each site’s mean and variance parameter estimates are computed from data within that122

site and so this step is distributed by its nature. The ComBat-adjusted data is then obtained123

within each site via124

yComBat
ijv =

σ̂v
δ∗iv

(zijv − γ̂∗iv) + α̂v +Xijβ̂v

125

126

Algorithm127

In the distributed setting, ComBat only requires two back-and-forth communications be-128

tween sites and a central location for estimation of the standardization parameters. We129

propose the d-ComBat algorithm and illustrate our method in Fig. 1130

1. Initiation - broadcast from central site: The central analysis site chooses identification131

numbers for each scanner and communicates these to each location.132

2. Local computation at collaborative sites for mean parameters.133

(a) Each site locally computes scanner-specific summary statistics W T
i Wi and Wiyv134

to the central site (Fig. 1a).135

(b) These summary statistics are then sent back to the central site.136

3. Aggregation at central site and broadcast.137
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(a) From the scanner-specific summary statistics, the central site computes θ̂v.138

(b) The central site then sends θ̂v to each location (Fig. 1a).139

4. Distributed data harmonizations.140

(a) To obtain the global variance estimate, each site transfers
∑

j(yijv − α̂v −Xijβ̂v −141

γ̂2iv) to the central location, which then sends back σ̂v (Fig. 1b).142

(b) The remaining ComBat steps are performed within each site to obtain yComBat
i at143

every location (Fig. 1c).144

Figure 1: Distributed ComBat illustration. The procedure to perform distributed Com-

Bat harmonization is outlined as follows. a, Each site sends its deidentified summary statis-

tics to a central site for estimation of regression coefficients which are then passed back to

the sites. b, Each site sends summary statistics to a central site for estimation of the popu-

lation variance which is then passed back to the sites. c, The sites can then use the global

regression coefficients and variance estimates to perform the remaining ComBat steps and

obtain harmonized data.

2.2 ADNI data analysis145

Data for our primary analysis are obtained from ADNI (http://adni.loni.usc.edu/ and146

processed using the ANTs longitudinal single-subject template pipeline (Tustison et al., 2019)147

with code available on GitHub (https://github.com/ntustison/CrossLong). All participants148

in the ADNI study gave informed consent and institutional review boards approved the study149

at all contributing institutions.150
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First, we obtain raw T1-weighted images from the ADNI-1 database, which were ac-151

quired using MPRAGE for Siemens and Philips scanners and a works-in-progress version152

of MPRAGE on GE scanners (Jack et al., 2010). For each subject, we estimate a tem-153

plate from all the image timepoints. Each normalized timepoint image undergoes rigid154

spatial normalization to this single-subject template followed by processing via a single im-155

age cortical thickness pipeline consisting of brain extraction (Avants et al., 2010), denoising156

(Manjón et al., 2010), N4 bias correction (Tustison et al., 2010), Atropos n-tissue segmen-157

tation (Avants et al., 2011), and registration-based cortical thickness estimation (Das et al.,158

2009). We include the 62 cortical thickness values from the baseline scans in our primary159

dataset.160

We then identified scanner based on information contained within the Digital Imaging161

and Communications in Medicine (DICOM) headers for each scan. We consider subjects162

to be acquired on the same scanner if they share the scanner site, scanner manufacturer,163

scanner model, head coil, and magnetic field strength. In total, this definition yields 142164

distinct scanners of which 78 had less than three subjects and were removed from analyses.165

The final sample consists of 505 subjects across 64 scanners, with 213 subjects imaged on166

scanners manufactured by Siemens, 70 by Philips, and 222 by GE. These 64 scanners are167

divided across 53 distinct ADNI sites. The sample has a mean age of 75.3 (SD 6.70) and168

includes 278 (55%) males, 115 (22.8%) Alzheimer’s disease (AD) patients, 239 (47.3%) late169

mild cognitive impairment (LMCI), and 151 (29.9%) cognitively normal (CN) individuals.170

2.3 Comparison with ComBat171

We conduct an experiment to compare d-ComBat and ComBat applied on the full data172

available at a single location. To emulate a distributed data setting, we treat each of the173

53 ADNI sites as separate locations and only enable sharing of summary statistics with a174

central location. We then apply d-ComBat to this data while including age, sex, and disease175

status as covariates. For the reference ComBat-adjusted data, we apply ComBat including176

the same covariates while all of the data is housed at a single site.177

We also compare these two ComBat outputs by comparing their parameter estimates,178

harmonized output data, and run time. Parameter estimates are compared through the179

maximum difference between the two sets of estimates. We then compare the harmonized180

data within each site and report the maximum error across all sites. For run time, we181

compare the ComBat run time with the time elapsed across all d-ComBat steps, including182

calculations at the central location.183
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3 Results184

We ran d-ComBat and ComBat in R on a laptop computer running macOS Catalina185

version 10.15.7 with a 2.3 GHz 8-Core Intel Core i9 processor. D-ComBat ran in 387 mil-186

liseconds across all sites and steps versus ComBat which took 40 milliseconds. The average187

run time within each site was 7.04 milliseconds and the central site took 6 milliseconds to188

compute the necessary estimates.189

Fig. 2 compare the empirical Bayes parameter estimates and regression coefficients ob-190

tained from each method, showing no visible differences across all parameters. The maximum191

percent differences between estimates were 4.17×10−10 for location parameters, 1.72×10−13
192

for scale parameters, and 1.19 × 10−11 for regression coefficients.193

Figure 2: Distributed ComBat parameter estimates. Scatter plots compare parameter

estimates from distributed ComBat versus those obtained from ComBat with all data at one

location. a and b show empirical Bayes point estimates for location and scale respectively.

c displays the regression coefficients obtained from each method.

The harmonized data were identical between the two methods. We found that the maxi-194

mum percent difference between any two data points across the 53 locations was 2.75×10−13.195

4 Discussion196

Challenges in data sharing across institutions have inspired distributed algorithms for197

statistical analysis and machine learning. We contribute to this growing base of methods198

by introducing distributed ComBat for harmonization of data housed in clinical sites. To199

the best of our knowledge, this is the first harmonization method adapted for this setting.200
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Compared to ComBat, we demonstrate that d-ComBat yields identical parameter estimates201

and harmonized output data.202

Unlike ComBat, d-ComBat requires two round of communications with a central location,203

which requires coordination and sharing of deidentified summary statistics between sites.204

These additional steps result in greater total run time across all sites, but very short run205

times at each site. In practice, the execution time of d-ComBat will also depend on the206

transfer speed of summary statistics to the central location and the speed of individuals207

running the code at each site. The total time to run d-ComBat is likely greater than running208

ComBat while having data at a single location, but this additional time is expected given209

the complexities of a distributed data setting. Further investigation into approximating the210

standardization step in one communication step could greatly improve the ease of using211

d-ComBat.212

For distributed Combat, only aggregated statistics are communicated, and the re-identification213

risk for the patients is expected to be low. In the future, we plan to formally quantify the214

re-identification risk rigorously, and enhance our algorithms via techniques including differ-215

ential privacy (Dwork & Roth, 2014; Dwork et al., 2016; Wasserman & Zhou, 2010). Future216

studies could also adapt other harmonization methods for distributed data, including exten-217

sions of ComBat for longitudinal data (Beer et al., 2020), nonlinear associations (Pomponio218

et al., 2020), and covariance effects (Chen et al., 2019).219
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